

000 001 QPROMPT-R1: REAL-TIME REASONING FOR DO- 002 MAIN GENERALIZED SEMANTIC SEGMENTATION VIA 003 GROUP-RELATIVE QUERY ALIGNMENT 004 005 006

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011

ABSTRACT

013 Deploying semantic segmentation in driving and robotics requires both real-time
014 inference and robustness to domain shifts, formalized as *Real-Time Domain-
015 Generalized Semantic Segmentation* (RT-DGSS), a challenge not fully addressed.
016 Existing methods treat real-time (RT) inference and domain generalization (DG)
017 separately, with DG improving robustness but lacking real-time performance. To
018 tackle the RT-DGSS problem, we identify that the bottleneck in DG is the pre-
019 diction head, not the backbone. We introduce **QPrompt-R1**, a real-time *Query-
020 Prompt* architecture based on the powerful VFM backbone. QPrompt-R1 inte-
021 grates reasoning by injecting learnable queries into the final transformer block,
022 leveraging contextual learning to enhance segmentation performance under do-
023 main shifts while maintaining real-time inference. To further optimize reason-
024 ing without extra inference cost, we introduce a *Group Relative Query Alignment*
025 (*GRQA*) training objective, which strengthens the relationship between queries
026 and image tokens through group-relative advantage supervision, unlocking the do-
027 main generalization potential of VFMs. QPrompt-R1 achieves **54 FPS**, delivering
028 strong performance in synthetic-to-real transfer, real-to-real generalization, and
029 robustness under adverse conditions. GRQA functions as a *plug-and-play* mod-
030 ule, improving DGSS methods such as REIN (+1.2) and SoMA (+0.6) without
031 introducing inference-time overhead.

032 1 INTRODUCTION

033 Semantic segmentation in autonomous driving and robotics requires both *real-time inference* and
034 *robustness to distribution shifts*. Real-time segmentation supports safety-critical tasks like obstacle
035 avoidance in autonomous vehicles (Grigorescu et al., 2020; Holder & Shafique, 2022) and robot
036 navigation (Guan et al., 2022). Robustness ensures generalization across environments, handling
037 weather, lighting, and terrain variations (Gao et al., 2024).

038 Recent research has treated *real-time performance* and *robustness under distribution shifts* as sep-
039 arate optimization goals. Current DGSS approaches (Wei et al., 2024; Yun et al., 2025; Bi et al.,
040 2024; Zhang & Robby T., 2025) mainly focus on exploit VFMs to improve robustness. In contrast,
041 RTSS methods focus on designing novel architecture to optimize the accuracy-latency trade-off for
042 high-speed performance. Despite their advances, DGSS methods face high computational costs, hin-
043 dering real-time deployment, while RTSS methods sacrifice domain adaptability due to fixed class
044 embeddings. This trade-off underscores a critical gap in current research: *Why do existing methods*
045 *fail to effectively combine RT and DGSS?*

046 State-of-the-art DGSS methods (Wei et al., 2024; Yun et al., 2025; Bi et al., 2024; Zhang & Robby T.,
047 2025) leverage VFMs to enhance domain robustness. However, we identify that the speed bottleneck
048 lies not in the VFM backbone, but in the sophisticated segmentation head. Most DGSS models,
049 based on a query-based head, rely on a complex segmentation head with a pixel encoder and trans-
050 former decoder, using the VFM only in the backbone as fig. ref1a. Replacing the query-based head
051 with a simpler MLP head, commonly used in RTSS methods, results in a significant speed boost
052 (FPS), as shown in Fig 1(c), highlighting the query-based head as the time bottleneck of DGSS. On
053 the other hand, most RTSS methods (Xu et al., 2022; 2023; Yang et al., 2025) rely on CNN archi-



Figure 1: (a) Prior DGSS architectures rely on heavy segmentation heads. (b) QPrompt-R1 integrates query prompts at the final VFM layer with train-only GRQA, enabling efficient alignment and generalization. (c) Speed-accuracy trade-off under $GTAV \rightarrow \{Citys, BDD, Map\}$. QPrompt-R1 achieves an optimal balance, while GRQA remains scalable and further boosts performance.

lectures, which cannot effectively leverage the generalization power of VFM. Moreover, they lack the ability for in-context adaptive learning, as they learn a fixed set of class embeddings, while the query-based approach can fuse with image token context for adaptive learning, effectively mitigating the effects of domain shifts. Therefore, we need a novel architecture for RT-DGSS problem.

Recent advances in reinforcement learning (RL) have introduced new paradigms for post-training large models, enabling alignment with complex objectives beyond supervised fine-tuning. In language models, DeepSeekMath introduced Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which replaces the critic with group-relative baselines, pushing the boundaries of mathematical reasoning. GRPO has also been applied to vision tasks (Pan et al., 2025; Huang et al., 2025; Yu et al., 2025), enhancing the capabilities of vision models.

To address the RT-DGSS problem, we introduce the **QPrompt** (Fig. 1b), a lightweight, single-layer prompting mechanism integrated at the final Transformer layer in VFM, inspired by prior query-based model and prompt/token tuning for vision models (Jia et al., 2022; Kerssies et al., 2025). Concretely, QPrompt injects a small set of learnable queries only into the final transformer block, approximating query-based decoding without a multi-layer decoder stack. QPrompt retains the adaptive nature of query-based methods, with minimal computational overhead, adding only K extra tokens in the final transformer layer. However, a single layer interaction between image tokens and queries is insufficient for robust performance. Inspired by GRPO (Shao et al., 2024), we propose **Group-Relative Query Alignment (GRQA)** to enhance query-prompted domain-generalized reasoning. Our key insight is to train all queries within a class-specific group, allowing multiple queries to acquire segmentation competence and mitigate failures under domain shifts. Unlike Hungarian matching, which assigns a single query to each ground-truth mask, GRQA leverages *group-relative advantages* to enable mutual supervision and jointly optimize all queries. This method is fully supervised during training, with all auxiliary components disabled at test time, ensuring *no* inference-time overhead. As a plug-and-play module, GRQA can be easily integrated with existing DGSS methods like REIN and SoMA, providing performance improvements without increasing inference-time cost.

Building upon this, we propose **QPrompt-R1**, a real-time, domain-generalized semantic segmentation model (QPrompt) enhanced with Group-Relative Query Alignment (GRQA) optimization for improved reasoning. QPrompt-R1 achieves a sustained inference speed of **54 FPS**, demonstrating strong synthetic-to-real transfer, real-to-real generalization under adverse conditions. QPrompt-R1 performance pushes the frontier of real-time systems while narrowing the performance gap to domain-generalized semantic segmentation (DGSS) methods.

We make the following contributions:

- We highlight Real-Time Domain-Generalized Semantic Segmentation (RT-DGSS) as an important and practical research challenge, addressing both robustness to domain shifts and real-time inference efficiency.

- 108 • We propose QPrompt-R1, a real-time and robust semantic segmentation model, along with
109 a plug-and-play GRQA training strategy designed to enhance the model’s generalization.
110 QPrompt-R1 achieves a balanced trade-off between performance and efficiency.
- 112 • Group-Relative Query Alignment (GRQA) is a generalizable approach that can be com-
113 bined with existing DGSS methods to push the limit of domain generalization.

