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Abstract

Variational Autoencoders (VAEs) are a popular framework for unsupervised learning and
data generation. A plethora of methods have been proposed focusing on improving VAEs,
with the incorporation of adversarial objectives and the integration of prior learning mecha-
nisms being prominent directions. When it comes to the former, an indicative instance is the
recently introduced family of Introspective VAEs aiming at ensuring that a low likelihood is
assigned to unrealistic samples. In this study, we focus on the Soft-IntroVAE (S-IntroVAE),
one of only two members of the Introspective VAE family, the other being the original In-
troVAE. We select S-IntroVAE for its state-of-the-art status and its training stability. In
particular, we investigate the implication of incorporating a multimodal and trainable prior
into this S-IntroVAE. Namely, we formulate the prior as a third player and show that when
trained in cooperation with the decoder constitutes an effective way for prior learning, which
shares the Nash Equilibrium with the vanilla S-IntroVAE. Furthermore, based on a mod-
ified formulation of the optimal ELBO in S-IntroVAE, we develop theoretically motivated
regularizations, namely (i) adaptive variance clipping to stabilize training when learning the
prior and (ii) responsibility regularization to discourage the formation of inactive prior mode.
Finally, we perform a series of targeted experiments on a 2D density estimation benchmark
and in an image generation setting comprised of the (F)-MNIST and CIFAR-10 datasets
demonstrating the benefit of prior learning in S-IntroVAE in generation and representation
learning.

1 Introduction

Figure 1: Prior player realizations within Intro-
spective VAEs. The prior component can be re-
garded as a third player that can actively partic-
ipate in the adversarial game along with the en-
coder and the decoder. The overlayed snowflake
indicates that the component is not updated.

Variational Autoencoders (VAEs) (Kingma & Welling,
2013; Rezende et al., 2014) constitute a popular gener-
ative framework where variational inference is utilized
to learn low-dimensional embeddings by modeling the
density of the high-dimensional data. VAEs enjoy a
plethora of applications, ranging from anomaly detection
(Chauhan et al., 2022) to representation disentanglement
(Higgins et al., 2017) and high-resolution image genera-
tion (Razavi et al., 2019).

From a representation learning perspective, VAEs pro-
duce structured latent spaces due to the regularization im-
posed by fitting a prior distribution. This contrasts with
unregularized autoencoders, which often lack such struc-
ture (Shrivastava et al., 2024; Leeb et al., 2020; Oring,
2021). These structured representations are particularly
valuable in domains like scientific discovery, where under-
standing the underlying data structure is critical (Wang
et al., 2023).

Despite VAEs falling short of other popular generative
paradigms, such as the Generative Adversarial Networks
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(GANs) (Goodfellow et al., 2020) and Diffusion models (Ho et al., 2020) in terms of generation quality, they
are distinctive in the sense of simultaneously providing the amortized inference and generation modeling
(Gatopoulos & Tomczak, 2021). Building upon that, combining VAEs with these frameworks has been a
popular research direction aiming at retaining its merits while mitigating its limitations (Makhzani et al.,
2016). With diffusion models emerging as the state-of-the-art framework for image synthesis (Yang et al.,
2022), there are recent works on VAE/diffusion hybrids (Preechakul et al., 2022; Rey et al., 2019). Addition-
ally, the VAE/GAN hybrid literature is also an established sub-field targeted at improving the poor training
stability of GANs (Mescheder et al., 2018) and generation diversity (Huang et al., 2018) while addressing
the blurry generation of VAEs.

Another independent direction to improving VAEs is learning the prior as opposed to fitting into a fixed one,
commonly the standard Gaussian. Trainable priors allow for identifying structure within the data which is
of high interest in the unsupervised and semi-supervised learning setups. Moreover, sufficiently expressive
priors are needed for generating realistic data from complex distributions (Lavda et al., 2019; Dilokthanakul
et al., 2016). Additionally, utilizing the structured capture in the latent space (Lavda et al., 2019) can benefit
the generation performance as well as provide control over the semantics of the generated samples even in
the absence of labels.

Motivated by the prospect of combining the strength of two distinct and conceptually different directions
for enhancing VAEs, we consider the problem of incorporating prior learning in the S-IntroVAE Daniel &
Tamar (2021) framework. Our intuition is that the appealing features of reducing over-regularization and
holes as enabled by prior learning are not sufficient for realistic sample generation. On the other hand,
although adversarially trained VAEs possess higher quality generation capabilities, they are still subject to
the problem associated with assuming an over-simplistic prior.

Based on these, we formulate the prior as an additional player in S-IntroVAE which participates in the
adversarial training. More specifically, we extend the original analysis provided by Daniel & Tamar (2021)
and conclude that the prior–decoder cooperation scheme is a viable option for learning the prior while
remaining faithful to the Nash Equilibrium (NE) of the vanilla S-IntroVAE. Our work is partly related
to the CS-IntroVAE (Yu et al., 2023) where a fixed three-component Mixture of Gaussian (MoG) was
integrated into S-IntroVAE by replacing the Kullback–Leibler (KL) with the Cauchy–Schwarz divergence
to allow for closed-form divergence computation. Notably, in our work, we follow the original variational
analysis provided in (Daniel & Tamar, 2021), using the KL divergence and its theoretical properties, thereby
investigating the effect of using a multimodal prior, including its trainable form, in isolation. Formally our
contributions are:

• extending the original S-IntroVAE under the prior–decoder cooperation scheme.

• two theoretically motivated regularizations (i) adaptive variance clipping and (ii) responsibilities
entropy which enable robust prior–learning cooperation.

• the experiments on a synthetic 2D density estimation and an image generation task demonstrating
the benefit of prior learning in S-IntroVAE in generation and representation learning.

