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Abstract

Synthetic data has been proposed as a solu-001
tion to address the issue of high-quality data002
scarcity in the training of large language mod-003
els (LLMs). Studies have shown that synthetic004
data can effectively improve the performance005
of LLMs on downstream benchmarks. How-006
ever, despite its potential benefits, our analy-007
sis suggests that there may be inherent flaws008
in synthetic data. The uniform format of syn-009
thetic data can lead to pattern overfitting and010
cause significant shifts in the output distribu-011
tion, thereby reducing the model’s instruction-012
following capabilities. Our work delves into013
these specific flaws associated with question-014
answer (Q-A) pairs, a prevalent type of syn-015
thetic data, and presents a method based on016
unlearning techniques to mitigate these flaws.017
The empirical results demonstrate the effective-018
ness of our approach, which can reverse the019
instruction-following issues caused by pattern020
overfitting without compromising performance021
on benchmarks at relatively low cost. Our work022
has yielded key insights into the effective use of023
synthetic data, aiming to promote more robust024
and efficient LLM training.025

1 Introduction026

The remarkable success of large language mod-027

els (LLMs) (Zhao et al., 2023) largely depends on028

the quality and diversity of the datasets used for029

training. However, acquiring large amounts of high-030

quality data can be challenging due to data scarcity,031

privacy concerns, and high costs (Liu et al., 2024a).032

Synthetic data has emerged as a promising solution033

to address these challenges (Nikolenko, 2019).034

Synthetic data, generated through algorithms or035

generative models rather than collected from real-036

world events, can be produced at scale and sup-037

plement areas where real-world data is scarce or038

difficult to obtain, such as in mathematical or rea-039

soning tasks. Numerous studies have demonstrated040

the efficacy of synthetic data in improving model041

performance (Microsoft, 2024; Mukherjee et al., 042

2023). Among the various methods of generating 043

synthetic data, a common approach is the creation 044

of synthetic question-answer (Q-A) pairs (NVIDIA, 045

2024; Maini et al., 2024b; Wei et al., 2023), as Q-A 046

pairs exhibit diversity and richness, encompass- 047

ing a range of question types from simple factual 048

queries to complex reasoning problems. Another 049

prevalent method is to generate data closely mim- 050

icking downstream tasks (Luo et al., 2023; Yu et al., 051

2023a). These methods have achieved excellent 052

performance on both general-purpose and special- 053

ized benchmarks for LLMs. 054

Despite numerous experiments demonstrating 055

that synthetic data significantly enhances the capa- 056

bilities of pre-trained models on downstream bench- 057

marks, in this work, we observe a notable decline 058

in the instruction-following capabilities of models 059

after being pre-trained on synthetic data, specifi- 060

cally on synthetic Q-A pairs generated by GPT-4, 061

and subsequent supervised fine-tuning (SFT). This 062

observation prompts a deeper investigation into the 063

underlying causes. While existing studies have 064

extensively covered the applications of synthetic 065

data, there is a notable lack of studies examining 066

its impact on the instruction-following capabili- 067

ties of LLMs. Furthermore, studies addressing the 068

flaws in synthetic data have primarily focused on 069

historical models or those with capabilities simi- 070

lar to currently trained models (Shumailov et al., 071

2024; Seddik et al., 2024; Alemohammad et al., 072

2023), leaving a gap in exploring the deficiencies 073

of synthetic data generated by advanced models 074

like GPT-4. 075

Our work focuses on exploring the inherent flaws 076

of synthetic data and its impact on LLMs. We find 077

that the token distribution of synthetic data signif- 078

icantly differs from that of the real pre-training 079

data, with synthetic data patterns being relatively 080

uniform. Consequently, models trained on such 081

synthetic data are likely to experience pattern over- 082
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Figure 1: The overall pipeline of our study.