116 2 RELATED WORKS

119 **Domain Generalized Semantic Segmentation.** Domain-generalized semantic segmentation
120 (DGSS) aims to maintain high accuracy under distribution shifts from diverse urban layouts,
121 weather, and lighting conditions. Early methods used style transfer, feature normalization, and ad-
122 versarial alignment (e.g., (Zhou et al., 2022c), (Chattopadhyay et al., 2023), (Kim et al., 2022),
123 (Cho et al., 2023), (Pan et al., 2018)) to learn domain-invariant representations. Recently, vi-
124 sion foundation models (VFM) have become powerful backbones for DGSS, with methods like
125 REIN (Wei et al., 2024), FADA (Bi et al., 2024), and SoMA (Yun et al., 2025) refining VFM through
126 parameter-efficient tuning, frequency-domain adaptation, or low-rank adjustments. Other
127 approaches, such as MFuser (Zhang & Robby T., 2025), combine VFM with vision–language
128 models (VLMs) to exploit multimodal priors. Despite these advances, most DGSS methods fo-
129 cus on robustness, neglecting real-time applicability, which is crucial for safety-critical tasks like
130 autonomous driving and robotics. **We contend that both robustness and efficiency must be jointly**
131 **addressed. While previous methods implicitly touch upon these aspects, we establish Real-Time**
132 **Domain-Generalized Semantic Segmentation (RT-DGSS) as a distinct research setting to rigorously**
133 **evaluate the trade-off between inference speed and domain generalization.**

134 **Real-Time Semantic Segmentation.** Real-time semantic segmentation is crucial for applications
135 such as autonomous driving and robotics, where fast, reliable pixel-level prediction is required.
136 Early work mainly relies on lightweight CNN designs to balance accuracy and efficiency, e.g.,
137 BiSeNet (Yu et al., 2018) decouples spatial detail and context with a dual-path architecture, and
138 PIDNet (Xu et al., 2022) introduces a three-branch structure to explicitly model boundary cues.
139 More recently, transformer/hybrid designs have also achieved strong accuracy–latency trade-offs.
140 RTFormer (Wang et al., 2022) proposes an efficient dual-resolution transformer with GPU-friendly
141 attention for real-time segmentation. SeaFormer (Wan et al., 2023) develops mobile-friendly axial-
142 transformer backbones coupled with lightweight segmentation heads, targeting low-latency deploy-
143 ment on edge devices. Next-ViT (Li et al., 2022) introduces an efficient deployment-oriented back-
144 bone that offers a strong latency–accuracy trade-off for dense prediction. Despite these advances,
145 prior RTSS methods primarily optimize latency and in-domain accuracy, leaving robustness under
146 domain shifts largely unexplored. In contrast, we target Real-Time Domain Generalized Semantic
147 Segmentation (RT-DGSS), which preserves efficiency while improving cross-domain generalization.

148 **RL-based Post-training and GRPO.** Reinforcement learning (RL)(Ouyang et al., 2022)(Schul-
149 man et al., 2017)(Guo et al., 2025) has become essential for post-training large models, aligning
150 them with objectives beyond supervised fine-tuning. In language models, DeepSeekMath intro-
151 duced Group Relative Policy Optimization (GRPO) (Shao et al., 2024), replacing the critic with
152 group-relative baselines to enhance mathematical reasoning. Similar approaches were applied to
153 vision: (Pan et al., 2025) proposed Group Relative Query Optimization (GRQO) for denser query
154 supervision in vision transformers, (Yu et al., 2025) applied GRPO to multimodal tasks, and Vision-
155 R1 (Huang et al., 2025) demonstrated improvements in multimodal reasoning. However, group-
156 relative optimization for dense prediction tasks like semantic segmentation remains underexplored.
157 We address this gap with **Group Relative Query Alignment (GRQA)**, which adapts GRPO-style
158 rewards for query–image alignment in segmentation transformers without additional inference cost.

159 3 METHODOLOGY

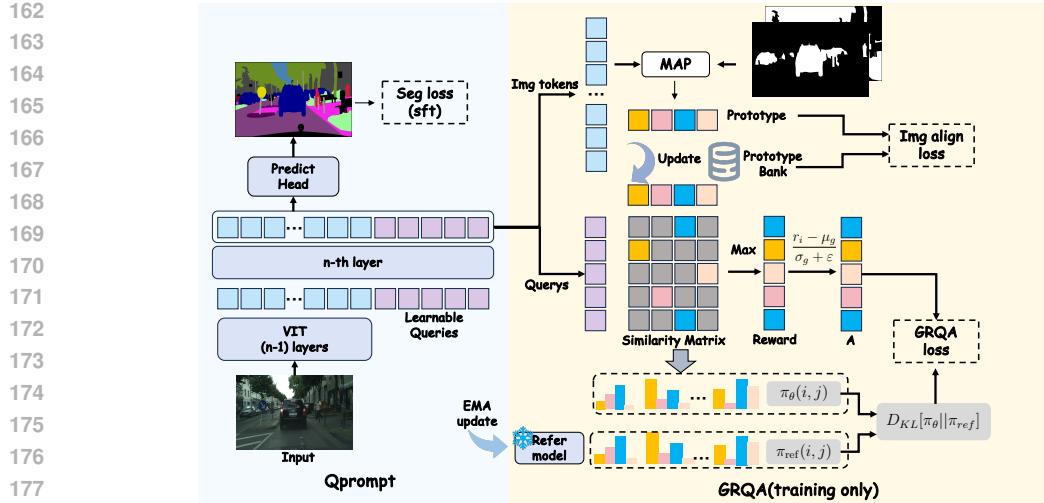


Figure 2: Overview of QPrompt-R1. Left: QPrompt employs a ViT backbone, injecting learnable queries only in the final layer to capture context, followed by a prediction head. Right: The GRQA module builds a prototype bank and computes group-relative advantages to optimize queries, enhancing domain-generalized reasoning. GRQA is training-only and incurs no inference overhead.

3.1 PRELIMINARIES: GROUP-RELATIVE POLICY OPTIMIZATION (GRPO)

Group-Relative Policy Optimization (GRPO) (Shao et al., 2024) is a simplified policy-optimization framework that replaces the value function with a group-relative advantage. Given a group of outputs, each output’s advantage is computed by subtracting the group mean reward: $\hat{A}_i = r_i - \frac{1}{G} \sum_{j=1}^G r_j$. The policy is updated by maximizing a PPO-style objective augmented with KL regularization:

$$\mathcal{L}_{\text{GRPO}} = \mathbb{E} \left[\min \left(\rho_i \hat{A}_i, \text{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right] - \beta D_{\text{KL}}[\pi_\theta \parallel \pi_{\text{ref}}], \quad (1)$$

where π_θ denotes the policy probability, $\rho_i = \pi_\theta / \pi_{\text{ref}}$ the importance ratio between the current and reference policies, and the KL divergence term encourages conservative updates by keeping the learned policy close to a reference model. These designs contain two central ideas—group relative advantages and conservative updates, which form the basis of GRQA objective.

