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ABSTRACT

In order to solve a task using reinforcement learning, it is necessary to first for-
malise the goal of that task as a reward function. However, for many real-world
tasks, it is very difficult to manually specify a reward function that never incen-
tivises undesirable behaviour. As a result, it is increasingly popular to use reward
learning algorithms, which attempt to learn a reward function from data. How-
ever, the theoretical foundations of reward learning are not yet well-developed. In
particular, it is typically not known when a given reward learning algorithm with
high probability will learn a reward function that is safe to optimise. This means
that reward learning algorithms generally must be evaluated empirically, which is
expensive, and that their failure modes are difficult to anticipate in advance. One of
the roadblocks to deriving better theoretical guarantees is the lack of good methods
for quantifying the difference between reward functions. In this paper we provide
a solution to this problem, in the form of a class of pseudometrics on the space
of all reward functions that we call STARC (STAndardised Reward Comparison)
metrics. We show that STARC metrics induce both an upper and a lower bound
on worst-case regret, which implies that our metrics are tight, and that any metric
with the same properties must be bilipschitz equivalent to ours. Moreover, we
also identify a number of issues with reward metrics proposed by earlier works.
Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy.
STARC metrics can be used to make both theoretical and empirical analysis of
reward learning algorithms both easier and more principled.

1 INTRODUCTION

To solve a sequential decision-making task with reinforcement learning or automated planning, we
must first formalise that task using a reward function (Sutton & Bartol 2018 [Russell & Norvig, [2020).
However, for many tasks, it is extremely difficult to manually specify a reward function that captures
the task in the intended way. To resolve this issue, it is increasingly popular to use reward learning,
which attempts to learn a reward function from data. There are many techniques for doing this. For
example, it is possible to use preferences between trajectories (e.g.|Christiano et al., 2017), expert
demonstrations (e.g. Ng & Russell, [2000), or a combination of the two (e.g. Ibarz et al., 2018)).
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To evaluate a reward learning method, we must quantify the difference between the learnt reward
function and the underlying true reward function. However, doing this is far from straightforward.
A simple method might be to measure their Lo-distance. However, this is unsatisfactory, because
two reward functions can have a large Lo-distance, even if they induce the same ordering of policies,
or a small Ly-distance, even if they induce the opposite ordering of policiesﬂ Another option is to
evaluate the learnt reward function on a fest set. However, this is also unsatisfactory, because it can
only guarantee that the learnt reward function is accurate on a given data distribution, and when
the reward function is optimised we necessarily incur a distributional shift (after which the learnt
reward function may no longer match the true reward function). Yet another option is to optimise
the learnt reward function, and evaluate the obtained policy according to the true reward function.
However, this is also unsatisfactory, both because it is very expensive, and because it makes it difficult
to separate issues with the policy optimisation process from issues with the reward learning algorithm.
Moreover, because this method is purely empirical, it cannot be used for theoretical work. These
issues make it challenging to evaluate reward learning algorithms in a way that is principled and
robust. This in turn makes it difficult to anticipate in what situations a reward learning algorithm
might fail, or what their failure modes might look like. It also makes it difficult to compare different
reward learning algorithms against each other, without getting results that may be heavily dependent
on the experimental setup. These issues limit the applicability of reward learning in practice.

In this paper, we introduce STAndardised Reward Comparison (STARC) metrics, which is a family of
pseudometrics that quantify the difference between reward functions in a principled way. Moreover,
we demonstrate that STARC metrics enjoy strong theoretical guarantees. In particular, we show that
STARC metrics induce an upper bound on the worst-case regret that can be induced under arbitrary
policy optimisation, which means that a small STARC distance guarantees that two reward functions
behave in a similar way. Moreover, we also demonstrate that STARC metrics induce a lower bound
on worst-case regret. This has the important consequence that any reward function distance metric
which induces both an upper and a lower bound on worst-case regret must be bilipschitz equivalent
to STARC metrics, which in turn means that they (in a certain sense) are unique. In particular, we
should not expect to be able to improve on them in any substantial way. In addition to this, we also
evaluate STARC metrics experimentally, and demonstrate that their theoretical guarantees translate
into compelling empirical performance. STARC metrics are cheap to compute, which means that they
can be used for empirical evaluation of reward learning algorithms. Moreover, they can be calculated
from a closed-form expression, which means that they are also suitable for use in theoretical analysis.
As such, STARC metrics enable us to evaluate reward learning methods in a way that is both easier
and more theoretically principled than relevant alternatives. Our work thus contributes towards
building a more rigorous foundation for the field of reward learning.

