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ABSTRACT

Deploying semantic segmentation in driving and robotics requires both real-time
inference and robustness to domain shifts, formalized as Real-Time Domain-
Generalized Semantic Segmentation (RT-DGSS), a challenge not fully addressed.
Existing methods treat real-time (RT) inference and domain generalization (DG)
separately, with DG improving robustness but lacking real-time performance. To
tackle the RT-DGSS problem, we identify that the bottleneck in DG is the pre-
diction head, not the backbone. We introduce QPrompt-R1, a real-time Query-
Prompt architecture based on the powerful VFM backbone. QPrompt-R1 inte-
grates reasoning by injecting learnable queries into the final transformer block,
leveraging contextual learning to enhance segmentation performance under do-
main shifts while maintaining real-time inference. To further optimize reason-
ing without extra inference cost, we introduce a Group Relative Query Alignment
(GRQA) training objective, which strengthens the relationship between queries
and image tokens through group-relative advantage supervision, unlocking the do-
main generalization potential of VFMs. QPrompt-R1 achieves 54 FPS, delivering
strong performance in synthetic-to-real transfer, real-to-real generalization, and
robustness under adverse conditions. GRQA functions as a plug-and-play mod-
ule, improving DGSS methods such as REIN (+1.2) and SoMA (+0.6) without
introducing inference-time overhead.

1 INTRODUCTION

Semantic segmentation in autonomous driving and robotics requires both real-time inference and
robustness to distribution shifts. Real-time segmentation supports safety-critical tasks like obstacle
avoidance in autonomous vehicles (Grigorescu et al., 2020; Holder & Shafique, 2022) and robot
navigation (Guan et al., 2022). Robustness ensures generalization across environments, handling
weather, lighting, and terrain variations (Gao et al., 2024).

Recent research has treated real-time performance and robustness under distribution shifts as sep-
arate optimization goals. Current DGSS approaches (Wei et al., 2024; Yun et al., 2025; Bi et al.,
2024; Zhang & Robby T., 2025) mainly focus on exploit VFMs to improve robustness. In contrast,
RTSS methods focus on designing novel architecture to optimize the accuracy-latency trade-off for
high-speed performance. Despite their advances, DGSS methods face high computational costs, hin-
dering real-time deployment, while RTSS methods sacrifice domain adaptability due to fixed class
embeddings. This trade-off underscores a critical gap in current research: Why do existing methods
fail to effectively combine RT and DGSS?

State-of-the-art DGSS methods (Wei et al., 2024; Yun et al., 2025; Bi et al., 2024; Zhang & Robby T.,
2025) leverage VFMs to enhance domain robustness. However, we identify that the speed bottleneck
lies not in the VFMs backbone, but in the sophisticated segmentation head. Most DGSS models,
based on a query-based head, rely on a complex segmentation head with a pixel encoder and trans-
former decoder, using the VFM only in the backbone as fig. ref1a. Replacing the query-based head
with a simpler MLP head, commonly used in RTSS methods, results in a significant speed boost
(FPS), as shown in Fig 1(c), highlighting the query-based head as the time bottleneck of DGSS. On
the other hand, most RTSS methods (Xu et al., 2022; 2023; Yang et al., 2025) rely on CNN archi-
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Figure 1: (a) Prior DGSS architectures rely on heavy segmentation heads. (b) QPrompt-R1 inte-
grates query prompts at the final VFM layer with train-only GRQA, enabling efficient alignment
and generalization. (c) Speed–accuracy trade-off under GTAV→{Citys, BDD, Map}. QPrompt-R1
achieves an optimal balance, while GRQA remains scalable and further boosts performance.

tectures, which cannot effectively leverage the generalization power of VFMs. Moreover, they lack
the ability for in-context adaptive learning, as they learn a fixed set of class embeddings, while the
query-based approach can fuse with image token context for adaptive learning, effectively mitigating
the effects of domain shifts. Therefore, we need a novel architecture for RT-DGSS problem.

Recent advances in reinforcement learning (RL) have introduced new paradigms for post-training
large models, enabling alignment with complex objectives beyond supervised fine-tuning. In lan-
guage models, DeepSeekMath introduced Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), which replaces the critic with group-relative baselines, pushing the boundaries of mathemat-
ical reasoning. GRPO has also been applied to vision tasks (Pan et al., 2025; Huang et al., 2025; Yu
et al., 2025), enhancing the capabilities of vision models.

To address the RT-DGSS problem, we introduce the QPrompt(Fig. 1b), a lightweight, single-layer
prompting mechanism integrated at the final Transformer layer in VFM, inspired by prior query-
based model and prompt/token tuning for vision models (Jia et al., 2022; Kerssies et al., 2025).
Concretely, QPrompt injects a small set of learnable queries only into the final transformer block, ap-
proximating query-based decoding without a multi-layer decoder stack. QPrompt retains the adap-
tive nature of query-based methods, with minimal computational overhead, adding only K extra
tokens in the final transformer layer. However, a single layer interaction between image tokens and
queries is insufficient for robust performance. Inspired by GRPO (Shao et al., 2024), we propose
Group-Relative Query Alignment (GRQA) to enhance query-prompted domain-generalized rea-
soning. Our key insight is to train all queries within a class-specific group, allowing multiple queries
to acquire segmentation competence and mitigate failures under domain shifts. Unlike Hungarian
matching, which assigns a single query to each ground-truth mask, GRQA leverages group-relative
advantages to enable mutual supervision and jointly optimize all queries. This method is fully super-
vised during training, with all auxiliary components disabled at test time, ensuring no inference-time
overhead. As a plug-and-play module, GRQA can be easily integrated with existing DGSS methods
like REIN and SoMA, providing performance improvements without increasing inference-time cost.