2 Related Work

VAEs: In VAEs (Kingma & Welling, 2013; Rezende et al., 2014) an autoencoder-based structure is uti-
lized, along with variational inference, to maximize a lower bound on the marginal log-likelihood of the data
(the evidence lower bound, ELBO). More specifically, this resorts to simultaneously minimizing the sum of
the empirical reconstruction error and the Kullback–Leibler (KL) divergence between the extracted latent
representations and an assumed prior (typically the standard Gaussian distribution). A tighter ELBO was
proposed by Burda et al. (2015), based on an importance weighting scheme, providing more flexibility during
training by being more forgiving of inaccurate posterior estimates. Hierarchical variations of VAEs (Sønderby
et al., 2016; Vahdat & Kautz, 2020) rely on multiple stochastic layers where each of them is conditioned on
the previous one, resulting in more efficient representation learning (Zhao et al., 2017; Child, 2020).
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Prior Assumption in VAEs: Several studies suggest that assuming an over-simplistic prior can over-
regularize the VAEs hindering their performance (Hoffman & Johnson, 2016; Lin & Clark, 2020; Tomczak
& Welling, 2018). Goyal et al. (2017) argue that assuming a standard Gaussian prior can omit meaningful
semantic information in the latent representation. Moreover an over-simplistic prior introduces holes in the
prior negatively affecting the generation capabilities of VAEs (Aneja et al., 2021; Rezende & Viola, 2018).
Towards addressing this shortcoming, Tomczak & Welling (2018) proposed the VampPrior where trainable
pseudo-inputs are fed into the encoder providing the parameters of a MoG distribution to replace the stan-
dard one. Connor et al. (2021) adopt a manifold-learning approach to define an MoG prior, which is better
crafted for the latent space of the data. Kalatzis et al. (2020) assume a Riemannian latent space where the
prior is inferred from the data, replacing the standard Gaussian with a Brownian motion prior.
Adversarial Objectives in VAEs: In Adversarial Autoencoders (AEEs) (Makhzani et al., 2016) the latent
space is regularized into following the assumed prior through a min-max game between the encoder and a
discriminator module. The VAE/GAN hybrid was proposed by Larsen et al. (2016) where the similarity
distance, for measuring the reconstruction error, is implicitly learned through an adversarial game in which
the decoder network serves as both a VAE decoder and the generator of a GAN. In the seminal IntroVAE
(Huang et al., 2018), the VAEs are framed as an adversarial game between the encoder and the decoder
by considering the KL divergence as an energy function. The S-IntroVAE improves the training stability
of IntroVAE, while also providing the theoretical analysis suggesting that introspective VAEs constitute a
variational instance of GANs. In CS-IntroVAE (Yu et al., 2023) the KL was replaced by Cauchy–Schwarz
divergence while using a fixed three-component MoG in S-IntroVAE leading to improved generation perfor-
mance.

3 Background

Our work builds upon the framework proposed by Daniel & Tamar (2021). To avoid confusion we adopt,
whenever possible, identical notations as presented in their work. Let x ∼ pdata(x) be a data sample and z
its latent representation. A VAE aims at learning a parametric model pdθ

(x, z) = pdθ
(x|z)pz(z) such that

the marginal log-likelihood of the data is maximized. Due to the intractability of that likelihood (Kingma &
Welling, 2013), we resort to maximizing the ELBO. Assuming a prior pz on the latent space, an encoder qϕ

providing the approximating posterior and a decoder pdθ
, parametrized by ϕ and θ respectively, we evaluate

the ELBO, denoted as W , at point x as:

W (x; qϕ, pdθ
) = − KL[qϕ(z|x)||pz(z)] + Ez∼qϕ(z|x)[log pdθ

(x|z)] ≤ log p(x), (1)

with KL[·||·] denoting the KL divergence. In practice, the encoder and the decoder are typically realized
through neural networks with parameters ϕ and θ, respectively. The β-VAE reformulates the ELBO by
weighting the relative contribution of the KL term using the β hyperparameter, that is:

W (x; qϕ, pdθ
, β) = −β · KL[qϕ(z|x)||pz(z)] + Ez∼qϕ(z|x)[log pdθ

(x|z)]. (2)

Note that, from an optimization perspective, the β-VAE ELBO formulation is equivalent to using independent
weighting hyperparameters for each of its constituting terms, such that W (x; qϕ, pdθ

, βrec, βKL) = −βKL ·
KL[qϕ(z|x)||p(z)] + βrec · Ez∼qϕ(z|x)[log pdθ

(x|z)]. This ELBO formulation is convenient for tuning the S-
IntroVAE and therefore is the adopted ELBO formulation. Additionally, we will omit expressing the ELBO
in terms of βKL and βrec to enhance clarity.

3.1 Learning the optimal prior

In light of the previously discussed implication of imposing a simple prior in VAE, the question arises: what
is the optimal prior pz(z)? In this aspect, an insightful reformulation of the empirical ELBO is provided by
Tomczak (2022):

Ex∼pdata(x)[W (x; qϕ, pdθ
, βrec, βKL)] = βrec · Ex∼pdata(x)[Ez∼qϕ(z|x)[log pdθ

(x|z)]
+ βKL · (H[qϕ(z|x)]] − CE[qϕ(z)||pz(z)]) ,

(3)
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with H[·] and CE[·||·] denoting the Shannon and the cross-entropies, respectively, and qϕ(z) =
Ex∼pdata(x)[qϕ(z|x)] is the aggregated posterior. The formulation above suggests that the optimal prior
can be found as the maximizer of the ELBO, namely pz(z) = qϕ(z), as this is when the negative cross
entropy term is maximized (Gibbs’ inequality). Towards this, utilizing a trainable MoG prior emerges as a
relevant alternative to the standard Gaussian. A prior–encoder pairing was realized by Tomczak & Welling
(2018), termed as VampPrior, leading to better separation in latent space. Formally the MoG and Vamp
M -modal priors are parametrized as:

pλ(z) =
M∑

i=1
wi · N (z|µi, σ2

i I) and pq(z) =
M∑

i=1
wi · qϕ(z|xi) (4)

respectively, with
∑M

i=1 wi = 1 and wi the contribution of each component, µi and σi the means and variances
of the MoG prior and xi pseudo-inputs for the VampPrior.

3.2 S-IntroVAE

In typical VAEs, the encoder and the decoder are updated simultaneously in a single backpropagation stage.
Motivated by the observation that assigning a high likelihood for the real data does not necessarily imply
assigning a low likelihood for the unlikely ones, the Introspective VAEs family (Huang et al., 2018; Daniel &
Tamar, 2021) formulates an adversarial game between the encoder and the decoder. In S-IntroVAE (Daniel
& Tamar, 2021), the ELBO is regarded as an energy function, and on that basis, the encoder is induced to
assign high energy to real and low energy to generated data. On the contrary, the decoder aims at generating
data (i.e., reconstructed and generated samples) that resemble those of the real data distribution to fool the
encoder. The above setup constitutes an adversarial game between the encoder and the decoder similar to
the GAN (Goodfellow et al., 2020) paradigm.