1.1 RELATED WORK

There are two existing papers that study the problem of how to quantify the difference between
reward functions. The first is|Gleave et al.|(2020), which proposes a distance metric that they call
Equivalent-Policy Invariant Comparison (EPIC). They show that the EPIC-distance between two
reward functions induces a regret bound for optimal policies. The second paper is|Wulfe et al.| (2022),
which proposes a distance metric that they call Dynamics-Aware Reward Distance (DARD). Unlike
EPIC, DARD incorporates information about the transition dynamics of the environment. This means
that DARD might give a tighter measurement, in situations where the transition dynamics are known.
Unlike |Gleave et al.[(2020), they do not derive any regret bound for DARD.

Our work extends the work by |Gleave et al.| (2020) and |Wulfe et al.| (2022) in several important
ways. First of all,[Wulfe et al.|(2022)) do not provide any regret bounds, which is unsatisfactory for
theoretical work, and the upper regret bound that is provided by |Gleave et al.|(2020) is both weaker
and less general than ours. In particular, their bound only considers optimal policies, whereas our
bound covers all pairs of policies (with optimal policies being a special case). Moreover, we also
argue that|Gleave et al.| (2020) have chosen to quantify regret in a way that fails to capture what we
care about in practice. In Appendix [A] we provide an extensive theoretical analysis of EPIC, and show

"For example, given an arbitrary reward function R and an arbitrary constant ¢, we have that R and ¢ - R
have the same ordering of policies, even though their Ly-distance may be arbitrarily large. Similarly, for any e,
we have that € - R and —e - R have the opposite ordering of policies, unless R is constant, even though their
L»-distance may be arbitrarily small.
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that it lacks many of the important theoretical guarantees enjoyed by STARC metrics. In particular,
we demonstrate that EPIC fails to induce either an upper or lower bound on worst-case regret (as we
define it). We also include an extensive discussion and criticism of DARD in Appendix B} Moreover,
in Section i} we provide experimental data that shows that STARC metrics in practice can have a
much tighter correlation with worst-case regret than both EPIC and DARD. This means that STARC
metrics both can attain better empirical performance and give stronger theoretical guarantees than the
pseudometrics proposed by earlier work.

It is important to note that EPIC is designed to be independent of the environment dynamics, whereas
both STARC and DARD depend on the transition dynamics. This issue is discussed in Section[2.3]

The question of what happens if one reward function is optimised instead of a different reward
function is considered by many previous works. A notable example is Ng et al.| (1999), which
shows that if two reward functions differ by a type of transformation they call potential shaping,
then they have the same optimal policies in all environments. Potential shaping is also studied by
e.g.Jenner et al.|(2022). Another example is [Skalse et al.|(2022b), which shows that if two reward
functions R;, R» have the property that there are no policies 71, 7o such that Jy (m1) > Ji(m2) and
Ja(m1) < Ja(ma), then either Ry and R» induce the same ordering of policies, or at least one of them
assigns the same reward to all policies. |[Zhuang & Hadfield-Menell| (2021)) consider proxy rewards
that depend on a strict subset of the features which are relevant to the true reward, and then show that
optimising such a proxy in some cases may be arbitrarily bad, given certain assumptions. |Skalse et al.
(2022a) derive necessary and sufficient conditions for when two reward functions are equivalent, for
the purposes of computing certain policies or other mathematical objects. Also relevant is [Everitt
et al.|(2017), which studies the related problem of reward corruption, and [Pan et al.| (2022)), which
considers natural choices of proxy rewards for several environments. Unlike these works, we are
interested in the question of quantifying the difference between reward functions.