Building upon this, we propose QPrompt-R1, a real-time, domain-generalized semantic segmenta-
tion model (QPrompt) enhanced with Group-Relative Query Alignment (GRQA) optimization for
improved reasoning. QPrompt-R1 achieves a sustained inference speed of 54 FPS, demonstrating
strong synthetic-to-real transfer, real-to-real generalization under adverse conditions. QPrompt-
R1 performance pushes the frontier of real-time systems while narrowing the performance gap to
domain-generalized semantic segmentation (DGSS) methods.

We make the following contributions:

• We highlight Real-Time Domain-Generalized Semantic Segmentation (RT-DGSS) as an
important and practical research challenge, addressing both robustness to domain shifts
and real-time inference efficiency.
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• We propose QPrompt-R1, a real-time and robust semantic segmentation model, along with
a plug-and-play GRQA training strategy designed to enhance the model’s generalization.
QPrompt-R1 achieves a balanced trade-off between performance and efficiency.

• Group-Relative Query Alignment (GRQA) is a generalizable approach that can be com-
bined with existing DGSS methods to push the limit of domain generalization.

2 RELATED WORKS

Domain Generalized Semantic Segmentation. Domain-generalized semantic segmentation
(DGSS) aims to maintain high accuracy under distribution shifts from diverse urban layouts,
weather, and lighting conditions. Early methods used style transfer, feature normalization, and ad-
versarial alignment (e.g., (Zhou et al., 2022c), (Chattopadhyay et al., 2023), (Kim et al., 2022),
(Cho et al., 2023), (Pan et al., 2018)) to learn domain-invariant representations. Recently, vi-
sion foundation models (VFMs) have become powerful backbones for DGSS, with methods like
REIN (Wei et al., 2024), FADA (Bi et al., 2024), and SoMA (Yun et al., 2025) refining VFMs
through parameter-efficient tuning, frequency-domain adaptation, or low-rank adjustments. Other
approaches, such as MFuser (Zhang & Robby T., 2025), combine VFMs with vision–language
models (VLMs) to exploit multimodal priors. Despite these advances, most DGSS methods fo-
cus on robustness, neglecting real-time applicability, which is crucial for safety-critical tasks like
autonomous driving and robotics. We contend that both robustness and efficiency must be jointly
addressed. While previous methods implicitly touch upon these aspects, we establish Real-Time
Domain-Generalized Semantic Segmentation (RT-DGSS) as a distinct research setting to rigorously
evaluate the trade-off between inference speed and domain generalization.

Real-Time Semantic Segmentation. Real-time semantic segmentation is crucial for applications
such as autonomous driving and robotics, where fast, reliable pixel-level prediction is required.
Early work mainly relies on lightweight CNN designs to balance accuracy and efficiency, e.g.,
BiSeNet (Yu et al., 2018) decouples spatial detail and context with a dual-path architecture, and
PIDNet (Xu et al., 2022) introduces a three-branch structure to explicitly model boundary cues.
More recently, transformer/hybrid designs have also achieved strong accuracy–latency trade-offs.
RTFormer (Wang et al., 2022) proposes an efficient dual-resolution transformer with GPU-friendly
attention for real-time segmentation. SeaFormer (Wan et al., 2023) develops mobile-friendly axial-
transformer backbones coupled with lightweight segmentation heads, targeting low-latency deploy-
ment on edge devices. Next-ViT (Li et al., 2022) introduces an efficient deployment-oriented back-
bone that offers a strong latency–accuracy trade-off for dense prediction. Despite these advances,
prior RTSS methods primarily optimize latency and in-domain accuracy, leaving robustness under
domain shifts largely unexplored. In contrast, we target Real-Time Domain Generalized Semantic
Segmentation (RT-DGSS), which preserves efficiency while improving cross-domain generalization.

RL-based Post-training and GRPO. Reinforcement learning (RL)(Ouyang et al., 2022)(Schul-
man et al., 2017)(Guo et al., 2025) has become essential for post-training large models, aligning
them with objectives beyond supervised fine-tuning. In language models, DeepSeekMath intro-
duced Group Relative Policy Optimization (GRPO) (Shao et al., 2024), replacing the critic with
group-relative baselines to enhance mathematical reasoning. Similar approaches were applied to
vision: (Pan et al., 2025) proposed Group Relative Query Optimization (GRQO) for denser query
supervision in vision transformers, (Yu et al., 2025) applied GRPO to multimodal tasks, and Vision-
R1 (Huang et al., 2025) demonstrated improvements in multimodal reasoning. However, group-
relative optimization for dense prediction tasks like semantic segmentation remains underexplored.
We address this gap with Group Relative Query Alignment (GRQA), which adapts GRPO-style
rewards for query–image alignment in segmentation transformers without additional inference cost.