3.2 QPROMPT FOR SEMANTIC SEGMENTATION

Since VFM are pretrained on large-scale datasets and demonstrate strong generalization (Oquab et al., 2023; Kirillov et al., 2023), we aim to exploit their inherent strengths with a simple architecture and training-only strategy rather than heavily relying on complex segmentation heads. Motivated by query-based heads (Cheng et al., 2022), which allow queries to adaptively interact with image tokens for in-context learning, we introduce a real-time architecture, **QPrompt** (as illustrated in Fig. 2), to preserve the advantages of query-based approaches while reducing computational overhead. Formally, we define the VFM backbone as a sequence of $L \geq 2$ Transformer blocks, $\{\mathcal{B}_1, \dots, \mathcal{B}_L\}$. Let $x_\ell \in \mathbb{R}^{N \times d}$ denote the token sequence after block ℓ . An input image is first processed by the backbone through the initial $L - 1$ blocks, producing the intermediate tokens x_{L-1} . At the final block, K learnable queries $Q \in \mathbb{R}^{K \times d}$ are concatenated with the $(L - 1)$ -th output to form the augmented tokens:

$$\tilde{x}_{L-1} = [Q, x_{L-1}], \quad (2)$$

which are then fed into the last Transformer block $\mathcal{B}_L(\cdot)$. The block outputs the refined queries and updated image tokens:

$$[Q_L, x_L] = \mathcal{B}_L(\tilde{x}_{L-1}). \quad (3)$$

Following standard query-based decoding, each refined query Q_L predicts class logits and generates per-pixel predictions by attending back to image tokens x_L . To recover fine-grained boundaries from patchified VFM features, QPrompt employs a lightweight upsampling head, consisting of two learnable transposed-convolution layers. In this way, queries serve as adaptive class embeddings that directly produce the segmentation map without requiring an additional decoder stack.

216 By injecting queries at the last block, QPrompt approximates the role of both pixel encoder and
 217 transformer decoder in conventional query-based methods within a single layer interaction. Previous
 218 query-based model (Cheng et al., 2022) employs a pixel encoder followed by a multi-layer decoder,
 219 with complexity $\mathcal{O}(M(N+K)^2d)$, M is the number of decoder layers. QPrompt reduces to a
 220 single Transformer block over $N+K$ tokens ($\mathcal{O}((N+K)^2d)$), retaining properties of query-based
 221 methods and improve inference speed. **Unlike EoMT (Kerssies et al., 2025), whose complex mask
 222 attention and annealing introduce a detrimental train-test process discrepancy, QPrompt is a simpler,
 223 consistent architecture that ensures train-test parity for stable generalization.**

225 3.3 GROUP RELATIVE QUERY ALIGNMENT

226 While QPrompt leverages query-based methods to reduce computational overhead, a single-layer
 227 interaction between image tokens and queries may be insufficient for robust generalization, particu-
 228 larly for handling domain shifts. To address this, we propose the **Group Relative Query Alignment**
 229 (**GRQA**) strategy, which enhances query interactions without increasing inference cost. During
 230 training, Hungarian matching (Cheng et al., 2021) assigns only one query per class, relegating the
 231 others to the background. This results in only one query per class being supervised, preventing the
 232 training of multiple alternative queries to handle domain shift issues (Wen & Li, 2024). **To enable
 233 efficient and stable query optimization, we adopt a momentum-updated prototype bank as standard
 234 class anchors widely used in prior segmentation works (Tang et al., 2025; Zhou et al., 2022b).**

235 **Prototype Bank.** To provide stable, class-specific references for query learning, we maintain a
 236 momentum-updated *Prototype Bank*, Specifically $P = \{P_c\}_{c=1}^C$, where $P_c \in \mathbb{R}^d$ denotes the pro-
 237 totype for class c . For each training image, we compute a per-image prototype f_c by avgpooling
 238 ℓ_2 -normalized pixel embeddings within the ground-truth region of class c . The Prototype Bank P_c
 239 is updated via exponential moving average:

$$240 \quad P_c \leftarrow \text{norm}(\alpha P_c + (1 - \alpha)f_c), \quad (4)$$

242 where α controls the update rate. To further reduce the intra-class feature variance, we explicitly
 243 enforce consistency between f_c and P_c with

$$245 \quad \mathcal{L}_{\text{img}} = \frac{1}{|\mathcal{C}_b|} \sum_{c \in \mathcal{C}_b} \|f_c - P_c\|_2^2, \quad (5)$$

247 where \mathcal{C}_b is the set of classes present in the current batch. This regularization encourages per-image
 248 prototypes to be close to global anchors, stabilizing training and enhancing feature consistency.

249 **Alignment Reward.** Directly optimizing image–prototype regularization loss stabilizes training,
 250 but query-based segmentation depends on query–image token alignment and interaction, so opti-
 251 mizing only one does not markedly improve segmentation ability. To enable each query to focus on
 252 the most relevant class-specific information while avoiding query collapse, we define an alignment
 253 reward. Let the refined queries be denoted as $Q_L \in \mathbb{R}^{K \times d}$. For simplicity, we assume that Q_L has
 254 already been normalized, and we denote the resulting queries as $Q = \text{norm}(Q_L)$. Given the mo-
 255 mentum Prototype Bank $P = \{P_c\}_{c=1}^C$ (Sec. 3.3), the query–prototype similarity matrix $S \in \mathbb{R}^{K \times C}$
 256 is computed as:

$$257 \quad S = Q P^\top, \quad S_{i,j} = \langle Q_i, P_j \rangle, \quad (6)$$

258 where $S_{i,j}$ represents the cosine similarity between query i and prototype P_j . For each query i , we
 259 select the top-1 class as the most similar class:

$$261 \quad c_i = \text{argmax}_{j \in \{1, \dots, C\}} S_{i,j}, \quad r_i = S_{i,c_i}. \quad (7)$$

262 Here, c_i is the index of the most similar class for query i , and r_i is the corresponding similarity
 263 score, which serves as our alignment reward.

264 The inner product $S = Q P^\top$ is used to compute the query–prototype similarity, consistent with the
 265 core principle of query-based methods, where each query’s prediction is based on its similarity to
 266 class prototypes. By using the similarity score r_i as the reward, we encourage alignment between
 267 each query and its most relevant class prototype, ensuring that all queries are effectively trained.

269 **Group-Relative Advantage.** To foster more efficient query-image tokens interactions, we intro-
 270 duce the Group-relative Advantage approach, inspired by the group-relative advantage concept in

GRPO (Shao et al., 2024). By comparing each query’s performance relative to others in its group, we ensure that queries effectively fuse with their most relevant class prototypes, improving segmentation accuracy. We partition the K queries into G groups $\{\mathcal{G}_g\}_{g=1}^G$, where each group \mathcal{G}_g consists of queries that share the same most similar prototype c_i , as computed in Sec 3.3.

For each group \mathcal{G}_g , we compute a baseline defined by the mean and standard deviation of the rewards r_i for the queries in that group:

$$\mu_g = \frac{1}{|\mathcal{G}_g|} \sum_{i \in \mathcal{G}_g} r_i, \quad \sigma_g = \sqrt{\frac{1}{|\mathcal{G}_g|} \sum_{i \in \mathcal{G}_g} (r_i - \mu_g)^2}. \quad (8)$$

Here, μ_g is the mean reward, and σ_g is the standard deviation, with ε ensuring numerical stability. Next, we define the group-relative advantage for each query $i \in \mathcal{G}_g$ as:

$$A_i = \frac{r_i - \mu_g}{\sigma_g + \varepsilon}. \quad (9)$$

The advantage A_i measures how much query i ’s reward deviates from the group’s baseline. If $A_i > 0$, query i outperforms its group, indicating successful fusion with the most relevant prototype and deserving a reward. If $A_i < 0$, the query underperforms and should be penalized to encourage improvement. This group-relative advantage motivates queries exceeding the baseline to fuse with the most relevant prototypes and enhance their reasoning ability.

