
MDP Playground: A Design and Debug
Testbed for Reinforcement Learning

Raghu Rajan1, Jessica Lizeth Borja Diaz1, Suresh Guttikonda1,
Fabio Ferreira1, André Biedenkapp1, Jan Ole von Hartz1 & Frank Hutter1,2

1 University of Freiburg 2 Bosch Center for Artificial Intelligence
rajanr@cs.uni-freiburg.de

Abstract

We present MDP Playground, an efficient testbed for Reinforcement Learning1

(RL) agents with orthogonal dimensions that can be controlled independently2

to challenge agents in different ways and obtain varying degrees of hardness in3

generated environments. We consider and allow control over a wide variety of4

dimensions, including delayed rewards, rewardable sequences, density of rewards,5

stochasticity, image representations, irrelevant features, time unit, action range6

and more. We define a parameterised collection of fast-to-run toy environments7

in OpenAI Gym by varying these dimensions and propose to use these for the8

initial design and development of agents. We also provide wrappers that inject9

these dimensions into complex environments from Atari and Mujoco to allow for10

evaluating agent robustness. We further provide various example use-cases and11

instructions on how to use MDP Playground to design and debug agents. We12

believe that MDP Playground is a valuable testbed for researchers designing new,13

adaptive and intelligent RL agents and those wanting to unit test their agents.14

1 Introduction15

RL has succeeded at many disparate tasks, such as helicopter aerobatics, game-playing and continuous16

control [2, 38, 49, 10, 14, 17]. However, a lot of the insights obtained are on very complex and in17

many instances blackbox environments.18

There are many different types of standard environments, as many as there are different kinds of19

tasks in RL [e.g. 57, 6, 11]. They specialise in specific kinds of tasks. The underlying assumptions20

in many of these environments are that of a Markov Decision Process (MDP) [see, e.g., 44, 52] or21

a Partially Observable MDP (POMDP) [see, e.g., 22, 25]. However, there is a lack of simple and22

general MDPs which capture common difficulties seen in RL and let researchers experiment with23

them in a fine-grained manner. Many researchers design their own toy problems which capture the24

key aspect of their problem and then try to gain whitebox insights because the standard complex25

environments, such as Atari and Mujoco, are too expensive or too opaque for the initial design and26

development of their agent. To standardise this initial design and debug phase of the development27

pipeline, we propose a platform which distils difficulties for MDPs that can be generalised across RL28

problems and allows to independently inject these difficulties.29

Disadvantages of complex environments when considered from a point of view of a design and30

debug testbed include: 1) They are very expensive to evaluate. For example, a DQN [38] run on31

Atari [6] took us 4 CPU days and 64GB of memory to run. 2) The environment structure itself is32

so complex that it leads to “lucky” agents performing better (e.g., in [18]). Furthermore, different33

implementations even using the same libraries can lead to very different results [18]. 3) Many34

difficulties are concurrently present in the environments and do not allow us to independently test35

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

their impact on agents’ performance. During the design phase, we need environments to encapsulate,36

preferably orthogonally, the different difficulties present. For instance, MNIST [32] captured some37

key difficulties required for computer vision (CV) which made it a good testbed for designing and38

debugging CV algorithms, even though it cannot be used to directly learn models for much more39

specific CV applications such as classification of plants or medical image analysis.40

The main contributions of this paper are:41

• We identify and discuss dimensions of MDPs that can have a significant effect on agent42

performance, both for discrete and continuous environments;43

• We discuss how to use MDP Playground to design and debug agents with various experi-44

ments; toy experiments can be run in as few as 30 seconds on a single core of a laptop;45

• We discuss insights that can be gained with the various considered dimensions; transferring46

insights from toy to complex environments for some under-studied dimensions led to47

significant improvements in performances on complex environments.48

2 Dimensions of MDPs49

We try to exhaustively identify orthogonal dimensions of hardness in RL by going over the many50

components of a (PO)MDP. By orthogonal, we mean that these dimensions are present independent51

of each other in environments. This was tried exhaustively to allow as many dimensions as possible52

for researchers to systematically study them and gain new insights.53

We define an MDP as a 7-tuple (S,A, P,R, ρo, γ, T), where S is the set of states, A is the set of54

actions, P : S × A → S describes the transition dynamics, R : S × A × S → R describes the55

reward dynamics, ρo : S → R+ is the initial state distribution, γ is the discount factor and T is the56

set of terminal states. We define a POMDP with two additional components - O represents the set of57

observations and Ω : S ×A×O → R+ describes the probability density function of an observation58

given a state and action. To clarify terminology, following [51] we will use information state to mean59

the state representation used by the agent and belief state as the posterior belief of the unobserved60

state given the full observation history. If the belief state were to be used as the information state by61

an agent, this would be sufficient to compute an optimal policy. However, since the full observation62

history is not tractable to store for many environments, agents in practice use the last few observations63

as their information state which renders it only partially observable. This is important because many64

of the motivated dimensions are actually due to the information state being non-Markov.65

2.1 MDPs in MDP Playground66

Toy Environments The toy environments are cheap and encapsulate all the identified dimensions.67

The components of the MDP can be automatically generated according to the dimensions or can be68

user-defined. Any dimension not specified is set to a vanilla default value. Further, the underlying69

MDP state is exposed in an augmented_state variable, which allows users to design agents that may70

try to identify the true underlying MDP state given the observations. We now briefly describe the71

auto-generated discrete and continuous environments, since we use these for the experiments section72

and expect that these will cover the majority of the use-cases. This is followed by implementation73

details of selected dimensions; details for all dimensions can be found in Algorithm 1 in Appendix C.74

Discrete Environments In the discrete case, S and A contain categorical elements, and random75

instantiations of P and R are generated after the remaining dimensions have been set. The generated76

P and R are deterministic and held fixed for the environment. We keep ρo to be uniform over the77

non-terminal states, and T is fixed to be a subset of S based on a chosen terminal state density.78

Continuous Environments In the continuous case, environments correspond to the simplest real79

world task we could find: moving a rigid body to a target point, similar to [16] and [28]. P is80

formulated such that each action dimension affects the corresponding space dimension - s is set to be81

equal to the action applied for time unit seconds on a rigid body. This is integrated over time to yield82

the next state. R is designed such that the reward for the current time step is the distance travelled83

towards the target since the last step.84

Both, the discrete and continuous environments, in MDP Playground can be described as graphical85