For notational brevity in the derivations below we drop the dependence on the parameters θ and ϕ and
simply write d for the decoder and q for the encoder, while we henceforth refer to Ex∼p(x)[·] simply as Ep[·]
when clear from the context. Then, formally, given the empirical pdata(x) and pd(x) = Epz(z)[pd(x|z)] the
generated data distribution, the encoder q and decoder d are alternately updated towards maximizing their
respective objectives Lq(q, d) and Ld(q, d) defined as:

Lq(q, d) = Epdata [W (x; q, d)] − Epd
[ 1
α

· exp(αW (x; q, d))],

Ld(q, d) = Epdata [W (x; q, d)] + γ · Epd
[W (x; q, d)] ,

(5)

where α ≥ 1 and γ ≥ 0 are hyperparameters. Daniel & Tamar (2021) show that there is a NE for this
two-player game. Specifically, define d∗ as:

d∗ ∈ arg min
d

{KL[pdata(x)||pd(x)] + γ · H[pd(x)]} . (6)

Assumption 1 (Modified - Daniel & Tamar (2021)). For all x such that pdata(x) ≥ 0 we have that
[pd∗(x)]α+1 ≤ pdata(x).
Remark 1. The assumption above is a modified version of the one used by Daniel & Tamar (2021) and
essentially suggests that pd∗(x) has to be sufficiently enclosed by the true data distribution. This modification
corrects a seemingly minor oversight that, however, has important implications in the interpretation of the
Theorem. We refer readers to B.1 for a detailed explanation of this matter.
Theorem 1 (Daniel & Tamar (2021)). Under the Assumption 1, the pair of optimal q∗ = pd∗(z|x) and d∗

as defined in (6) constitutes a NE of the game (5).

We refer the readers to the original work of Daniel & Tamar (2021) for the proof that for every pdata there
always exists γ ≥ 0 such that Assumption 1 holds for pd∗ . Theorem 1 suggests that, at convergence, the
S-IntroVAE formulation leads to optimal inference capabilities (i.e., the approximated posterior equals the
true one) while the generated data distribution converges to an entropy-regularized version of the true data
distribution.
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4 Prior Learning in S-IntroVAE

Algorithm 1 Prior Learning in S-IntroVAE Daniel & Tamar (2021). The red-highlighted segments indicate
the parts that differ from the standard Gaussian S-IntroVAE. The Lrec and the LKL refer to the reconstruction
loss and the KL divergence between the posterior and the prior target respectively, whereas the Lsg

KL is a
modified KL divergence that applies the stop-gradient sg operator on the prior as target.
Require: βrec, βKL, βneg , γ, η, rentropy, K
1: ϕE , pΛ, θD ← Initialize network parameters
2: s← 1/input dim ▷ Scaling constant
3: γr ← 10−8 ▷ Scaling parameter for fake data reconstruction
4: a, b← Clipping ranged found after the VAE training stage ▷ A VAE training stage precedes adversarial training

5: while not converged do
6: xreal ← Random mini-batch from dataset
7: zµ, zlogvar, w ← Get MoG prior parameters from pΛ
8: zC

logvar ← ClipLogvariance(zlogvar, a, b, K)
9: zs ← SampleFromMoG(zµ, zC

logvar, w)

10: UpdateEncoder(xreal, zs, ϕE , βrec, βKL, βneg , rentropy, η)
11: UpdatePriorAndDecoder(xreal, zs, pΛ, θD, βrec, βKL, γ, γr, η)
12: end while

13: procedure UpdateEncoder(xreal, zs, ϕE , βrec, βKL, βneg , rentropy, η)
14: W ← −s · (βrec ·Lrec(xreal) + βKL ·LKL(xreal))
15: Wf ← −s · (βrec ·Lrec(D(zs)) + βneg ·LKL(D(zs)))
16: exp Wf ← 0.5 · exp(2 ·Wf )
17: C = ComputeResponsibilities(xreal)
18: EntropyC = NormalizedEntropy(C)
19: LE ←W − exp Wf +s · rentropy · EntropyC
20: ϕE ← ϕE + η∇ϕE

(LE) ▷ Adam update
21: end procedure

22: procedure UpdatePriorAndDecoder(xreal, zs, pΛ, θD, βrec, βKL, γ, γr, η)
23: W ← −s · (βrec ·Lrec(xreal) + βKL ·LKL(xreal))
24: Wf ← −s · (γr · βrec ·Lrec(sg(D(zs))) + βKL ·Lsg

KL(D(zs)))
25: LP D ←W + γ ·Wf

26: θD ← θD + η · ∇θD
(LP D) ▷ Adam update

27: pΛ ← pΛ + η · ∇pΛ (LP D) ▷ Adam update
28: end procedure

29: function ClipLogvariance(zlogvar, a, b, K)
30: zC

logvar ← Clipping the logvariance ▷ Eq. 10
31: return zC

logvar
32: end function

33: function SampleFromMoG(zµ, zlogvar, w)
34: i← Samples a mode index from Categorical(w)

35: z
(i)
std ← exp

(
0.5 · z(i)

logvar

)
36: zs ← Samples from N (z(i)

µ , z
(i)
std)

37: return zs

38: end function

39: function ComputeResponsibilities(x)
40: Compute the expected responsibilities for each mixture component ▷ Eq. 11
41: Construct the responsibility vector C ▷ Eq. 12
42: return C
43: end function

44: function NormalizedEntropy(C)
45: Compute the entropy of responsibility vector C
46: Normalize the entropy ▷ Footnote 1
47: return EntropyC
48: end function
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4.1 Theoretical analysis

In this section, we extend S-IntroVAE by introducing a third player dedicated to modeling the prior. Our
formulation draws inspiration from DeLiGAN Gurumurthy et al. (2017) where the noise in GANs was
parametrized by a learnable MoG. In contrast to DeLiGAN, in our setting the prior (which is similar to
the noise in GANs) has a dual role as (i) the source of the generated data distribution and (ii) the target
based on which the adversarial training is performed. We theoretically analyze the implication of training
the prior within the S-IntroVAE and conclude that learning it in cooperation with the decoder constitutes
a viable option for prior learning.

In our three-player setup the encoder q, the decoder d, and the prior λ are all flexible. We denote the
generated data distribution as pλ

d(x) = Epλ(z)[pd(x | z)] to highlight its dependence on both the decoder d
and the prior λ players. In that case, the adversarial game of (5) becomes:

Lq(λ, q, d) = Epdata [W (x; λ, q, d)] − Epλ
d

[
1
α

· exp(α · W (x; λ, q, d))
]

,

Ld(λ, q, d) = Epdata [W (x; λ, q, d)] + γ · Epλ
d

[W (x; λ, q, d)] .

(7)

The encoder is trained to maximize the Lq whereas the prior and the decoder maximize the Ld objective
(i.e, prior–decoder cooperation). Below we show that prior–decoder cooperation is a viable option for prior
learning which retains NE from the original S-IntroVAE formulation.

We modify (6) to support our learnable prior setup as: Let Λ denote the set of possible parameterizations
of the prior and λ ∈ Λ.

Let us now define:
(λ∗, d∗) ∈ arg min

λ,d

{
KL[pdata(x)||pλ

d(x)] + γ · H[pλ
d(x)]

}
. (8)

Let us also extend Assumption 1 to account for the prior being learnable.
Assumption 2. For all x such that pdata(x) ≥ 0 we have that [pλ∗

d∗ (x)]α+1 ≤ pdata(x).
Corollary 1. Under the Assumption 2, when training the prior player λ in cooperation with the decoder
player d then the triplet q∗ = pλ∗

d∗ (z|x), λ∗ and d∗ as defined in (8) constitutes a NE of the game (7).