3 METHODOLOGY
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Figure 2: Overview of QPrompt-R1. Left: QPrompt employs a ViT backbone, injecting learnable
queries only in the final layer to capture context, followed by a prediction head. Right: The GRQA
module builds a prototype bank and computes group-relative advantages to optimize queries, en-
hancing domain-generalized reasoning. GRQA is training-only and incurs no inference overhead.
3.1 PRELIMINARIES: GROUP-RELATIVE POLICY OPTIMIZATION (GRPO)

Group-Relative Policy Optimization (GRPO) (Shao et al., 2024) is a simplified policy-optimization
framework that replaces the value function with a group-relative advantage. Given a group of
outputs, each output’s advantage is computed by subtracting the group mean reward: Âi =

ri − 1
G

∑G
j=1 rj The policy is updated by maximizing a PPO-style objective augmented with KL

regularization:

LGRPO = E
[
min

(
ρiÂi, clip(ρi, 1− ϵ, 1 + ϵ)Âi

)]
− β DKL[πθ ∥πref] , (1)

where πθ denotes the policy probability, ρi = πθ/πref the importance ratio between the current
and reference policies, and the KL divergence term encourages conservative updates by keeping the
learned policy close to a reference model. These designs contain two central ideas—group relative
advantages and conservative updates, which form the basis of GRQA objective.

3.2 QPROMPT FOR SEMANTIC SEGMENTATION

Since VFMs are pretrained on large-scale datasets and demonstrate strong generalization (Oquab
et al., 2023; Kirillov et al., 2023), we aim to exploit their inherent strengths with a simple architecture
and training-only strategy rather than heavily relying on complex segmentation heads. Motivated
by query-based heads (Cheng et al., 2022), which allow queries to adaptively interact with image
tokens for in-context learning, we introduce a real-time architecture, QPrompt (as illustrated in Fig.
2), to preserve the advantages of query-based approaches while reducing computational overhead.
Formally, we define the VFM backbone as a sequence of L ≥ 2 Transformer blocks, {B1, . . . ,BL}.
Let xℓ ∈ RN×d denote the token sequence after block ℓ. An input image is first processed by the
backbone through the initial L − 1 blocks, producing the intermediate tokens xL−1. At the final
block, K learnable queries Q ∈ RK×d are concatenated with the (L − 1)-th output to form the
augmented tokens:

x̃L−1 = [Q, xL−1], (2)
which are then fed into the last Transformer block BL(·). The block outputs the refined queries and
updated image tokens:

[QL, xL] = BL(x̃L−1). (3)
Following standard query-based decoding, each refined query QL predicts class logits and generates
per-pixel predictions by attending back to image tokens xL. To recover fine-grained boundaries
from patchified VFM features, QPrompt employs a lightweight upsampling head, consisting of two
learnable transposed-convolution layers. In this way, queries serve as adaptive class embeddings
that directly produce the segmentation map without requiring an additional decoder stack.
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By injecting queries at the last block, QPrompt approximates the role of both pixel encoder and
transformer decoder in conventional query-based methods within a single layer interaction. Previous
query-based model (Cheng et al., 2022) employs a pixel encoder followed by a multi-layer decoder,
with complexity O(M(N + K)2d), M is the number of decoder layers. QPrompt reduces to a
single Transformer block over N +K tokens (O((N +K)2d)), retaining properties of query-based
methods and improve inference speed. Unlike EoMT (Kerssies et al., 2025), whose complex mask
attention and annealing introduce a detrimental train-test process discrepancy, QPrompt is a simpler,
consistent architecture that ensures train-test parity for stable generalization.

3.3 GROUP RELATIVE QUERY ALIGNMENT

While QPrompt leverages query-based methods to reduce computational overhead, a single-layer
interaction between image tokens and queries may be insufficient for robust generalization, particu-
larly for handling domain shifts. To address this, we propose the Group Relative Query Alignment
(GRQA) strategy, which enhances query interactions without increasing inference cost. During
training, Hungarian matching (Cheng et al., 2021) assigns only one query per class, relegating the
others to the background. This results in only one query per class being supervised, preventing the
training of multiple alternative queries to handle domain shift issues (Wen & Li, 2024). To enable
efficient and stable query optimization, we adopt a momentum-updated prototype bank as standard
class anchors widely used in prior segmentation works (Tang et al., 2025; Zhou et al., 2022b).

Prototype Bank. To provide stable, class-specific references for query learning, we maintain a
momentum-updated Prototype Bank, Specifically P = {Pc}Cc=1, where Pc ∈ Rd denotes the pro-
totype for class c. For each training image, we compute a per-image prototype fc by avgpooling
ℓ2-normalized pixel embeddings within the ground-truth region of class c. The Prototype Bank Pc

is updated via exponential moving average:

Pc ← norm
(
αPc + (1− α)fc

)
, (4)

where α controls the update rate. To further reduce the intra-class feature variance, we explicitly
enforce consistency between fc and Pc with

Limg = 1
|Cb|

∑
c∈Cb

∥fc − Pc∥22, (5)

where Cb is the set of classes present in the current batch. This regularization encourages per-image
prototypes to be close to global anchors, stabilizing training and enhancing feature consistency.

Alignment Reward. Directly optimizing image–prototype regularization loss stabilizes training,
but query-based segmentation depends on query–image token alignment and interaction, so opti-
mizing only one does not markedly improve segmentation ability. To enable each query to focus on
the most relevant class-specific information while avoiding query collapse, we define an alignment
reward. Let the refined queries be denoted as QL ∈ RK×d. For simplicity, we assume that QL has
already been normalized, and we denote the resulting queries as Q = norm(QL). Given the mo-
mentum Prototype Bank P = {Pc}Cc=1 (Sec. 3.3), the query–prototype similarity matrix S ∈ RK×C

is computed as:
S = QP⊤, Si,j = ⟨Qi, Pj⟩, (6)

where Si,j represents the cosine similarity between query i and prototype Pj . For each query i, we
select the top-1 class as the most similar class:

ci = argmaxj∈{1,...,C}Si,j , ri = Si,ci . (7)

Here, ci is the index of the most similar class for query i, and ri is the corresponding similarity
score, which serves as our alignment reward.