POMDPs.86

2

2.2 Motivations of Dimensions and Implementations87

We now describe many of the dimensions from a general point of view and their implementations in88

MDP Playground. For clarity, we describe only the dimensions with experiments in the main paper89

here in greater detail and refer the reader to Appendix B and the documentation for more detailed90

descriptions of all the dimensions.91

Reward Delay For many environments, in many situations, agents perform an action that is conse-92

quential to receiving a reward but the agent is only rewarded in a delayed manner [see e.g. 4] (see93

Figure 1d). For example, shooting at an enemy ship in Space Invaders leads to rewards much later94

than the action of shooting. Any action taken after that is inconsequential to obtaining the reward for95

destroying that enemy ship. In MDP Playground, the reward is artificially delayed by a non-negative96

integer number of timesteps, d.97

Reward Density Environments can also be characterised by their reward density. When an en-98

vironment has denser rewards (see Figure 1a), one is more likely to obtain a supervisory reward99

signal. In sparse reward settings [15], the reward is 0 more frequently, especially, for example, in100

continuous control environments where a long trajectory is followed and then a single non-zero101

reward is received at its end. In MDP Playground, for discrete environments, the reward density,102

rd, is defined as the fraction of possible sequences of length n that are actually rewarded by the103

environment, given that n is constant. If numr sequences are rewarded, we define the reward density104

to be rd = numr/
(|S|−|T |)!

(|S|−|T |−n)! and the sparsity as 1− rd. For continuous environments, density is105

controlled by having a sparse or dense environment using a make_denser configuration option.106

Stochasticity Another characteristic of environments that can significantly impact performance of107

agents is stochasticity. The environment, i.e., dynamics P and R, may be stochastic or may seem108

stochastic to the agent due to partial observability or sensor noise (see Figure 1b-1c). A robot109

equipped with a rangefinder, for example, has to deal with various sources of noise in its sensors [55].110

In MDP Playground, for discrete environments, transition noise t_n ∈ [0, 1]; with probability t_n,111

an environment transitions uniformly at random to a state that is not the true next state given by P .112

For discrete environments, reward noise r_n ∈ R; a normal random variable distributed according113

to N (0, σ2
r_n) is added to the true reward. For continuous environments, both p_n and r_n are114

normally distributed and directly added to the states and rewards.115

Irrelevant Features Environments also tend to have a lot of irrelevant features [45] that one need116

not focus on. This holds for both table-based learners and approximators like Neural Networks117

(NNs). NNs additionally can even fit random noise [64] and having irrelevant features is likely118

to degrade performance. For example, in certain racing car games, though the whole screen is119

visible, concentrating on only the road would be more efficient without loss in performance. In MDP120

Playground, for discrete environments, a new discrete dimension with its own transition function121

Pirr which is independent of P , is introduced. However, only the discrete dimension corresponding122

to P is relevant to calculate the reward function. Similarly, in continuous environments, dimensions123

of S and A are labelled as irrelevant and not considered in the reward calculation.124

Representations Another aspect is that of representations. The same underlying state may have125

many different external representations/observations, e.g., feature space vs pixel space. Mujoco tasks126

may be learnt in feature space vs directly from pixels, and Atari games can use the underlying RAM127

state or images. For images, various image transformations [shift, scale, rotate, flip and others; 19]128

may manifest as observations of the same underlying state and can pose a challenge to learning. In129

MDP Playground, for discrete environments, when this aspect is enabled, each categorical state is130

associated with an image of a regular polygon which becomes the externally visible observation o to131

the agent. This image can further be transformed by shifting, scaling, rotating or flipping, which are132

applied at random to the polygon whenever an observation is generated. For continuous environments,133

image observations can be rendered for 2D environments. Examples of some generated states can be134

seen in Figures 10-11 in Appendix I.135

Time Unit and Action Range For continuous control problems, we describe 2 additional dimensions136

here: action range [26], a weight penalising actions; and time unit, the discretisation of time (see137

Figure 1e).138

We now summarise the dimensions identified above (with the (PO)MDP component they impact in139

brackets):140

3

S0 S2
a+

R = 0S1a-

R = 1

R = 0S3a-

(a) R density: only 1 of 3
possible actions (a+) leads
to a reward

S0 S20.8

S1

S3
0.1

0.1

(b) P noise: A noise of 0.2
(split into 0.1 and 0.1 and
shown with dotted lines)
is shown to lead the agent
to a state which is not the
true next state.

S0 S1

R = 1

S0 S1

R = 0.79

S0

R = 1.05

S1

(c) R noise: The same
transition leads to differ-
ent rewards.

S0 S1 S2
a+ a-

R = 0 R = 1

(d) R delay: The rewarding action (a+)
leads to a reward not immediately but
a step later than it was executed and
this reward is achieved even though an
action inconsequential to achieving the
reward (a-) was performed. Note: the
reward would have been achieved a step
later irrespective of which action was
performed in the second step.

S0 S0.5

t = 0.5

S1

t = 1

(e) Time Unit: We depict a "half" ac-
tion, i.e., performed for a time unit that
is half the default time unit, leading to
an intermediate state

Figure 1: We depict some of the dimensions visually following [59]. Not all states and actions are
depicted to focus on the dimension of interest. Rewarding actions are shown as a+ while actions
shown as a- are not rewarding. Reward is shown as R and time unit as t.