fitting, leading to substantial shifts in their output083

distributions and resulting in inferior performance.084

Based on these observations, we propose a novel085

strategy that leverages unlearning techniques to086

reduce the impact of misleading synthetic data pat-087

terns while preserving the LLM’s foundational abil-088

ities on benchmarks and restoring its instruction-089

following capabilities. This strategy employs a090

lower-bounded forgetting loss, which is control-091

lable and superior to traditional unlearning ap-092

proaches. Our experimental results demonstrate093

that this strategy effectively mitigates the adverse094

impacts of synthetic data, balancing the LLM’s per-095

formance on benchmarks with its ability to follow096

instructions at significantly low training costs. Our097

contributions are summarized as follows:098

• Identification of Synthetic Data Limitations:099

We provide a comprehensive analysis of the inher-100

ent limitations in synthetic data, specifically syn-101

thetic Q-A pairs, focusing on data distribution dif-102

ferences and pattern overfitting observed in models.103

• Unlearn Method to Address Synthetic Data104

Issues: We propose a novel unlearning strategy105

that effectively mitigates the adverse effects of syn-106

thetic data, thereby preserving the LLM’s founda-107

tional abilities on benchmarks while reversing its108

instruction-following capabilities at significantly109

low training costs.110

2 Related Work111

Applications and Limitations of Synthetic Data.112

Studies have shown that synthetic data has113

achieved remarkable results on downstream bench-114

marks (Luo et al., 2023; Microsoft, 2024; Mukher- 115

jee et al., 2023; Wei et al., 2023), addressing issues 116

such as data scarcity and privacy (Liu et al., 2024a; 117

Villalobos et al., 2022; Maini et al., 2024b). For in- 118

stance, Microsoft’s Phi-3 (Microsoft, 2024) model, 119

trained on heavily filtered publicly available web 120

data and synthetic data, has outperformed much 121

larger models on both academic benchmarks and 122

internal testing. MagicoderS-CL-7B (Wei et al., 123

2023), a 7B parameter code model trained on syn- 124

thetic code problems and answers generated by 125

LLMs, even surpasses the prominent ChatGPT on 126

many coding benchmarks. However, synthetic data 127

is not without flaws. Several critical issues have 128

been identified, particularly concerning model per- 129

formance and data distribution integrity. One sig- 130

nificant concern is the phenomenon of model col- 131

lapse (Shumailov et al., 2024; Seddik et al., 2024), 132

where training on model-generated data leads to 133

the disappearance of the tails of the original con- 134

tent distribution. Furthermore, the recursive use 135

of synthetic data in training generative models can 136

amplify artifacts and biases, ultimately degrading 137

model performance, as demonstrated by the con- 138

cept of Model Autophagy Disorder (MAD) (Ale- 139

mohammad et al., 2023). Task-specific synthetic 140

data often lacks diversity and exhibits regional bi- 141

ases (Yu et al., 2023b), with effectiveness varying 142

by task nature (Li et al., 2023). 143

LLM Unlearning. Unlearning in LLMs involves 144

the elimination of specific undesired targets while 145

preserving overall performance (Liu et al., 2024b). 146

Strategies vary from specific data points to higher- 147
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Position Embedding Hidden Size FFN Size Heads Layers Context Length

RoPE (Su et al., 2023) 2, 048 5, 504 32 32 4, 096

Table 1: The architecture details of BaseLM.