1.2 PRELIMINARIES

A Markov Decision Processes (MDP) is a tuple (S, A, 7, o, R, ) where S is a set of states, A is a
set of actions, 7 : Sx A — A(S) is a transition function, o € A(S) is an initial state distribution,
R : SxAxS — R is a reward function, and v € (0,1) is a discount rate. A policy is a function
m: 8 > A(A). A trajectory & = (sg,aq, S1,0a1 ...y is a possible path in an MDP. The return
function G gives the cumulative discounted reward of a trajectory, G(£) = 3%, V' R(s¢, as, St41)s
and the evaluation function J gives the expected trajectory return given a policy, J(7) = Ee.or [G(§)].
A policy maximising J is an optimal policy. The value function V™ : S — R of a policy encodes the
expected future discounted reward from each state when following that policy. We use R to refer to
the set of all reward functions. When talking about multiple rewards, we give each reward a subscript
R;, and use J;, G;, and V™, to denote R;’s evaluation function, return function, and 7-value function.

In this paper, we assume that all states are reachable under 7 and po. Note that if this is not the case,
then all unreachable states can simply be removed from S. Our theoretical results also assume that S
and A are finite. However, STARC metrics can still be computed in continuous environments.

Given a set X, a function d : X x X — Ris called a pseudometric if d(x1,x1) = 0, d(x1,22) = 0,
d(x1,29) = d(x9, 1), and d(x1, 23) < d(x1,22) + d(x2,23), for all 21,29, 29 € X. Given two
pseudometrics dy, de on X, if there are constants ¢, u such that £ - dy(x1,x2) < da(x1,22) <
w-dy(x1,x9) forall 21,29 € X, then dy and dy are bilipschitz equivalent. Given a vector space V,
afunctionn : V — Risanormif n(vy) = 0, n(vy) =0 <= v = 0,n(c-v1) = |c| - n(vy),
and n(vy — ve) < n(vy) + n(ve) for all v1,ve € V, ¢ € R. Given a norm n, we can define a
(pseudo)metric m as m(x,y) = n(]z — y|). In a mild abuse of notation, we will often denote this
metric using n directly, so that n(z,y) = n(|z — y[). For any p € N, L, is the norm given by

L,(v) = (X |vs]P)YP. A norm n is a weighted version of n’ if n = n’ o M for a diagonal matrix M.

We will use potential shaping, which was first introduced by [Ng et al. (1999). First, a potential
function is a function ® : S — R. Given a discount v, we say that R, and Ry differ by potential
shaping if for some potential ®, we have that Ry(s,a,s’) = Ri(s,a,s’) + v - ®(s') — ®(s). We
also use S’-redistribution (as defined by [Skalse et al.,[2022a). Given a transition function 7, we say
that Ry and Ry differ by S'-redistribution if Eg/ 7 (s o)[R2(s,a,5")] = Egrwr(s,a)[R1(s,a,5)].
Finally, we say that Ry and R differ by positive linear scaling if R2(s,a,s’) = ¢ Ry(s,a, s’) for
some positive constant c. We will also combine these transformations. For example, we say that R,
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and Ry differ by potential shaping and S’-redistribution if it is possible to produce Ry from R; by
applying potential shaping and S’-redistribution (in any order). The cases where Ry and R» differ by
(for example) potential shaping and positive linear scaling, etc, are defined analogously. Finally, we
will use the following result, proven by |Skalse & Abate|(2023)) in their Theorem 2.6:

Proposition 1. (S, A, 7, o, R1,7) and (S, A, T, 0, Ra,7y) have the same ordering of policies if and
only if Ry and Rs differ by potential shaping, positive linear scaling, and S’-redistribution.

The “ordering of policies” is the ordering induced by the policy evaluation function J.

EPIC (Gleave et al.,[2020) is defined relative to a distribution Dg over S and a distribution D 4
over A, which must give support to all states and actions. It is computed in several steps. First, let
CEPIC . R — R be the function where CFPIC(R)(s, a, s') is equal to

R(s,a,s") + E[yR(s', A,8') = R(s, A, 8") = yR(S, A, §")],

where S, 5" ~ Ds and A ~ D 4. Note that S and S’ are sampled independently. Next, let the
“Pearson distance” between two random variables X and Y be defined as 1/ (1 — p(X,Y))/2, where

p denotes the Pearson correlation. Then the EPIC-distance DEFIC(R;, Ry) is defined to be the
Pearson distance between CFPIC(R;) (S, A, S’) and CFPIC(R,)(S, A, S'), where again S, S” ~ Ds
and A ~ D 4[| Note that DPIC is implicitly parameterised by Ds and D 4.

