MDP Playground: A Design and Debug Testbed for Reinforcement Learning

Raghu Rajan¹, Jessica Lizeth Borja Diaz¹, Suresh Guttikonda¹, Fabio Ferreira¹, André Biedenkapp¹, Jan Ole von Hartz¹ & Frank Hutter¹,²
¹ University of Freiburg ² Bosch Center for Artificial Intelligence
rajanr@cs.uni-freiburg.de

Abstract

We present **MDP Playground**, an efficient testbed for Reinforcement Learning (RL) agents with orthogonal dimensions that can be controlled independently to challenge agents in different ways and obtain varying degrees of hardness in generated environments. We consider and allow control over a wide variety of dimensions, including delayed rewards, rewardable sequences, density of rewards, stochasticity, image representations, irrelevant features, time unit, action range and more. We define a parameterised collection of fast-to-run toy environments in *OpenAI Gym* by varying these dimensions and propose to use these for the initial design and development of agents. We also provide wrappers that inject these dimensions into complex environments from *Atari* and *Mujoco* to allow for evaluating agent robustness. We further provide various example use-cases and instructions on how to use **MDP Playground** to design and debug agents. We believe that **MDP Playground** is a valuable testbed for researchers designing new, adaptive and intelligent RL agents and those wanting to unit test their agents.

1 Introduction

RL has succeeded at many disparate tasks, such as helicopter aerobatics, game-playing and continuous control [2, 38, 49, 10, 14, 17]. However, a lot of the insights obtained are on very complex and in many instances blackbox environments.

There are many different types of standard environments, as many as there are different kinds of tasks in RL [e.g. 57, 6, 11]. They specialise in specific kinds of tasks. The underlying assumptions in many of these environments are that of a Markov Decision Process (MDP) [see, e.g., 44, 52] or a Partially Observable MDP (POMDP) [see, e.g., 22, 25]. However, there is a lack of simple and general MDPs which capture common difficulties seen in RL and let researchers experiment with them in a fine-grained manner. Many researchers design their own toy problems which capture the key aspect of their problem and then try to gain whitebox insights because the standard complex environments, such as *Atari* and *Mujoco*, are too expensive or too opaque for the initial design and development of their agent. To standardise this initial design and debug phase of the development pipeline, we propose a platform which distils difficulties for MDPs that can be generalised across RL problems and allows to independently inject these difficulties.

Disadvantages of complex environments when considered from a point of view of a design and debug testbed include: 1) They are very expensive to evaluate. For example, a DQN [38] run on *Atari* [6] took us 4 CPU days and 64GB of memory to run. 2) The environment structure itself is so complex that it leads to “lucky” agents performing better (e.g., in [18]). Furthermore, different implementations even using the same libraries can lead to very different results [18]. 3) Many difficulties are concurrently present in the environments and do not allow us to independently test...
their impact on agents’ performance. During the design phase, we need environments to encapsulate, preferably orthogonally, the different difficulties present. For instance, MNIST [32] captured some key difficulties required for computer vision (CV) which made it a good testbed for designing and debugging CV algorithms, even though it cannot be used to directly learn models for much more specific CV applications such as classification of plants or medical image analysis.

The main contributions of this paper are:

- We identify and discuss dimensions of MDPs that can have a significant effect on agent performance, both for discrete and continuous environments;
- We discuss how to use MDP Playground to design and debug agents with various experiments; toy experiments can be run in as few as 30 seconds on a single core of a laptop;
- We discuss insights that can be gained with the various considered dimensions; transferring insights from toy to complex environments for some under-studied dimensions led to significant improvements in performances on complex environments.

2 Dimensions of MDPs

We try to exhaustively identify orthogonal dimensions of hardness in RL by going over the many components of a (PO)MDP. By orthogonal, we mean that these dimensions are present independent of each other in environments. This was tried exhaustively to allow as many dimensions as possible for researchers to systematically study them and gain new insights.