The inner product S = QP⊤ is used to compute the query–prototype similarity, consistent with the
core principle of query-based methods, where each query’s prediction is based on its similarity to
class prototypes. By using the similarity score ri as the reward, we encourage alignment between
each query and its most relevant class prototype, ensuring that all queries are effectively trained.

Group-Relative Advantage. To foster more efficient query-image tokens interactions, we intro-
duce the Group-relative Advantage approach, inspired by the group-relative advantage concept in

5
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GRPO (Shao et al., 2024). By comparing each query’s performance relative to others in its group,
we ensure that queries effectively fuse with their most relevant class prototypes, improving segmen-
tation accuracy. We partition the K queries into G groups {Gg}Gg=1, where each group Gg consists
of queries that share the same most similar prototype ci, as computed in Sec 3.3.

For each group Gg , we compute a baseline defined by the mean and standard deviation of the rewards
ri for the queries in that group:

µg =
1

|Gg|
∑
i∈Gg

ri, σg =

√√√√ 1

|Gg|
∑
i∈Gg

(ri − µg)2. (8)

Here, µg is the mean reward, and σg is the standard deviation, with ε ensuring numerical stability.
Next, we define the group-relative advantage for each query i ∈ Gg as:

Ai =
ri − µg

σg + ε
. (9)

The advantage Ai measures how much query i’s reward deviates from the group’s baseline. If
Ai > 0, query i outperforms its group, indicating successful fusion with the most relevant prototype
and deserving a reward. If Ai < 0, the query underperforms and should be penalized to encourage
improvement. This group-relative advantage motivates queries exceeding the baseline to fuse with
the most relevant prototypes and enhance their reasoning ability.

GRPO-style Clipping with Reference KL Stabilization. While group-relative advantages provide
dense supervision, they can exhibit high variance and occasionally induce overly large updates. To
keep query updates conservative and stable, we adopt a GRPO/PPO-style clipped objective together
with a KL regularization term to an EMA reference model. We maintain a reference model θref ,
which is an exponential moving average (EMA) of the current model parameters θ. This reference
model serves as a stable guide for the current model by providing a reference distribution for com-
parison. Given the query–prototype similarity matrices Sθ = QP⊤ and Sref = QrefP

⊤, we convert
them into per-query class distributions via softmax:

πθ(i, j) =
exp(Sθ[i, j])∑
j′ exp(Sθ[i, j′])

, πref(i, j) =
exp(Sref [i, j])∑
j′ exp(Sref [i, j′])

. (10)

For each query i, we define the importance ratio as:

ρi =
πθ(i, ci)

πref(i, ci)
. (11)

Following the principles of Proximal Policy Optimization (PPO) and GRPO, we define our group-
relative clipped objective as:

LGR = − 1

K

G∑
g=1

∑
i∈Gg

min (ρiAi, clip(ρi, 1− ϵ, 1 + ϵ)Ai) , (12)

where the clipping function limits the importance ratio ρi from deviating excessively from 1, thereby
preventing unstable updates. This mechanism ensures that the model’s alignment improves gradu-
ally, promoting stable learning. Additionally, we regularize the current model’s distribution with
respect to the reference distribution using forward KL divergence:

DKL[πθ||πref ] =
1

K

K∑
i=1

[
πref(i, ci)

πθ(i, ci)
− log

(
πref(i, ci)

πθ(i, ci)

)
− 1

]
. (13)

This KL divergence term prevents abrupt shifts in the model’s behavior while allowing for gradual
and stable improvements. Finally, the overall GRQA alignment loss is defined as:

LGRQA = − 1

K

G∑
g=1

∑
i∈Gg

min (ρiAi, clip(ρi, 1− ϵ, 1 + ϵ)Ai) + βDKL[πθ||πref ], (14)

where β > 0 is a small constant. The GRQA loss captures the alignment between queries and
prototypes, while ensuring stable training through the regularization and clipping mechanisms.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Overall training objective. Finally, the total training loss combines the standard segmentation loss,
the prototype alignment loss, and the GRQA alignment loss:

Ltotal = Lseg + λimg Limg + λgrqa LGRQA, (15)
where Lseg is the supervised segmentation loss, Limg aligns per-image prototypes with the bank, and
LGRQA is the group-relative alignment objective. λimg and λgrqa are trade-off weights.

4 EXPERIMENTS

Datasets. We evaluate QPrompt-R1 on real and synthetic scene datasets, reporting segmentation
accuracy and efficiency. The Cityscapes (Citys) dataset (Cordts et al., 2016) includes 2,975 training
and 500 validation images at 2048 × 1024. We also use BDD100K (BDD) (Yu et al., 2020) and
Mapillary (Map) (Neuhold et al., 2017) as out-of-domain benchmarks, with 1,000 and 2,000 valida-
tion images at 1280× 720 and 1902× 1080, respectively. We use GTAV (Richter et al., 2016) with
24,966 labeled frames from an open-world simulator for synthetic data,. We also evaluate on four
ACDC splits (Sakaridis et al., 2021) for adverse conditions: Fog, Night, Rain, and Snow.