Sketch of proof. The proof of Corollary 1 follows from Theorem 1, under the modified Assumption 1 (see
Remark 1). Analogous to Theorem 1 (Daniel & Tamar (2021)), proving Corollary 1 entails first showing that
the optimal encoder converges to the true posterior under the Assumption 2. Then, given that the encoder
has converged, the prior and the decoder as defined in (8) maximize the Ld objective as defined in (7). This
completes the proof of Corollary 1.

Our three-player formulation is similar in nature to S-IntroVAE with the encoder converging to the true
posterior while the generated data distribution converges to an entropy-regularized version of the real data
distribution. The key difference, however, lies in the fact that our formulation allows for a trainable prior,
unlocking the merits of prior learning such as mitigating the prior hole problem, unsupervised clustering
Dilokthanakul et al. (2016), explainability Klushyn et al. (2019), and more controllable generation Lavda
et al. (2019). More specifically, for fixed encoder q and decoder d, given a batch of real and generated data
respectively, the prior update seeks (i) to support a linear combination (controlled by the γ hyperparameter)
of the empirical real and fake aggregated posterior and (ii) be idempotent under the projection by d.

4.1.1 Optimal ELBO in the assumption-free setting

Corollary 1 requires Assumption 2 to hold, however, in practice this might not be the case, especially
early in training. For instance, having a pλ

d(x) generating (i) out-of-distribution data or (ii) realistic
samples at a disproportionately higher rate compared to the real distribution, are two obvious cases
where such an assumption is violated. Analyzing the behavior of the encoder in these cases provides an
intuitive connection to regularly trained VAEs and motivates some of our implementation choices. Let
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X = {x|x ∈ pdata(x) > 0 ∪ pλ
d(x) > 0} (i.e., the set of all possible samples in the union of real and generated

data supports), we define the ELBO W (x; λ, q∗, d) as:

W (x; λ, q∗, d) =



−∞, x ∈ {x ∈ X | pdata(x) = 0}

1
α · log pdata(x)

pλ
d

(x) , x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ
d(x)]α+1 > pdata(x)}

log pλ
d(x), x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ

d(x)]α+1 ≤ pdata(x)}}

(9)

Proposition 1. Given a fixed generated data distribution pλ
d(x) the q∗ maximizing Lq(λ, d, q) in Eq. 7 is

such that the ELBO W (x; λ, q∗, d) satisfies Eq. 9.

The proposition above suggests that under the Assumption 2 the encoder in S-IntroVAE behaves similar to
the one in regular VAEs. Alternatively, as a consequence of the repelling objective acting on the generated
data, the encoder in S-IntroVAE diverges from its VAE-optimal state. This divergence depends on the
sample-wise mismatch between pλ

d(x) and pdata(x). Interestingly, it also appears that the optimal ELBO
with respect to the encoder is a continuous function of the pdata(x) measure.

4.1.2 Practical implications in the assumption-free setting

Let us now investigate how the theoretical claims suggested by Proposition 1 are realized in practice. For
this purpose, the image generation setting was deemed an appropriate testbed due to being easy to interpret
while at the same time sufficiently complex allowing us to draw generalizable conclusions. Note that propo-
sition only concerns the optimal encoder given fixed real and generated distributions. Based on that, we
employ a well-trained S-IntroVAE and overfit the encoder network while keeping the prior and decoder fixed.
In this regard, having the prior and the decoder fixed translates to having a fixed generated data distribution.

As outlined by the proposition, the encoder treats each sample x (i.e., image in this context) differently
depending on the likelihood ratio between pdata(x) and pλ

d(x). Unfortunately, to this end, we can not make
use of the Proposition 1 as we do not have access to the analytical densities of either of these distributions.
To overcome the aforementioned challenge we use a subset of the real data distribution to construct
synthetic real and generated data distributions, denoted as psyn

data(x) and pλ
d

syn(x) respectively. Additionally,
it was also necessary, to use a batch size of 1 to avoid leaking information between samples inside and
outside of the support of real data distribution due to the batch normalization layers. Based on these
synthetic distributions, we can use them as proxies for testing the proposition. Specifically, we experiment
with three distinct configurations with different properties: (i) psyn

data(x) = pλ
d

syn(x) where both distributions
consist of multiple different samples (ii) psyn

data(x) consisting of a single sample, whereas pλ
d

syn(x) consists of
multiple samples, including the single sample from of the psyn

data(x) and (iii) the reversed (ii) where psyn
data(x)

and pλ
d

syn(x) distributions are swapped. We used 10 samples (one for each class) to construct the synthetic
distributions.

In its theoretical faithful realization the results for (i), (ii) and (iii) are displayed on the left side of Figure
2 under βneg = 1. These closely align with what has been suggested by the proposition where when the
likelihood of generating a sample is sufficiently enclosed by the likelihood of observing that sample in
the real data distribution then the encoder pushes the ELBO towards VAE-optimal levels. On the other
hand, in cases where there is a significant likelihood mismatch the encoder can afford to either push the
ELBO to its optimal level or diverge from that depending on whether the mismatch appears with respect
to the real or the fake data distribution. For instance, when looking at configuration (ii) (2nd row) the
encoder minimizes the NELBO (negative ELBO) for the image that is 10 times more likely under the real
distribution compared to the fake distribution, whereas the NELBO increases for the samples outside the
support of the real data distribution.
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Figure 2: Overfitting the encoder given a fixed generated data distribution across three different configura-
tions (rows). The experiment was conducted both under the theoretically faithful hyperparameter setting
(βneg = 1 - left) and the one used in praticse (βneg = 256 - right). The first line in the REC, KL and NELBO
plots refers to the real data distribution whereas the second one refers to the generated data distribution.
The images 4th columns correspond to the real data distribution, reconstructed of real data distribution,
generated data distribution and reconstructed generated data distribution from top to bottom. The figures
above were generated by utilizing a trained S-IntroVAE under a 10-modal MoG prior.

In practice, when computing the loss corresponding to maximizing Lq objective, the real and fake ELBOs use
different weights for the reconstruction and the KL losses, in particular for CIFAR-10 the βneg, corresponding
to the βKL for the fake ELBO, was set to 256 while the remaining β′s were set to 1. Using βneg = 256
essentially prompts the encoder to focus more on the KL compared to the reconstruction loss when repelling
the fake data. However, even in this case, where the hyperparameter configuration diverges from the one
theoretically accounted for, we observe that similar patterns emerge.

4.2 Implementation

In this section, we outline the implementation choices as well as the motivation behind them enabling prior
learning in S-IntroVAE in a prior–decoder cooperation manner. Pseudo-code for the prior learning in S-
IntroVAE is provided in Algorithm 1.