We define an MDP as a 7-tuple \((S, A, P, R, \rho_o, \gamma, T)\), where \(S\) is the set of states, \(A\) is the set of actions, \(P : S \times A \rightarrow S\) describes the transition dynamics, \(R : S \times A \times S \rightarrow \mathbb{R}\) describes the reward dynamics, \(\rho_o : S \rightarrow \mathbb{R}^+\) is the initial state distribution, \(\gamma\) is the discount factor and \(T\) is the set of terminal states. We define a POMDP with two additional components - \(O\) represents the set of observations and \(\Omega : S \times A \times O \rightarrow \mathbb{R}^+\) describes the probability density function of an observation given a state and action. To clarify terminology, following [51] we will use information state to mean the state representation used by the agent and belief state as the posterior belief of the unobserved state given the full observation history. If the belief state were to be used as the information state by an agent, this would be sufficient to compute an optimal policy. However, since the full observation history is not tractable to store for many environments, agents in practice use the last few observations as their information state which renders it only partially observable. This is important because many of the motivated dimensions are actually due to the information state being non-Markov.

2.1 MDPs in MDP Playground

Toy Environments The toy environments are cheap and encapsulate all the identified dimensions. The components of the MDP can be automatically generated according to the dimensions or can be user-defined. Any dimension not specified is set to a vanilla default value. Further, the underlying MDP state is exposed in an augmented state variable, which allows users to design agents that may try to identify the true underlying MDP state given the observations. We now briefly describe the auto-generated discrete and continuous environments, since we use these for the experiments section and expect that these will cover the majority of the use-cases. This is followed by implementation details of selected dimensions; details for all dimensions can be found in Algorithm 1 in Appendix C.

Discrete Environments In the discrete case, \(S\) and \(A\) contain categorical elements, and random instantiations of \(P\) and \(R\) are generated after the remaining dimensions have been set. The generated \(P\) and \(R\) are deterministic and held fixed for the environment. We keep \(\rho_o\) to be uniform over the non-terminal states, and \(T\) is fixed to be a subset of \(S\) based on a chosen terminal state density.

Continuous Environments In the continuous case, environments correspond to the simplest real world task we could find: moving a rigid body to a target point, similar to [16] and [28]. \(P\) is formulated such that each action dimension affects the corresponding space dimension - \(s\) is set to be equal to the action applied for time unit seconds on a rigid body. This is integrated over time to yield the next state. \(R\) is designed such that the reward for the current time step is the distance travelled towards the target since the last step.

Both, the discrete and continuous environments, in MDP Playground can be described as graphical POMDPs.
2.2 Motivations of Dimensions and Implementations

We now describe many of the dimensions from a general point of view and their implementations in MDP Playground. For clarity, we describe only the dimensions with experiments in the main paper here in greater detail and refer the reader to Appendix B and the documentation for more detailed descriptions of all the dimensions.

Reward Delay For many environments, in many situations, agents perform an action that is consequential to receiving a reward but the agent is only rewarded in a delayed manner [see e.g. 4] (see Figure 1d). For example, shooting at an enemy ship in Space Invaders leads to rewards much later than the action of shooting. Any action taken after that is inconsequential to obtaining the reward for destroying that enemy ship. In MDP Playground, the reward is artificially delayed by a non-negative integer number of timesteps, d.

Reward Density Environments can also be characterised by their reward density. When an environment has denser rewards (see Figure 1c), one is more likely to obtain a supervisory reward signal. In sparse reward settings [15], the reward is 0 more frequently, especially, for example, in continuous control environments where a long trajectory is followed and then a single non-zero reward is received at its end. In MDP Playground, for discrete environments, the reward density, rd, is defined as the fraction of possible sequences of length n that are actually rewarded by the environment, given that n is constant. If num_r sequences are rewarded, we define the reward density to be $rd = num_r / \left(|S| \cdot |T| \right)!$ and the sparsity as $1 - rd$. For continuous environments, density is controlled by having a sparse or dense environment using a make_dense configuration option.