GRPO-style Clipping with Reference KL Stabilization. While group-relative advantages provide dense supervision, they can exhibit high variance and occasionally induce overly large updates. To keep query updates conservative and stable, we adopt a GRPO/PPO-style clipped objective together with a KL regularization term to an EMA reference model. We maintain a reference model θ_{ref} , which is an exponential moving average (EMA) of the current model parameters θ . This reference model serves as a stable guide for the current model by providing a reference distribution for comparison. Given the query–prototype similarity matrices $S_\theta = QP^\top$ and $S_{\text{ref}} = Q_{\text{ref}}P^\top$, we convert them into per-query class distributions via softmax:

$$\pi_\theta(i, j) = \frac{\exp(S_\theta[i, j])}{\sum_{j'} \exp(S_\theta[i, j'])}, \quad \pi_{\text{ref}}(i, j) = \frac{\exp(S_{\text{ref}}[i, j])}{\sum_{j'} \exp(S_{\text{ref}}[i, j'])}. \quad (10)$$

For each query i , we define the importance ratio as:

$$\rho_i = \frac{\pi_\theta(i, c_i)}{\pi_{\text{ref}}(i, c_i)}. \quad (11)$$

Following the principles of Proximal Policy Optimization (PPO) and GRPO, we define our group-relative clipped objective as:

$$\mathcal{L}_{\text{GR}} = -\frac{1}{K} \sum_{g=1}^G \sum_{i \in \mathcal{G}_g} \min(\rho_i A_i, \text{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) A_i), \quad (12)$$

where the clipping function limits the importance ratio ρ_i from deviating excessively from 1, thereby preventing unstable updates. This mechanism ensures that the model’s alignment improves gradually, promoting stable learning. Additionally, we regularize the current model’s distribution with respect to the reference distribution using forward KL divergence:

$$D_{KL}[\pi_\theta || \pi_{\text{ref}}] = \frac{1}{K} \sum_{i=1}^K \left[\frac{\pi_{\text{ref}}(i, c_i)}{\pi_\theta(i, c_i)} - \log\left(\frac{\pi_{\text{ref}}(i, c_i)}{\pi_\theta(i, c_i)}\right) - 1 \right]. \quad (13)$$

This KL divergence term prevents abrupt shifts in the model’s behavior while allowing for gradual and stable improvements. Finally, the overall GRQA alignment loss is defined as:

$$\mathcal{L}_{\text{GRQA}} = -\frac{1}{K} \sum_{g=1}^G \sum_{i \in \mathcal{G}_g} \min(\rho_i A_i, \text{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) A_i) + \beta D_{KL}[\pi_\theta || \pi_{\text{ref}}], \quad (14)$$

where $\beta > 0$ is a small constant. The GRQA loss captures the alignment between queries and prototypes, while ensuring stable training through the regularization and clipping mechanisms.

324 **Overall training objective.** Finally, the total training loss combines the standard segmentation loss,
 325 the prototype alignment loss, and the GRQA alignment loss:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{seg}} + \lambda_{\text{img}} \mathcal{L}_{\text{img}} + \lambda_{\text{grqa}} \mathcal{L}_{\text{GRQA}}, \quad (15)$$

326 where \mathcal{L}_{seg} is the supervised segmentation loss, \mathcal{L}_{img} aligns per-image prototypes with the bank, and
 327 $\mathcal{L}_{\text{GRQA}}$ is the group-relative alignment objective. λ_{img} and λ_{grqa} are trade-off weights.
 328
 329

330 4 EXPERIMENTS

331 **Datasets.** We evaluate QPrompt-R1 on real and synthetic scene datasets, reporting segmentation
 332 accuracy and efficiency. The Cityscapes (Citys) dataset (Cordts et al., 2016) includes 2,975 training
 333 and 500 validation images at 2048×1024 . We also use BDD100K (BDD) (Yu et al., 2020) and
 334 Mapillary (Map) (Neuhold et al., 2017) as out-of-domain benchmarks, with 1,000 and 2,000 validation
 335 images at 1280×720 and 1902×1080 , respectively. We use GTAV (Richter et al., 2016) with
 336 24,966 labeled frames from an open-world simulator for synthetic data,. We also evaluate on four
 337 ACDC splits (Sakaridis et al., 2021) for adverse conditions: *Fog*, *Night*, *Rain*, and *Snow*.
 338
 339

340 **Evaluation setting.** We use three evaluation protocols: (i) **GTAV**→**Real**: trained on GTAV,
 341 tested on Citys, BDD, and Map; (ii) **Real**→**Real**: trained on Citys, tested on BDD and Map (iii)
 342 **Real**→**ACDC**: trained on Citys, evaluated on ACDC’s adverse-condition splits. (iv) **Clean**→**Cor-**
 343 **ruptions**: trained on Citys, evaluated on Cityscapes-C. Segmentation accuracy is measured by
 344 mIoU, and efficiency by **FPS**. Inference speed is reported on a single NVIDIA RTX 4090 GPU
 345 with a batch size of 1. Inference is conducted at a resolution of 512×1024 , with real-time baselines
 346 evaluated at their official resolutions.
 347

348 **Implementation details.** We use DINOv2 (Oquab et al., 2023) as the ViT backbone. To obtain
 349 fine-grained details in predictions, we use a two-layer transposed-convolution module. Each layer
 350 upsamples the logits by a factor of $\times 2$ producing an overall $\times 4$ upsampling. During training, \mathcal{L}_{seg} is
 351 used for the first two-thirds of epochs to train a base model, which is then initialized for the GRQA
 352 phase. In the final third, GRQA training is performed, with EMA updating the reference model.
 353 Images are cropped into 512×512 patches using a sliding window.
 354

355 **Baselines.** We compare against both domain generalization and real-time segmentation methods.
 356 For DG baselines, we include Mask2Former (Cheng et al., 2022) with DinoV2 (Oquab et al., 2023),
 357 REIN (Wei et al., 2024), FADA (Bi et al., 2024), SoMA (Yun et al., 2025), and MFuser (Zhang &
 358 Robby T., 2025), following their reported training settings and input resolutions. For real-time seg-
 359 mentation, we evaluate Next-ViT (Li et al., 2022), RTFormer (Wang et al., 2022), SeaFormer (Wan
 360 et al., 2023), PIDNet-L (Xu et al., 2022), SCTNet-B-Seg100 (Xu et al., 2023), GCNet-L (Yang
 361 et al., 2025), and EoMT (Kerssies et al., 2025), representing strong and efficient variants. For (iv)
 362 **Clean**→**Corruptions** setting, we compare with SegFormer (Xie et al., 2021), FAN (Zhou et al.,
 363 2022a), TAPADL (Guo et al., 2023) and REIN. All baselines are tested at their recommended infer-
 364 ence resolutions for fair comparison.
 365

366 4.1 QUANTITATIVE RESULTS

367 As shown in Table 1, 2 our method achieves the best balance between accuracy and efficiency, con-
 368 sistently delivering real-time inference at 54 FPS while maintaining strong segmentation accuracy.
 369