4.2.1 Prior as source and target

In the prior–decoder cooperation setting the prior player λ maximizes Ld(λ, q, d). In practice, given a real
xreal and zs ∼ pλ(z), the prior minimizes the loss LP (xreal, zs) given by:

LP (xreal, zs) =βrec · Lrec(xreal) + βKL · LKL(xreal) + γ ·
(
γr · βrec · Lrec(sg(D(zs)))

+ βKL · LKL(D(zs))
)
,

(10)

where D(zs) is the fake sample generated from decoding the latent zs, while Lrec and LKL the reconstruction
and the KL losses respectively. We remained consistent with the S-IntroVAE, where the reconstruction
of fake data was scaled by γr = 10−8, and the stop-gradient (sg) operator was applied when generating
a fake sample before computing its reconstruction loss. Additionally, we observe that the reconstruction
loss for the real sample is not affected by the prior. In light of these, the prior player is trained both as a
target for the real and fake posterior and as a source of fake samples. Based on that, a subtle issue arises
when minimizing the LKL(D(zs)) term, since the prior can minimize it by either becoming a good source
for generating realistic data or a good target that supports the posterior of generated data of low quality.
The latter case is particularly problematic during the early stages of training, when the generated data lie
outside the support of the real data, causing the encoder to assign a suboptimal posterior, as described in
Proposition 1. To address this, we follow Shocher et al. (2023) and apply the sg operator to the prior as the
target while allowing gradient flow for the prior as the source when computing LKL for the fake samples.
We henceforth refer to this modified LKL as Lsg

KL which replaces the original when computing the KL loss
of the D(zs) in (10).
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(a) (b)

Figure 3: Regularization for robust prior learning in S-IntroVAE. (a) Clipping the prior log-variance is crucial
for maintaining the stability of S-IntroVAE under the prior–decoder cooperation. Two models were trained
on CIFAR-10 for 120 epochs or until crashing. Without clipping, the log-variance tends to explode, leading
to an increase in the FID metric and ultimately causing the model to generate indiscernible patterns before
crashing. An unimodal trainable prior was used for both models differing only by the log-variance clipping.
(b) Emerging mode collapse due to unconstrained generation. We trained two models on CIFAR-10 for 200
epochs under a 10-modal MoG (log-variance clipped), differing only in the amount of entropy regularization.
The red border indicates samples generated by inactive modes (i.e., average responsibility smaller than
10−2). Note that not regularizing the responsibility entropy quickly degenerates into an unimodal prior
setting where a single mode is responsible for supporting the aggregated posterior. The unimodal collapse
eventually leads to mode collapse and an increase in FID due to the unconstrained generation originating
from the inactive modes. On the contrary, regularizing the responsibility entropy maintains more uniform
responsibility allocation among the modes and addresses the mode collapse issue.

4.2.2 Adaptive variance soft-clipping

Although theoretically sound, the prior–decoder cooperation scheme led to instabilities. In particular when
parameterizing the prior as a MoG prior (4) these instababilities manifested as exploding prior log-variances
(see Fig. 3a) that became evident as the real data distribution became more complex (e.g. CIFAR-10
images vs 2D data). We attribute the aforementioned behavior to the interplay of three aspects: (i) the
encoder pushing to suboptimal ELBOs (i.e., suboptimal reconstruction and KL losses) for those samples
whose likelihood in fake data distribution is not sufficiently enclosed by the real one (see Proposition 1 and
its practical implication in 4.1.2), (ii) hyperparameter-tuning caveats where good results generally required
setting the βKL of the fake ELBO (termed as βneg) to be an order of magnitude of the latent dimension
Daniel & Tamar (2021) and (iii) the behavior of the target distribution in KL minimization where the
target variance increases when the source posterior is unlikely under the target mean distribution (see C.4).
Notably, (i) and (ii) promote the posterior of the real samples that overlap with insufficiently enclosed fake
ones to diverge from the prior whereas (iii) increases the variance of the prior in an attempt to support a
diverging aggregated posterior, which can lead to exploding log-variance in severe cases of (i) – corresponding
to the second row of (9). Eliminating (i) or (ii) requires extensive hyper-parameter tuning for each pdata,
assuming that such a hyper-parameter set even exists. Instead, we opted to address the issue of exploding
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log-variances by tackling (iii). Namely, we employed an adapting soft-clipping scheme inspired by Chua et al.
(2018); Chang et al. (2023) where instabilities were also observed when learning log-variances. Concretely,
for each latent dimension j, the prior log-variance is clipped to the range [aj , bj ] using the function fc, defined
as:

fc(x) = x + 1
βj

· log 1 + exp(βj · (aj − x))
1 + exp(βj · (x − bj)) , (11)

with βj = K
bj−aj

and K a positive hyperparameter. The formulation above allows for controlling the steepness
of clipping in a unified way using a single hyperparameter K for all latent dimensions. We elaborate further
on this choice in C.1. For our all our experiments we used K = 10.

4.2.3 Responsibilities regularization

Due to the nature of the Lq objective inducing the encoder to act as a discriminator between real and fake
data, it is evident that the posterior can diverge arbitrarily from the prior (see Proposition 1).

In practice, we observed that such behavior can cause certain prior components, of a MoG prior, to become
more dominant than others in terms of the responsibilities of prior modes to posterior, leading to the
formation of inactive prior modes and vanishing gradients (see C.3.2). Consequently, as the aggregated
posterior is only supported by a portion of the prior modes, there are not multiple real samples competing
for the same region of the latent space leading to unconstrainted generation when sampling for those inactive
prior modes. Note that the issue of inactive prior modes formation is applicable both when having a trainable
(prior–decoder cooperation) and fixed MoG prior. To alleviate this we employ an entropy regularization on
the responsibilities of each prior component discouraging inactive modes from forming. Concretely, the
responsibility ci corresponding to the ith mode is computed as:

ci = Ex∼pdata(x)Ez∼qϕ(z|x)

[
wi · N (z|µi, σ2

i I)∑M
l=1 wl · N (z|µl, σ2

l I)

]
. (12)

Finally, we define the responsibility vector as:

C = [c1, c2, . . . , cM ], (13)

and compute its normalized entropy 1 Hn(C). The Hn(C) weighted by a non-negative hyperparameter
rentropy, is added to the Lq objective. Notably, our responsibility regularization is closely related to the
mean entropy maximization regularizer used by Assran et al. (2022); Joulin & Bach (2012) regularizing the
mode assignments instead of cluster assignments. Ultimately, encouraging uniform responsibilities accounts
for the vanishing gradient issue. We provide the derivation for the prior mode responsibilities in C.3. Fig 3b
illustrates a representative case of responsibility entropy development when left unregularized. Note that the
responsibility regularization is relevant only for multi-modal priors and therefore not needed in the original
S-IntroVAE under the standard Gaussian prior.