level concepts such as harmful language or spe-148

cific knowledge domains (Jang et al., 2022; Lu149

et al., 2022; Eldan and Russinovich, 2023). Effec-150

tive unlearning requires robustness and generaliza-151

tion (Patil et al., 2024; Maini et al., 2024a; Shi et al.,152

2023) with efficient handling of computational153

costs (Pawelczyk et al., 2023). Existing unlearning154

methods leverage various fine-tuning techniques,155

including gradient ascent, parameter-efficient fine-156

tuning, and KL-divergence-based methods, each157

with unique strengths and limitations regarding run-158

time and memory costs (Yao et al., 2024; Jang159

et al., 2022; Eldan and Russinovich, 2023). While160

unlearning methods have been utilized to manage161

harmful data and reduce hallucinations in models,162

their application to synthetic data remains under-163

explored. Our research aims to fill this gap by ap-164

plying unlearning strategies to mitigate the adverse165

effects of synthetic data on LLMs.166

3 Experimental Setup167

In this section, we outline the experimental design,168

including dataset selection, model configurations,169

and evaluation benchmarks.170

Datasets. We utilize five distinct datasets:171

• NonSynth data: A comprehensive non-172

synthetic dataset collected from diverse173

sources (Soldaini et al., 2024; Penedo et al.,174

2023; Soboleva et al., 2023), including webpages,175

books, research papers, and codebases.176

• SynthQA data: Synthetic Q-A pairs generated177

by GPT-4, based on a variety of sources includ-178

ing webpages, books, and other textual materials,179

covering topics such as mathematics, coding, and180

general knowledge.181

• MixedIns data: Instructions consisting of gen-182

eral knowledge, mathematics, and coding, primar-183

ily generated by GPT-4 and human contributors.184

• U33B data (Yuan et al., 2023): Aggregated185

synthetic dataset of diverse reasoning paths gener-186

ated from GSM8K dataset by multiple LLMs to187

enhance mathematical reasoning capabilities.188

• OpenHermes-2.5 data (Teknium, 2023): An189

extension of the OpenHermes-1 dataset, primarily190

consisting of synthetically generated instruction191

and chat samples.192

Models. We use the following models in our exper- 193

iments: 194

• BaseLM: A Llama-like (Touvron et al., 2023) 195

2B model trained from scratch. We set the learning 196

rate to 1.0× 10−4 and adopt a cosine learning rate 197

schedule, training on a total of 1 trillion tokens. The 198

details of hyperparameters are listed in Table 1. 199

• BaseLM-Chat (MixedIns/OpenHermes-2.5): 200

Chat models obtained by performing SFT on 201

BaseLM using MixedIns or OpenHermes-2.5 data. 202

We set the learning rate to 2.0× 10−5, the number 203

of epochs to 2, the context length to 4, 096, and the 204

batch size to 64. 205

Benchmarks. We evaluate the capabilities of mod- 206

els using the following benchmarks: 207

• Bilingual Capabilities: Evaluated using the 208

MMLU (Hendrycks et al., 2021), CMMLU (Li 209

et al., 2024) and C-Eval (Huang et al., 2023) bench- 210

marks to assess the models’ proficiency in handling 211

both English and Chinese tasks. 212

• Coding Proficiency: Assessed with the Hu- 213

manEval (Chen et al., 2021) and MBPP (Austin 214

et al., 2021) benchmarks, which measure the mod- 215

els’ ability to generate correct and efficient code 216

snippets based on given problems. 217

• Mathematical Reasoning: Measured using the 218

GSM8K (Cobbe et al., 2021) benchmark, which 219

tests the models’ ability to solve complex mathe- 220

matical problems. 221

• Instruction-Following Capability: Analyzed 222

through FollowBench (Jiang et al., 2024) and MT- 223

bench (Zheng et al., 2023), evaluating the models’ 224

ability to understand and follow complex instruc- 225

tions. 226

4 Defect Analysis of Synthetic Data 227

In this section, we systematically analyze the flaws 228

of synthetic data, specifically synthetic Q-A pairs, 229

by examining their data distribution differences and 230

pattern overfitting observed in LLMs. This analysis 231

is crucial to understand how synthetic data impacts 232

the LLMs’ foundational abilities on benchmarks 233

and instruction-following capabilities. 234
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Figure 2: t-SNE visualization of data distributions. The
clusters of NonSynth and SynthQA data show consider-
able non-overlap.

4.1 Data Distribution Differences235

One of the primary concerns with synthetic data236

is the potential mismatch between its distribution237

and that of real-world data. This discrepancy can238

result in models that perform well on synthetic239

data but fail to generalize effectively to real-world240

scenarios.241

Data Characteristic Differences. Synthetic data242

generated by LLMs often exhibits distinct distri-243

butional characteristics compared to non-synthetic244

data. To illustrate these differences, we sample245

2, 000 entries from both NonSynth and SynthQA246

data. Using the embeddings from the last hidden247

state of BaseLM, we apply t-SNE (Van der Maaten248

and Hinton, 2008) for dimensionality reduction and249

visualize the data distributions in Figure 2. The t-250

SNE visualization reveals that the clusters of Non-251

Synth and SynthQA data have considerable areas252

of non-overlapping, which indicates that SynthQA253

data does not perfectly replicate the characteristics254

of NonSynth data. Such differences may lead to255

misinterpretations of real-world scenarios by LLMs256

trained on synthetic data.257

Simplified Data Patterns. Synthetic data often258

contains repetitive and structurally predictable el-259

ements, which simplify the complexity of real-260

world interactions and patterns. This simplifica-261

tion can result in data that fails to capture the in-262

tricacies of human language and interaction. To263

explore this, we again sample 2, 000 entries from264

both NonSynth and SynthQA data and calculate265
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Figure 3: Kernel density estimation of token IDs for
NonSynth and SynthQA data. The token frequency dis-
tribution for SynthQA data shows several small peaks,
indicating high structural consistency for specific tokens
compared to NonSynth data.