Stochasticity Another characteristic of environments that can significantly impact performance of agents is stochasticity. The environment, i.e., dynamics P and R, may be stochastic or may seem stochastic to the agent due to partial observability or sensor noise (see Figure 1b, 1c). A robot equipped with a rangefinder, for example, has to deal with various sources of noise in its sensors [55]. In MDP Playground, for discrete environments, transition noise $t_{n} \in [0, 1]$; with probability t_{n}, an environment transitions uniformly at random to a state that is not the true next state given by P. For discrete environments, reward noise $r_{n} \in \mathbb{R}$; a normal random variable distributed according to $\mathcal{N}(0, \sigma_{r,n}^2)$ is added to the true reward. For continuous environments, both p_{n} and r_{n} are normally distributed and directly added to the states and rewards.

Irrelevant Features Environments also tend to have a lot of irrelevant features [45] that one need not focus on. This holds for both table-based learners and approximators like Neural Networks (NNs). NNs additionally can even fit random noise [64] and having irrelevant features is likely to degrade performance. For example, in certain racing car games, the whole screen is visible, concentrating on only the road would be more efficient without loss in performance. In MDP Playground, for discrete environments, a new discrete dimension with its own transition function P_{irr}, which is independent of P, is introduced. However, only the discrete dimension corresponding to P is relevant to calculate the reward function. Similarly, in continuous environments, dimensions of S and A are labelled as irrelevant and not considered in the reward calculation.

Representations Another aspect is that of representations. The same underlying state may have many different external representations/observations, e.g., feature space vs pixel space. Mujoco tasks may be learnt in feature space vs directly from pixels, and Atari games can use the underlying RAM state or images. For images, various image transformations [shift, scale, rotate, flip and others] [19] may manifest as observations of the same underlying state and can pose a challenge to learning. In MDP Playground, for discrete environments, when this aspect is enabled, each categorical state is associated with an image of a regular polygon which becomes the externally visible observation o to the agent. This image can further be transformed by shifting, scaling, rotating or flipping, which are applied at random to the polygon whenever an observation is generated. For continuous environments, image observations can be rendered for 2D environments. Examples of some generated states can be seen in Figures 10-11 in Appendix B.

Time Unit and Action Range For continuous control problems, we describe 2 additional dimensions here: action range [26], a weight penalising actions; and time unit, the discretisation of time (see Figure 1c).

We now summarise the dimensions identified above (with the (PO)MDP component they impact in brackets):
Figure 1: We depict some of the dimensions visually following [59]. Not all states and actions are depicted to focus on the dimension of interest. Rewarding actions are shown as a+ while actions shown as a- are not rewarding. Reward is shown as R and time unit as t.

3 MDP Playground

Code samples

An environment instance is created as easily as passing a Python dict:

```python
from mdp_playground.envs import RLToyEnv
config = {
    'state_space_type': 'discrete',
    'action_space_size': 8,
    'delay': 1,
    'sequence_length': 3,
    'reward_density': 0.25,
}
env = RLToyEnv(**config)
```

Very low-cost execution

Experiments with MDP Playground are cheap, allowing academics without special hardware to perform insightful experiments. Wall-clock times depend a lot on the agent, network size (in case of NNs) and the dimensions used. Nevertheless, to give the reader an idea of the runtimes involved, DQN experiments (with a network with 2 hidden layers of 256 units each) took on average 35s for a complete run of DQN.
We hope our toy environments will help identify inductive biases needed for designing new RL agents without getting confounded by other sources of "noise" in the evaluation. What is important for doing this is setting up experiments in a way that allows us to focus on the specific dimension(s) we wish to test. One way to do this is by setting up complex environments where the value of a dimension is set when a reward is given by the environment. We evaluated 50 runs (10 seeds × 5 settings for delay; these 50 runs could also be run in an embarrassingly parallel manner on a cluster). Even when using the more expensive continuous or representation learning environments, runs were only about 3-5 times slower.