5 Experiments

In this section we investigate the impact of learning the prior in S-IntroVAE. Our testbed consists of a 2D
density estimation benchmark alongside three image datasets of varying complexity. To crystallize the effect
of prior learning we compare multiple key prior configurations with varying levels of flexibility. Namely, we
considered the standard Gaussian, the fixed multi-modal MoG and the trainable multi-modal MoG priors
while also ablate over learnable and uniform mixture contributions, when relevant. Concretely the prior
configurations considered in our experiments are:

1The entropy is normalized by dividing it by the maximum entropy given M possible assignments, where M is the number
of prior components in the MoG.

10



Under review as submission to TMLR

• Standard Gaussian: The commonly used isotropic Gaussian prior N (0, I).

• Fixed MoG with uniform component contributions: A VampPrior with uniform contribution
weights that is trained during the VAE stage, turned into a MoG 2 and remained fixed during the
adversarial training.

• Trainable MoG with uniform component contributions: A VampPrior with uniform contri-
bution weights that is trained during the VAE stage, turned into a MoG and continue being trained
throughout the adversarial training.

• Fixed MoG with learnable component contributions: A VampPrior with learnable compo-
nent contributions weights that is trained during the VAE stage, turned into a MoG and remained
fixed during the adversarial training.

• Trainable MoG with learnable component contributions: A VampPrior with learnable com-
ponent contributions weights that is trained during the VAE stage, turned into a MoG and continue
being trained throughout the adversarial training.

Importantly, any argument in favor of prior learning (i.e., trainable MoG) should be supported by perfor-
mance improvements over both the standard Gaussian and the fixed MoG configurations.

(a) (b)

Figure 4: (a) Real data (b) Qualitative results on density estimation, within each dataset we provide, from
left to right, the results under the standard Gaussian, fixed and trainable MoG with learnable contributions
corresponding to the 2nd, 5th and 6th columns in Table 1 respectively.

5.1 2D - density estimation

For the Density estimation benchmark, we adopt the same evaluation scheme as originally used in S-IntroVAE
(Daniel & Tamar, 2021), namely, we use the gnELBO (grid-normalized ELBO) and the histogram-based KL
and JSD (Jensen–Shannon divergence) divergences as measures of the inference, the forward and reverse
generation capabilities, respectively.

To understand how modeling the prior as a third player affects S-IntroVAE we compare three discrete
prior settings, namely (i) standard Gaussian, (ii) fixed MoG and (iii) trainable MoG in decoder-cooperation,
termed as Intro-Prior (IP) (see Fig. 1 for a conceptual visualization of the three settings). When utilizing MoG
priors we experimented with both uniform and learnable contribution (LC) of each mode while we modeled
the multi-modal prior using 64 components. More specifically, for the LC configuration, the contributions
were learnable for both (ii) and (iii) during the VAE pre-training stage whereas during the adversarial
training remained learnable only for (iii). The VampPrior was used during the VAE stage due to its benefits
in latent space structuring over the MoG (Tomczak & Welling, 2018). The latter was turned into a MoG
(see Footnote 2) during the adversarial training to ensure prior–decoder cooperation and to exploit the
properties of its NE as given by Corollary 1. More specifically, we note that under the VampPrior, the prior
is paired with the encoder establishing a prior–encoder cooperation. As analyzed in B.2.1, this cooperation

2The VampPrior was turned into a MoG by loading the aggregated posterior of the pseudoinputs into the parameters of a
MoG, ultimetely breaking the prior-encoder pairing.
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leads to the prior and the decoder pulling the generated data distribution toward potentially incompatible
objectives. When it comes to the regularization, the beta-adapting log-variance clipping was used for IP
with K = 10 and [aj , bj ] set to the minimum and maximum log-variance in each latent dimension j as found
during the VAE warm-up while the mode responsibilities were left unregularized (i.e., rentropy = 0). For
all prior settings, we used 100 Monte Carlo samples to approximate the KL divergence between uni- and
multi-modal Gaussian distributions.

Model → VAE S-IntroVAE S-IntroVAE

Prior Type → SG MoG(64)

LC Flag → N/A N/A ✗ ✗ ✓ ✓

IP Flag → N/A N/A ✗ ✓ ✗ ✓

8G
au

ss
ia

n gnELBO ↓ 7.48 ±0.03 0.51 ±0.07 3.62 ±0.31 4.8 ±0.15 0.25 ±0.02 0.26 ±0.04

KL ↓ 6.94 ±0.36 1.23 ±0.05 4.46 ±2.63 2.36 ±0.3 1.94 ±0.33 2.24 ±0.71

JSD ↓ 17.41 ±0.12 1.01 ±0.08 1.77 ±0.7 1.79 ±0.09 1.13 ±0.12 1.08 ±0.07

2S
pi

ra
ls gnELBO ↓ 6.23 ±0.01 6.41 ±0.27 6.41 ±0.43 6.04 ±0.36 5.81 ±0.4 6.47 ±0.28

KL ↓ 10.18 ±0.16 9.5 ±0.55 8.61 ±0.35 8.31 ±0.2 9.45 ±0.56 8.02 ±0.11

JSD ↓ 4.94 ±0.11 4.21 ±0.22 3.76 ±0.04 3.53 ±0.04 3.89 ±0.08 3.64 ±0.07

C
he

ck
er

bo
ar

d

gnELBO ↓ 8.62 ±0.05 7.21 ±0.05 8 ±0.03 7.66 ±0.13 7.81 ±0.09 7.67 ±0.06

KL ↓ 20.79 ±0.08 19.62 ±0.25 18.58 ±0.22 18.72 ±0.27 19.04 ±0.65 17.7 ±0.11

JSD ↓ 9.97 ±0.06 8.87 ±0.07 8.65 ±0.04 8.71 ±0.08 8.9 ±0.22 8.46 ±0.07
R

in
gs

gnELBO ↓ 6.37 ±0.04 6.03 ±0.05 6.73 ±0.18 6.86 ±0.16 6.4 ±0.34 6.65 ±0.18

KL ↓ 13.3 ±0.28 9.99 ±0.27 10.07 ±0.37 9.77 ±0.31 11.31 ±0.56 10.31 ±1.03

JSD ↓ 7.4 ±0.08 4.05 ±0.07 4.13 ±0.08 4.12 ±0.07 5.19 ±0.33 4.33 ±0.33

Table 1: Quantitative performance on the four 2D
datasets was evaluated. The LC flag refers to the com-
ponent contributions being learnable while the IP flag
refers to training the prior (i.e., prior–decoder cooper-
ation scheme). Reported values are mean ± standard
error over five runs.

