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Abstract
Recent advances in diffusion models attempt to
handle conditional generative tasks by utilizing
a differentiable loss function for guidance with-
out the need for additional training. While these
methods achieved certain success, they often com-
promise on sample quality and require small guid-
ance step sizes, leading to longer sampling pro-
cesses. This paper reveals that the fundamental
issue lies in the manifold deviation during the
sampling process when loss guidance is employed.
We theoretically show the existence of manifold
deviation by establishing a certain lower bound
for the estimation error of the loss guidance. To
mitigate this problem, we propose Diffusion with
Spherical Gaussian constraint (DSG), drawing in-
spiration from the concentration phenomenon in
high-dimensional Gaussian distributions. DSG
effectively constrains the guidance step within the
intermediate data manifold through optimization
and enables the use of larger guidance steps. Fur-
thermore, we present a closed-form solution for
DSG denoising with the Spherical Gaussian con-
straint. Notably, DSG can seamlessly integrate as
a plugin module within existing training-free con-
ditional diffusion methods. Implementing DSG
merely involves a few lines of additional code
with almost no extra computational overhead, yet
it leads to significant performance improvements.
Comprehensive experimental results in various
conditional generation tasks validate the superi-
ority and adaptability of DSG in terms of both
sample quality and time efficiency.

1. Introduction
The past few years have witnessed great successes of diffu-
sion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
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Song & Ermon, 2019; Song et al., 2020b), especially condi-
tional diffusion models (CDMs) (Dhariwal & Nichol, 2021;
Ho & Salimans, 2022; Rombach et al., 2022; Zhang et al.,
2023), for their powerful expressive and re-editing abili-
ties in generative tasks such as image generation (Rombach
et al., 2022; Nichol & Dhariwal, 2021; Song & Ermon, 2020;
Song et al., 2021), image inpainting (Chung et al., 2022;
Lugmayr et al., 2022; Chung et al., 2023), super-resolution
(Daniels et al., 2021; Saharia et al., 2022), image editing
(Choi et al., 2021; Meng et al., 2021), and human motion
generation (Tevet et al., 2022; Zhang et al., 2022).

Generally, there are two principal techniques in conditional
diffusion models, known as classifier-guided (Dhariwal &
Nichol, 2021) and classifier-free (Ho & Salimans, 2022)
diffusion models respectively. However, there still exist
challenges in learning cost and model generality since these
two methods both need extra training and data to endow the
diffusion model with conditional generation ability. Hence,
recent advances (Chung et al., 2022; 2023; Zhu et al., 2023;
Bansal et al., 2023; Yu et al., 2023; He et al., 2024) in
conditional diffusion models develop training-free methods,
which only use the off-the-shelf loss guidance during the
denoising process. While these training-free methods avoid
extra training, they may sacrifice the realism and quality of
the generated samples. This weakness is probably due to
the deviation between the intermediate data sample xt from
the intermediate data manifold during the denoising process.
Due to this issue, existing methods (Chung et al., 2023; Yu
et al., 2023; Bansal et al., 2023) usually had to adopt small
loss-guided step sizes but this would further increase the
number of sampling steps and make their algorithms slow.

In this paper, we reveal the occurrence of manifold devia-
tion during the diffusion sampling process by establishing
a certain lower bound for the estimation error of the loss
guidance. To address the manifold deviation issue, we pro-
pose Diffusion with Spherical Gaussian constraint (DSG1),
a novel training-free method for the conditional diffusion
model. The principle idea of DSG is to restrict the guidance
step within the intermediate data manifold via the Spherical
Gaussian constraint. Concretely, the Spherical Gaussian
constraint is a spherical surface determined by the interme-

1Code is available at https://github.com/
LingxiaoYang2023/DSG2024.
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Figure 1. DSG mitigates manifold deviation problem by introducing Spherical Gaussian constraint without relying on the linear manifold
assumption. Simultaneously, DSG enables the use of larger step sizes, significantly reducing inference time while enhancing sample
quality. The integration of DSG into existing training-free CDMs only incurs a few additional lines of code. Here we briefly show
the performance of integrating DSG into recent CDMs, such as DPS (Chung et al., 2023) for Inpainting, Super Resolution, Gaussian
Deblurring, UGD (Bansal et al., 2023) for Segmentation-text Guidance, and Freedom (Yu et al., 2023) for Style Guidance tasks. DSG
imposes nearly negligible computational overhead while delivering substantial performance enhancements.

diate data manifold, which is the high-confidence region of
the unconditional diffusion step. Then, we formulate the
calculation of guidance as an optimization problem with the
Spherical Gaussian constraint and the guided-loss objective.
In that case, the manifold deviation can be avoided and a
sufficiently large guidance step size can also be adopted.
Besides, we find that this optimization problem can be effec-
tively solved with a closed-form solution. This means DSG
imposes almost no extra computational costs in each diffu-
sion step. Hence, our model achieves better performances
in both time efficiency and sample quality compared with
previous training-free diffusion models. To summarize, our
contribution is summarized as follows:

1) Reveal the manifold deviation issue. We illustrate the
intermediate data manifold deviation problem that exists
widely in previous training-free conditional diffusion mod-
els by showing the certain lower bound for the estimation
error of the loss guidance, as induced by the Jensen gap.

2) Spherical-Gaussian-constrained guidance. We in-

troduce the Diffusion with Spherical Gaussian Constraint
(DSG) method, a plug-and-play module for training-free
conditional diffusion models. DSG is designed based on
the high-dimensional Gaussian distribution concentration
phenomenon, effectively mitigating the manifold deviation
issue.

3) A few lines of code to boost performance. We provide
a closed-form solution for the DSG denoising process, sim-
plifying the integration of DSG into existing training-free
conditional diffusion models to just a few additional lines of
code. DSG incurs nearly negligible computational overhead
while delivering substantial performance enhancements.