• Reward Delay (R)
• Reward Density (R)
• Transition Noise (P)

• Reward Noise (R)
• Irrelevant Features (O)
• Representations (O)

• Action Range (A)
• Time Unit (P)141

Only selected dimensions are included here, to aid in understanding and to show use-cases for MDP142

playground. Trying to exhaustively identify dimensions has led to a very flexible platform and143

Appendix B lists all the dimensions of MDP Playground. We would like to point out that it largely144

depends on the domain which dimensions are important. For instance, in a video game domain, a145

practitioner may not want to inject any kind of noise into the environment, if their only aim is to146

obtain high scores, whereas in a domain like robotics adding such noise to a deterministic simulator147

could be crucial in order to obtain generalisable policies [56].148

3 MDP Playground149

Code samples An environment instance is created as easily as passing a Python dict:150

from mdp_playground.envs import RLToyEnv
config = {

’state_space_type’: ’discrete’,
’action_space_size’: 8,
’delay’: 1,
’sequence_length’: 3,
’reward_density’: 0.25,
}

env = RLToyEnv(**config)

Very low-cost execution Experiments with151

MDP Playground are cheap, allowing aca-152

demics without special hardware to perform153

insightful experiments. Wall-clock times de-154

pend a lot on the agent, network size (in case155

of NNs) and the dimensions used. Neverthe-156

less, to give the reader an idea of the runtimes157

involved, DQN experiments (with a network158

with 2 hidden layers of 256 units each) took159

on average 35s for a complete run of DQN160

4

none s S f r sSrf
image_transforms

0

50

Re
wa

rd

(a) DQN

none s S f r sSrf
image_transforms

0

50

Re
wa

rd

(b) Rainbow

none s S f r sSrf
image_transforms

0

100

Re
wa

rd

(c) A3C

2 4 8 16
image_sh_quant

0

50

Re
wa

rd

(d) DQN shift

Figure 2: AUC of episodic reward at the end of training for the different agents when varying
representation. ’s’ denotes shift (quantisation of 1), ’S’ scale, ’f’ flip and ’r’ rotate in the labels
in the first three subfigures and image_sh_quant represents quantisation of the shifts in the DQN
experiment for this. Error bars represent 1 standard deviation. Note the different reward scales.

0.1 0.2 0.5 1.0 2.0 4.0 8.0
time_unit

0

5

Re
w

ar
d

(a) time unit toy

0.2 0.4 1.0 2.0 4.0
time_unit

0

5000

Re
wa

rd

(b) time unit complex

2 3 4 6 10
state_space_dim

0

5

Re
wa

rd

(c) irr. dims. rew.

0 1 2 4 8
delay

0

1000

Re
wa

rd

(d) DQN qbert

Figure 3: a and b: DDPG with time unit on toy and complex (HalfCheetah) environment at the end
of training (time unit is relative to the defaults). c: DDPG with irrelevant dimensions injected on
the toy environment. d: DQN on qbert. Error bars represent 1 standard deviation. Note the different
y-axis scales.

for 20 000 environment steps. In this setting,161

we restricted Ray RLLib [33] and the under-162

lying Tensorflow [1] to run on one core of a laptop (core-i7-8850H CPU – the full CPU specifications163

for a single core can be found in Appendix R). This equates to roughly 30 minutes for the entire delay164

experiment shown in Figure 12a which was plotted using 50 runs (10 seeds × 5 settings for delay;165

these 50 runs could also be run in an embarrassingly parallel manner on a cluster). Even when using166

the more expensive continuous or representation learning environments, runs were only about 3-5167

times slower.168

Complex Environment Wrappers We further provide wrappers for Atari and Mujoco which can be169

used to inject some of the dimensions also into complex environments.170

Design decisions While many dimensions can seem challenging at first, it is also the nature of RL171

that different dimensions tend to be important in different specific applications. The video game172

domain was provided as an example of this in Section 2.2. Another example is of reward scale. The173

agents we tested here re-scale or clip rewards already and the effects of this dimension are not as174

important as they would be otherwise. To maintain the flexibility of having as many dimensions as175

possible and yet keep the platform easy to use, default values are set for dimensions that are not176

configured. This effectively turns off those dimensions. Thus, as in the code example, users only177

need to provide dimensions they are interested in.178

Further design decisions are discussed in detail in Appendix G.179

4 Using MDP Playground180

We discuss in detail various experiments along with how they may be used to design new agents and181

to debug existing agents. For the experiments, we set |S| and |A| to 8 and the terminal state density182

to 0.25. The reward scale is set to 1.0 whenever a reward is given by the environment. We evaluated183

Rllib implementations [33] of DQN [38], Rainbow DQN [20], A3C [37] on discrete environments184

and DDPG [34], TD3 [14] and SAC [17] on continuous environments over grids of values for the185

dimensions. Hyperparameters and the tuning procedure used are available in Appendix O. We used186

fully connected networks except for pixel-based representations where we used Convolutional Neural187

Networks (CNNs) [31].188

4.1 Designing New Agents189

We hope our toy environments will help identify inductive biases needed for designing new RL agents190

without getting confounded by other sources of "noise" in the evaluation. What is important for doing191

5

this is to be able to identify if the trends seen on the toy environments would also occur for more192

complex environments. We now provide empirical support for this with several experiments.193

We tested the trends of the dimensions on more complex Atari and Mujoco tasks. For Atari, we ran194

the agents on beam_rider, breakout, qbert and space_invaders when varying the dimensions delay195

and transition noise. For Mujoco, we ran the agents on HalfCheetah, Pusher and Reacher using196

mujoco-py when varying the dimensions time unit and action range. We evaluated 5 seeds for 500k197

steps for Pusher and Reacher, 3M for HalfCheetah and 10M (40M frames) for Atari. The values198

shown for action range and time unit are relative to the ones used in Mujoco.199

Varying representations We turned on image representations for discrete environments and applied200

various transforms (shift, scale, rotate and flip) one at a time and also all at once. We observed that201

the more transforms are applied to the images, the harder it is for agents to learn, as can be seen in202

Figures 2a-c. This was to be expected since there are many more combinations to generalise over for203

the agent.204

It is important to note, from the point of view of a design platform, that our platform allows us to205

identify the inductive bias of CNNs being good for image observations without having to conduct206

such experiments on complex and expensive environments. This is because the toy environments207

capture many key features of image representations and thus the image classification capabilities of208

CNNs can help identify the underlying MDP state. In a similar manner, we have captured key features209

of other dimensions. If one were to design a new inductive bias which helps the agent identify the210

underlying MDP state in the presence of the other dimensions, this could be tested in a coarse and211

quick manner on our platform.212

Varying time unit We observed that the time unit has an optimal value which has significant impact213

on performance in the toy continuous environment (Figure 3a), i.e., that it can be neither too small214

nor too large. We decided to tune the time unit also for complex environments (Figures 3b, 8 and 9).215

The insight from the toy environment transferred to the complex case and there were gains of even216

100% in some cases over the default value of the time units used in the "expert-tuned" environments.217

A further insight to be had is that for simpler environments like the toy, Pusher and Reacher, the218

effect of the selection of the time unit was not as pronounced as for a more complex environment like219