Complex Environment Wrappers We further provide wrappers for Atari and Mujoco which can be used to inject some of the dimensions also into complex environments.

Design decisions While many dimensions can seem challenging at first, it is also the nature of RL that different dimensions tend to be important in different specific applications. The video game domain was provided as an example of this in Section 2.2. Another example is of reward scale. The agents we tested here re-scale or clip rewards already and the effects of this dimension are not as important as they would be otherwise. To maintain the flexibility of having as many dimensions as possible and yet keep the platform easy to use, default values are set for dimensions that are not configured. This effectively turns off those dimensions. Thus, as in the code example, users only need to provide dimensions they are interested in.

Further design decisions are discussed in detail in Appendix G.

4 Using MDP Playground

We discuss in detail various experiments along with how they may be used to design new agents and to debug existing agents. For the experiments, we set $|S|$ and $|A|$ to 8 and the terminal state density to 0.25. The reward scale is set to 1.0 whenever a reward is given by the environment. We evaluated Rllib implementations [33] of DQN [38], Rainbow DQN [20], A3C [37], TD3 [14] and SAC [17] on discrete environments and DDPG [34], TD3 [14] and SAC [17] on continuous environments over grids of values for the dimensions. Hyperparameters and the tuning procedure used are available in Appendix O. We used fully connected networks except for pixel-based representations where we used Convolutional Neural Networks (CNNs) [31].

4.1 Designing New Agents

We hope our toy environments will help identify inductive biases needed for designing new RL agents.
this is to be able to identify if the trends seen on the toy environments would also occur for more complex environments. We now provide empirical support for this with several experiments.

We tested the trends of the dimensions on more complex Atari and Mujoco tasks. For Atari, we ran the agents on beam_rider, breakout, qbert and space_invaders when varying the dimensions delay and transition noise. For Mujoco, we ran the agents on HalfCheetah, Pusher and Reacher using mujoco-py when varying the dimensions time unit and action range. We evaluated 5 seeds for 500k steps for Pusher and Reacher, 3M for HalfCheetah and 10M (40M frames) for Atari. The values shown for action range and time unit are relative to the ones used in Mujoco.

Varying representations We turned on image representations for discrete environments and applied various transforms (shift, scale, rotate and flip) one at a time and also all at once. We observed that the more transforms are applied to the images, the harder it is for agents to learn, as can be seen in Figures [2a, b, c]. This was to be expected since there are many more combinations to generalise over for the agent.

It is important to note, from the point of view of a design platform, that our platform allows us to identify the inductive bias of CNNs being good for image observations without having to conduct such experiments on complex and expensive environments. This is because the toy environments capture many key features of image representations and thus the image classification capabilities of CNNs can help identify the underlying MDP state. In a similar manner, we have captured key features of other dimensions. If one were to design a new inductive bias which helps the agent identify the underlying MDP state in the presence of the other dimensions, this could be tested in a coarse and quick manner on our platform.

Varying time unit We observed that the time unit has an optimal value which has significant impact on performance in the toy continuous environment (Figure 3a), i.e., that it can be neither too small nor too large. We decided to tune the time unit also for complex environments (Figures 3b, 8 and 9).

The insight from the toy environment transferred to the complex case and there were gains of even 100% in some cases over the default value of the time units used in the "expert-tuned" environments. A further insight to be had is that for simpler environments like the toy, Pusher and Reacher, the effect of the selection of the time unit was not as pronounced as for a more complex environment like HalfCheetah. This makes intuitive sense as one can expect a narrower range of values to work for more complex environments. This shows that it is even more important to tune such dimensions for more complex environments.

The basic agent design we showed above does this once and sets its optimal time unit statically. An ideal adaptive agent design would even set the time unit in an online manner. Since the trends from the toy environment coarsely transfer to the complex environments, coarse and quick insights can be gained on the toy environments.