370 **GTAV source (GTAV → Real).** On GTAV-to-real adaptation, our method reaches 64.1 mIoU,
 371 surpassing the best real-time baseline (EoMT) by 3.1 mIoU. Its accuracy is comparable to advanced
 372 DGSS methods such as REIN, yet our model runs over $\times 5$ faster, ensuring real-time applicability.
 373

374 **Cityscapes source (Real → Real).** Across real-world datasets, our method achieves 67.8 mIoU,
 375 exceeding the best real-time baseline by 1.7 mIoU. Performance is competitive with strong DGSS
 376 models such as M2F, while maintaining real-time speed for a superior efficiency–accuracy trade-off.
 377

378 **Cityscapes source (Real → ACDC).** Under adverse weather conditions, ours attains 69.4 mIoU,
 379 improving over EoMT by 3.0 mIoU and showing greater robustness in challenging scenarios. Ac-
 380 curacy approaches leading DGSS methods, while running faster for practical deployment.
 381

382 **Cityscapes source (Clean → Corruptions).** Across all corruptions, our method achieves the best
 383 robustness with 69.8 mIoU, showing clear gains especially under Noise and Blur. It also runs at 54
 384 FPS, offering strong resilience while remaining suitable for real-time use.
 385

378
379
380
381
382
383
384 Table 1: Comparison between domain generalization semantic segmentation (DGSS) and real-time
385 semantic segmentation (RTSS) methods on GTAV→Real, Real→Real, and Real→ACDC bench-
386 marks. "M2F" denotes Mask2Former, "Seaf" denotes SeaFormer, "Next" denotes Next-ViT, "RTF"
387 denotes RTFormer; "*" indicates our re-implementation using official source code with default set-
388 tings. All results are reported in mIoU (%) and inference speed in FPS.
389
390

384	Method	Refer	GTAV → Real				Real → Real				Real → ACDC				FPS	
			Citys	BDD	Map	Avg	BDD	Map	Avg	Fog	Night	Rain	Snow	Avg		
386	DGSS	M2F*	CVPR22	63.7	57.4	64.2	61.7	63.7	70.4	67.1	78.4	51.9	70.5	68.9	67.4	11
		REIN	CVPR24	66.4	60.4	66.1	64.3	65.0	72.3	68.7	79.5	55.9	72.5	70.6	69.6	10
		FADA	NeurIPS24	68.2	61.9	68.1	66.1	65.1	75.8	70.5	80.2	57.4	75.0	73.5	71.5	8
		SoMA	CVPR25	71.8	61.3	71.6	68.2	67.0	76.5	71.8	74.7	61.7	77.8	77.3	74.4	10
		MFuser	CVPR25	70.2	63.1	71.3	68.2	65.8	77.9	71.8	82.3	57.9	78.6	74.9	73.5	3
391	RTSS	Next*	Arxiv22	50.1	30.4	40.2	40.2	52.8	60.9	56.9	71.1	20.1	54.3	49.2	51.1	57
		RTF*	NeurIPS22	45.3	26.2	38.6	36.7	43.2	56.3	49.8	69.4	16.4	49.1	43.3	44.6	94
		Seaf*	ICLR23	46.9	27.4	33.1	35.8	40.4	51.7	46.1	65.8	17.2	47.7	40.5	42.8	70
		PIDNet*	CVPR23	45.7	28.1	35.9	36.6	43.4	54.5	48.9	66.9	15.2	48.7	48.1	44.7	46
		SCTNet*	AAAI24	43.3	23.7	39.0	35.3	34.1	51.1	42.6	59.6	16.0	44.8	37.5	39.5	131
		GCNet*	CVPR25	25.7	20.9	26.9	24.5	38.0	50.8	44.4	63.0	11.1	42.4	33.1	37.4	53
		EoMT*	CVPR25	62.1	57.2	63.7	61.0	62.6	69.7	66.1	77.8	52.7	69.7	65.4	66.4	52
		Ours	-	66.1	59.0	67.1	64.1	63.8	71.7	67.8	79.5	53.1	74.2	70.6	69.4	54

392
393
394
395
396
397 Table 2: Results on **Cityscapes** → **Cityscapes-C (level-5)** datasets. In Cityscapes-C, level 5 cor-
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807

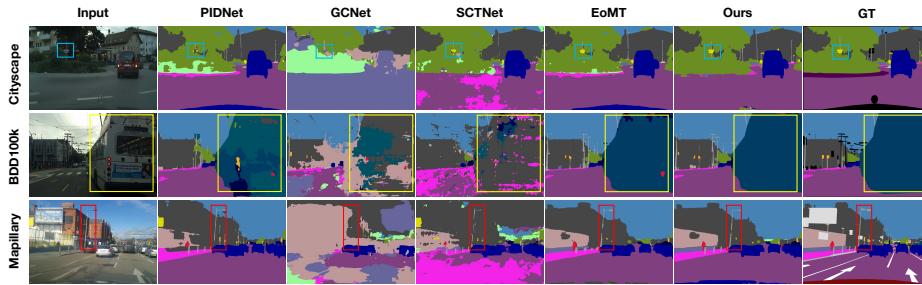


Figure 3: Exemplar segmentation results on $GTAV \rightarrow Citys$, BDD , and Map . Compared with real-time baselines, including PIDNet, GCNet, SCTNet, and EoMT, our method delivers noticeably more accurate pixel-wise predictions, highlighting its stronger cross-domain generalization ability.

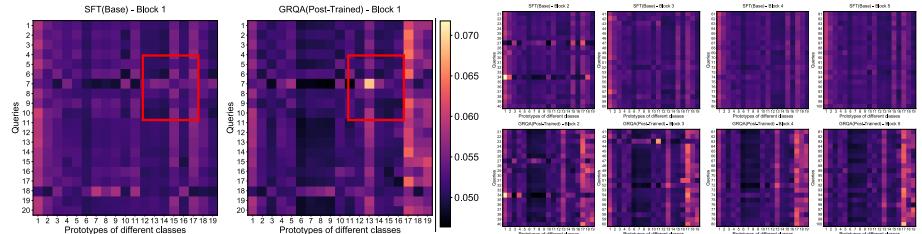


Figure 4: Query–prototype correlations of the Base (SFT) and GRQA models, showing GRQA enhances query–feature fusion. For clarity, $S \in R^{K \times C}$ is split into five blocks.

spectively, without introducing any inference-time overhead. These results indicate that GRQA is a general and effective enhancement for DGSS frameworks, extending its benefits beyond our own model.

4.4 ABLATION STUDIES

Ablation Study on Performance and Efficiency Trade-offs. We perform an ablation study starting with Mask2Former and progressively removing components, evaluated on $GTAV \rightarrow Cityscapes$. In Table 7, Mask2Former performs well but has low FPS (11). Removing Pixel Decoder boosts FPS but slightly reduces performance. Removing multi-scale has minimal impact on performance and increasing speed. Replacing the Transformer Decoder with an MLP-Head drops performance but greatly improves FPS. QPrompt restores performance, maintains high FPS, offering performance-efficiency balance. These results show heavy decoders are a bottleneck, and QPrompt boosts efficiency without compromising performance.