HalfCheetah. This makes intuitive sense as one can expect a narrower range of values to work for220

more complex environments. This shows that it is even more important to tune such dimensions for221

more complex environments.222

The basic agent design we showed above does this once and sets its optimal time unit statically. An223

ideal adaptive agent design would even set the time unit in an online manner. Since the trends from224

the toy environment coarsely transfer to the complex environments, coarse and quick insights can be225

gained on the toy environments.226

Varying action range We observed similar trends as for time unit, in that there was an optimal227

value of action range, i.e., that it can be neither too small nor too large. Figure 9 shows this for all228

considered agents on HalfCheetah (for SAC and DDPG, runs for action range values>= 2 and>= 4229

crashed and are absent from the plot). This supports the insight gained on our simpler environment230

that tuning this value may lead to significant gains for an agent. For already tuned environments, such231

as the ones in Gym, this dimension is easily overlooked but when faced with new environments setting232

it appropriately can lead to substantial gains. In fact, even in the tuned environment setting of Gym,233

we found that all three algorithms performed best for an action range 0.25 times the value found in234

Gym for Reacher (Figures 8c, 8k, 8g in Appendix H). Moreover, the learning curves in Appendix235

N further show that for increasing action range the training gets more variant. The difference in236

performances across the different values of action range is much greater in the complex environments.237

We believe this is due to correlations within the multiple degrees of freedom as opposed to a rigid238

object in the toy environment.239

To the best of our knowledge, the impact of time unit and action range is under-researched while240

developing agents because the standard environments have been pre-configured by experts. However,241

it’s clear from Figure 3b, that pre-configured values were not optimal and even basic tuning improves242

performance significantly in even known environments. In a completely unknown environment, if we243

want agents to perform optimally, these dimensions would need to be taken into account even more244

when designing agents.245

6

Varying transition noise We observe similar trends for injecting transition noise into Atari envi-246

ronments for all three agents as for the toy environments. We also observe that for some of the247

environments, transition noise actually helps improve performance. This has also been observed in248

prior work [61]. This happens when the exploration policy was not tuned optimally since inserting249

transition noise is almost equivalent to ε-greedy exploration for low values of noise. We also observed250

a similar effect for the toy environments in Figure 18 in Appendix J. However, we also observe that251

performance drop is different for different environments. This is to be expected as there are other252

dimensions of hardness which we cannot control or measure for these environments.253

Varying reward delay We see that on average performance drops for the delay experiments when254

more delay is inserted , as was the case for the toy environments. For qbert (Figure 3d), these drops255

are greater on average across the agents. However, for breakout (Figure 6b), in many instances, we256

don’t even see performance drops. In beam_rider (Figure 6a) and space_invaders (Figure 6d), the257

magnitude of these effects are intermediate to breakout and qbert. This trend becomes clearer when258

we also look at Figures 7b-p in Appendix H. We believe this is because large delays from played259

action to reward are already present in breakout, which means that inserting more delays does not260

have as large an effect as in qbert (Figures 3d). Agents are strongest affected in qbert which, upon261

looking at gameplay, we believe has the least delays from rewarding action to reward compared262

to the other games. The trends for delay were noisier than for transition noise, even though on263

average the trends transferred from MDP Playground to the complex environments. Many considered264

environments tend to also have repetitive sequences which would dilute the effect of injecting delays.265

Many of the learning curves in Appendix N, with delays inserted, are indistinguishable from normal266

learning curves. We believe that, in addition to the motivating examples, this is empirical evidence267

that delays are already present in these environments and so inserting them does not cause the curves268

to look vastly different. In contrast, when we see learning curves for transition noise, we observe269

that, as we inject more and more noise, training tends to a smoother curve as the agent tends towards270

becoming a completely random agent.271

Additionally, we also have experiments with similar trends also for another dimension - reward272

noise. The average rank correlation over 12 experiments (3 agents x 4 Atari environments) was 0.867273

for transition noise, 0.617 for reward delay, and 0.733 for reward noise. Tables 1, 2 and 3 list the274

individual rank correlation for each experiment, i.e. agent, environment and dimension.275

To analyse transfer of dimensions between toy and complex benchmarks, for the Atari experiments,276

we use the Spearman rank correlation coefficient between corresponding toy and complex experiments277

for performance across different values of the dimension of hardness. The Spearman correlation was278

>= 0.7 for 19 out of 24 experiments and a positive correlation for four of the remaining five. DQN279

with delays added on breakout was the only experiment with correlation 0.280

Varying irrelevant features We observed that introducing irrelevant dimensions to the control prob-281

lem, while keeping the number of relevant dimensions fixed to 2, decreased an agent’s performance282

(see Figures 3c & 17f). This gives us the insight that having irrelevant features interferes with the283

learning process. An inductive bias that learns to focus only on the relevant dimensions could be284

unit-tested to gain coarse insights on the toy environments.285

We have shown similar trends for SAC on HalfCheetah in Figure 9a in Appendix H.286

Varying Multiple Dimensions In MDP Playground, it is possible to vary multiple dimensions at the287

same time in the same base environment. For instance, Figure 4d shows the interaction effect (an288

inversely proportional relationship) between the action range and the time unit in the continuous toy289

environment with DDPG. This insight allows us to design an adaptive agent which sets its action290

range depending on the time unit and vice versa. Since many real-world systems can be described291

in terms of a simple rigid body moving towards a target point, the toy continuous environment is a292

useful testbed for this.293

More such experiments can be found in Appendix L, including varying both P and R noises together294

in discrete environments and more. Further design ideas for new agents can be found in Appendix E.295

4.2 Insights into Existing Agents296

Apart from the insights gained for designing agents above, we discuss more insights for existing297

agents explicitly here.298

7

The experiment for varying representations on toy environments discussed above (Figures 2a-c)299

further showed that the degradation in performance is much stronger for DQN compared to Rainbow300

and A3C which are known to perform better than DQN in complex environments.301

This led us to another interesting insight regarding the inductive bias of CNNs. It was unexpected302

for us that the most problematic transform for the agents to deal with was shift. Despite the spatial303

invariance learned in CNNs [30], our results imply that that seems to be the hardest one to adapt to.304