Varying action range We observed similar trends as for time unit, in that there was an optimal value of action range, i.e., that it can be neither too small nor too large. Figure 9 shows this for all considered agents on HalfCheetah (for SAC and DDPG, runs for action range values \(\geq 2 \) and \(\geq 4 \) crashed and are absent from the plot). This supports the insight gained on our simpler environment that tuning this value may lead to significant gains for an agent. For already tuned environments, such as the ones in Gym, this dimension is easily overlooked but when faced with new environments setting it appropriately can lead to substantial gains. In fact, even in the tuned environment setting of Gym, we found that all three algorithms performed best for an action range 0.25 times the value found in Gym for Reacher (Figures 8c, 8k and 9 in Appendix H). Moreover, the learning curves in Appendix N further show that for increasing action range the training gets more variant. The difference in performances across the different values of action range is much greater in the complex environments. We believe this is due to correlations within the multiple degrees of freedom as opposed to a rigid object in the toy environment.

To the best of our knowledge, the impact of time unit and action range is under-researched while developing agents because the standard environments have been pre-configured by experts. However, it’s clear from Figure 3b that pre-configured values were not optimal and even basic tuning improves performance significantly in even known environments. In a completely unknown environment, if we want agents to perform optimally, these dimensions would need to be taken into account even more when designing agents.
Apart from the insights gained for designing agents above, we discuss more insights for existing agents explicitly here.

4.2 Insights into Existing Agents

Varying transition noise We observe similar trends for injecting transition noise into Atari environments for all three agents as for the toy environments. We also observe that for some of the environments, transition noise actually helps improve performance. This has also been observed in prior work [61]. This happens when the exploration policy was not tuned optimally since inserting transition noise is almost equivalent to ϵ-greedy exploration for low values of noise. We also observed a similar effect for the toy environments in Figure 18 in Appendix J. However, we also observe that performance drop is different for different environments. This is to be expected as there are other dimensions of hardness which we cannot control or measure for these environments.

Varying reward delay We see that on average performance drops for the delay experiments when more delay is inserted, as was the case for the toy environments. For qbert (Figure 18), these drops are greater on average across the agents. However, for breakout (Figure 6), in many instances, we don’t even see performance drops. In beam_rider (Figure 6) and space_invaders (Figure 6), the magnitude of these effects are intermediate to breakout and qbert. This trend becomes clearer when we also look at Figures 7b-p in Appendix H. We believe this is because large delays from played action to reward are already present in breakout, which means that inserting more delays does not have as large an effect as in qbert (Figures 5a). Agents are strongest affected in qbert which, upon looking at gameplay, we believe has the least delays from rewarding action to reward compared to the other games. The trends for delay were noisier than for transition noise, even though on average the trends transferred from MDP Playground to the complex environments. Many considered environments tend to also have repetitive sequences which would dilute the effect of injecting delays.

Many of the learning curves in Appendix N with delays inserted, are indistinguishable from normal learning curves. We believe that, in addition to the motivating examples, this is empirical evidence that delays are already present in these environments and so inserting them does not cause the curves to look vastly different. In contrast, when we see learning curves for transition noise, we observe that, as we inject more and more noise, training tends to a smoother curve as the agent tends towards becoming a completely random agent.

Additionally, we also have experiments with similar trends also for another dimension - reward noise. The average rank correlation over 12 experiments (3 agents x 4 Atari environments) was 0.867 for transition noise, 0.617 for reward delay, and 0.733 for reward noise. Tables 1, 2 and 3 list the individual rank correlation for each experiment, i.e. agent, environment and dimension.

To analyse transfer of dimensions between toy and complex benchmarks, for the Atari experiments, we use the Spearman rank correlation coefficient between corresponding toy and complex experiments for performance across different values of the dimension of hardness. The Spearman correlation was ≥ 0.7 for 19 out of 24 experiments and a positive correlation for four of the remaining five. DQN with delays added on breakout was the only experiment with correlation 0.