To better understand how EPIC works, it is useful to know that it can be equivalently expressed as

EPIC EPIC
DEPIC(Rl,RQ) — 1 . L2 D C (Rl) , C (RQ) ,
2 ’ L27D(C’EPIC(R1)) L21D(CEPIC(R2))

where Ly p is a weighted Lo-norm. For details, see Appendix |[El Here CPPIC maps all reward
functions that differ by potential shaping to a single representative in their equivalence class. This,
combined with the normalisation step, ensures that reward functions which only differ by potential
shaping and positive linear scaling have distance 0 under DFF1C,

DARD (Waulfe et al.| [2022]) is also defined relative to a distribution Ds over S and a distribution D 4
over A, which must give support to all actions and all reachable states, but it also requires a transition
function 7. Let CPARD . R — R be the function where CPARP(R)(s, a, s') is

R(s,a,s") + E[yR(s', A, S") — R(s, A,S") —vyR(S’, A, S")],

where A ~ Dy, S' ~ 7(s,A), and S” ~ 7(s’, A). Then the DARD-distance DPARP (R, R,)
is defined to be the Pearson distance between CPARP(R))(S, A, S’) and CPARP (R,)(S, A, S"),
where again S, S’ ~ Ds and A ~ D 4. Note that DPARD is parameterised by Ds, D 4, and 7.

2 STARC METRICS

In this section we formally define STARC metrics, and provide several examples of such metrics.

2.1 A FORMAL DEFINITION OF STARC METRICS

STARC metrics are defined relative to an environment, consisting of a set of states S, a set of actions
A, a transition function 7, an initial state distribution 1, and a discount factor +. This means that
many of our definitions and theorems are implicitly parameterised by these objects, even when this
dependency is not spelled out explicitly. Our results hold for any choice of S, A, 7, o, and ~, as
long as they satisfy the assumptions given in Section[I.2] See also Section

STARC metrics are computed in several steps, where the first steps collapse certain equivalence
classes in R to a single representative, and the last step measures a distance. The reason for this is
that two distinct reward functions can share the exact same preferences between all policies. When
this is the case, we want them to be treated as equivalent. This is achieved by standardising the reward
functions in various ways before the distance is finally measured. First, recall that neither potential
shaping nor S’-redistribution affects the policy ordering in any way. This motivates the first step:

ZGleave et al.| (2020) allow different distributions to be used when computing CFF1¢ (R) and when taking
the Pearson distance. However, doing this breaks some of their theoretical results. For details, see Appendix@
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Definition 1. A function ¢ : R — R is a canonicalisation function if c is linear, ¢(R) and R
only differ by potential shaping and S’-redistribution for all R € R, and for all Ry, Ry € R,
¢(R1) = ¢(Ry) if and only if Ry and Ry only differ by potential shaping and S’-redistribution.

Note that we require c to be linear. Note also that CFFI¢ and CPARP are not canonicalisation func-
tions in our sense, because we here require canonicalisation functions to simultaniously standardise
both potential shaping and S’-redistribution, whereas C*FIC and CPARD only standardise potential
shaping. In Section [2.2] we provide examples of canonicalisation functions. Let us next introduce the
functions that we use to compute a distance:

Definition 2. A metric m : R x R — R is admissible if there exists a norm p and two (positive)
constants u, £ such that £ - p(x,y) < m(z,y) < u-p(z,y) forall x,y € R.

A metric is admissible if it is bilipschitz equivalent to a norm. Any norm is an admissible metric,
though there are admissible metrics which are not normsE] Recall also that all norms are bilipschitz
equivalent on any finite-dimensional vector space. This means that if m satisfies Definition 2] for one
norm, then it satisfies it for all norms. We can now define our class of reward metrics:

Definition 3. A functiond : R x R — R is a STARC metric (STAndardised Reward Comparison) if
there is a canonicalisation function ¢, a function n that is a norm on Im(c), and a metric m that is
admissible on Im(s), such that d(Ry, Ry) = m(s(R1), s(R2)), where s(R) = ¢(R)/n(c(R)) when
n(c(R)) # 0, and ¢(R) otherwise.