As these trends were strongest in DQN, we evaluated further ranges for the individual transforms305

for DQN. Here, shifts had the most possible different combinations that could be applied to the306

images. Therefore, we quantised the shifts to have fewer possible values. Figure 2d shows that DQN’s307

performance improved with increasing quantisation (i.e., fewer possible values) of shift. We noticed308

similar trends for the other transforms as well, although not as strong as they do not have as many309

different values as shift (see Figures 29b-c in Appendix J). We emphasize that in a more complex310

setting, we would have easily attributed some of these results to luck but in the setting where we had311

individual control over the dimensions, our platform allowed us to dig deeper in a controlled manner.312

Another insight we gain is from the time unit experiment (see Figures 3a and 3b), which indicates313

time unit should not be infinitesimally small to achieve too fine-grained control since there is an314

optimal time unit for which we should repeat the same action [7].315

transition_noise

reward_noise

reward_density

delay

sequence_length

image_transforms

20

40

60

80

A3C
DQN
RAINBOW

(a) discrete envs.

transition_noise

reward_noise

target_radius

action_range time_unit

action_loss_weight

state_space_dim

2

4

6

DDPG
TD3
SAC

(b) cont. envs. (c) reward density

0.02 0.05 0.1
time_unit

0.25

0.5

1.0

ac
tio

n_
sp

ac
e_

m
ax

0

1

2

3

4

Reward

(d) action range + time unit

Figure 4: Analysing and Debugging

In Figure 3d, where we varied delay on qbert, we show how a dimension induces hardness in an316

environment. This result is representative of the experiments on toy and complex environments which317

are included in Appendix H and H with the difference that results are noisier in complex environments318

since the dimensions are already present there in varying degrees. We, thus, studied what kinds319

of failure modes can occur when an agent is faced with such dimensions and even obtained noisy320

learning curves typically associated with RL on the toy environments as can be seen in Appendix M.321

At the same time, the experiment in Figure 3d also shows how the complex environment wrappers322

allow researchers, who are curious, to study the robustness of their agents to these dimensions on323

complex environments, without having to fiddle with lower-level code. This is a typical use-case324

further down the agent development pipeline, i.e., close to deployment.325

Design and Analyse Experiments We allow the user the power to inject dimensions into toy or326

complex environments in a fine-grained manner. This can be used to define custom experiments with327

the dimensions. The results can be analysed in an accompanying Jupyter notebook using the 1D328

plots. There are also radar plots inspired by bsuite [42], but with more flexibility in choosing the329

dimensions, and these can even be applied to complex environment experiments. Since, different330

users might be interested in different dimensions, these are loaded dynamically from the data. For331

instance, radar plots for the dimensions we varied in our toy experiments can be seen as in Figures 4a332

and 4b.333

4.3 Debugging Agents334

Analysing how an agent performs under the effect of various dimensions can reveal unexpected335

aspects of an agent. For instance, when using bsuite agents, we noticed that when we varied our336

environment’s reward density, the performance of the bsuite Sonnet DQN agent would go up in337

proportion to the density (see Figure 4c). This did not occur for other bsuite agents. This seemed to338

suggest something different for the DQN agent and when we looked at DQN’s hyperparameters we339

realised that it had a fixed ε schedule while the other agents had decaying schedules. Such insights340

8

can easily go unnoticed if the environments used are too complex. The high bias nature of our toy341

environments helps debug such cases.342

In another example, in one of the Ray versions we used, we observed that DQN was performing well343

on the varying representations environment while Rainbow was performing poorly. We were quickly344

able to ablate additional Rainbow hyperparameters on the toy environments and found that their noisy345

nets [13] implementation was broken (see Figure 5 in Appendix). We then tested and observed the346

same on more complex environments. This shows how easily and quickly agents can be debugged to347

see if something major is broken. This, in combination with their low computational cost, also makes348

a case to use the toy environments in Continuous Integration (CI) tests on repositories.349

Further, we believe the same structured nature of MDP Playground also makes it a valuable tool350

for theoretical research. We evaluated tabular baselines Q-learning [52], Double Q-learning [60]351

and SARSA [52] on the discrete non-image based environments with similar qualitative results to352

those for deep agents. These can be found in Appendix K. This makes our platform a bridge between353

theory and practice where both kinds of agents can be tested.354

The experiments here are only a glimpse into the power and flexibility of MDP Playground. Users355

can even upload custom P s and Rs and custom images for representations O and our platform takes356

care of injecting the other dimensions for them (wherever possible). This allows users to control357

different dimensions in the same base environment and gain further insights.358

5 Discussion and Related Work359

The Behaviour Suite for RL [bsuite; 42] is the closest related work to MDP Playground. [42] collect360

known (toy) environments from the literature and use these to characterise agents based on their361

performance on these environments. Most environments in bsuite can be seen as an intermediate362

step between our MDPs and more complex environments. This is because bsuite’s environments363

are already more specific and complex than the toy environments in MDP Playground. This makes364

bsuite’s dimensions not orthogonal and atomic like ours and thus not individually controllable. Fine-365

grained control is a feature that sets our platform apart. bsuite has a collection of presets chosen by366

experts which work well but would be much harder to play around with. While MDP Playground367

also has good presets through default values defined for experiments, it is much easier to configure.368

Further, it also means that bsuite experiments are much more expensive than ours. While bsuite itself369

is quite cheap to run, MDP Playground experiments are an order of magnitude cheaper. In contrast370

to bsuite, we demonstrate how the identified trends on the toy and complex environments can be371

used to design and debug agents. Further, bsuite currently has no toy environment for Hierarchical372

RL (HRL) agents while MDP Playground’s rewardable sequences fits very well with HRL. Finally,373

bsuite offers no continuous control environments, whereas MDP Playground provides both discrete374

and continuous environments. This is important because several agents like DDPG, TD3, SAC are375

designed for continuous control. A more detailed comparison with bsuite and other related work can376

be found in Appendix D.377

Toybox [58] and Minatar [62] are also cheap platforms like ours with similar goals of gaining deeper378

insights into RL agents. However, their games target the specific Atari domain and are, like bsuite,379

more specific and complementary to our approach.380

We found [3] the most similar work to ours in spirit. They propose that current deep RL research381

has been increasing the complexity of the dynamics P but has not paid much attention to the state382

distributions and reward distribution over which RL policies work and that this has made RL agents383

brittle. This also raises concerns about the narrow scope of these so-called "complex" environments384

and we aim to remedy that with our dimensions. We agree with them in this regard. However, they385

only target continuous environments. We capture their dimensions in a different manner and offer386

many more dimensions with fine-grained control. Furthermore, their code is not open-source.387