the token frequencies based on the tokenizer of 266

BaseLM. Figure 3 presents the kernel density esti- 267

mation (KDE) (Parzen, 1962) plot of token IDs. We 268

observe that the distribution of token frequencies 269

for SynthQA data exhibits several noticeable small 270

peaks compared to NonSynth data. We find that 271

these peaks correspond to tokens with a high de- 272

gree of structural consistency within SynthQA data. 273

Specifically, tokens like "question" (ID: 44246), 274

"answer" (ID: 63264), and "summary" (ID: 16752) 275

contribute to these observable peaks. The pres- 276

ence of these structural tokens indicates a repetitive 277

pattern in SynthQA data, reflecting its inherent 278

simplicity and lack of variability compared to Non- 279

Synth data. By over-representing certain tokens, 280

synthetic datasets risk failing to encapsulate the 281

full spectrum of linguistic diversity found in non- 282

synthetic data, which may lead to models trained 283

on such data being less robust and adaptable. 284

4.2 Pattern Overfitting 285

In this part, we investigate the detrimental effects of 286

synthetic data on instruction-following capabilities 287

and output distributions of LLMs. Our analysis 288

highlights how synthetic data, specifically synthetic 289

Q-A pairs, can cause overfitting to specific patterns 290

observed in Section 4.1, potentially affecting the 291

performance of chat models. 292

Instruction-Following Capability Decline. While 293

synthetic data has shown considerable potential 294

in enhancing the foundational abilities on bench- 295

marks for LLMs in the pre-training stage, our work 296

identifies significant challenges when these models 297

undergo SFT. Specifically, we observe a notable 298

decline in the instruction-following capabilities of 299
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Models C-Eval CMMLU MMLU HumanEval MBPP GSM8K Avg.

BaseLM 39.05 38.83 38.08 9.76 12.00 15.09 25.47
SynthLM 47.71 47.56 47.27 18.90 18.40 16.60 32.74

RefineLM 46.79 47.15 45.82 17.07 18.30 13.42 31.42
UnlearnLM 48.09 47.29 47.53 20.73 18.60 11.45 32.28

Table 2: Evaluation results of base models with continued pre-training and unlearning. SynthLM is obtained

by training BaseLM with a dataset containing 300 billion tokens, of which 2% are from the SynthQA data.
RefineLM is derived from SynthLM by further training with an additional 300 billion tokens of NonSynth data.

UnlearnLM is obtained by performing our unlearning strategy on SynthLM using 1 billion tokens from the
SynthQA data.

FollowBench
Models SSR HSR MT-Bench C-Eval CMMLU MMLU HumanEval MBPP GSM8K

BaseLM-Chat 39.95 27.58 5.45 39.92 40.16 41.55 18.29 17.80 14.33
SynthLM-Chat 38.29 24.00 5.39 49.50 48.37 49.06 21.95 22.60 22.21

RefineLM-Chat 39.60 25.22 5.43 47.71 47.40 47.08 17.68 23.60 22.37
UnlearnLM-Chat 42.00 27.87 5.85 49.12 48.83 48.82 20.12 21.80 21.99

Table 3: Evaluation results of chat models with continued pre-training and unlearning. Models with the suffix
"-Chat" represent chat models derived from their corresponding base models in Table 2 through SFT on the MixedIns
data.