In line with Daniel & Tamar (2021), we identified
the optimal hyperparameters (i.e., βrec, βKL and
βneg) by performing an extensive grid-search while
we used α = 2 and γ = 1.

In Table 1 we report the average (mean ± standard
error) performance across five seeds. As already re-
ported by Daniel & Tamar (2021) the VAE formula-
tion lags behind the S-IntroVAE across all metrics.
Regarding prior learning in S-IntroVAE, the quanti-
tative results suggest that in most cases, IP improves
the generation performance compared to when using
the SG prior or the fixed MoG. In particular, this is
more evident when looking at the histogram-based
KL metric. The observation above aligns with our
intuition as according to Corollary 1 both the prior
and the decoder players cooperate towards minimiz-
ing the KL[pdata(x)||pλ

d(x)] term boosting the for-
ward generation performance. An exception to this
trend is observed on the 8Gaussian dataset, where
training under the standard Gaussian prior achieves
the best generation results. Since the 8Gaussian dis-
plays the most multi-modal structure (i.e., large ar-
eas of low density) we attribute this deviation to the
trade-off between stability and modeling multi-modal distribution with push-forward models as discussed in
Salmona et al. (2022).

Additionally, when evaluating the qualitative performance as depicted in Fig. 4 we observe that the IP
formulation tends to give rise to better-separated clusters in the latent space, more intuitive support of the
aggregated posterior, and fewer samples in between the modes.

5.2 Image generation

We investigate whether and to which extent prior learning improves the generation performance and the
representation learned using the (F)-MNIST and CIFAR-10 datasets. We evaluate the generation quality
using the FID metric for samples generated from sampling from the prior and the aggregated posterior
denoted as FID(GEN) and FID(REC) respectively. To get a better more holistic view of how prior learning
impacts the generation, we also report the recall and precision metrics Kynkäänniemi et al. (2019), denoted
as Recall(GEN) and precision(GEN) respectively.

The quality of the representations learned by the encoder was evaluated by fitting a linear SVM, similar
to Kviman et al. (2023), using 2K-SVM and 10K-SVM iterations as well as utilizing a k-nearest neighbor
classifier (k-NN) using 5-NN or 100-NN (Caron et al., 2021).

We use the default training hyperparameters and architectures as provided by Daniel & Tamar (2021) to
train the S-IntroVAE, except that the first 20 epochs were used as a VAE training warm-up. We conduct
experiments using the same configuration used for the 2D data, while we employ the rentropy regularization
with a value chosen from {0, 1, 10, 100} and report the quantitative results for the one that led to the
optimal FID(GEN) for each prior setting. The prior was modeled using 10 and 100 components and found
that the latter is superior across all metrics, whether using the fixed or trainable MoG configurations, which
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is an indication that using a sufficiently large number of components is essential. The results provided in
Table 5 suggest that replacing the standard Gaussian with a MoG prior (either fixed or trainable) can benefit
both the quality of the generation and the learned representation, however, the benefit is less profound in
CIFAR-10 compared to the (F)-MNIST datasets. We attribute this behavior to CIFAR-10 potentially being
(close-to) uni-modal distribution (Salmona et al., 2022) as opposed to (F)-MNIST which are more likely to
be multi-modal.

At this stage, it is natural to question whether the increased generation performance of the MoG configura-
tions is a byproduct of memorized samples in the mixture modes. In this regard, a high precision accompanied
with low recall would be an indication of model memorizing specific training samples at the expense of dis-
tribution coverage. The results shown in Table 5 do not hint such sample memorization behavior, that is,
the relative relationship between recall and precision is similar across all settings.

When comparing fixed (w/o IP) to trainable (w/ IP) MoG priors, we observe a trend where the IP achieves
optimal generation performance in two out of the three image benchmarks. When it comes to linear separa-
bility, the IP significantly improves over the fixed MoG for two out of the three benchmarks. Interestingly,
learning the prior significantly improves the classification performance under the k-NN model across all
datasets. This suggests that prior learning in S-IntroVAE leads to a more defined class separation and more
interpretable latent space, where similar samples are more effectively clustered together.

Figure 5: Visualizing the first two latent dimensions of the
latent space and the t-SNE 2D embeddings of the full latent
space. The columns correspond to those in Tab. 5. Differ-
ent colors correspond to different classes. The black dots
refer to the means of the prior components and their size
corresponds to their contribution weight.

A qualitative inspection of the latent space
(see Fig. 5) reveals that modeling the prior as
a mixture of MoG results in better-separated
clusters compared to a standard Gaussian.
When comparing a fixed MoG to a train-
able MoG, the improvement in class separation
is less pronounced but still noticeable which
aligns with the quantitative results shown in
Table 5. For the complete results and latent
space visualization, we refer the readers to D.2
and D.4.

Finally, it is worth noting how the entropy
regularization behaves differently based on the
training hyperparameters, dataset complexity
and prior learning configuration. In this re-
gard, we observe that a higher rentropy was
necessary to achieve the optimal performance
on CIFAR-10 compared to the (F)-MNIST
datasets under the IP configuration. Addition-
ally, allowing for learnable contributions under
the IP configuration tends to decrease the nor-
malized entropy of the responsibilities suggest-
ing that contributions tend to vanish as soon as
they no longer support the aggregated poste-
rior which advocates for the importance of tak-
ing measures (e.g., using the rentropy) to utilize
all the components when performing the dis-
crimination (i.e., updating the encoder). For
the full ablation on the rentropy parameter we
refer readers to D.3.

6 Conclusions

In this study, we have proposed a prior-decoder cooperation scheme as a theoretically sound approach
to prior learning in S-IntroVAE, marking the first successful integration of prior learning in Introspective
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Model → S-IntroVAE S-IntroVAE

Prior Type → SG MoG(100)

LC Flag → N/A ✗ ✗ ✓ ✓

IP Flag → N/A ✗ ✓ ✗ ✓

M
N

IS
T

rentropy 0 10 10 1 10
Entr. 0 0.892 ±0.002 0.882 ±0.001 0.882 ±0.002 0.853 ±0.004

FID (GEN) ↓ 1.414 ±0.025 1.322 ±0.025 1.352 ±0.052 1.32 ±0.061 1.309 ±0.027

FID (REC) ↓ 1.503 ±0.031 1.342 ±0.05 1.473 ±0.1 1.363 ±0.075 1.385 ±0.081

Recall (GEN) ↑ 0.565 ±0.003 0.562 ±0.003 0.553 ±0.008 0.556 ±0.003 0.557 ±0.001

Precision (GEN) ↑ 0.522 ±0.004 0.55 ±0.005 0.556 ±0.001 0.561 ±0.005 0.562 ±0.005