4) Applicable for various tasks. We conduct experi-
ments on various conditional generation tasks, involving
Inpainting, Super Resolution, Gaussian Deblurring, Text-
Segmentation Guidance, Style Guidance, Text-Style Guid-
ance, and FaceID Guidance. These results robustly confirm
the superiority and adaptability of our method in terms of
both sample quality and time efficiency.
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2. Related Work
In this section, we briefly review the literature on training-
required and training-free conditional diffusion models
(CDMs).

Training-required CDMs. Generally, training-required
CDMs are divided into two principal branches. One of them
is the classifier-guided diffusion model (Dhariwal & Nichol,
2021), which trains a time-dependant classifier, based on
an off-the-shelf diffusion model, to approximate an unbi-
ased posterior probability p(y|xt). Another branch is the
classifier-free diffusion model (Ho & Salimans, 2022) such
as the well-known Stable Diffusion (Rombach et al., 2022)
and variants of it (Zhang et al., 2023; Mou et al., 2023).
Different from the classifier-guided model, The key idea of
it is to utilize the data pairs and train a conditional denoiser
directly. While these models can ensure the realism and
quality of the generated samples with the given condition,
it is obvious that the extra cost of data-pair collection and
training time training is unavoidable. This makes it hard
to deploy them in some real-world scenarios without extra
data pairs or sufficient computation resources.

Training-free CDMs. To overcome the issue, recent re-
search works attempt to handle conditional generation in
a training-free manner. Generally, instead of training the
time-dependent classifier, they utilize the off-the-shelf clas-
sifier guidance to approximate ∇xt log(y|xt). Specifically,
MCG (Chung et al., 2022) approximated the guidance with
the aid of Tweedie’s formula to solve linear inverse prob-
lems, and then this idea is extended to general conditional
generation tasks by DPS(Chung et al., 2023), Freedom (Yu
et al., 2023), UGD (Bansal et al., 2023). Besides, LGD-MC
(Song et al., 2023) attempted to use multiple samples from
an inaccurate Gaussian distribution to reduce the estimation
bias but it still suffers from the computation cost for Monte
Carlo simulation. Other works like UGD, DiffPIR (Bansal
et al., 2023; Zhu et al., 2023) performed the guidance step
on the clean data sample (i.e., x0) and then projected the
updated clean data sample to the corresponding interme-
diate data manifold (i.e., xt). Very recently, a concurrent
work called MPGD (He et al., 2024) further studied this idea
with an extra auto-encoder via enforcing the guidance step
within the tangent space of the clean data manifold. While it
makes some improvements, it depends on the strong linear
assumption of the data manifold, which does not hold in
most real-world applications. Additionally, MPGD heavily
relies on pre-trained autoencoders for manifold projections.
While it performs well in image generation, it cannot gen-
eralize to scenarios where pre-trained autoencoders are not
available. In contrast, the proposed DSG method can han-
dle the manifold deviation problem properly without such
strong assumptions and improve the performance on both
sample quality and time efficiency.

3. Preliminaries
3.1. Diffusion Models

Diffusion models (Ho et al., 2020; Song & Ermon, 2019;
Song et al., 2020b) are a class of likelihood-based generative
models that outperform other generative models(e.g. GAN
(Goodfellow et al., 2020), VAE (Kingma & Welling, 2013))
in various tasks. It has predefined forward processes, where
Gaussian noise is incrementally added to clean data x0 until
it evolves into pure noise xT ∈ N (0, I). In the formulation
of DDPM (Ho et al., 2020), the posterior distribution of any
xt, t ∈ [0, T ] given x0 is defined as:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I). (1)

Here {α0, · · · , αT } is the predefined noise schedule. The
objective is to train a denoiser, denoted as ϵθ(xt, t), to ap-
proximate Gaussian noise ϵt at each time step t. This is
achieved by minimizing the loss function Lsimple, which is
equivalent to matching the denoising scores ∇xt

log pt(xt)
(Ho et al., 2020).

Lsimple = Et,x0,ϵt [||ϵt − ϵθ(xt, t)||2]. (2)

During the sampling stage, the joint distribution p(x0:T ) in
the reverse process can be defined as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt). (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

In this work, we employ the update rule of DDIM (Song
et al., 2020a) for calculating µθ(xt, t) and Σθ(xt, t)):

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

” predicted x0 ”

+

√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt)︸ ︷︷ ︸

”direction pointing to xt ”

+ σtϵt︸︷︷︸
random noise

,

(5)

where σt = η
√

(1− αt−1/(1− αt))
√

1− αt/αt−1.
When η = 1, the generative process becomes DDPM, while
η = 0 corresponds to deterministic sampling.

3.2. Training-Free Conditional Diffusion Methods

Classifier guidance (Dhariwal & Nichol, 2021) is the first
work that utilizes the pre-trained diffusion model in condi-
tional generative tasks. Specifically, considering the Bayes
rule p(x|y) = p(y|x)p(x)/p(y), it introduces the given con-
dition with an additional likelihood term p(xt|y):

∇xt log p(xt|y) = ∇xt log p(xt) +∇xtp(y|xt), (6)
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where y represents the condition or measurement. Recently,
many works, known as training-free methods, attempt to
employ the pre-trained diffusion models for the conditional
generation without re-training or fine-tuning the diffusion
prior. Without training the time-dependent classifier to es-
timate p(y|xt), these current training-free guided diffusion
models just need a pre-trained diffusion prior Dθ and a dif-
ferentiable loss function L(x0, y) which is defined on the
support of x0 using an off-the-shelf neural network. They
use Tweedie’s formula to calculate ∇xt

log p(y|xt) by esti-
mating x̂0 based on xt:

x̂0(xt) ≈ E[x0|xt] = (xt + b2t∇xt
log p(xt))/at, (7)

∇xt
log p(y|xt) ≈ ∇xt

log p(y|x̂0(xt)),

= γ∇xt
L(x̂0(xt), y)

(8)

where xt ∼ N (atx0, b
2
t I) and γ is the step size. In the

formulation of DDPM (Ho et al., 2020), at =
√
αt, b2t =√

1− αt. Then they use the estimated likelihood of L(x0, y)
for additional correction step:

xt−1 = DDIM(xt, ϵθ(xt, t))︸ ︷︷ ︸
sampling step

− γ∇xt
L(x̂0(xt), y)︸ ︷︷ ︸

correction step

. (9)

3.3. Low-dimensional Manifold Assumption

Suppose clean data manifold M0 is the set consisting of
all data points. Typically, the data are assumed to lie in a
low-dimensional space rather than a whole ambient space:

Assumption 3.1. (Low-dimensional Manifold Assumption).
The data manifold M0 lies in the k-dimensional subspace
Rk with k ≪ n.