Further research includes Procgen [11], Obstacle Tower [24] and Atari [6]. Procgen adds various388

heterogeneous environments and tries to quantify generalisation in RL. In a similar vein, Obstacle389

Tower provides a generalization challenge for problems in vision, control, and planning. These390

benchmarks do not capture orthogonal dimensions of difficulty and as a result, they do not have the391

same type of fine-grained control over their environments’ difficulty and neither can each dimension392

be controlled independently. We view this as a crucial aspect when testing new agents. [12] provides393

9

some overlapping dimensions with our platform but it consists of only continuous environments, and394

doesn’t target the toy domain.395

6 Limitations of the Approach and its Ethical and Societal Implications396

The toy environments are meant to be design and debug testbeds and not for engineering/tuning the397

final agent HPs. As such, they are extremely cheap compared to complex environments and (as one398

would expect), they can only be used to draw high-level insights that transfer and are likely not as399

discriminating as complex environments for many of the finer changes between RL agents. They400

also cannot be used directly to determine the values of hyperparameters (HPs) to use on complex401

environments. For example, just as complex environments require bigger NNs, they would need402

correspondingly different HPs, such as bigger replay buffers. Even the performance of agents in bsuite403

(which has more complex environments than our benchmark) do not transfer to the more complex404

environments (https://github.com/deepmind/bsuite/issues/14). In a similar vein, to the405

best of our knowledge, MNIST hyperparameters do not transfer to ImageNet and it is only used for406

testing out initial design ideas.407

Further, high-dimensional control problems where there are interaction effects between degrees of408

freedom are not captured in the toy rigid body control problem as this is the domain of complex409

benchmarks and beyond the scope of this platform. (The platform does provide complex environment410

wrappers, though, which inject some of the mentioned dimensions. We couldn’t find such wrappers411

in the literature/on the Internet.)412

Finally, Multi-Agent RL, Multi Objective RL, Time Varying MDPs (and probably some more research413

areas) are beyond the scope of the current work.414

In terms of the broader impact on society and ethical considerations, we foresee no direct impact,415

only indirect consequences through RL since our work promotes standardisation and reproducibility416

which should accelerate RL research. An additional environmental impact would be that, at least,417

prototyping and testing of agents could be done cheaply, reducing carbon emissions.418

7 Conclusion and Future Work419

We introduced a low-cost platform to design and debug RL agents and provided instructions on420

how to use it with supporting experiments. The platform allows us to disentangle various factors421

that make RL environments hard by providing fine-grained control over various dimensions. This422

also lends itself to easily achievable insights and helps debug agents. We further demonstrated423

how the performance of the studied agents is adversely affected by the dimensions. To the best of424

our knowledge, we are the first to perform a principled study of how significant aspects such as425

non-Markov information states, irrelevant features, representations and low-level dimensions, like426

time discretisation, affect agent performance.427

We want MDP Playground to be a community-driven effort and it is open-source for the benefit428

of the RL community at https://github.com/automl/mdp-playground. While we tried to429

exhaustively identify dimensions of hardness, it is unlikely that we have captured all orthogonal430

dimensions in RL. We welcome more dimensions that readers think will help us encapsulate further431

challenges in RL and will add them based on the community’s thoughts.432

Future work can tackle not only theoretical development of such dimensions but also additional433

analysis of such dimensions in complex domains such as Mujoco and dexterous manipulation [46].434

Given the current brittleness of RL agents [18], and many claims that have been challenged [5, 58],435

we believe RL agents need to be tested on a lower and more basic level to gain insights into their436

inner workings. MDP Playground is like a programming language for regularly structured MDPs437

which allows delving deeper into the inner workings of RL agents.438

10

https://github.com/deepmind/bsuite/issues/14
https://github.com/automl/mdp-playground

Acknowledgements439

The authors gratefully acknowledge support by BMBF grant DeToL, by the Bosch Center for440

Artificial Intelligence, and by the European Research Council (ERC) under the European Union’s441

Horizon 2020 research and innovation programme under grant no. 716721, by the state of Baden-442

Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST443

39/963-1 FUGG. They would like to thank their group, especially Joerg, Steven, Samuel, for helpful444

feedback and discussions. Raghu would like to additionally thank Michael Littman for his feedback445

and encouragement and the RLSS 2019, Lille organisers and participants who he had interesting446

discussions with.447

References448

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean,449

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,450

L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,451

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-452

sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.453

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.454

[2] P. Abbeel, A. Coates, and A. Y Ng. Autonomous helicopter aerobatics through apprenticeship455

learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010.456

[3] Olov Andersson and Patrick Doherty. Toward robust deep rl via better benchmarks: Identifying457

neglected problem dimensions. In 2nd Reproducibility in Machine Learning Workshop at ICML458

2018, Stockholm, Sweden, 2018.459

[4] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.460

RUDDER: return decomposition for delayed rewards. In H. M. Wallach, H. Larochelle,461

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Proceedings of the 32nd462

International Conference on Advances in Neural Information Processing Systems (NeurIPS’19),463

pages 13544–13555, 2019.464

[5] Akanksha Atrey, Kaleigh Clary, and David D. Jensen. Exploratory not explanatory: Coun-465

terfactual analysis of saliency maps for deep reinforcement learning. In 8th International466

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.467

OpenReview.net, 2020.468

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An469

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,470

Jun 2013.471

[7] A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer. Towards TempoRL: Learning when to472

act. In Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML’20),473

July 2020.474

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.475

OpenAI gym. arXiv:1606.01540 [cs.LG], June 2016.476

[9] P. Chrabaszcz, I. Loshchilov, and F. Hutter. Back to basics: Benchmarking canonical evolution477

strategies for playing atari. In J. Lang, editor, Proceedings of the Twenty-Seventh International478

Joint Conference on Artificial Intelligence, (IJCAI’18), pages 1419–1426. ijcai.org, 2018.479

[10] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of480

trials using probabilistic dynamics models. In Proceedings of the 31st International Conference481

on Advances in Neural Information Processing Systems (NeurIPS’18), pages 4754–4765, 2018.482