Evaluation setting. We use three evaluation protocols: (i) GTAV→Real: trained on GTAV,
tested on Citys, BDD, and Map; (ii) Real→Real: trained on Citys, tested on BDD and Map (iii)
Real→ACDC: trained on Citys, evaluated on ACDC’s adverse-condition splits. (iv) Clean→ Cor-
ruptions: trained on Citys, evaluated on Cityscapes-C. Segmentation accuracy is measured by
mIoU, and efficiency by FPS. Inference speed is reported on a single NVIDIA RTX 4090 GPU
with a batch size of 1. Inference is conducted at a resolution of 512× 1024, with real-time baselines
evaluated at their official resolutions.

Implementation details. We use DINOv2 (Oquab et al., 2023) as the ViT backbone. To obtain
fine-grained details in predictions, we use a two-layer transposed-convolution module. Each layer
upsamples the logits by a factor of×2 producing an overall ×4 upsampling. During training, Lseg is
used for the first two-thirds of epochs to train a base model, which is then initialized for the GRQA
phase. In the final third, GRQA training is performed, with EMA updating the reference model.
Images are cropped into 512× 512 patches using a sliding window.

Baselines. We compare against both domain generalization and real-time segmentation methods.
For DG baselines, we include Mask2Former (Cheng et al., 2022) with DinoV2 (Oquab et al., 2023),
REIN (Wei et al., 2024), FADA (Bi et al., 2024), SoMA (Yun et al., 2025), and MFuser (Zhang &
Robby T., 2025), following their reported training settings and input resolutions. For real-time seg-
mentation, we evaluate Next-ViT (Li et al., 2022), RTFormer (Wang et al., 2022), SeaFormer (Wan
et al., 2023), PIDNet-L (Xu et al., 2022), SCTNet-B-Seg100 (Xu et al., 2023), GCNet-L (Yang
et al., 2025), and EoMT (Kerssies et al., 2025), representing strong and efficient variants. For (iv)
Clean→ Corruptions setting, we compare with SegFormer (Xie et al., 2021), FAN (Zhou et al.,
2022a), TAPADL (Guo et al., 2023) and REIN. All baselines are tested at their recommended infer-
ence resolutions for fair comparison.
4.1 QUANTITATIVE RESULTS

As shown in Table 1, 2 our method achieves the best balance between accuracy and efficiency, con-
sistently delivering real-time inference at 54 FPS while maintaining strong segmentation accuracy.

GTAV source (GTAV → Real). On GTAV-to-real adaptation, our method reaches 64.1 mIoU,
surpassing the best real-time baseline (EoMT) by 3.1 mIoU. Its accuracy is comparable to advanced
DGSS methods such as REIN, yet our model runs over ×5 faster, ensuring real-time applicability.

Cityscapes source (Real → Real). Across real-world datasets, our method achieves 67.8 mIoU,
exceeding the best real-time baseline by 1.7 mIoU. Performance is competitive with strong DGSS
models such as M2F, while maintaining real-time speed for a superior efficiency–accuracy trade-off.

Cityscapes source (Real → ACDC). Under adverse weather conditions, ours attains 69.4 mIoU,
improving over EoMT by 3.0 mIoU and showing greater robustness in challenging scenarios. Ac-
curacy approaches leading DGSS methods, while running faster for practical deployment.

Cityscapes source (Clean→ Corruptions). Across all corruptions, our method achieves the best
robustness with 69.8 mIoU, showing clear gains especially under Noise and Blur. It also runs at 54
FPS, offering strong resilience while remaining suitable for real-time use.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison between domain generalization semantic segmentation (DGSS) and real-time
semantic segmentation (RTSS) methods on GTAV→Real, Real→Real, and Real→ACDC bench-
marks. ”M2F” denotes Mask2Former, ”Seaf” denotes SeaFormer, ”Next” denotes Next-ViT, ”RTF”
denotes RTFormer; ”*” indicates our re-implementation using official source code with default set-
tings. All results are reported in mIoU (%) and inference speed in FPS.

Method Refer GTAV → Real Real → Real Real → ACDC FPS
Citys BDD Map Avg BDD Map Avg Fog Night Rain Snow Avg

DGSS

M2F∗ CVPR22 63.7 57.4 64.2 61.7 63.7 70.4 67.1 78.4 51.9 70.5 68.9 67.4 11
REIN CVPR24 66.4 60.4 66.1 64.3 65.0 72.3 68.7 79.5 55.9 72.5 70.6 69.6 10
FADA NeurIPS24 68.2 61.9 68.1 66.1 65.1 75.8 70.5 80.2 57.4 75.0 73.5 71.5 8
SoMA CVPR25 71.8 61.3 71.6 68.2 67.0 76.5 71.8 74.7 61.7 77.8 77.3 74.4 10
MFuser CVPR25 70.2 63.1 71.3 68.2 65.8 77.9 71.8 82.3 57.9 78.6 74.9 73.5 3

RTSS

Next∗ Arxiv22 50.1 30.4 40.2 40.2 52.8 60.9 56.9 71.1 20.1 54.3 49.2 51.1 57
RTF∗ NeurIPS22 45.3 26.2 38.6 36.7 43.2 56.3 49.8 69.4 16.4 49.1 43.3 44.6 94
Seaf∗ ICLR23 46.9 27.4 33.1 35.8 40.4 51.7 46.1 65.8 17.2 47.7 40.5 42.8 70