Intuitively speaking, ¢ ensures that all reward functions which differ by potential shaping and S’-
redistribution are considered to be equivalent, and division by n ensures that positive scaling is
ignored as well. Note that if n(c(R)) = 0, then ¢(R) assigns 0 reward to every transition. Note also
that Im(c) is the image of ¢, if ¢ is applied to the entirety of R. If n is a norm on R, then n is also a
norm on Im(c), but there are functions which are norms on Im(c) but not on R (c.f. Proposition [4)).

In Appendix[C] we provide a geometric intuition for how STARC metrics work.

2.2 EXAMPLES OF STARC METRICS

In this section, we give several examples of STARC metrics. We begin by showing how to construct
canonicalisation functions. We first give a simple and straightforward method:

Proposition 2. For any policy w, the function ¢ : R — R given by
c(R)(s,a,8") = Egrer(s.a) [R(s,0,5) = V™(s) + 7V (S")]

is a canonicalisation function. Here V™ is computed under the reward function R given as input to c.
We call this function Value-Adjusted Levelling (VAL).

The proof, as well as all other proofs, are given in the Appendix. Proposition [2| gives us an easy
way to make canonicalisation functions, which are also easy to evaluate whenever V™ is easy to
approximate. We next give another example of canonicalisation functions:

Definition 4. A canonicalisation function c is minimal for a norm n if for all R we have that
n(c¢(R)) < n(R') for all R’ such that R and R’ only differ by potential shaping and S’-redistribution.

Minimal canonicalisation functions give rise to tighter regret bounds (c.f. Section [3|and Appendix [F).
It is not a given that minimal canonicalisation functions exist for a given norm n, or that they are
unique. However, for any weighted Ls-norm, this is the case:

Proposition 3. For any weighted Lo-norm, a minimal canonicalisation function exists and is unique.
A STARC metric can use any canonicalisation function c. Moreover, the normalisation step can

use any function n that is a norm on Im(c). This does of course include the L;-norm, La-norm,
Ly -norm, and so on. We next show that max,. J(7) — min, J(7) also is a norm on Im(c):

Proposition 4. If ¢ is a canonicalisation function, then the function n : R — R given by n(R) =
max, J(m) — min, J(m) is a norm on Im(c).

3For example, the unit ball of m does not have to be convex, or symmetric around the origin.
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For the final step we of course have that any norm is an admissible metric, though some other metrics
are admissible as wellE] To obtain a STARC metric, we then pick any canonicalisation function c,
norm n, and admissible metric m, and combine them as described in Definition 3] Which choice of
¢, n, and m is best in a given situation may depend on multiple considerations, such as how easy
they are to compute, how easy they are to work with theoretically, or how well they together track
worst-case regret (c.f. Section [3]and [)).

2.3 UNKNOWN TRANSITION DYNAMICS AND CONTINUOUS ENVIRONMENTS

STARC metrics depend on the transition function 7, through the definition of canonicalisation
functions (since S’-redistribution depends on 7). Moreover, 7 is often unknown in practice. However,
it is important to note that while STARC metrics depend on 7, there are STARC metrics that can be
computed without direct access to 7. For example, the VAL canonicalisation function (Proposition [2)
only requires that we can sample from 7, which is always possible in the reinforcement learning
setting. Moreover, if we want to evaluate a learnt reward function in an environment that is different
from the training environment, then we can simply use the 7 from the evaluation environment. As
such, we do not consider the dependence on 7 to be a meaningful limitation. Nonetheless, it is
possible to define STARC-like pseudometrics that do not depend on 7 at all, and such pseudometrics
also have some theoretical guarantees (albeit guarantees that are weaker than those enjoyed by
STARC metrics). This option is discussed in Appendix [F.3]

Moreover, we assume that S and A are finite, but many interesting environments are continuous.
However, it is important to note that while our theoretical results assume that S and A are finite, it is
still straightforward to compute and use STARC metrics in continuous environments (for example,
using the VAL canonicalisation function from Proposition [2). We discuss this issue in more detail in
Appendix [D] In Section[d} we also provide experimental data from a continuous environment.