Variants of QPrompt-R1. We conduct ablation studies under the $GTAV \rightarrow Citys+BDD+Map$ setting. As shown in Table 4, the baseline (MLP-Head) achieves an average score of 59.9. Introducing QPrompt raises the performance to 62.3, yielding a clear gain of +2.4 and confirming the advantage of our query prompting design over a simple MLP head. Building upon this, image alignment brings a modest improvement of +0.3. The reward mechanism provides a larger boost of +1.1, underscoring its effectiveness in guiding query optimization. Finally, adding KL divergence not only stabilizes training but also brings further gains, achieving the best performance of 64.1. These results highlight the cumulative benefits of GRQA, where

Table 7: Ablation for Performance and Efficiency. Evaluated on setting $GTAV$ to $Citys$

Method	mIoU	FPS	Param(Infer)
Mask2Former	63.7	11	325 M
→ w/o Pixel Dec	62.9	25	320 M
→ w/o multi-scale	62.8	27	320 M
→ w/o Transformer Dec	61.3	55	312 M
→ QPrompt	63.6	54	315 M
→ QPrompt-R1	66.1	54	315 M

Table 8: Performance of QPrompt-R1 on different VFM backbones.

Backbone	Method	<i>Citys</i>	Δ
	MLP-Head	61.3	
DINOv2-L	+Qprompt	63.6	+2.3
	+GRQA	66.1	+2.5
CLIP-L	MLP-Head	50.4	
	+Qprompt	51.7	+1.3
	+GRQA	53.2	+1.5
SAM-H	MLP-Head	54.7	
	+Qprompt	55.8	+1.1
	+GRQA	57.2	+1.7

486
487
488
489
490
491
492
493
494
Table 3: Performance of GRQA
transferred to SOTA DGSS.

Method	Trained on GTAV				
	Citys	BDD	Map	Avg	Δ
REIN	66.4	60.4	66.1	64.3	-
+GRQA	67.4	61.0	68.1	65.5	+1.2
SoMA	71.8	61.3	71.6	68.2	-
+GRQA	72.0	62.5	71.8	68.8	+0.6

495
496
497
498
499
500
501
502
503
504
505
Table 4: Roles of individual
parts in QPrompt-R1.

Method	Trained on GTAV				
	Citys	BDD	Map	Avg	Δ
MLP-Head	61.3	55.7	62.7	59.9	-
QPrompt	63.6	57.7	65.6	62.3	+2.4
+img align	63.9	58.2	65.8	62.6	+0.3
+Reward	65.8	58.6	66.8	63.7	+1.1
+KL	66.1	59.0	67.1	64.1	+0.4

510
511
512
513
514
515
516
517
518
519
Table 5: Hyperparameter abla-
tion for GRQA.

ϵ	β	Citys	λ_{img}	λ_{grqa}	Citys
0.05	0.001	65.6	1	1	64.0
0.1	0.001	66.1	5	1	64.5
0.15	0.001	64.7	10	1	65.7
0.1	0.01	65.5	10	5	66.1
0.1	0.0001	65.9	10	10	65.8

each component contributes positively, and the full configuration delivers the strongest and most stable generalization.

Hyperparameter Ablation for GRQA. We conduct an ablation study to analyze the impact of hyperparameters on GRQA, as shown in Table 5. On the *Citys* dataset, the optimal configuration is $\epsilon = 0.1$ and $\beta = 0.001$, yielding 66.1 mIoU. The results show that ϵ has minimal impact, while β strongly affects performance, highlighting the importance of KL divergence regularization for stabilizing training and ensuring robust query alignment. Additionally, the best performance is achieved with $\lambda_{img} = 10$ and $\lambda_{grqa} = 5$. Increasing λ_{img} consistently improves performance, confirming its key role in stabilizing training. In contrast, λ_{grqa} requires careful tuning, as extreme values cause degradation. This indicates that **GRQA** is more sensitive to λ_{grqa} than λ_{img} , underscoring the need for balanced integration of the two loss terms.

Ablation for different rewards. To further assess the impact of different rewards on our method, we also validated the DINO-R1 (Pan et al., 2025) reward formulation on QPrompt. Since DINO-R1 is designed for object detection, we made necessary adaptations to the method while maintaining the core reward structure as outlined in the original work. Table 6 results show that applying DINO-R1’s reward in QPrompt does lead to some improvements. Our proposed GRQA reward still outperforms DINO-R1 in terms of performance.

QPrompt-R1 on various VFs. To investigate whether our method generalizes across different architectures, we evaluate both Qprompt and GRQA under the GTAV→Citys setting on diverse backbones, including DINOv2-L, CLIP-L(Radford et al., 2021), and SAM-HKirillov et al. (2023). As shown in Table 8, both variants consistently improve over the standard MLP-Head baseline. Specifically, Qprompt yields steady gains of +2.3, +1.3, and +1.1, while GRQA further enhances performance with additional improvements of +2.5, +1.5, and +1.7. These results highlight that our approach strengthens DGSS models from both architectural and training perspectives, delivering robust generalization across heterogeneous backbones.

Parameter, Performance and Speed. We demonstrate the efficiency and speed benefits of our solution in Table 9. QPrompt achieves a balance between domain generalization, inference speed, and parameter efficiency. It reduces parameters and improves speed while maintaining competitive performance compared to models like Mask2Former, REIN, and FADA. For QPrompt-R1, despite requiring an additional reference model during training, its inference-time parameters remain the same as QPrompt (315M), ensuring efficient speed and count.

520
521
522
523
524
525
526
527
528
529
Table 9: Performance of QPrompt-R1
on different VFM backbones.

Method	mIoU	FPS	Total Param
Next-ViT	50.1	57	62M
Mask2Former	63.7	11	325M
REIN	66.4	10	328M
FADA	68.2	8	338M
QPrompt	63.6	54	315M
QPrompt-R1	66.1	54	315M

530
531
532
533
5 CONCLUSION

534
535
536
537
538
539
We introduced QPrompt-R1, a method that simultaneously achieves real-time efficiency and robustness to distribution shifts. Through QPrompt, we inject learnable queries only at the final transformer block, enabling efficient query–image alignment with minimal overhead. Furthermore, our Group-Relative Query Alignment (GRQA) enhances cross-domain robustness via cooperative query supervision—adding no inference cost and integrating seamlessly with existing DGSS models. QPrompt-R1 achieves 54 FPS while maintaining strong cross-domain performance, establishing a new speed–accuracy frontier for semantic segmentation in autonomous driving and robotics.

540
541
ETHICS STATEMENT542
543
544
545
All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
interventions with human participants or personally identifiable information. We use only publicly
available datasets under their original licenses and follow the terms of use. Potential risks and our
mitigations are summarized below:

- 546
-
- 547
-
- 548
-
- 549
-
- 550
-
- 551
-
- 552
-
- 553
-
- 554
-
- 555
-
- 556
-
- 557
-
- 558
-
- 559
-
-
- Privacy & Security.**
- We do not collect or release any personal data. When showing qualitative
-
- examples, all images/videos are from public datasets; any sensitive content is filtered.
-
-
- Bias & Fairness.**
- We report results on multiple benchmarks and provide detailed settings to
-
- facilitate external auditing. We acknowledge possible dataset biases and encourage follow-
-
- up evaluation on broader demographics and domains.
-
-
- Dual Use / Misuse.**
- The method could be misused to enable undesired large-scale labeling
-
- or surveillance. To reduce misuse, we release only research artifacts (code/configs) and
-
- exclude any tools for scraping or re-identifying individuals.
-
-
- Legal Compliance.**
- We comply with licenses of all third-party assets (code, models, and
-
- datasets) and cite their sources. Any additional third-party terms are respected.
-
-
- Research Integrity.**
- We document preprocessing, training recipes, and evaluation proto-
-
- cols; random seeds and hyperparameters are provided to enable reproducibility.