PIDNet∗ CVPR23 45.7 28.1 35.9 36.6 43.4 54.5 48.9 66.9 15.2 48.7 48.1 44.7 46
SCTNet∗ AAAI24 43.3 23.7 39.0 35.3 34.1 51.1 42.6 59.6 16.0 44.8 37.5 39.5 131
GCNet∗ CVPR25 25.7 20.9 26.9 24.5 38.0 50.8 44.4 63.0 11.1 42.4 33.1 37.4 53
EoMT∗ CVPR25 62.1 57.2 63.7 61.0 62.6 69.7 66.1 77.8 52.7 69.7 65.4 66.4 52

Ours - 66.1 59.0 67.1 64.1 63.8 71.7 67.8 79.5 53.1 74.2 70.6 69.4 54

Table 2: Results on Cityscapes → Cityscapes-C (level-5) datasets. In Cityscapes-C, level 5 cor-
responds to the most severe corruption intensity. ”*” indicates our re-implementation using official
source code with default setting.

Method
Cityscapes → Cityscapes-C (level-5)

Avg FPSBlur Noise Digital Weather
Motion Defoc Glass Gauss Gauss Impul Shot Speck Bright Contr Satur JPEG Snow Spatt Fog Frost

SegFormer∗ 57.6 54.5 46.5 48.0 17.6 21.1 22.0 56.5 76.6 65.6 72.5 40.8 36.8 57.4 71.6 35.2 48.8 5
FAN∗ 59.4 55.1 56.3 52.5 19.3 26.3 30.1 56.1 77.4 68.0 74.3 45.7 47.9 65.6 77.3 36.5 53.0 26

TAPADL∗ 60.1 55.5 51.4 51.2 22.3 27.1 32.4 57.9 80.6 67.3 77.9 49.2 48.7 69.0 76.9 37.3 54.1 23
REIN 68.5 71.7 69.7 68.7 6.2 23.0 13.1 63.7 81.5 78.9 80.6 68.8 63.8 73.6 79.5 47.9 60.0 10
Ours 68.7 74.5 71.1 75.0 60.4 60.9 66.7 75.1 79.4 74.8 78.4 70.1 65.5 72.5 76.0 48.0 69.8 54

4.2 QUALITATIVE RESULTS

Segmentation Results. Exemplar segmentation results are presented in Fig. 3, comparing the per-
formance across the GTAV → Citys, BDD, and Map settings. Our method achieves better pixel-wise
predictions than real-time methods, including PIDNet, GCNet, SCTNet , and EoMT.
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Figure 5: GRQA boosts query
activation for segmentation.

Impact of GRQA on Queries. We train on GTAV and compare
two setups: SFT-base (without GRQA post-training) and GRQA
post-training. First, we compute the average similarity between
queries and class embeddings on Citys, BDD, and Map test sets.
As shown in Fig. 4, GRQA increases the similarity between each
query and its most relevant class embedding, enhancing query uti-
lization. We also examine query activation rates, defined as queries
not assigned to the background class. Across the dataset, a higher
number of activated queries indicates that more queries participate
in segmentation, reflecting higher query utilization. As shown in
Fig. 5, activated queries increased by 45%, 48%, and 52% under GRQA, demonstrating improved
query utilization and stronger segmentation of relevant objects.

4.3 SCALABILITY OF GRQA Table 6: Qprompt with different re-
wards (trained on GTAV).

Reward Trained on GTAV

Citys BDD Map Avg

w/o reward 63.6 57.7 65.6 62.3
w/ DINO-R1 64.5 58.2 66.1 62.9
w/ GRQA 66.1 59.0 67.1 64.1

Plug-and-Play Gains for State-of-the-Art DGSS. To
further assess GRQA versatility, we apply GRQA
as a plug-and-play training strategy to two state-of-
the-art DGSS methods, REIN and SoMA, under the
GTAV→Real setting. As shown in Table 3, GRQA en-
hances their average performance by +1.2 and +0.6, re-
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Figure 3: Exemplar segmentation results on GTAV→Citys, BDD, and Map. Compared with real-
time baselines, including PIDNet, GCNet, SCTNet, and EoMT, our method delivers noticeably
more accurate pixel-wise predictions, highlighting its stronger cross-domain generalization ability.

SF
T

GR
QA

Figure 4: Query–prototype correlations of the Base (SFT) and GRQA models, showing GRQA
enhances query–feature fusion. For clarity, S ∈ RK×C is split into five blocks.

spectively, without introducing any inference-time overhead. These results indicate that GRQA is
a general and effective enhancement for DGSS frameworks, extending its benefits beyond our own
model.

4.4 ABLATION STUDIES

Table 7: Ablation for Performance and Efficiency.
Evaluated on setting GTAV to Citys

Method mIoU FPS Param(Infer)

Mask2Former 63.7 11 325 M

→ w/o Pixel Dec 62.9 25 320 M
→ w/o muti-scale 62.8 27 320 M
→ w/o Transformer Dec 61.3 55 312 M
→ QPrompt 63.6 54 315 M
→ QPrompt-R1 66.1 54 315 M

Ablation Study on Performance and Effi-
ciency Trade-offs. We perform an ablation
study starting with Mask2Former and pro-
gressively removing components, evaluated on
GTA5→ Cityscapes. In Table 7, Mask2Former
performs well but has low FPS (11). Remov-
ing Pixel Decoder boosts FPS but slightly re-
duces performance. Removing multi-scale has
minimal impact on performance and increas-
ing speed. Replacing the Transformer Decoder
with an MLP-Head drops performance but
greatly improves FPS. QPrompt restores performance, maintains high FPS, offering performance-
efficiency balance. These results show heavy decoders are a bottleneck, and QPrompt boosts effi-
ciency without compromising performance.