Varying irrelevant features We observed that introducing irrelevant dimensions to the control problem, while keeping the number of relevant dimensions fixed to 2, decreased an agent’s performance (see Figures 3 and 17). This gives us the insight that having irrelevant features interferes with the learning process. An inductive bias that learns to focus only on the relevant dimensions could be unit-tested to gain coarse insights on the toy environments.

We have shown similar trends for SAC on HalfCheetah in Figure 9a in Appendix H.

Varying Multiple Dimensions In MDP Playground, it is possible to vary multiple dimensions at the same time in the same base environment. For instance, Figure 4d shows the interaction effect (an inversely proportional relationship) between the action range and the time unit in the continuous toy environment with DDPG. This insight allows us to design an adaptive agent which sets its action range depending on the time unit and vice versa. Since many real-world systems can be described in terms of a simple rigid body moving towards a target point, the toy continuous environment is a useful testbed for this.

More such experiments can be found in Appendix L, including varying both P and R noises together in discrete environments and more. Further design ideas for new agents can be found in Appendix E.
The experiment for varying representations on toy environments discussed above (Figures 2a-3) further showed that the degradation in performance is much stronger for DQN compared to A3C and Rainbow which are known to perform better than DQN in complex environments.

This led us to another interesting insight regarding the inductive bias of CNNs. It was unexpected for us that the most problematic transform for the agents to deal with was shift. Despite the spatial invariance learned in CNNs [30], our results imply that that seems to be the hardest one to adapt to. As these trends were strongest in DQN, we evaluated further ranges for the individual transforms for DQN. Here, shifts had the most possible different combinations that could be applied to the images. Therefore, we quantised the shifts to have fewer possible values. Figure 5 shows that DQN’s performance improved with increasing quantisation (i.e., fewer possible values) of shift. We noticed similar trends for the other transforms as well, although not as strong as they do not have as many different values as shift (see Figures 29b-c in Appendix J). We emphasize that in a more complex setting, we would have easily attributed some of these results to luck but in the setting where we had individual control over the dimensions, our platform allowed us to dig deeper in a controlled manner.

Another insight we gain is from the time unit experiment (see Figures 2a and 3b), which indicates time unit should not be infinitesimally small to achieve too fine-grained control since there is an optimal time unit for which we should repeat the same action.

In Figure 5, where we varied delay on qbert, we show how a dimension induces hardness in an environment. This result is representative of the experiments on toy and complex environments which are included in Appendix J with the difference that results are noisier in complex environments since the dimensions are already present there in varying degrees. We, thus, studied what kinds of failure modes can occur when an agent is faced with such dimensions and even obtained noisy learning curves typically associated with RL on the toy environments as can be seen in Appendix M.

At the same time, the experiment in Figure 5d also shows how the complex environment wrappers allow researchers, who are curious, to study the robustness of their agents to these dimensions on complex environments, without having to fiddle with lower-level code. This is a typical use-case further down the agent development pipeline, i.e., close to deployment.

Design and Analyse Experiments We allow the user the power to inject dimensions into toy or complex environments in a fine-grained manner. This can be used to define custom experiments with the dimensions. The results can be analysed in an accompanying Jupyter notebook using the 1D plots. There are also radar plots inspired by bsuite [42], but with more flexibility in choosing the dimensions, and these can even be applied to complex environment experiments. Since, different users might be interested in different dimensions, these are loaded dynamically from the data. For instance, radar plots for the dimensions we varied in our toy experiments can be seen as in Figures 4a and 4b.

4.3 Debugging Agents

Analysing how an agent performs under the effect of various dimensions can reveal unexpected aspects of an agent. For instance, when using bsuite agents, we noticed that when we varied our environment’s reward density, the performance of the bsuite Sonnet DQN agent would go up in proportion to the density (see Figure 4). This did not occur for other bsuite agents. This seemed to suggest something different for the DQN agent and when we looked at DQN’s hyperparameters we realised that it had a fixed ϵ schedule while the other agents had decaying schedules. Such insights
can easily go unnoticed if the environments used are too complex. The high bias nature of our toy environments helps debug such cases.