560
561
562
Where applicable, institutional review information is withheld for double-blind review and can be
provided after acceptance.563
564
REPRODUCIBILITY STATEMENT565
566
567
568
569
We include training and evaluation details in the main paper and Appendix. Concretely: (i) all
hyperparameters, optimization settings, and compute budgets; (ii) full data preprocessing and splits;
(iii) code structure with scripts to reproduce the main tables and figures; (iv) checkpoints and logs
for the primary models.570
571
REFERENCES

- 572
-
- 573
-
- Qi Bi, Jingjun Yi, Hao Zheng, Haolan Zhan, Yawen Huang, Wei Ji, Yuxiang Li, and Yefeng Zheng.
-
- Learning frequency-adapted vision foundation model for domain generalized semantic segmen-
-
- tation. In
- Advances in Neural Information Processing Systems (NeurIPS)*
- , volume 37, pp. 94047–
-
- 94072, 2024.
-
- 574
-
- 575
-
- 576
-
- Prithvijit Chattopadhyay, Kartik Sarangmath, Vivek Vijaykumar, and Judy Hoffman. Pasta: Pro-
-
- portional amplitude spectrum training augmentation for syn-to-real domain generalization. In
-
- Proceedings of the IEEE/CVF international conference on computer vision*
- , pp. 19288–19300,
-
- 2023.
-
- 577
-
- 578
-
- 579
-
- 580
-
- Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need
-
- for semantic segmentation.
- Advances in neural information processing systems*
- , 34:17864–17875,
-
- 2021.
-
- 581
-
- 582
-
- 583
-
- 584
-
- Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
-
- attention mask transformer for universal image segmentation. 2022.
-
- 585
-
- 586
-
- 587
-
- Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, and Suha Kwak. Promptstyler:
-
- Prompt-driven style generation for source-free domain generalization. In
- Proceedings of the*
-
- IEEE/CVF International Conference on Computer Vision*
- , pp. 15702–15712, 2023.
-
- 588
-
- 589
-
- 590
-
- 591
-
- 592
-
- 593
-
- Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
-
- Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
-
- scene understanding. In
- Proceedings of the IEEE conference on computer vision and pattern
recognition*
- , pp. 3213–3223, 2016.

- 594 Zhitong Gao, Bingnan Li, Mathieu Salzmann, and Xuming He. Generalize or detect? towards
 595 robust semantic segmentation under multiple distribution shifts. *Advances in Neural Information
 596 Processing Systems*, 37:52014–52039, 2024.
- 597
- 598 Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning
 599 techniques for autonomous driving. *Journal of field robotics*, 37(3):362–386, 2020.
- 600 Tianrui Guan, Divya Kothandaraman, Rohan Chandra, Adarsh Jagan Sathyamoorthy, Kasun Weer-
 601 akoon, and Dinesh Manocha. Ga-nav: Efficient terrain segmentation for robot navigation in
 602 unstructured outdoor environments. *IEEE Robotics and Automation Letters*, 7(3):8138–8145,
 603 2022.
- 604 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 605 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 606 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 607
- 608 Yong Guo, David Stutz, and Bernt Schiele. Robustifying token attention for vision transformers. In
 609 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 17557–17568,
 610 2023.
- 611 Christopher J Holder and Muhammad Shafique. On efficient real-time semantic segmentation: a
 612 survey. *arXiv preprint arXiv:2206.08605*, 2022.
- 613
- 614 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 615 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 616 *arXiv preprint arXiv:2503.06749*, 2025.
- 617 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 618 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 619 Springer, 2022.
- 620
- 621 Tommie Kerssies, Niccolò Cavagnero, Alexander Hermans, Narges Norouzi, Giuseppe Averta, Bas-
 622 tian Leibe, Gijs Dubbelman, and Daan de Geus. Your ViT is Secretly an Image Segmentation
 623 Model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 624 nition (CVPR)*, 2025.
- 625 Jin Kim, Jiyoung Lee, Jungin Park, Dongbo Min, and Kwanghoon Sohn. Pin the memory: Learning
 626 to generalize semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer
 627 Vision and Pattern Recognition*, pp. 4350–4360, 2022.
- 628
- 629 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 630 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 631 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
- 632
- 633 Jiashi Li, Xin Xia, Wei Li, Huixia Li, Xing Wang, Xuefeng Xiao, Rui Wang, Min Zheng, and Xin
 634 Pan. Next-vit: Next generation vision transformer for efficient deployment in realistic industrial
 635 scenarios. *arXiv preprint arXiv:2207.05501*, 2022.
- 636
- 637 Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The mapillary vistas
 638 dataset for semantic understanding of street scenes. In *Proceedings of the IEEE international
 639 conference on computer vision*, pp. 4990–4999, 2017.
- 640
- 641 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 642 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 643 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 644 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 645 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 646 2023.
- 647
- 648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 650 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 651 27730–27744, 2022.

- 648 Chenbin Pan, Wenbin He, Zhengzhong Tu, and Liu Ren. Dino-r1: Incentivizing reasoning capability
 649 in vision foundation models. *arXiv preprint arXiv:2505.24025*, 2025.
 650
- 651 Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two at once: Enhancing learning and
 652 generalization capacities via ibn-net. In *Proceedings of the european conference on computer
 653 vision (ECCV)*, pp. 464–479, 2018.
- 654 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 655 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 656 models from natural language supervision. In *International conference on machine learning*, pp.
 657 8748–8763. PmLR, 2021.
- 658 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 659 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
 660 tasks. *arXiv preprint arXiv:2401.14159*, 2024.
 661
- 662 Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth
 663 from computer games. In *European conference on computer vision*, pp. 102–118. Springer, 2016.
- 664 Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with
 665 correspondences for semantic driving scene understanding. In *Proceedings of the IEEE/CVF
 666 international conference on computer vision*, pp. 10765–10775, 2021.
 667
- 668 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 669 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 670
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li,
 671 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 672 language models, 2024. URL <https://arxiv.org/abs/2402.03300>.
 673
- Quan Tang, Chuanjian Liu, Fagui Liu, Jun Jiang, Bowen Zhang, CL Philip Chen, Kai Han, and
 674 Yunhe Wang. Rethinking feature reconstruction via category prototype in semantic segmentation.
675 IEEE Transactions on Image Processing, 2025.
 676
- Qiang Wan, Zilong Huang, Jiachen Lu, Gang Yu, and Li Zhang. Seaformer: Squeeze-enhanced
 677 axial transformer for mobile semantic segmentation. In *The eleventh international conference on
 678 learning representations*, 2023.
- Jian Wang, Chenhui Gou, Qiman Wu, Haocheng Feng, Junyu Han, Errui Ding, and Jingdong Wang.
 679 Rtformer: Efficient design for real-time semantic segmentation with transformer. *Advances in
 680 neural information processing systems*, 35:7423–7436, 2022.
 681
- Zhixiang Wei, Lin Chen, Yi Jin, Xiaoxiao Ma, Tianle Liu, Pengyang Ling, Ben Wang, Huaian Chen,
 682 and Jinjin Zheng. Stronger fewer & superior: Harnessing vision foundation models for domain
 683 generalized semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer
 684 Vision and Pattern Recognition (CVPR)*, pp. 28619–28630, June 2024.
 685
- Qishuai Wen and Chun-Guang Li. Rethinking decoders for transformer-based semantic segmen-
 686 tation: A compression perspective. *Advances in Neural Information Processing Systems*, 37:
 687 49806–49833, 2024.
 688
- Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
 689 former: Simple and efficient design for semantic segmentation with transformers. *Advances in
 690 neural information processing systems*, 34:12077–12090, 2021.
 691
- Jiacong Xu, Zixiang Xiong, and Shankar P. Bhattacharyya. Pidnet: A real-time semantic segmen-
 692 tation network inspired from pid controller, 2022.
 693
- Zhengze Xu, Dongyue Wu, Changqian Yu, Xiangxiang Chu, Nong Sang, and Changxin Gao. Sct-
 694 net: Single-branch cnn with transformer semantic information for real-time segmentation. *arXiv
 695 preprint arXiv:2312.17071*, 2023.
 696
- Guoyu Yang, Yuan Wang, Daming Shi, and Yanzhong Wang. Golden cudgel network for real-time
 697 semantic segmentation, 2025. URL <https://arxiv.org/abs/2503.03325>.
 698
- 700