Given this assumption, recent work (Chung et al., 2022)
has shown that the set of noisy data xt, a.k.a. intermediate
data manifold in this paper, is concentrated on a (n − k)-
dimensional manifold Mt : {x ∈ Rn|d(x,√αtM) =√

(1− αt)(n− k)}.

4. Method
In this section, we will first present the limitations of pre-
vious training-free CDMs, including the strong manifold
assumption and estimation error of the loss guidance. Af-
ter that, our proposed algorithm, DSG, will be proposed
to effectively address and resolve these issues by applying
guidance with the spherical Gaussian constraint.

4.1. Manifold Deviation by Loss Guidance

Although previous training-free work has achieved great
success in various image fields due to its plug-and-play
characteristics, they will sacrifice the quality of generated
samples. There are two main issues for this phenomenon:

linear manifold assumption about M0 and the estimation
error of loss guidance induced by the Jensen gap, which
leads to the manifold deviation problem.

Linear manifold assumption. Except for the low-
dimensional manifold assumption, some of the previous
training-free conditional diffusion methods (Chung et al.,
2022; He et al., 2024) further require a linear subspace as-
sumption for M0. MCG (Chung et al., 2022) employed
this linear subspace assumption to establish the estimated
gradient ∇xt

L(x̂0(xt), y). A concurrent work, MPGD (He
et al., 2024), projected the gradient of the loss on x̂0 to the
tangent space of M0 to keep the sample located on the inter-
mediate manifold Mt for any t ∈ [0, T ]. But this projection
is also based on the linear manifold assumption. However,
the linear manifold assumption is quite strong, so in prac-
tice, both MCG and MPGD will inevitably introduce errors
in estimating p(y|xt), leading to deviations of generated
samples from the clean data manifold M0.

Jensen gap. As mentioned in DPS (Chung et al., 2023),
the estimation error of loss guidance results in previous
works results from the approximation of Ex0|xt

[L(x0)] ≈
L
(
Ex0|xt

[x0]
)
= L(x̂0(xt)). Actually, the gap between

Ex0|xt
[L(x0)] and L(x̂0(xt)) is related to Jensen’s inequal-

ity, which is known as the Jensen gap.

Definition 4.1. (Jensen gap). Let x be a random variable
with distribution p(x). For function f that is convex or
non-convex, the Jensen gap is defined as:

J (f, x ∼ p(x)) = E[f(x)]− f(E[x]), (10)

where the expectation is taken over p(x).

Although DPS (Chung et al., 2023) provides an upper bound
for the Jensen gap, it depends on the assumption on the finite
derivatives of guided loss, which is obviously unavailable
at least in linear inverse problems. In fact, the lower bound
of this gap is very large in high-dimensional generative
tasks, as shown in Proposition 4.2, and it further leads to the
serious manifold deviation problem.

Proposition 4.2. (Lower bound for Jensen gap). For the
β-strongly convex function f and the random variable x ∈
Rn ∼ N (µ,Σ), we can have the lower bound for the Jensen
Gap:

J ≥ 1

2
β

n∑
i=1

λi.

where Σ = PTΛP via spectral decomposition and
λ1, · · · , λn are positive diagonal elements in Λ.

Please refer to the Appendix for our proof. In specific, the
function f is the off-the-shelf guided loss L and the random
variable x is x0 |xt . Notably, here we utilize the assumption
on x0|xt mentioned in LGD-MC (Song et al., 2023) and
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Figure 2. Illustration of the manifold deviation problem in DPS
(left) and a schematic overview of how our DSG restricts the guid-
ance within the manifold (right). The red circular ring represents
the concentration region of samples under deviated conditional
guidance, the blue circular ring indicates the concentration region
of samples under accurate conditional guidance, and the green cir-
cular ring represents the concentration region of samples without
condition.

extend it to general Gaussian distribution for more accurate
estimation. Besides, the assumption on strong convexity of
L is also rational. On one hand, L is usually a quadratic
function in linear inverse problems, which is β-strongly
convex. On the other hand, in practical scenarios, L tends
to possess at least local β-strong convexity. Considering the
probability of Gaussian distribution can be ignored when x
is far from x̂0, the lower bound could still hold in general
cases. Hence, the Jensen gap increases linearly with the
number of sample dimensions, and it will be very large in
high-dimensional generative tasks like image generation
according to Proposition 4.2. In that case, such a large gap
leads to the deviation of xt−1 from the intermediate data
manifold Mt−1, and thus causes the loss of image structural
information.

4.2. Diffusion with Spherical Gaussian Constraint

According to our theoretical analysis of previous methods
in Section 4.1, both the Jensen gap and the linear manifold
assumption will introduce additional errors, leading to a
substantial decline in the authenticity of generated samples
in comparison to unconditional generation.

Taking an alternative perspective, considering the inevitable
error in estimating the conditional bias in every denoising
step, why not start from the pre-existing unconditional in-
termediate manifold Mt and subsequently find the point
closest to the conditional sampling?

To this end, we propose diffusion with spherical Gaussian
constraint (DSG), an optimization method that performs
guidance within high confidence intervals of unconditional
intermediate manifold Mt:

argmin
x′

[∇xt
L(x̂0(xt), y)]

T
(x′ − xt)

s.t. x′ ∈ CI1−δ

(11)

Algorithm 1 Diffusion with Spherical Gaussian constraint

Input: pure noise xT ∼ N(0, I), guidance interval i,
guidance rate gr
for t = T to 1 do

ϵt ∼ N(0, I)
x̂0(xt) = (xt −

√
1− αtϵθ(xt, t))/

√
αt

µθ(xt) =
√
αt−1x̂0(xt)+

√
1− αt−1 − σ2

t ·ϵθ(xt, t)
// Guidance with Spherical Gaussian Constraint
d∗ = −

√
nσt ·

∇xtL(x̂0(xt),y)

||∇xtL(x̂0(xt),y)||
dsample = σtϵt
dm = dsample + gr(d

∗ − dsample)
xt−1 = µθ(xt) + r dm

||dm||
end for
Return x0

where CI1−δ represents the (1− δ) confidence intervals for
Gaussian distribution in Equation (4).