Table 8: Performance of QPrompt-R1
on different VFM backbones.

Backbone Method Citys ∆

DINOv2-L
MLP-Head 61.3
+Qprompt 63.6 +2.3
+GRQA 66.1 +2.5

CLIP-L
MLP-Head 50.4
+Qprompt 51.7 +1.3
+GRQA 53.2 +1.5

SAM-H
MLP-Head 54.7
+Qprompt 55.8 +1.1
+GRQA 57.2 +1.7

Variants of QPrompt-R1. We conduct ablation studies
under the GTAV→Citys+BDD+Map setting. As shown
in Table 4, the baseline (MLP-Head) achieves an aver-
age score of 59.9. Introducing QPrompt raises the perfor-
mance to 62.3, yielding a clear gain of +2.4 and confirming
the advantage of our query prompting design over a simple
MLP head. Building upon this, image alignment brings a
modest improvement of +0.3. The reward mechanism pro-
vides a larger boost of +1.1, underscoring its effectiveness
in guiding query optimization. Finally, adding KL diver-
gence not only stabilizes training but also brings further
gains, achieving the best performance of 64.1. These re-
sults highlight the cumulative benefits of GRQA, where
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Table 3: Performance of GRQA
transferred to SOTA DGSS.

Method Trained on GTAV

Citys BDD Map Avg ∆

REIN 66.4 60.4 66.1 64.3 –
+GRQA 67.4 61.0 68.1 65.5 +1.2
SoMA 71.8 61.3 71.6 68.2 –
+GRQA 72.0 62.5 71.8 68.8 +0.6

Table 4: Roles of individual
parts in QPrompt-R1.

Method Trained on GTAV

Citys BDD Map Avg ∆

MLP-Head 61.3 55.7 62.7 59.9 -
QPrompt 63.6 57.7 65.6 62.3 +2.4

+img align 63.9 58.2 65.8 62.6 +0.3
+Reward 65.8 58.6 66.8 63.7 +1.1

+KL 66.1 59.0 67.1 64.1 +0.4

Table 5: Hyperparameter abla-
tion for GRQA.

ϵ β Citys λimg λgrqa Citys

0.05 0.001 65.6 1 1 64.0
0.1 0.001 66.1 5 1 64.5

0.15 0.001 64.7 10 1 65.7
0.1 0.01 65.5 10 5 66.1
0.1 0.0001 65.9 10 10 65.8

each component contributes positively, and the full configuration delivers the strongest and most
stable generalization.

Hyperparameter Ablation for GRQA. We conduct an ablation study to analyze the impact of hy-
perparameters on GRQA, as shown in Table 5. On the Citys dataset, the optimal configuration is
ϵ = 0.1 and β = 0.001, yielding 66.1 mIoU. The results show that ϵ has minimal impact, while β
strongly affects performance, highlighting the importance of KL divergence regularization for stabi-
lizing training and ensuring robust query alignment. Additionally, the best performance is achieved
with λimg = 10 and λgrqa = 5. Increasing λimg consistently improves performance, confirming its
key role in stabilizing training. In contrast, λgrqa requires careful tuning, as extreme values cause
degradation. This indicates that GRQA is more sensitive to λgrqa than λimg, underscoring the need
for balanced integration of the two loss terms.

Ablation for different rewards. To further assess the impact of different rewards on our method,
we also validated the DINO-R1 (Pan et al., 2025) reward formulation on QPrompt. Since DINO-R1
is designed for object detection, we made necessary adaptations to the method while maintaining the
core reward structure as outlined in the original work. Table 6 results show that applying DINO-R1’s
reward in QPrompt does lead to some improvements. Our proposed GRQA reward still outperforms
DINO-R1 in terms of performance.

Qprompt-R1 on various VFMs. To investigate whether our method generalizes across different
architectures, we evaluate both Qprompt and GRQA under the GTAV→Citys setting on diverse
backbones, including DINOv2-L, CLIP-L(Radford et al., 2021), and SAM-HKirillov et al. (2023).
As shown in Table 8, both variants consistently improve over the standard MLP-Head baseline.
Specifically, Qprompt yields steady gains of +2.3, +1.3, and +1.1, while GRQA further enhances
performance with additional improvements of +2.5, +1.5, and +1.7. These results highlight that our
approach strengthens DGSS models from both architectural and training perspectives, delivering
robust generalization across heterogeneous backbones.

Table 9: Performance of QPrompt-R1
on different VFM backbones.

Method mIoU FPS Total Param

Next-ViT 50.1 57 62M
Mask2Former 63.7 11 325M
REIN 66.4 10 328M
FADA 68.2 8 338M
QPrompt 63.6 54 315M
QPrompt-R1 66.1 54 315M

Parameter, Performance and Speed. We demonstrate
the efficiency and speed benefits of our solution in Ta-
ble 9. QPrompt achieves a balance between domain gen-
eralization, inference speed, and parameter efficiency. It
reduces parameters and improves speed while maintain-
ing competitive performance compared to models like
Mask2Former, REIN, and FADA. For QPrompt-R1, de-
spite requiring an additional reference model during train-
ing, its inference-time parameters remain the same as
QPrompt (315M), ensuring efficient speed and count.