[11] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging Procedural Generation to Bench-483

mark Reinforcement Learning. arXiv:1912.01588 [cs.LG], Dec 2019.484

[12] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven485

Gowal, and Todd Hester. An empirical investigation of the challenges of real-world reinforce-486

ment learning. CoRR, abs/2003.11881, 2020.487

11

[13] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih,488

R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration.489

In Proceedings of the International Conference on Learning Representations (ICLR’18), 2018.490

Published online: iclr.cc.491

[14] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic492

methods. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference493

on Machine Learning (ICML’18), pages 1582–1591. PMLR, 2018.494

[15] R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana. Tackling sparse rewards in real-time games495

with statistical forward planning methods. In Proceedings of the 33rd Conference on Artificial496

Intelligence (AAAI’19), pages 1691–1698. AAAI Press, 2019.497

[16] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based498

policies. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference499

on Machine Learning, (ICML’17), pages 1352–1361. PMLR, 2017.500

[17] T. Haarnoja, A. Zhou, P. Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy maximum501

entropy deep reinforcement learning with a stochastic actor. In J. G. Dy and A. Krause, editors,502

Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages503

1856–1865. PMLR, 2018.504

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement505

learning that matters. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the506

Conference on Artificial Intelligence (AAAI’18), pages 3207–3214. AAAI Press, 2018.507

[19] D. Hendrycks and T. G. Dietterich. Benchmarking neural network robustness to common508

corruptions and perturbations. In Proceedings of the International Conference on Learning509

Representations (ICLR’19), 2019. Published online: iclr.cc.510

[20] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,511

M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.512

In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Conference on Artificial513

Intelligence (AAAI’18), pages 3215–3222. AAAI Press, 2018.514

[21] Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.com/515

2018/02/14/rl-hard.html, 2018.516

[22] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for partially517

observable markov decision problems. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,518

Proceedings of the 7th International Conference on Advances in Neural Information Processing519

Systems (NeurIPS’95), pages 345–352, 1995.520

[23] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement521

learning. J. Mach. Learn. Res., 11:1563–1600, 2010.522

[24] A. Juliani, A. Khalifa, V.P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and523

D. Lange. Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning. In524

S. Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial525

Intelligence (IJCAI), pages 2684–2691. ijcai.org, Feb 2019.526

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in527

partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.528

[26] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep529

reinforcement learning. In IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-27,530

2020, pages 479–486. IEEE, 2020.531

[27] Geir Kirkebøen and Gro HH Nordbye. Intuitive choices lead to intensified positive emotions:532

An overlooked reason for “intuition bias”? Frontiers in Psychology, 8:1942, 2017.533

[28] P. Klink, H. Abdulsamad, B. Belousov, and J. Peters. Self-paced contextual reinforcement534

learning. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual Conference on535

Robot Learning, (CoRL’19), pages 513–529. PMLR, 2019.536

12

iclr.cc
iclr.cc
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[29] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying537

the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.538

[30] Y. LeCun. Learning invariant feature hierarchies. In A. Fusiello, V. Murino, and R. Cucchiara,539

editors, Computer Vision - ECCV 2012, pages 496–505. Springer, 2012.540

[31] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Back-541

propagation applied to handwritten zip code recognition. Neural Comput., 1(4):541–551,542

1989.543

[32] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.544

[33] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jordan,545

and I. Stoica. RLlib: Abstractions for distributed reinforcement learning. In J. Dy and A. Krause,546

editors, Proceedings of the 35th International Conference on Machine Learning (ICML’18),547

volume 80, pages 3059–3068. Proceedings of Machine Learning Research, 2018.548

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.549

Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors,550

Proceedings of the International Conference on Learning Representations (ICLR’16), 2016.551

Published online: iclr.cc.552

[35] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Lee Isbell Jr., Min Wen, and James Mac-553

Glashan. Environment-independent task specifications via GLTL. CoRR, abs/1704.04341,554

2017.555

[36] Odalric-Ambrym Maillard, Timothy A. Mann, and Shie Mannor. How hard is my mdp?" the556

distribution-norm to the rescue". In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.557

Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing558

Systems 27: Annual Conference on Neural Information Processing Systems 2014, December559

8-13 2014, Montreal, Quebec, Canada, pages 1835–1843, 2014.560

[37] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and561

K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In M. Balcan562

and K. Weinberger, editors, Proceedings of the 33rd International Conference on Machine563

Learning (ICML’16), volume 48, pages 1928–1937, 2016.564

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,565

M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,566

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through567

deep reinforcement learning. Nature, 518(7540):529–533, 2015.568

[39] Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision. CoRR,569

abs/1906.02337, 2019.570

[40] D. S. Nau. Pathology on game trees revisited, and an alternative to minimaxing. Artif. Intell.,571

21(1-2):221–244, 1983.572

[41] Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement573

learning. In Amir Globerson and Ricardo Silva, editors, Proceedings of the Thirty-Fifth574

Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25,575

2019, volume 115 of Proceedings of Machine Learning Research, pages 81–90. AUAI Press,576

2019.577

[42] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,578

C. Szepezvari, S. Singh, B. Van Roy, R. Sutton, D. Silver, and H. Van Hasselt. Behaviour579

suite for reinforcement learning. In Proceedings of the International Conference on Learning580

Representations (ICLR’19), 2019. Published online: iclr.cc.581

[43] J. Pearl. Theoretical impediments to machine learning with seven sparks from the causal582

revolution. In Y. Chang, C. Zhai, Y. Liu, and Y. Maarek, editors, Proceedings of the Eleventh583

ACM International Conference on Web Search and Data Mining, (WSDM’18), page 3. ACM,584

February 2018.585

13

iclr.cc
iclr.cc

[44] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.586

Wiley Series in Probability and Statistics. Wiley, 1994.587

[45] J. Rajendran, J. Ganhotra, S. Singh, and L. Polymenakos. Learning end-to-end goal-oriented588

dialog with multiple answers. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, edi-589

tors, Proceedings of the Conference on Empirical Methods in Natural Language Processing590

(EMNLP’19), pages 3834–3843. Association for Computational Linguistics, 2018.591

[46] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel592

Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement593

learning and demonstrations. In Proceedings of Robotics: Science and Systems, Pittsburgh,594