3 THEORETICAL RESULTS

In this section, we prove that STARC metrics enjoy several desirable theoretical guarantees. First, we
note that all STARC metrics are pseudometrics on the space of all reward functions, R:

Proposition 5. All STARC metrics are pseudometrics on R.

This means that STARC metrics give us a well-defined notion of a “distance” between rewards. Next,
we characterise the cases when STARC metrics assign two rewards a distance of zero:

Proposition 6. All STARC metrics have the property that d(Ry, Re) = 0 if and only if Ry and Rs
induce the same ordering of policies.

This means that STARC metrics consider two reward functions to be equivalent, exactly when those
reward functions induce exactly the same ordering of policies. This is intuitive and desirable.

For a pseudometric d on R to be useful, it is crucial that it induces an upper bound on worst-case
regret. Specifically, we want it to be the case that if d(R;, Ry) is small, then the impact of using Ro
instead of R; should also be small. When a pseudometric has this property, we say that it is sound:

Definition 5. A pseudometric d on R is sound if there exists a positive constant U, such that for any
reward functions Ry and Ra, if two policies 71 and 7y satisfy that Jo(ma) = Jo(m1), then

Jl(ﬂ'l) — Jl(ﬂ'g) <U- (mngl(ﬂ') — ngn J1(7T)) . d(Rl,RQ).

Let us unpack this definition. Jy (m1) — Ji(m2) is the regret, as measured by Ry, of using policy
instead of 7r;. Division by max, J;(7) — min, J; () normalises this quantity based on the total
range of R; (though the term is put on the right-hand side of the inequality, instead of being used
as a denominator, in order to avoid division by zero when max, J;(7) — min, Ji(7w) = 0). The
condition that Jy(my) > Ja(m1) says that Ry prefers mo over 7;. Taken together, this means that a
pseudometric d on R is sound if d(R1, R2) gives an upper bound on the maximal regret that could

*For example, if m(z, y) is the angle between x and y when x,y # 0, and we define m(0,0) = 0 and
m(z,0) = w/2 for z # 0, then m is also admissible, even though m is not a norm.
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be incurred under R; if an arbitrary policy 7 is optimised to another policy 7o according to Rs. It is
also worth noting that this includes the special case when 7 is optimal under Ry and 75 is optimal
under Rs. Our first main result is that all STARC metrics are sound:

Theorem 1. All STARC metrics are sound.

This means that any STARC metric gives us an upper bound on worst-case regret. Next, we will
show that STARC metrics also induce a lower bound on worst-case regret. It may not be immediately
obvious why this property is desirable. To see why this is the case, note that if a pseudometric d on
‘R does not induce a lower bound on worst-case regret, then there are reward functions that have a
low worst-case regret, but a large distance under d. This would in turn mean that d is not tight, and
that it should be possible to improve upon it. In other words, if we want a small distance under d to
be both sufficient and necessary for low worst-case regret, then d must induce both an upper and a
lower bound on worst-case regret. As such, we also introduce the following definition:

Definition 6. A pseudometric d on R is complete if there exists a positive constant L, such that for
any reward functions R; and Ra, there exist two policies 7, and 7 such that Jo(me) > Jo(71) and

Jl(’/Tl) - Jl(’/TQ) = L- (IHTE?X Jl(’/T) - IH7TiII Jl(’/T)) . d(Rl,Rg),

and moreover, if both max, J;(7) — min, Ji(7) = 0 and max, Ja(7) — min, Jz(7) = 0, then we
have that d(Ry, R2) = 0.

The last condition is included to rule out certain pathological edge-cases. Intuitively, if d is sound,
then a small d is sufficient for low regret, and if d is complete, then a small d is necessary for low
regret. Soundness implies the absence of false positives, and completeness the absence of false
negatives. Our second main result is that all STARC metrics are complete:

Theorem 2. All STARC metrics are complete.

Theorems [1|and 2| together imply that, for any STARC metric d, we have that a small value of d is
both necessary and sufficient for a low regret. This means that STARC metrics, in a certain sense,
exactly capture what it means for two reward functions to be similar, and that we should not expect it
to be possible to significantly improve upon them. We can make this claim formal as follows:

Proposition 7. Any pseudometrics on R that are both sound and complete are bilipschitz equivalent.