chat models, underscoring critical limitations asso-300

ciated with the use of synthetic Q-A pairs. To inves-301

tigate this issue, we design a series of experiments.302

We mix 2% SynthQA data with NonSynth data to303

create a dataset containing 300 billion tokens and304

perform continued pre-training on BaseLM with305

a fixed learning rate of 5.0 × 10−5. The evalua-306

tion results, presented in Table 2 ( SynthLM v.s.307

BaseLM ), show that the foundational abilities of308

BaseLM has significantly improved after training309

with synthetic Q-A pairs. We validate the role310

of synthetic data through ablation experiments in311

Section 6. However, following SFT, we notice a312

severe decline in instruction-following capabilities313

in the resulting chat model, as shown in Table 3314

( SynthModel-Chat v.s. BaseLM-Chat ).315

Output Distribution Changes. Due to simplified316

data patterns in synthetic data, a critical concern317

is its propensity to cause overfitting. To inves-318

tigate this effect, we sample 2, 000 entries each319

from OpenHermes-2.5 and MixedIns data. We320

then calculate their perplexity using BaseLM and321

SynthLM. Figure 4 shows the KDE plot of per-322

plexity values for these two types of data. We323

can clearly observe that the perplexity distribution324

for SynthLM exhibits a noticeable shift and re-325

duced variance compared to BaseLM, which is326

similar to the phenomenon of model collapse (Shu-327

mailov et al., 2024). This suggests a tendency for 328

the model to overfit to the patterns present in the 329

synthetic data, reducing its ability to deal with real- 330

world variability. 331

5 Unlearning-Based Mitigation Strategy 332

In this section, we introduce our unlearning strategy 333

and describe the experiments conducted to imple- 334

ment this approach. 335

5.1 Unlearning Strategy 336

To address the identified flaws in synthetic data, 337

we propose a mitigation strategy based on unlearn- 338

ing techniques. Typically, unlearning is applied to 339

remove harmful data or reduce model hallucina- 340

tions. In this context, we leverage unlearning to 341

recalibrate the LLM’s understanding, mitigating 342

the adverse effects of synthetic data while preserv- 343

ing its beneficial attributes. 344

Task Description. In the task where the LLM pre- 345

dicts the next token yi based on an existing token 346

sequence y<i = [y1, y2, . . . , yi−1], let p(y<i; θ) de- 347

note the predicted probability of yi. Formally, this 348

can be expressed as: 349

p(y<i; θ) = P (yi | y<i; θ), 350

where θ represents the parameters of the LLM. The 351

prediction accuracy is evaluated using the cross- 352

entropy loss function. Specifically, the loss for 353
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Figure 4: Kernel density estimation of perplexity values for OpenHermes-2.5 and MixedIns data using BaseLM,
SynthLM and UnlearnLM. SynthLM shows a noticeable shift and reduced variance, while UnlearnLM corrects the
distribution shift.

predicting yi is given by l(p(y<i; θ), yi), where354

l(input, target) denotes the cross-entropy loss be-355

tween the predicted probability distribution and the356

actual target token.357

Unlearning Loss. Following previous work (Yao358

et al., 2024), the unlearning loss function we de-359

signed consists of three parts:360

• Lower-Bounded Forgetting Loss: This compo-361

nent focuses on forgetting the biased distribution362

of specific synthetic data. Unlike previous methods363

that apply gradient ascent (Thudi et al., 2022) (i.e.,364

adding a negative sign to the cross-entropy loss to365

introduce irrelevant elements into the predictions),366

we have observed that this method has uncontrolled367

loss due to the logarithm approaching zero without368

a lower bound. Therefore, we designed a simple369

yet effective lower-bounded forgetting loss by in-370

verting the model prediction probabilities in the371

cross-entropy loss. This retains the original forget-372

ting loss function’s features while adding a lower373

bound (i.e., 0). We validate the effectiveness of our374

forgetting loss approach through ablation experi-375

ments in Section 6. The designed lower-bounded376

forgetting loss Lfgt can be defined as:377

Lfgt =

|ysyn|∑
i=1

l(1− p(y
syn
<i ; θ), y

syn
i ).378

• Replay Loss: We sample a portion of the data379

from the trained non-specific synthetic data for380

replay, using the cross-entropy loss to allow the381

model to retain memory of historical knowledge.382

The replay loss Lrpy can be defined as: 383

Lrpy =

|ynon-syn|∑
i=1

l(p(y
non-syn
<i ; θ), y

non-syn
i ). 384

• Bias Mitigation Loss: After unlearning, we 385

aim to ensure that the LLM’s output distribution 386

on the trained non-specific synthetic data does not 387

change excessively. Therefore, we calculate the 388

KL divergence between the current model and the 389

original model on the data used for replay, as the 390

bias mitigation loss Lmtn to preserve the original 391

performance: 392

Lmtn =

|ynon-syn|∑
i=1

KL(p(ynon-syn
<i ; θori)

∥ p(y
non-syn
<i ; θi)),

(1) 393

where θori represents the parameters of the original 394

model. 395

Finally, we obtain the total unlearning loss function 396

as follows: 397

Lunlearn = wfgt · Lfgt + wrpy · Lrpy + wmtn · Lmtn, 398

where w∗ denotes the weights corresponding to 399

each part of the loss L∗. 400

5.2 Unlearning Experiments 401

In this part, we detail the experimental process of 402

applying unlearning techniques. Our objective is 403

mitigate the adverse effects on models trained with 404

synthetic data. Specifically, we aim to enhance the 405
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FollowBench
Models SSR HSR MT-Bench GSM8K

BaseLM-Chat (O.H.) 40.25 27.27 5.76 34.27
SynthLM* (U33B)-Chat (O.H.) 39.95 25.13 5.61 43.06
UnlearnLM* (U33B)-Chat (O.H.) 40.21 27.26 5.87 42.00