In this optimization problem, the objective encourages sam-
pling in the direction of gradient descent, while the con-
straint enforces sampling within high-confidence intervals
for a Gaussian distribution.

Nevertheless, when high-confidence intervals encompass
substantial regions in n-dimensional space, the optimization
problem may appear to be challenging and infeasible. For-
tunately, in the case of high-dimensional isotropic Gaussian
distribution, where high-confidence intervals are concen-
trated on a hypersphere, we can simplify the constraint by
approximating it with this hypersphere, referred to as the
spherical Gaussian constraint.
Proposition 4.3. (Concentration of high-dimensional
isotropy Gaussian distribution). For any n-dimensional
isotropy Gaussian distribution x ∼ N (µ, σ2I):

P (||x− µ||22 ≥ xlower = nσ2 + 2nσ2(
√
ϵ+ ϵ)) ≤ e−nϵ,

P (||x− µ||22 ≤ xupper = nσ2 − 2nσ2
√
ϵ) ≤ e−nϵ,

When n is sufficiently large, it is close to the uniform distri-
bution on the hypersphere of radius

√
nσ.

Please refer to Appendix A.2 for further proof. According
to Proposition 4.3, since the probability of both P (||x −
µ||22 ≥ xlower) and P (||x−µ||22 ≤ xupper) decrease sharply
with the increase of ϵ, the posterior Gaussian distribution
in Equation 5 can be approximated to hypersphere Sn

µ,r =
Sn
µθ(xt),

√
nσ

= {x ∈ Rn : ||x − µθ(xt)||22 = r2 = nσ2
t }.

Hence, the optimization problem can be approximated as:

argmin
x′

[∇xt
L(x̂0(xt), y)]

T
(x′ − xt)

s.t. x′ ∈ Sn
µθ(xt),

√
nσt

(12)

While this optimization problem is inherently non-convex
owing to the spherical Gaussian constraint, we can obtain a
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Figure 3. Result in solving three linear inverse problems (Inpainting, Super-resolution, Gaussian deblurring) using DSG using the
pre-trained FFHQ diffusion model.

closed-form solution:

x∗
t−1 = µθ(xt)−

√
nσt

∇xt
L(x̂0(xt), y)

||∇xtL(x̂0(xt), y)||2
. (13)

Detailed derivation is provided in the Appendix A.3.

Remark 1. It’s worth noting that our DSG can be a plugin
module to existing training-free CDMs, such as DPS (Chung
et al., 2023), UGD (Bansal et al., 2023), Freedom (Yu et al.,
2023), etc, while incurring almost no extra computational
overhead. Notably, this method only requires modifying
a few lines of code to generate more realistic images with
accelerated sampling speed. Using DPS (Chung et al., 2023)
as an example, we highlight the key difference of code
between DPS and our DSG as follows:

1 diff=measure-self.forward(x_0_hat)
2 dist=norm(diff)
3 grad=autograd.grad(
4 outputs=distance, inputs=x_t)[0]
5 # DPS: x_t=x_t_mean+sigma_t*eps_t-

grad*self.gamma
6 # Ours:
7 norm=norm(grad, dim=[1, 2, 3])
8 x_t=x_t_mean-sqrt(n)*sigma_t*grad/norm

Remark 2. Another intuitive explanation for the optimal
solution obtained is that we directly apply the gradient de-
scent to µθ(xt) instead of sampling point xt. While the

standard deviation σt of DDIM generally decreases as time
t gets smaller, our method can be seen as adaptive gradient
descent which decreases fast in the early stage and then cov-
erage in the final stage. In practice, we can use extremely
large step sizes (exceed 400× when we use η = 1 and
t = T ) compared to current training-free methods, thus
achieving better alignment. Therefore, our method is ro-
bust to smaller DDIM steps while the performance of DPS
quickly degrades, which will be evaluated in Sec 5.3.

In practice, when employing DSG to enhance alignment and
authenticity, it may sacrifice sample diversity. Therefore,
we use the weighted direction of the optimized gradient
and unconditional sampling like the Classifier-free (Ho &
Salimans, 2022) manner to enhance diversity:

dm = dsample + gr(d
∗ − dsample). (14)

xt−1 = µθ(xt) + r
dm

||dm||
. (15)

Here dsample = σtϵt represents the unconditional sampling
direction, d∗ = −

√
nσt ·

∇xtL(x̂0(xt),y)

||∇xtL(x̂0(xt),y)|| represents the
steepest gradient descent direction, and dm represents the
weighted direction which will be scaled to satisfy the Spher-
ical Gaussian constraint. The detailed procedure is shown
in Algorithm 1.
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5. Experiments
In this section, we evaluate our methods in various tasks,
including three linear inverse problems ( Inpainting, Super-
resolution, Gaussian deblurring), Style Guidance, Text-
Segmentation Guidance, FaceID Guidance, and Text-Style
Guidance. We demonstrate that our method can plug and
play easily into various training-free methods including
DPS (Chung et al., 2023), Freedom (Yu et al., 2023), and
UGD (Bansal et al., 2023), and improve their performance
significantly.