5 CONCLUSION

We introduced QPrompt-R1, a method that simultaneously achieves real-time efficiency and ro-
bustness to distribution shifts. Through QPrompt, we inject learnable queries only at the final
transformer block, enabling efficient query–image alignment with minimal overhead. Furthermore,
our Group-Relative Query Alignment (GRQA) enhances cross-domain robustness via cooperative
query supervision—adding no inference cost and integrating seamlessly with existing DGSS mod-
els. QPrompt-R1 achieves 54 FPS while maintaining strong cross-domain performance, establishing
a new speed–accuracy frontier for semantic segmentation in autonomous driving and robotics.
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ETHICS STATEMENT

All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
interventions with human participants or personally identifiable information. We use only publicly
available datasets under their original licenses and follow the terms of use. Potential risks and our
mitigations are summarized below:

• Privacy & Security. We do not collect or release any personal data. When showing quali-
tative examples, all images/videos are from public datasets; any sensitive content is filtered.

• Bias & Fairness. We report results on multiple benchmarks and provide detailed settings to
facilitate external auditing. We acknowledge possible dataset biases and encourage follow-
up evaluation on broader demographics and domains.

• Dual Use / Misuse. The method could be misused to enable undesired large-scale labeling
or surveillance. To reduce misuse, we release only research artifacts (code/configs) and
exclude any tools for scraping or re-identifying individuals.

• Legal Compliance. We comply with licenses of all third-party assets (code, models, and
datasets) and cite their sources. Any additional third-party terms are respected.

• Research Integrity. We document preprocessing, training recipes, and evaluation proto-
cols; random seeds and hyperparameters are provided to enable reproducibility.

Where applicable, institutional review information is withheld for double-blind review and can be
provided after acceptance.

REPRODUCIBILITY STATEMENT

We include training and evaluation details in the main paper and Appendix. Concretely: (i) all
hyperparameters, optimization settings, and compute budgets; (ii) full data preprocessing and splits;
(iii) code structure with scripts to reproduce the main tables and figures; (iv) checkpoints and logs
for the primary models.
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A THE USE OF LLMS

We used ChatGPT-4o to polish our manuscript, using the following prompt:

I want you to act as an expert in scientific writing. I will
provide you with some paragraphs in English and your task is
to improve the spelling, grammar, clarity, conciseness, and
overall readability of the text provided, while breaking down long
sentences, reducing repetition and increasing logic. You should use
artificial intelligence tools, such as natural language processing,
rhetorical knowledge, and your expertise in effective scientific
writing techniques to reply. Provide the output as a table in
a readable mode. The first column is the original sentence, the
second column is the sentence after editing, and the third column
provides explanation of your edits and reasons. Please edit the
following text in a scientific tone:

B APPENDIX

B.1 ABLATION FOR BOUNDARY ACCURACY

To evaluate boundary prediction accuracy, we tested our model under the GTA5→ Cityscapes set-
ting. We compared QPrompt-R1 with the RTSS methods PIDNet, Next-ViT, and the DGSS methods
Mask2Former and REIN. .The 1px B-mIoU and 3px B-mIoU metrics measure boundary mIoU at
1 and 3 pixels from the ground-truth boundaries, respectively. As shown in Table 10, our model
performs similarly to Mask2Former and REIN, but without multi-scale features or pixel encoders,
instead using a lightweight transposed-conv upsampler. This results in speed improvement with
higher FPS. These demonstrate that our approach effectively balances efficiency and boundary ac-
curacy, with no substantial loss in segmentation quality.

Table 10: Performance about Boundary accuracy.

Method 1px B-mIoU 3px B-mIoU mIoU FPS

PIDNet 25.4 29.3 45.7 46
Next-ViT 17.1 31.6 50.1 57
Mask2Former 43.5 45.8 63.7 11
REIN 44.1 46.5 66.4 10
QPrompt-R1 42.7 45.3 66.1 54

B.2 GRQA APPLY TO GENERAL SEGMENTATION

Since the GRQA algorithm leverages mutual supervision between queries for optimization, it can
be applied to improve query-based models for general semantic segmentation, not just domain-
generalized task. We conduct additional in-domain testing on the Citys→Citys setting. As shown
in Table 11, we found that GRQA still provides performance improvement in general semantic
segmentation.

B.3 PERFORMANCE COMPARISON WITH PROMPTED SAM MODELS

We also compared our model with prompt-based methods, specifically FastSAM (Zhang et al.,
2023) and Grounded SAM(Ren et al., 2024). Since SAM produces class-agnostic masks, we tested
them under the open-vocabulary semantic segmentation setting, where we used text prompts that
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Table 11: Performance comparison general semantic segmentation (Citys→Citys)

Method Citys→Citys (mIoU)

QPrompt 79.2
+GRQA 80.4

Mask2Former 82.4
+GRQA 83.1

include class labels to make the predicted masks class-specific. The experiments were conducted on
Cityscapes, and as shown in Table 12, our model outperforms both FastSAM and Grounded SAM,
achieving significantly higher mIoU and FPS. Additionally, we observed that the speed bottleneck
of FastSAM lies in mask classification, rather than in the ”everything” mode used for class-agnostic
mask prediction.

Table 12: Performance Comparison with Prompted SAM Models.

Method mIoU (Citys) FPS

FastSAM 32.6 < 1
Grounded SAM 36.7 < 1
Ours 66.1 52
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