Table 4: Evaluation results of chat models with continued pre-training on U33B data and subsequent unlearning.
SynthLM*(U33B) is the base model trained with 40 billion tokens including 2% U33B data. UnlearnLM*(U33B) is
derived from SynthLM*(U33B) by applying our unlearning strategy. Models with the suffix "-Chat(O.H.)" represent
chat models derived from their corresponding base model through SFT on the OpenHermes-2.5 data.

instruction-following capabilities of models while406

preserving their foundational abilities.407

Basic Implementation. We utilize NonSynth data408

containing 300 billion tokens to perform contin-409

ued pre-training on SynthLM in Table 2, with the410

aim of recovering the model’s instruction-following411

capabilities. We utilize a fixed learning rate of412

5.0 × 10−5 during the training process. From413

the results in Table 2 and 3, we can clearly ob-414

serve that extensive training with non-synthetic415

data leads to enhanced instruction-following ca-416

pabilities ( RefineLM-Chat v.s. SynthLM-Chat )417

at the cost of a decline in overall base model per-418

formance ( RefineLM v.s. SynthLM ). However,419

this approach does not completely eliminate the420

negative impact of the synthetic data on the model.421

Unlearning Strategy Implementation. We422

propose employing the unlearning strategy on423

SynthLM. We apply lower-bounded forgetting loss424

on texts from the SynthQA data with 1 billion to-425

kens. Concurrently, we perform replay loss and426

bias mitigation loss on the trained NonSynth data427

alongside the unlearning process. We use a fixed428

learning rate of 5.0 × 10−5 and set the weights429

wfgt = 0.01, wrpy = wmtn = 1. As can be430

seen from Table 2 and 3, although unlearning431

leads to a slight decrease in foundational abilities432

of base ( UnlearnLM v.s. SynthLM ) and chat433

( UnlearnLM-Chat v.s. SynthLM-Chat ) models,434

especially math abilities, there is a considerable435

improvement in instruction-following capabilities436

( UnlearnLM-Chat v.s. BaseLM-Chat ).437

Distribution Shift Correction. The unlearning438

process partially corrects the output distribution439

shift of the LLM. Following the experiments in440

Section 4.2, we include the perplexity distribution441

of UnlearnLM on OpenHermes-2.5 and MixedIns442

data in Figure 4. It can be observed that the dis-443

tribution shift has been effectively corrected after444

unlearning, indicating a significant reduction in 445

pattern overfitting. 446

It’s worth noting that the instruction-following ca- 447

pabilities of UnlearnLM-Chat after unlearning with 448

just 1 billion tokens surpass the performance of 449

both RefineLM-Chat trained on 300 billion tokens 450

and BaseLM-Chat. Additionally, the foundational 451

abilities of UnlearnLM are comparable to those of 452

RefineLM, suggesting that the beneficial effects of 453

synthetic data on model performance have been 454

preserved. This underscores the efficacy of our 455

method in achieving more robust and efficient 456

LLM training at significantly lower training 457

costs. 458

6 Ablation Study 459

6.1 Effectiveness of Unlearning Strategy 460

To explore the effectiveness of our unlearning strat- 461

egy across different types of synthetic data, we 462

conduct experiments using the U33B data. We 463

first perform continued pre-training on the BaseLM 464

with 40 billion tokens of data, including 2% U33B 465

data, resulting in SynthLM*(U33B). We utilize a 466

fixed learning rate of 5.0×10−5 during the training 467

process. Following this, we apply our unlearning 468

strategy to mitigate the adverse effects of U33B 469

data on instruction-following capabilities while pre- 470

serving its positive impact on foundational abilities, 471

particularly in mathematics. Specifically, we em- 472

ploy the same unlearning parameters as described 473

in Section 5.2, resulting in UnlearnLM*(U33B). 474

We conduct SFT on the resulting models using 475

OpenHermes-2.5 data. The evaluation results are 476

presented in Table 4. The results indicate that 477

while the model trained with U33B data improves 478

its mathematical abilities, it exhibits a decline in 479

instruction-following capabilities. However, after 480

applying our unlearning strategy, the instruction- 481

following capabilities are restored, while retaining 482

the enhancements in mathematical abilities pro- 483

vided by the U33B data. These findings suggest 484
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Models C-Eval CMMLU MMLU HumanEval MBPP GSM8K Avg.