5.1. Implementation Details

Linear Inverse Problems For linear inverse problem y =
Ax + ϵ including Inpainting, Super-resolution, and Gaus-
sian deblurring, we evaluate our method in 1k images of
FFHQ256×256 (Karras et al., 2019) and Imagenet256×256
validation dataset (Deng et al., 2009) using pre-trained
diffusion models taken from (Chung et al., 2023; Dhari-
wal & Nichol, 2021). For comparison, we choose MCG
(Chung et al., 2022), PnP-ADMM (Chan et al., 2016), Score-
SDE (Song et al., 2020b), DDRM (Kawar et al., 2022),
DPS(Chung et al., 2023) and LGD (Song et al., 2023) as the
baseline. We generate noisy measurements by introducing
Gaussian noise ϵ ∼ N (0, 0.05). The noisy measurements
are then acquired through various forward models A(·) cus-
tomized for specific tasks: (i) In the context of image In-
painting, we randomly mask approximately 92% of the total
pixels within the RGB channel. (ii) For Super-resolution,
we employ bicubic downsampling to achieve a 4x reduc-
tion in resolution. (iii) For Gaussian deblurring, we apply a
61x61 kernel size Gaussian blur with a standard deviation
of 3.0. The loss guidance can be expressed as:

Loss(x0, y) = ||Ax̂0(xt)− y||22, (16)

where y represents the noisy measurement and x0 donates
the image we aim to reconstruct.

Table 1. Quantitative evaluation of the FFHQ dataset in Linear
Inverse Problem

Methods Inpainting Super resolution Gaussian deblurring
LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

DDRM (Kawar et al., 2022) 0.665 114.9 0.339 59.57 0.427 63.02
MCG (Chung et al., 2022) 0.414 39.19 0.637 144.5 0.550 95.04

PnP-ADMM (Chan et al., 2016) 0.677 114.7 0.433 97.27 0.519 100.6
Score-SDE (Song et al., 2020b)

(ILVR (Choi et al., 2021)) 0.659 127.1 0.701 170.7 0.667 120.3

DPS (Chung et al., 2023) 0.212 21.19 0.214 39.35 0.257 44.05
LGD (Song et al., 2023) 0.159 28.21 0.231 34.44 0.229 32.57

DPS+DSG(Ours) 0.115 15.77 0.211 30.30 0.208 28.22

Style Guidance For Style Guidance, our test set consists
of 1,000 paintings by various artists collected from WikiArt
(Saleh & Elgammal, 2015), and we employ LDM (Rombach
et al., 2022) as the pre-trained diffusion prior. Freedom (Yu
et al., 2023) and LGD (Song et al., 2023) are chosen as the
baseline. For an input image xin, the loss guidance can be

represented as:

Loss(x̂0(xt), xin) = ||E(x̂0(xt))− E(xin)||2F , (17)

where E(·) is the Gram matrix of the 3rd feature map ex-
tracted from the CLIP (Radford et al., 2021) image encoder
and || · ||2F denotes the Frobenius norm.

Figure 4. Qualitative results of Style Guidance using pre-trained
Stable Diffusion.

Text-Segmentation Guidance In the context of Text-
Segmentation Guidance, we apply our method to a more
challenging task, incorporating multiple conditions to guide
the conditional generation process. For a given text descrip-
tion t and a segmentation map M as input, the objective is
to generate an image x0 that aligns with both the input text t
and the provided segmentation mask M within 500 denois-
ing steps. To achieve this, we utilize LDM (Rombach et al.,
2022) as the diffusion prior, allowing us to integrate the
original text conditions through its conditional denoiser, and
use the additional plug-and-play segmentation guidance:

Loss(x̂0(xt)),M) = CE(E(x̂0(xt)),M). (18)

Here CE(·) represents the Cross-Entropy Loss and E(·)
represents the MobileNetV3-Large segmentation network.

FaceID Guidance In FaceID Guidance, we utilized a pre-
trained diffusion model from CelebA-HQ256*256 provided
by (Yu et al., 2023) and employed the CelebA-HQ test set
as the input reference image for generating 1k images in
100 denoising steps. For an input reference image I , we use
the FaceID loss for guidance:

Loss(x̂0(xt)), I) = CE(E(x̂0(xt)), E(I)), (19)

where E(·) represents ArcFace (Deng et al., 2019), a human
face recognition network used to extract features from the
facial image.

Text-Style Guidance In Text-Style Guidance, for a given
text description t and a reference image I as input, we utilize

7
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Table 2. Quantitative evaluation with different DDIM step in Linear Inverse Problem

Methods Inpainting Super resolution Gaussian deblurring DDIM steps
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

DPS (Chung et al., 2023) 0.815 27.73 0.233 0.649 22.99 0.329 0.662 23.43 0.310 100
DPS+DSG(Ours) 0.899 30.95 0.132 0.784 26.82 0.227 0.762 26.16 0.239 100

DPS (Chung et al., 2023) 0.704 22.74 0.314 0.568 19.57 0.405 0.543 18.59 0.428 50
DPS+DSG(Ours) 0.886 30.67 0.176 0.790 26.96 0.231 0.749 25.76 0.264 50

DPS (Chung et al., 2023) 0.408 12.08 0.590 0.337 10.93 0.614 0.353 10.97 0.639 20
DPS+DSG(Ours) 0.812 27.53 0.267 0.771 26.68 0.272 0.771 26.68 0.272 20

Figure 5. Qualitative result of Text-Segmentation Guidance using
500 denoising steps with Stable Diffusion.

LDM (Rombach et al., 2022) as the pre-trained conditional
diffusion prior and utilize the style loss for guidance, which
is the same as Style Guidance:

Loss(x̂0(xt), xin) = ||E(x̂0(xt))− E(xin)||2F , (20)

Please refer to the Appendix C for further experimental
details and additional results for FaceID Guidance and Text-
Style Guidance.

5.2. Comparison with the State-of-the-art

The qualitative and quantitative results are shown in Table 1,
3 and Figure 3, 4, 5, 6. The result in Table 1, 3 demonstrates
that our method outperforms the current state-of-the-art
training-free method by a significant margin. Our method
produces samples that exhibit both increased realism and
better alignment with the input conditions.

In the context of linear inverse problems, our method ex-
cels in preserving intricate details, such as facial features
and hair, whereas DPS tends to apply smoothing and blur-
ring effects to these details. With FaceID Guidance, our
model generates faces that more closely match the input ref-
erence compared to baseline methods. For Style Guidance,
Text-Segmentation guidance, and Text-Style Guidance, the
images generated by our method also exhibit improved align-
ment with the input conditions while reducing artifacts.