Pennsylvania, June 2018.595

[47] R. Ramanujan, A. Sabharwal, and B. Selman. On adversarial search spaces and sampling-based596

planning. In R. I. Brafman, H. Geffner, J. Hoffmann, and H. A. Kautz, editors, Proceedings of597

the 20th International Conference on Automated Planning and Scheduling, (ICAPS’10), pages598

242–245. AAAI, 2010.599

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization600

algorithms. arXiv:1707.06347 [cs.LG], 2017.601

[49] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-602

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,603

N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and604

D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,605

529(7587):484–489, 2016.606

[50] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–607

96, 2007.608

[51] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate609

information state for approximate planning and reinforcement learning in partially observed610

systems. CoRR, abs/2010.08843, 2020.611

[52] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT Press, second612

edition, 2018.613

[53] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal614

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.615

[54] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and616

hyperparameter optimization of classification algorithms. In I. Dhillon, Y. Koren, R. Ghani,617

T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy, editors, The 19th618

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13),619

pages 847–855. ACM Press, 2013.620

[55] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. Intelligent robotics and autonomous621

agents. MIT Press, 2005.622

[56] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.623

Domain randomization for transferring deep neural networks from simulation to the real world.624

In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017,625

Vancouver, BC, Canada, September 24-28, 2017, pages 23–30. IEEE, 2017.626

[57] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In627

International Conference on Intelligent Robots and Systems (IROS’12), pages 5026–5033. IEEE,628

2012.629

[58] Emma Tosch, Kaleigh Clary, John Foley, and David D. Jensen. Toybox: A suite of environments630

for experimental evaluation of deep reinforcement learning. CoRR, abs/1905.02825, 2019.631

[59] Alexander Matt Turner. Optimal farsighted agents tend to seek power. CoRR, abs/1912.01683,632

2019.633

14

[60] H. van Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and634

A. Culotta, editors, Proceedings of the 24th International Conference on Advances in Neural635

Information Processing Systems (NeurIPS’10), pages 2613–2621, 2010.636

[61] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and637

J. Ba. Benchmarking model-based reinforcement learning. arXiv:1907.02057 [cs.LG], 2019.638

[62] Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for more efficient reinforcement639

learning experiments. CoRR, abs/1903.03176, 2019.640

[63] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua,641

Frank Hutter, and Roberto Calandra. On the Importance of Hyperparameter Optimization for642

Model-based Reinforcement Learning. In Proceedings of the 24th International Conference on643

Artificial Intelligence and Statistics (AISTATS)’21, April 2021.644

[64] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning645

requires rethinking generalization. In 5th International Conference on Learning Representations,646

(ICLR’17). OpenReview.net, 2017.647

Checklist648

1. For all authors...649

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s650

contributions and scope? [Yes] The orthogonal dimension that influence RL agents651

performances are presented and their role in the implemented MDPs is discussed in652

Section 2. We showed that varying these dimensions can provide new insights or653

confirm existing insights (on the toy environments that also hold on more complex654

ones) in Section 4.2. We discussed how our proposed benchmark can aid in designing655

new agents by taking the proposed dimensions into account during the design (see656

Section 4.1). Finally, we discuss how the benchmark can help in debugging agents and657

could be used for continuous integration (see Section 4.3).658

(b) Did you describe the limitations of your work? [Yes] See Section 6.659

(c) Did you discuss any potential negative societal impacts of your work? [Yes]660

(d) Have you read the ethics review guidelines and ensured that your paper conforms to661

them? [Yes]662

2. If you are including theoretical results...663

(a) Did you state the full set of assumptions of all theoretical results? [N/A]664

(b) Did you include complete proofs of all theoretical results? [N/A]665

3. If you ran experiments (e.g. for benchmarks)...666

(a) Did you include the code, data, and instructions needed to reproduce the main ex-667

perimental results (either in the supplemental material or as a URL)? [Yes] See668

https://github.com/automl/mdp-playground and the link is also given in Sec-669

tion 7.670

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they671

were chosen)? [Yes] See Appendix P672

(c) Did you report error bars (e.g., with respect to the random seed after running experi-673

ments multiple times)? [Yes]674

(d) Did you include the total amount of compute and the type of resources used (e.g., type675

of GPUs, internal cluster, or cloud provider)? [Yes] In Section 3 we discussed the676

low-cost execution of experiments on MDP Playground and we provide further details677

along with hardware specifications in the Appendix R.678

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...679

(a) If your work uses existing assets, did you cite the creators? [Yes]680

(b) Did you mention the license of the assets? [N/A]681

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]682

683

15

https://github.com/automl/mdp-playground

(d) Did you discuss whether and how consent was obtained from people whose data you’re684

using/curating? [N/A]685

(e) Did you discuss whether the data you are using/curating contains personally identifiable686

information or offensive content? [N/A]687

5. If you used crowdsourcing or conducted research with human subjects...688

(a) Did you include the full text of instructions given to participants and screenshots, if689

applicable? [N/A]690

(b) Did you describe any potential participant risks, with links to Institutional Review691

Board (IRB) approvals, if applicable? [N/A]692

(c) Did you include the estimated hourly wage paid to participants and the total amount693

spent on participant compensation? [N/A]694

16

	Introduction
	Dimensions of MDPs
	MDPs in MDP Playground
	Motivations of Dimensions and Implementations

	MDP Playground
	Using MDP Playground
	Designing New Agents
	Insights into Existing Agents
	Debugging Agents

	Discussion and Related Work
	Limitations of the Approach and its Ethical and Societal Implications
	Conclusion and Future Work
	Benchmark Track Checklist
	Dimensions in MDP Playground
	More exposition on the dimensions in MDP Playground
	Additional density option for sequences

	Algorithm for generating MDPs
	More on Related Work
	More on Designing New agents
	More on Debugging Agents
	Design Decisions
	Effect of dimensions on more complex benchmarks
	Sample states used for Representation Learning
	More Experiments and Additional Reward Plots
	Discrete environments
	Continuous Environments
	Results for varying reward sparsity
	Further results for varying reward delays and sequences
	Selecting Total Timesteps for Runs

	Plots for tabular baselines
	Plots for varying 2 hardness dimensions together
	Additional Learning Curves
	Learning Curves for Complex environments
	Hyperparameter Tuning
	Tuned Hyperparameters
	DQN
	Rainbow
	A3C
	A3C + LSTM

	More on Conclusion and Future Work
	CPU specifications
	CO2 Emission Related to Experiments