BaseLM 39.05 38.83 38.08 9.76 12.00 15.09 25.47
MixSynthLM 44.63 44.12 45.00 18.29 19.40 14.95 31.07
NonSynthLM 42.33 40.46 40.88 18.29 17.80 12.21 28.66

Table 5: Evaluation results of BaseLM with continued pre-training on synthetic and non-synthetic data. MixSynthLM
is BaseLM trained with 40 billion tokens including 2% SynthQA data. NonSynthLM is BaseLM trained with 40
billion tokens of NonSynth data.

Models C-Eval CMMLU MMLU HumanEval MBPP GSM8K Avg.

SynthLM 47.71 47.56 47.27 18.90 18.40 16.60 32.74
UnlearnLM (GA) 26.58 25.08 39.28 11.59 9.60 6.82 19.82
UnlearnLM (Ours) 48.09 47.29 47.53 20.73 18.60 11.45 32.28

Table 6: Evaluation results of SynthLM with different unlearning strategies applied. UnlearnLM (GA) is derived
from SynthLM by applying traditional gradient ascent loss. UnlearnLM (Ours) is derived by applying our lower-
bounded forgetting loss.

that our unlearning strategy could be extended to485

other types of open-source synthetic data.486

6.2 Impact of Synthetic Data on Model487

Performance488

To verify that SynthQA data, rather than NonSynth489

data, contributes to the significant performance im-490

provements in BaseLM, we conduct a controlled ab-491

lation experiment. We evaluate two models: Non-492

SynthLM, which is the BaseLM trained with 40493

billion tokens of NonSynth data, and MixSynthLM,494

which is the BaseLM trained with 40 billion tokens495

of data including 2% SynthQA data. To ensure a496

fair comparison and better verify the impact of syn-497

thetic data, the NonSynth data used to train both498

NonSynthLM and MixSynthLM is the same high-499

quality data corpus used to generate the SynthQA500

data. The evaluation result is shown in Table 5. We501

can see that MixSynthLM exhibits markedly supe-502

rior performance enhancements. This confirms that503

synthetic data plays a critical role in boosting base504

model performance.505

6.3 Efficacy of Bounded Forgetting Loss506

When introducing our unlearning strategy in Sec-507

tion 5.1, we use the lower-bounded forgetting loss508

to forget the biased distribution of specific syn-509

thetic data. To evaluate the effectiveness of this510

approach compared to the traditional gradient as-511

cent loss, we conduct a comparative experiment512

where the SynthLM in Table 2 undergo unlearning513

using both the lower-bounded forgetting loss and514

the traditional gradient ascent loss. As shown in515

Table 6, we can clearly observe that the model sub-516

jected to traditional gradient ascent loss exhibits se-517

vere performance degradation. This may be due to 518

the uncontrolled magnitude of negative loss during 519

training. Conversely, the lower-bounded forgetting 520

loss results only in a partial decline in mathematical 521

abilities. 522

7 Conclusion 523

In this work, we have systematically explored the 524

potential issues associated with synthetic data, par- 525

ticularly focusing on synthetic Q-A pairs, and their 526

impact on the performance of LLMs. Our analysis 527

has identified inherent flaws in synthetic data, such 528

as pattern overfitting and significant shifts in out- 529

put distribution, which can degrade the instruction- 530

following capabilities of LLMs. To mitigate these 531

adverse effects, we have proposed an innovative 532

unlearning-based strategy. This strategy employs a 533

lower-bounded forgetting loss, which is control- 534

lable and superior to traditional unlearning ap- 535

proaches at significantly lower training costs. The 536

empirical results demonstrate that our strategy ef- 537

fectively addresses the limitations of synthetic data 538

and corrects the output distribution shift, thereby 539

enhancing the instruction-following capabilities 540

while preserving foundational capabilities of LLMs 541

on benchmarks. Our work has demonstrated a vi- 542

able path to leverage the advantages of synthetic 543

data without being adversely affected by its limi- 544

tations, enhancing the robustness and efficiency of 545

LLM training. 546

8 Limitations 547

Despite our substantial efforts, several limitations 548

warrant further consideration. Firstly, while our 549

unlearning-based strategy has shown promise in 550

8



mitigating the negative effects of synthetic data, it551

may still cause degradation in specific model ca-552

pabilities, such as mathematical reasoning. More-553

over, its scalability to much larger models remains554

untested. As LLMs continue to grow in size and555

complexity, the computational efficiency and practi-556

cal applicability of this strategy require further val-557

idation. Additionally, this study primarily focuses558

on the flaws and mitigation strategies related to559

Q-A pair synthetic data. Although we have demon-560

strated the effectiveness of our unlearning strategy561

on the open-source synthetic dataset U33B, many562

other forms of synthetic data remain unexplored.563

Furthermore, the quality of synthetic data gener-564

ated by GPT-4 used in this study may not fully565

represent the entire spectrum of synthetic data qual-566

ity. Different synthetic data generation techniques567

and tools can produce data with varying degrees568

of imperfections, potentially impacting the effec-569

tiveness of our mitigation strategy. Further investi-570

gation into more advanced unlearning techniques571

is necessary to minimize these side effects. We572

will continue to refine and enhance our method in573

future work.574
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Dataset Type Source Sample