Table 3. The quantitative result in CelebA-HQ test set for FaceID
guidance

Method FaceID FID KID

Freedom 0.545 39.61 0.0165
LGD 0.533 39.13 0.0170

Freedom+DSG 0.371 34.29 0.0092

Figure 6. The qualitative results in FaceID Guidance using a diffu-
sion model pre-trained from CelebA-HQ256*256.

5.3. Ablation Study

Robustness with fewer denoising steps When reducing
the number of denoising steps (Table 2 and Figure 7), we
observe a more pronounced performance gap. This phe-
nomenon can be attributed to the limitations of DPS, which
restricts the small step sizes for not deviating far from the
intermediate manifold Mt. Consequently, with fewer guid-
ance steps, aligning with the measurements becomes in-
creasingly challenging. In contrast, our model experiences
only a slight decrease in performance. This can be attributed
to our approach, which allows for larger step sizes while still
preserving the underlying manifold structure. As a result,
even with a reduced number of denoising steps, we can still
achieve accurate alignment with the measurements while

8
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generating realistic samples, as shown in Figure 7. Please
refer to Appendix B.2 for further details.

Figure 7. Comparison between DPS and DPS+DSG in different
denoising steps in solving inpainting. With the decreasing of
denoising steps, DPS can not align with the input due to the small
step size. However, when plugging in DSG, it can allow larger
step sizes, thus achieving better alignment.

Figure 8. Comparison between DPS and DPS+PDSG (Another ver-
sion of DSG by projecting DPS into Spherical Gaussian constraint)
using 50 denoising steps.

Advantanges of guidance with Spherical Gaussian con-
straint. We performed additional comparative experiments
to demonstrate the advantages of constraining the guidance
with the spherical Gaussian constraint. To demonstrate the
benefits of spherical Gaussian constraint, we implemented
another version of DSG(PDSG) by projecting the xt−1 ob-
tained by DPS onto the hyperphere Sn

µθ(xt),
√
nσ

in Equa-
tion 12. With this projection, DPS can have a larger step
size(100x) than the original setting with no artifacts. See
Appendix B.3 for further details.

6. Limitations
Although DSG addresses the manifold deviation problem,
allowing for larger guidance steps that enhance time effi-
ciency, its sampling strategy may compromise sample diver-
sity. This arises for two main reasons: Firstly, DSG restricts
Gaussian sampling to the proximity of the gradient descent
direction, while baseline methods (such as DPS) sample ran-
dom noise across all directions. Secondly, approximating
the high-dimensional Gaussian in DSG to a hypersphere
could potentially diminish sample diversity, even though

the possibility of sampling points outside the hypersphere is
very small.

7. Conclusion
In this paper, we have revealed a crucial issue in the training-
free conditional diffusion models: the occurrence of mani-
fold deviation during the sampling process when employing
loss guidance. This phenomenon is substantiated by estab-
lishing a certain lower bound for the estimation error of the
loss guidance. To tackle this issue, we have proposed Diffu-
sion with Spherical Gaussian constraint (DSG), inspired by
the concentration phenomenon in high-dimensional Gaus-
sian distributions. DSG effectively constrains the guidance
step within the intermediate data manifold through opti-
mization, thereby mitigating the manifold deviation prob-
lem and enabling the utilization of larger guidance steps.
Furthermore, we presented a closed-form solution for DSG
denoising with the Spherical Gaussian constraint. It’s worth
noting DSG serves as a plug-and-play module for training-
free conditional diffusion models (CDMs). Integrating DSG
into these CDMs merely involves modifying a few lines of
code with almost no extra computational cost, but yields
significant performance improvements. We have integrated
DSG into several recent new CDMs for various conditional
generative tasks. The experimental results validate the su-
periority and adaptability of DSG in terms of both sample
quality and time efficiency.

Notably, the improvements of DSG on both sample quality
and time efficiency come at the expense of sample diversity.
This is because DSG replaces the random Gaussian noise
term in the reverse diffusion process with the deterministic
conditional guidance step. Although we use the guidance
rate gr to alleviate this problem in practice, it cannot be
avoided inherently. Enhancing DSG diversity while pre-
serving its generation quality is under consideration in our
future work.
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A. Proofs
A.1. Proof of Proposition 4.1

Proposition A.1. (Lower bound of Jensen gap). For the β-strongly convex function f and the random variable X ∈ Rn ∼
N (µ,Σ), we can have the lower bound of the Jensen Gap:

J ≥ 1

2
β

n∑
i=1

λi.

Proof: Since f(x) is a β-strongly convex function, we have

f(
1

2
(x1 + x2)) ≤

1

2
[f(x1) + (1− λ)f(x2)]−

β

8
∥x1 − x2∥2,

Then, for convenience, let random variable δ = x− µ, and δ ∼ N (0,Σ). we obtain

J (f, x ∼ N (µ,Σ)) =E [f(x)]− f(E [x])

=

∫
p(x)f(x)dx− f(µ)

=
1

2

∫
p(µ+ δ)f(µ+ δ)dδ +

1

2

∫
p(µ− δ)f(µ− δ)dδ − f(µ)

=

∫
p(µ+ δ)

(
1

2
f(µ+ δ) +

1

2
f(µ− δ)− f(µ)

)
dδ ♢ symmetry of Gaussian distribution

≥β

2

∫
p(µ+ δ)∥δ∥2dδ ♢ β-strongly convexity

=
β

2
E
[
∥δ∥2

]
.

Since here the covariance matrix Σ is symmetric, we can use the spectral theorem here and write Σ = PTΛP where P is an
orthogonal matrix and Λ is diagonal with positive diagonal elements λ1, · · · , λn. Then, let z = PΣ− 1

2 δ and z ∼ N (0, I).
Thus, we have

∥δ∥2 = δT δ =
(
Σ− 1

2 δ
)T

Σ
(
Σ− 1

2 δ
)
=
(
Σ− 1

2 δ
)T

PTΛP
(
Σ− 1

2 δ
)
= ∥z∥2Λ

Consider each component in z is independent.