- 702 Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. Bisenet: Bi-
 703 lateral segmentation network for real-time semantic segmentation. *CoRR*, abs/1808.00897, 2018.
 704 URL <http://arxiv.org/abs/1808.00897>.
- 705 En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yuang Peng, Haoran Wei, Jianjian Sun, Chun-
 706 rui Han, Zheng Ge, Xiangyu Zhang, Dixin Jiang, Jingyu Wang, and Wenbing Tao. Perception
 707 r1: Pioneering perception policy with reinforcement learning. *arXiv preprint arXiv:2504.07954*,
 708 2025.
- 709 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madha-
 710 van, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learn-
 711 ing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 712 2636–2645, 2020.
- 713 Seokju Yun, Seunghye Chae, Dongheon Lee, and Youngmin Ro. Soma: Singular value decomposed
 714 minor components adaptation for domain generalizable representation learning. In *Proceedings of
 715 the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 25602–25612, June 2025.
- 716 Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae, Seungkyu Lee, and
 717 Choong Seon Hong. Faster segment anything: Towards lightweight sam for mobile applications.
 718 *arXiv preprint arXiv:2306.14289*, 2023.
- 719 Xin Zhang and Tan Robby T. Mamba as a bridge: Where vision foundation models meet vision lan-
 720 guage models for domain-generalized semantic segmentation. In *Proceedings of the IEEE/CVF
 721 Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2025.
- 722 Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and
 723 Jose M Alvarez. Understanding the robustness in vision transformers. In *International conference
 724 on machine learning*, pp. 27378–27394. PMLR, 2022a.
- 725 Tianfei Zhou, Wenguan Wang, Ender Konukoglu, and Luc Van Gool. Rethinking semantic segmen-
 726 tation: A prototype view. In *Proceedings of the IEEE/CVF conference on computer vision and
 727 pattern recognition*, pp. 2582–2593, 2022b.
- 728 Xingyi Zhou, Tianwei Yin, Vladlen Koltun, and Philipp Krähenbühl. Global tracking transformers.
 729 In *CVPR*, 2022c.
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 **A THE USE OF LLMs**
757758 We used ChatGPT-4o to polish our manuscript, using the following prompt:
759760 I want you to act as an expert in scientific writing. I will
761 provide you with some paragraphs in English and your task is
762 to improve the spelling, grammar, clarity, conciseness, and
763 overall readability of the text provided, while breaking down long
764 sentences, reducing repetition and increasing logic. You should use
765 artificial intelligence tools, such as natural language processing,
766 rhetorical knowledge, and your expertise in effective scientific
767 writing techniques to reply. Provide the output as a table in
768 a readable mode. The first column is the original sentence, the
769 second column is the sentence after editing, and the third column
770 provides explanation of your edits and reasons. Please edit the
771 following text in a scientific tone:
772773 **B APPENDIX**
774775 **B.1 ABLATION FOR BOUNDARY ACCURACY**
776777 To evaluate boundary prediction accuracy, we tested our model under the GTA5 → Cityscapes set-
778 ting. We compared QPrompt-R1 with the RTSS methods PIDNet, Next-ViT, and the DGSS methods
779 Mask2Former and REIN. The 1px B-mIoU and 3px B-mIoU metrics measure boundary mIoU at
780 1 and 3 pixels from the ground-truth boundaries, respectively. As shown in Table 10, our model
781 performs similarly to Mask2Former and REIN, but without multi-scale features or pixel encoders,
782 instead using a lightweight transposed-conv upsampler. This results in speed improvement with
783 higher FPS. These demonstrate that our approach effectively balances efficiency and boundary ac-
784 curacy, with no substantial loss in segmentation quality.
785786 Table 10: Performance about Boundary accuracy.
787788

Method	1px B-mIoU	3px B-mIoU	mIoU	FPS
PIDNet	25.4	29.3	45.7	46
Next-ViT	17.1	31.6	50.1	57
Mask2Former	43.5	45.8	63.7	11
REIN	44.1	46.5	66.4	10
QPrompt-R1	42.7	45.3	66.1	54

795 **B.2 GRQA APPLY TO GENERAL SEGMENTATION**
796797 Since the GRQA algorithm leverages mutual supervision between queries for optimization, it can
798 be applied to improve query-based models for general semantic segmentation, not just domain-
799 generalized task. We conduct additional in-domain testing on the Citys→Citys setting. As shown
800 in Table 11, we found that GRQA still provides performance improvement in general semantic
801 segmentation.
802803 **B.3 PERFORMANCE COMPARISON WITH PROMPTED SAM MODELS**
804805 We also compared our model with prompt-based methods, specifically FastSAM (Zhang et al.,
806 2023) and Grounded SAM(Ren et al., 2024). Since SAM produces class-agnostic masks, we tested
807 them under the open-vocabulary semantic segmentation setting, where we used text prompts that
808

810
811
812 Table 11: Performance comparison **general semantic segmentation** (Citys→Citys)
813
814
815
816
817
818

Method	Citys→Citys (mIoU)
QPrompt	79.2
+GRQA	80.4
Mask2Former	82.4
+GRQA	83.1

819 include class labels to make the predicted masks class-specific. The experiments were conducted on
 820 Cityscapes, and as shown in Table 12, our model outperforms both FastSAM and Grounded SAM,
 821 achieving significantly higher mIoU and FPS. Additionally, we observed that the speed bottleneck
 822 of FastSAM lies in mask classification, rather than in the "everything" mode used for class-agnostic
 823 mask prediction.

824
825 Table 12: Performance Comparison with Prompted SAM Models.
826
827
828
829
830

Method	mIoU (Citys)	FPS
FastSAM	32.6	< 1
Grounded SAM	36.7	< 1
Ours	66.1	52