In another example, in one of the Ray versions we used, we observed that DQN was performing well on the varying representations environment while Rainbow was performing poorly. We were quickly able to ablate additional Rainbow hyperparameters on the toy environments and found that their noisy nets' implementation was broken (see Figure 5 in Appendix). We then tested and observed the same on more complex environments. This shows how easily and quickly agents can be debugged to see if something major is broken. This, in combination with their low computational cost, also makes a case to use the toy environments in Continuous Integration (CI) tests on repositories.

Further, we believe the same structured nature of MDP Playground also makes it a valuable tool for theoretical research. We evaluated tabular baselines Q-learning [52], Double Q-learning [60] and SARSA [52] on the discrete non-image based environments with similar qualitative results to those for deep agents. These can be found in Appendix K. This makes our platform a bridge between theory and practice where both kinds of agents can be tested.

The experiments here are only a glimpse into the power and flexibility of MDP Playground. Users can even upload custom Ps and Rs and custom images for representations O and our platform takes care of injecting the other dimensions for them (wherever possible). This allows users to control different dimensions in the same base environment and gain further insights.

5 Discussion and Related Work

The Behaviour Suite for RL [bsuite; 42] is the closest related work to MDP Playground. [42] collect known (toy) environments from the literature and use these to characterise agents based on their performance on these environments. Most environments in bsuite can be seen as an intermediate step between our MDPs and more complex environments. This is because bsuite’s environments are already more specific and complex than the toy environments in MDP Playground. This makes bsuite’s dimensions not orthogonal and atomic like ours and thus not individually controllable. Fine-grained control is a feature that sets our platform apart. bsuite has a collection of presets chosen by experts which work well but would be much harder to play around with. While MDP Playground also has good presets through default values defined for experiments, it is much easier to configure. Further, it also means that bsuite experiments are much more expensive than ours. While bsuite itself is quite cheap to run, MDP Playground experiments are an order of magnitude cheaper. In contrast to bsuite, we demonstrate how the identified trends on the toy and complex environments can be used to design and debug agents. Further, bsuite currently has no toy environment for Hierarchical RL (HRL) agents while MDP Playground’s rewardable sequences fits very well with HRL. Finally, bsuite offers no continuous control environments, whereas MDP Playground provides both discrete and continuous environments. This is important because several agents like DDPG, TD3, SAC are designed for continuous control. A more detailed comparison with bsuite and other related work can be found in Appendix L.

Toybox [58] and Minatar [62] are also cheap platforms like ours with similar goals of gaining deeper insights into RL agents. However, their games target the specific Atari domain and are, like bsuite, more specific and complementary to our approach.

We found [3] the most similar work to ours in spirit. They propose that current deep RL research has been increasing the complexity of the dynamics P but has not paid much attention to the state distributions and reward distribution over which RL policies work and that this has made RL agents brittle. This also raises concerns about the narrow scope of these so-called “complex” environments and we aim to remedy that with our dimensions. We agree with them in this regard. However, they only target continuous environments. We capture their dimensions in a different manner and offer many more dimensions with fine-grained control. Furthermore, their code is not open-source.

Further research includes Procgen [11], Obstacle Tower [24] and Atari [6]. Procgen adds various heterogeneous environments and tries to quantify generalisation in RL. In a similar vein, Obstacle Tower provides a generalization challenge for problems in vision, control, and planning. These benchmarks do not capture orthogonal dimensions of difficulty and as a result, they do not have the same type of fine-grained control over their environments’ difficulty and neither can each dimension be controlled independently. We view this as a crucial aspect when testing new agents. [12] provides
some overlapping dimensions with our platform but it consists of only continuous environments, and
doesn’t target the toy domain.