E
[
∥δ∥2

]
= E

[
∥z∥2Λ

]
=

n∑
i=1

E
[
λiz

2
i

]
=

n∑
i=1

λi.

Therefore, we have the lower bound of the Jensen gap that

J ≥ 1

2
β

n∑
i=1

λi.

A.2. Proof of Proposition 4.3

Proposition A.2. (Concentration of high-dimensional isotropy Gaussian distribution). For any n-dimensional isotropy
Gaussian distribution x ∼ N(µ, σ2I):

P (||x− µ||22 ≥ xlower = nσ2 + 2nσ2(
√
ϵ+ ϵ)) ≤ e−nϵ,

P (||x− µ||22 ≤ xupper = nσ2 − 2nσ2
√
ϵ) ≤ e−nϵ.

When n is sufficiently large, it is close to the uniform distribution on the hypersphere of radius
√
nσ.
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Proof:

First of all, we can find the expected value of the ||x− µ||22 in the following way:

E(||x− µ||22) =
n∑

i=1

E((xi − µ)2) =

n∑
i=1

E2((xi − µ)) +D(xi − µ) = nσ2, (21)

where xi is ith element of x.

Then, the concentration of ||x− µ||22 can be proved using standard Laurent-Massart bound for a chi-square distribution.
If Z is a chi-square distribution with n degrees of freedom,

P [Z − n ≥ 2
√
nt+ 2t] ≤ e−t,

P [Z − n ≤ −2
√
nt] ≤ e−t.

(22)

By substituting Z =
∑n

i=1(xi − µ)2/σ2 and t = nϵ,

P (
1

σ2

n∑
i=1

(xi − µ)2 ≥ n+ 2n(
√
ϵ+ ϵ)) ≤ e−nϵ,

P (
1

σ2

n∑
i=1

(xi − µ)2 ≤ n− 2n
√
ϵ) ≤ e−nϵ.

(23)

Therefore,

P (r

√
1− 2

√
ϵ ≤ ||x− µ||2 ≤ r

√
1 + 2

√
ϵ+ 2ϵ) ≥ 1− 2e−nϵ. (24)

By choosing ϵmin = min{1−
√

1− 2
√
ϵ,
√
1 + 2

√
ϵ+ 2ϵ− 1},

P ((1− ϵmin)r ≤ ||x− µ||2 ≤ (1 + ϵmin)r) ≥ 1− 2e−nϵ, (25)

which proves the concentration of ||x− µ||2.

A.3. Closed-form Solution of Equation 13

Given the optimization problem

argmin
x′

[∇xt
L(x̂0(xt), y)]

T
(x′ − xt)

s.t. x′ ∈ Sd
µθ(xt),

√
nσt

,
(26)

where Sd
µ,r = Sd

µθ(xt),
√
nσ

= {x : ||x− µθ(xt)||22 = nσ2
t }, the optimal solution can be derived as follows:

argmin
x′

[∇xtL(x̂0(xt), y)]
T
(x′ − xt)

= argmin
x′

[∇xt
L(x̂0(xt), y)]

T
((x′ − µθ(xt)) + (µθ(xt)− xt))

= argmin
x′

[∇xt
L(x̂0(xt), y)]

T
(x′ − µθ(xt)).

(27)
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Table 4. Hyperparameter settings of DSG for Linear Inverse Problems in FFHQ

Task Interval Guidance Rate Denoising steps

Inpainting 5 0.2 1000
Super-Resolution 20 0.2 1000

Gaussian-deblurring 5 0.2 1000
Inpainting 1 0.2 100

Super-Resolution 2 0.1 100
Gaussian-deblurring 1 0.1 100

Inpainting 1 0.2 50
Super-Resolution 1 0.1 50

Gaussian-deblurring 1 0.1 50
Inpainting 1 0.2 20

Super-Resolution 1 0.2 20
Gaussian-deblurring 1 0.2 20

By reparameterizing x′ = µθ(xt) +
√
nσtd where ||d||22 = 1 using constraint,

argmin
x′

[∇xt
L(x̂0(xt), y)]

T
(x′ − xt)

= argmin
d

√
nσt [∇xt

L(x̂0(xt), y)]
T
d.

(28)

Obviously, when d = −∇xtL(x̂0(xt), y)/||∇xtL(x̂0(xt), y)||2, the optimization problem gets the minimal value −
√
nσt.

Therefore, x∗
t−1 = x′ = µθ(xt)−

√
nσt∇xtL(x̂0(xt), y)/||∇xtL(x̂0(xt), y)||2.

Figure 9. Comparison between DPS and DPS+DSG in Super-resolution task using different denoising steps.

B. Ablation Study
B.1. Hyperparameter Analysis

Our model has two main hyperparameters: guidance rate gr and interval i. The guidance rate represents the weight of
guidance in Equation 14. When it is zero, the denoising process is equivalent to unconditional generation. When it is set to
1, then the path of generation is determined. In practice, we find it better to choose values between 0.05 and 0.2 because a
certain level of random noise is a trade-off between unconditional sampling diversity and better alignment. The interval
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Figure 10. Different guidance rate using DSG using 100 DDIM steps

means that we apply guidance at a fixed interval and do unconditional sampling when not applying guidance. It can also
increase the diversity of DSG and usually be used when the denoising steps are large, e.g. denoising steps larger than 100.

The hyperparameters we used for the linear inverse problem in FFHQ are shown in Table 4. For the linear inverse problem in
ImageNet, we use gr = 0.2, i = 5 for Inpainting, gr = 0.1, i = 10 for Super-resolution, and gr = 0.1, i = 5 for Gaussian
deblurring. For Style Guidance, Text-Style Guidance and Text-Segmentation Guidance, we set gr = 0.1, i = 1. For FaceID
Guidance, we set the gr = 0.05, i = 1.