NonSynth Non-synthetic
Data

Webpage
As an independent Nissan service repair centre and our aim is to
provide our customers with an alternative to the high servicing and
repair costs associated with large Nissan dealerships.

Book

The sovereign or heir of Moscow was to succeed Yan Kazimir, details
of boundaries and succession to be settled by the Diet, both sides to
refrain from hostilities till the Swedes were expelled, and neither to
make peace with Sweden separately.

Research
Paper

\section*Introduction\n\nClubbing is a central part of many young
adults’ lives. In Norway, the club culture is alcohol driven and
drinking to intoxication is a common phenomenon in the Nordic
countries (Mäkelä et al., 2001), as in other parts of the Western world
(Measham \\& Brain, 2005; Moore, 2010).

Codebase

from openpyxl import load_workbook\nimport numpy as
np \n\ndef read():\n #Load data from workbook\n wb
= load_workbook(’DL03_Teste01_Dados.xlsx’)\n sheet =
wb[’Planilha1’]\n\n #Recover data\n datasheet = []\n for row
in sheet.iter_rows(): \n newRow = list()\n for cell in row:\n
newRow.append(cell.value)

SynthQA Synthetic
Q-A Pair

Mathematic

Question:\n\nWhich of the following represents the derivative of
the function f(x) = x2?\n\nA) 2\n\nB) 2x\n\nC) x2\n\nD)
x3\n\n**Answer:**\n\nTo find the derivative of f(x) = x2, we
apply the power rule of differentiation. If f(x) = xn, then f ′(x) =
nxn−1.\n\nApplying the rule to f(x) = x2, we have:\n\n f ′(x) =
2x2−1 = 2x\n\nSo, the correct answer is **B) 2x**.

Coding

Create a test suite of quantum physics questions categorized by
difficulty.\\n\nBest Answer:\nGiven the complexity, this task
would typically be broken into multiple stages and require a team of
experts ... if __name__ == "__main__":\n app.run()

General
Knowledge

探讨迷茫心理、求助的重要性与技巧、心理学视角下的人际
交流和资源交换原则。\n从心理学来讲,人生之所以迷茫,是对
未知的无能为力。 ... 明确对方需求,才能获得你想要的帮助。

MixedIns Instruction

Mathematic

{"role": "user", "content": "帮助用户解决以下数学问题。\n问
题:计算 45 ÷ 5 + 6 × 2"}, {"role": "assistant", "content": "根据
算术运算法则,先计算乘除再计算加减：\n45 ÷ 5 + 6 × 2 = 9 +
12 = 21"}

Coding

{"role": "user", "content": "创建一个包含10个随机数字
的列表，并按升序排列。\n"}, {"role": "assistant", "con-
tent": "以下是Python语言的代码实现：\n“‘python\nimport
random\n#生成一个包含10个随机数字的列表\nmy_list = [ran-
dom.randint(1, 100) for i in range(10)]\n#使用sort()方法按升序
排列\nmy_list.sort()\n#输出\nprint(my_list)"}

General
Knowledge

{"role": "user", "content": "给定以下两种动物的名字，请确
定它们属于哪个动物大类；鲨鱼和海马。\n鲨鱼和海马\n"},
{"role": "assistant", "content": "鲨鱼属于鱼类，而海马属于海龙
目，也就是海马目动物。"}

U33B Synthetic
Q-A Pair Mathematic

{"query": "Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?", "response": "Natalia sold 48/2 =
«48/2=24»24 clips in May.\nNatalia sold 48+24 = «48+24=72»72
clips altogether in April and May.\n#### 72"}

OpenHermes-2.5 Instruction and Chat Example
{"from": "human", "value": "Do you know any jokes about animals
with ailments?"}, {"from": "gpt", "value": "What’s worse than a
centipede with sore feet? A giraffe with a sore throat"}

Table 7: Illustrative examples for six datasets used in this work.
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