6 Limitations of the Approach and its Ethical and Societal Implications

The toy environments are meant to be design and debug testbeds and not for engineering/tuning the
final agent HPs. As such, they are extremely cheap compared to complex environments and (as one
would expect), they can only be used to draw high-level insights that transfer and are likely not as
discriminating as complex environments for many of the finer changes between RL agents. They
also cannot be used directly to determine the values of hyperparameters (HPs) to use on complex
environments. For example, just as complex environments require bigger NNs, they would need
correspondingly different HPs, such as bigger replay buffers. Even the performance of agents in bsuite
(which has more complex environments than our benchmark) do not transfer to the more complex
environments (https://github.com/deepmind/bsuite/issues/14). In a similar vein, to the
best of our knowledge, MNIST hyperparameters do not transfer to ImageNet and it is only used for
testing out initial design ideas.

Further, high-dimensional control problems where there are interaction effects between degrees of
freedom are not captured in the toy rigid body control problem as this is the domain of complex
benchmarks and beyond the scope of this platform. (The platform does provide complex environment
wrappers, though, which inject some of the mentioned dimensions. We couldn’t find such wrappers
in the literature/on the Internet.)

Finally, Multi-Agent RL, Multi Objective RL, Time Varying MDPs (and probably some more research
areas) are beyond the scope of the current work.

In terms of the broader impact on society and ethical considerations, we foresee no direct impact,
only indirect consequences through RL since our work promotes standardisation and reproducibility
which should accelerate RL research. An additional environmental impact would be that, at least,
prototyping and testing of agents could be done cheaply, reducing carbon emissions.

7 Conclusion and Future Work

We introduced a low-cost platform to design and debug RL agents and provided instructions on
how to use it with supporting experiments. The platform allows us to disentangle various factors
that make RL environments hard by providing fine-grained control over various dimensions. This
also lends itself to easily achievable insights and helps debug agents. We further demonstrated
how the performance of the studied agents is adversely affected by the dimensions. To the best of
our knowledge, we are the first to perform a principled study of how significant aspects such as
non-Markov information states, irrelevant features, representations and low-level dimensions, like
time discretisation, affect agent performance.

We want MDP Playground to be a community-driven effort and it is open-source for the benefit
of the RL community at https://github.com/automl/mdp-playground. While we tried to
exhaustively identify dimensions of hardness, it is unlikely that we have captured all orthogonal
dimensions in RL. We welcome more dimensions that readers think will help us encapsulate further
challenges in RL and will add them based on the community’s thoughts.

Future work can tackle not only theoretical development of such dimensions but also additional
analysis of such dimensions in complex domains such as Mujoco and dexterous manipulation [46].

Given the current brittleness of RL agents [18], and many claims that have been challenged [5, 58],
we believe RL agents need to be tested on a lower and more basic level to gain insights into their
inner workings. MDP Playground is like a programming language for regularly structured MDPs
which allows delving deeper into the inner workings of RL agents.
Acknowledgements

The authors gratefully acknowledge support by BMBF grant DeToL, by the Bosch Center for Artificial Intelligence, and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant no. 716721, by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG. They would like to thank their group, especially Joerg, Steven, Samuel, for helpful feedback and discussions. Raghu would like to additionally thank Michael Littman for his feedback and encouragement and the RLSS 2019, Lille organisers and participants who he had interesting discussions with.

References

Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes] The orthogonal dimension that influence RL agents performances are presented and their role in the implemented MDPs is discussed in Section 2. We showed that varying these dimensions can provide new insights or confirm existing insights (on the toy environments that also hold on more complex ones) in Section 4.2. We discussed how our proposed benchmark can aid in designing new agents by taking the proposed dimensions into account during the design (see Section 4.1). Finally, we discuss how the benchmark can help in debugging agents and could be used for continuous integration (see Section 4.3).
 (b) Did you describe the limitations of your work? [Yes] See Section 6.
 (c) Did you discuss any potential negative societal impacts of your work? [Yes]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] See https://github.com/automl/mdp-playground and the link is also given in Section 7.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Appendix P.
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] In Section 3, we discussed the low-cost execution of experiments on MDP Playground and we provide further details along with hardware specifications in the Appendix R.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [N/A]
 (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]