From Table 4, we can observe that when the number of denoising steps is limited(≤ 100), simply setting the interval to 1
and the guidance rate to a small value ([0.05, 0.2]) can yield a satisfactory result. When denoising steps are significantly
large (e.g., T = 1000), a large interval (larger than 5) can be set to increase the diversity of our method and decrease the
number of guidance, thus accelerating the inference time while enhancing the quality of the generated image.

It is also worth noticing that while other training-free methods require careful tuning of the step size with different loss
functions, the step sizes of DSG are adaptive and independent of the loss function. Moreover, the similar hyperparameter
settings of DSG can be applied to almost all tasks, which reduces the cost for hyperparameter searching.

B.2. Ablation Study with Different Denoising Steps Compared with DPS

When conducting the ablation study of different denoising steps in the linear inverse problem, we carefully tune the step size
γ of DPS (Chung et al., 2023) to 10× than the original setting with denoising steps=100 and 20× with denoising steps=20,
50. Further results are shown in Figure 9.

B.3. Ablation Study on Projecting DPS into Spherical Gaussian

To further demonstrate the advantages of Spherical Gaussian constraint, we first consider the single denoising step from xt

to xt−1, DPS calculates xt−1 by estimating the additional correction step:

xt−1 = DDIM(xt, ϵθ(xt, t))︸ ︷︷ ︸
sampling step

− γ∇xt
L(x̂0(xt), y)︸ ︷︷ ︸

correction step

. (29)

However, when γ is pretty large. we project xt−1 obtained by DPS onto the hyperplane Sn
µθ(xt),

√
nσ

to force the spherical
Gaussian constraint, which is called DPS+PDSG. The projection process can be represented as:

dp = xt−1 − µθ(xt), (30)
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xp
t−1 = µθ(xt) +

√
nσtdp/||dp||, (31)

where xp
t−1 denates the projection point, which is the closest point in Sn

µθ(xt),
√
nσ

w.r.t. xt−1. Since a large step size γ will
cause DPS to fall off the manifold (Figure 9), the operation in Equation 30, 31 can project the xt−1 obtained by DPS back
into the intermediate manifold Mt−1 while allowing for larger step sizes.

B.4. Ablation Study on Denoising Process

We compare our DSG with DPS in the Inpainting task in 1000 denoising steps and show the intermediate noisy image xt

in Figure 11. The results demonstrate that our guidance is more effective and can expedite the restoration of the overall
appearance of the image.

Figure 11. Qualitative results of the denoising process.

C. Additional Experimental Details and Results
In this section, to further demonstrate the applicability and strength of our DSG, we will provide additional experimental
details and results.

C.1. More Experimental Details and Results for FaceID Guidance

In FaceID Guidance, we choose Freedom (Yu et al., 2023), LGD (Song et al., 2023) as the baselines. For Freedom, we
follow the hyperparameter settings proposed in the original paper. For LGD, we set the number of Monte Carlo samples to
3, covariance to 0.5

√
1− αt, and step size to 100

√
αt. As shown in Table 3, Figure 6 and Figure 12, our DSG shows the
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SOTA performance according to these qualitative and quantitative results.

Figure 12. The qualitative results in FaceID Guidance using a diffusion model pre-trained from CelebA-HQ256*256.

C.2. More Experimental Details and Results for Text-Style Guidance

In Text-Style Guidance, we follow the experiment setting of Freedom (Yu et al., 2023) and choose Freedom, LGD, and
MPGD (Yu et al., 2023; Song et al., 2023; He et al., 2024) as the baseline methods for comparisons. For the hyperparameter
setting, we follow the original setting of Freedom and MPGD. For LGD, we set the number of Monte Carlo samples to 2,
covariance to 0.1

√
1− αt, and step size same as Freedom. The qualitative results are shown in Figure 13.

C.3. More Experimental Details and Results for the Inverse Problems in ImageNet

We validate the performance of DSG in inverse problems (Inpainting, Super-resolution, and Gaussian deblurring) in the 1k
validation set of ImageNet256*256 using the same setting in Sec 5.1. We choose DPS, LGD, and DDNM as the baseline.
For DPS and DDNM, we follow the hyperparameter setting of the original paper. For LGD, we set the number of Monte
Carlo samples to 10, covariance to σt/

√
1 + σ2

t , and the same step size as DPS. As shown in Table 5, Figure 14, Figure 15,
and Figure 16, our DSG outperforms other baselines in ImageNet256*256.

It’s worth noting that DDNM (Wang et al., 2022) is primarily applicable to linear inverse problems and cannot be
directly applied to nonlinear cases due to its direct access to the noise scale of measurement, the forward operator, and its
pseudo-inverse. However, despite these differences, DSG still offers superior performance compared to DDNM.

Table 5. Quantitative results in Linear Inverse Problem in ImageNet 256*256

Methods Inpainting Super resolution Gaussian deblurring
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

DPS (Chung et al., 2023) 0.828 28.57 0.189 0.635 23.73 0.317 0.471 19.89 0.402
LGD (Song et al., 2023) 0.825 28.11 0.191 0.633 23.13 0.318 0.367 16.77 0.474

DDNM (Wang et al., 2022) 0.875 28.76 0.125 - - - - - -
DPS+DSG(Ours) 0.879 29.20 0.116 0.672 23.86 0.282 0.644 23.25 0.282
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Figure 13. The qualitative results in Text-Style Guidance using Stable Diffusion.
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Figure 14. Additional qualitative results of Inpainting in Imagenet256*256.
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Figure 15. Additional qualitative results of Super-resolution in Imagenet256*256.
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Figure 16. Additional qualitative results of Gaussian-deblurring in Imagenet256*256.
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D. Additional Qualitative Results
We provided additional qualitative results to demonstrate that DSG can plug in other training-free methods while improving
their performance.

Figure 17. Extra qualitative examples of Super-resolution (left) and Gaussian deblurring (right) in the FFHQ dataset.
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Figure 18. Enlargement of the qualitative results using DPS+DSG compared to DPS.
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Figure 19. Additional qualitative results in Style Guidance using pre-trained Stable Diffusion.
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Figure 20. Additional qualitative results of DSG in Text-Style Guidance using pre-trained Stable Diffusion.
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