This implies that all STARC metrics are bilipschitz equivalent. Moreover, any other pseudometric on
‘R that induces both an upper and a lower bound on worst-case regret (as we define it) must also be
bilipschitz equivalent to STARC metrics.

In Appendix [A]and [B] we provide an extensive analysis of both EPIC and DARD, and show that they
fail to induce similar theoretical guarantees.

4 EXPERIMENTAL RESULTS

In this section we present our experimental results. First, we demonstrate that STARC metrics provide
a better estimate of regret than EPIC and DARD in randomly generated MDPs. We then evaluate a
STARC metric in a continuous environment.

4.1 LARGE NUMBERS OF SMALL RANDOM MDPSs

Our first experiment compares several STARC metrics to EPIC, DARD, and a number of other non-
STARC baselines. In total, our experiment covered 223 different pseudometrics (including rollout
regret), derived by creating different combinations of canonicalisation functions, normalisations, and
distance metrics. For details, see Appendix For each pseudometric, we generated a large number
of random MDPs, and then measured how well the pseudometric correlates with regret across this
distribution. The regret is defined analogously to Definition [5]and [6] except that only optimal policies
are considered — for details, see Appendix We used MDPs with 32 states, 4 actions, v = 0.95, a
uniform initial state distribution, and randomly sampled sparse non-deterministic transition functions,
and for each MDP, we generated several random reward functions. For details on the random
generation process, see Appendix [G} We compared 49,152 reward function pairs (Appendix [G.4), and
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used these to estimate how well each pseudometric correlates with regret. We show these correlations
in Figure[I] and the full data is given in a table in Appendix [H] In Appendix [H.1I] we also provide
tables that indicate the impact of changing the metric m or the normalisation function n.

The canonicalisation functions we used were None (which simply skips the canonicalisation step),
CEPIC ODARD \ipimalPotential (which is the minimal “canonicalisation” that removes
potential shaping but not .S’-redistribution, and therefore is easier to compute), VALPotential
(which is given by R(s,a,s’) — V™(s) + yV™(s')), and VAL (defined in Proposition [2). For
both CEPIC and CPARD  poth Ds and D4 were chosen to be uniform over S and A. For both
VALPotential and VAL, m was chosen to be the uniformly random policy. Note that VAL is the
only canonicalisation which removes both potential shaping and S’-redistribution, and thus the only
one that meets Deﬁnition— for this reason, it is listed as “STARC-VAL” in Figure|l| For the full
details about which pseudometrics were chosen, and why, see Appendix [G.3]
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Figure 1: This figure displays the correlation to regret for several pseudometrics. Each point represents
one pseudometric, i.e. one unique combination of canonicalisation ¢, normalisation n, and distance
metric m. They are grouped together based on their canonicalisation function, with each column
corresponding to a different canonicalisation function. Pseudometrics which skip canonicalisation or
normalisation are shown in grey. The versions of EPIC and DARD that use the L, norm for both
normalisation 7 and distance metric m are highlighted in red, as these are the original versions given
in|Gleave et al.|(2020) and Wulfe et al.|(2022). The STARC metrics, which are canonicalised using
VAL, are reliably better indicators of regret than the other pseudometrics.

As we can see, the STARC metrics based on VAL perform noticeably better than all pre-existing
pseudometrics — for instance, the correlation of EPIC to regret is 0.778, DARD’s correlation is 0.782,
while VAL’s correlation is 0.856 (when using L, for both n and m, which is the same as EPIC and
DARD). Out of the 10 best pseudometrics, 8 use VAL (and the other 2 both use VALPotential).
Moreover, for each choice of n and m, we have that the VAL canonicalisation performs better than
the EPIC canonicalisation in 40 out of 42 casesE] Taken together, these results suggest that STARC
metrics robustly perform better than the existing alternatives.

Our results also suggest that the choice of normalisation function n and metric m can have a significant
impact on the pseudometric’s accuracy. For instance, when canonicalising with VAL, it is better to
use the L1 norm than the Lo norm for both normalisation and taking the distance — this increases
the correlation with regret from 0.856 to 0.873. Another example is the EPIC canonicalisation —
when paired with the weighted L., norm for normalisation and the (unweighted) L, norm for taking
the distance, instead of using the Lo norm for both, its correlation decreases from 0.778 to 0.052.
As we can see in Figure [T} this effect appears to be more prominent for the non-STARC metrics.
Another thing to note is that it seems like VALPotential can perform as well as VAL despite
not canonicalising for S’-redistribution, but only when a (7-)weighted norm is used. This may be
because T-weighted norms set all impossible transitions to 0, and reduce the impact of very unlikely
transitions; plausibly, this could in practice be similar to canonicalising for S’-redistribution. When
using VAL, L, was the best unweighted norm for both m and n in our experiment.

>The only exceptions are when no normalisation is used and m = L, and when n = weighted-Ls
and m = weighted-Ly. However, in the first case, both the EPIC-based and the VAL-based pseudometric
perform badly (since no normalisation is used), and in the second case, the difference between them is not large.
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4.2 THE REACHER ENVIRONMENT

Our next experiment estimates the distance between several hand-crafted reward functions in the
Reacher environment from MuJoCo (Todorov et al.,2012). This is a deterministic environment with
an 11-dimensional continuous state space and a 2-dimensional continuous action space. The reward
functions we used are:

1. GroundTruth: The Euclidean distance to the target, plus a penalty term for large actions.
2. PotentialShaped: GroundTruth with random potential shaping.

3. SecondPeak: We create a second target in the environment, and reward the agent based
on both its distance to this target, and to the original target, but give a greater weight to the
original target.

4. Random: A randomly generated reward, implemented as an affine transformation from
s, a, ' to real numbers with the weights and bias randomly initialised.

5. Negative: Returns —GroundTruth.

We expect GroundTruth to be equivalent to PotentialShaped, similar to SecondPeak,
orthogonal to Random, and opposite to Negative. We used the VAL canonicalisation function
with the uniform policy, and normalised and took the distance with the Ly-norm. This pseudometric
was then estimated through sampling; full details can be found in Appendix[D]and[[} The results of this
experiment are given in Table[I] As we can see, the relative ordering of the reward functions match
what we expect. However, the magnitudes of the estimated distances are noticeably larger than their
real values; for example, the actual distance between GroundTruth and PotentialShapedis
0, but it is estimated as ~ 0.9. The reason for this is likely that the estimation involves summing over
absolute values, which makes all noise positive. Nonetheless, for the purposes of ranking the rewards,
this is not fundamentally problematic.

PotentialShaped SecondPeak Random Negative
0.8968 1.2570 1.3778 1.706

Table 1: This figure displays the estimated distance (using ¢ = VAL, n = Ly, and m = Ls) between
each reward function in the Reacher environment and the GroundTruth reward function.

5 DISCUSSION

We have introduced STARC metrics, and demonstrated that they provide compelling theoretical
guarantees. In particular, we have shown that they are both sound and complete, which means that
they induce both an upper and a lower bound on worst-case regret. As such, a small STARC distance
is both necessary and sufficient to ensure that two reward functions induce a similar ordering of
policies. Moreover, any two pseudometrics that are both sound and complete must be bilipschitz
equivalent. This means that any pseudometric on R that has the same theoretical guarantees as
STARC metrics must be equivalent to STARC metrics. This means that we have provided what
is essentially a complete answer to the question of how to correctly measure the distance between
reward functions. Moreover, our experiments show that STARC metrics have a noticeably better
empirical performance than any existing pseudometric in the current literature, for a wide range of
environments. This means that STARC metrics offer direct practical advantages, in addition to their
theoretical guarantees. In addition to this, STARC metrics are both easy to compute, and easy to
work with mathematically. As such, STARC metrics will be useful for both empirical and theoretical
work on the analysis and evaluation of reward learning algorithms.

Our work can be extended in a number of ways. First of all, it would be desirable to establish more
conclusively which STARC metrics work best in practice. Our experiments are indicative, but not
conclusive. Secondly, our theoretical results assume that S and A are finite; it would be desirable to
generalise them to continuous environments. Third, we use a fairly strong definition of regret. We
could consider some weaker criterion, that may allow for the creation of more permissive reward
metrics. Finally, our work considers the MDP setting — it would be interesting to also consider other
classes of environments. We believe that the multi-agent setting would be of particular interest, since
it introduces new and more complex dynamics that are not present in the case of MDPs.
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