2K-SVM ↑ 0.93 ±0.001 0.961 ±0.001 0.97 ±0.004 0.962 ±0.002 0.972 ±0.002

10K-SVM ↑ 0.93 ±0.001 0.961 ±0.001 0.97 ±0.004 0.962 ±0.002 0.972 ±0.002

5-NN ↑ 0.763 ±0.003 0.916 ±0.004 0.947 ±0.011 0.92 ±0.001 0.957 ±0.004

100-NN ↑ 0.87 ±0.003 0.934 ±0.002 0.953 ±0.007 0.935 ±0.001 0.958 ±0.002

FM
N

IS
T

rentropy 0 0 10 10 10
Entr. 0 0.931 ±0.003 0.931 ±0.001 0.944 ±0.001 0.903 ±0.005

FID (GEN) ↓ 3.326 ±0.039 2.785 ±0.051 3.025 ±0.139 2.727 ±0.079 2.831 ±0.1

FID (REC) ↓ 3.76 ±0.097 2.994 ±0.05 3.129 ±0.095 3.185 ±0.101 3.511 ±0.074

Recall (GEN) ↑ 0.314 ±0.012 0.35 ±0.003 0.336 ±0.007 0.346 ±0.004 0.341 ±0.008

Precision (GEN) ↑ 0.518 ±0.009 0.553 ±0.005 0.558 ±0.004 0.576 ±0.006 0.574 ±0.003

2K-SVM ↑ 0.681 ±0.001 0.731 ±0.003 0.695 ±0.007 0.712 ±0.005 0.696 ±0.003

10K-SVM ↑ 0.731 ±0.006 0.78 ±0.002 0.772 ±0.003 0.778 ±0.002 0.773 ±0.002

5-NN ↑ 0.425 ±0.009 0.683 ±0.006 0.693 ±0.008 0.678 ±0.006 0.707 ±0.005

100-NN ↑ 0.606 ±0.014 0.736 ±0.003 0.729 ±0.006 0.731 ±0.003 0.739 ±0.004

C
IF

A
R

-1
0

rentropy 0 10 100 100 10
Entr. 0 0.839 ±0.007 0.94 ±0.002 0.929 ±0.003 0.511 ±0.043

FID (GEN) ↓ 4.424 ±0.064 4.465 ±0.038 4.385 ±0.140 4.417 ±0.031 4.594 ±0.235

FID (REC) ↓ 4.13 ±0.068 4.205 ±0.091 4.084 ±0.006 4.141 ±0.039 4.585 ±0.373

Recall (GEN) ↑ 0.283 ±0.003 0.281 ±0.001 0.283 ±0.003 0.282 ±0.008 0.264 ±0.012

Precision (GEN) ↑ 0.685 ±0.004 0.676 ±0.002 0.679 ±0.004 0.677 ±0.007 0.685 ±0.006

2K-SVM ↑ 0.245 ±0.009 0.25 ±0.002 0.271 ±0.006 0.26 ±0.002 0.256 ±0.003

10K-SVM ↑ 0.391±0.005 0.396 ±0.003 0.407 ±0.007 0.401 ±0.002 0.396 ±0.002

5-NN ↑ 0.206 ±0.001 0.189 ±0 0.239 ±0.005 0.196 ±0.001 0.219 ±0.002

100-NN ↑ 0.308 ±0.007 0.216 ±0.008 0.32 ±0.005 0.259 ±0.003 0.273 ±0.004

Table 2: Quantitative performance on the images datasets. The LC flag refers to the component contribu-
tions being learnable while the IP flag refers to training the prior (i.e., prior–decoder cooperation scheme).
Reported values are mean ± standard error over three runs. The rentropy row corresponds to the regular-
ization used to obtain the optimal FID(GEN) for each training configuration, where the Entr. row refers
to the normalized entropy of the responsibilities where the closer to one its value the more uniformly the
aggregated posterior is supported by the prior components.

VAEs. Our approach aims to combine two independent directions for improving VAEs: prior learning and
the incorporation of adversarial objectives. To realize our proposed scheme, we identified several challenges,
which we addressed with theoretically motivated regularization techniques, specifically (i) adaptive log-
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variance clipping and (ii) responsibility regularization. Our experimental results conducted in 2D and high-
dimensional image settings demonstrate the benefits of learning the prior in S-IntroVAE. These benefits
include a better-structured and more explainable latent space and, in most cases, improved generation
performance. We firmly believe that our theoretical insights, coupled with the empirical results, pave the
way towards a better understanding of Introspective VAEs and their connection to their VAEs and GANs
counterparts. Finally, owing to the unique nature of the problem where a multimodal distribution constitutes
both the source and the target, we hope that our analyses enjoy practical use in other areas that deal
with problems of similar characteristics e.g. Idempotent Generative Networks (Shocher et al., 2023) or
adversarially robust clustering (Yang et al., 2020).

References
Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat. A contrastive learning approach for training

variational autoencoder priors. Advances in neural information processing systems, 34:480–493, 2021.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand
Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient learning. In European
Conference on Computer Vision, pp. 456–473. Springer, 2022.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 9650–9660, 2021.

Bo Chang, Alexandros Karatzoglou, Yuyan Wang, Can Xu, Ed H Chi, and Minmin Chen. Latent user intent
modeling for sequential recommenders. In Companion Proceedings of the ACM Web Conference 2023, pp.
427–431, 2023.

Kushal Chauhan, Pradeep Shenoy, Manish Gupta, Devarajan Sridharan, et al. Robust outlier detection by
de-biasing vae likelihoods. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9881–9890, 2022.

Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images. arXiv
preprint arXiv:2011.10650, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

Marissa Connor, Gregory Canal, and Christopher Rozell. Variational autoencoder with learned latent struc-
ture. In International Conference on Artificial Intelligence and Statistics, pp. 2359–2367. PMLR, 2021.

Tal Daniel and Aviv Tamar. Soft-introvae: Analyzing and improving the introspective variational autoen-
coder. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4391–4400, 2021.

Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni, Kai Arulku-
maran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational autoen-
coders. arXiv preprint arXiv:1611.02648, 2016.

Ioannis Gatopoulos and Jakub M Tomczak. Self-supervised variational auto-encoders. Entropy, 23(6):747,
2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

15



Under review as submission to TMLR

Prasoon Goyal, Zhiting Hu, Xiaodan Liang, Chenyu Wang, and Eric P Xing. Nonparametric variational auto-
encoders for hierarchical representation learning. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 5094–5102, 2017.

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R Venkatesh Babu. Deligan: Generative
adversarial networks for diverse and limited data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 166–174, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In International conference on learning representations, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the variational
evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS, volume 1,
2016.

Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al. Introvae: Introspective variational autoencoders for
photographic image synthesis. Advances in neural information processing systems, 31, 2018.

Xu Ji, Lena Nehale-Ezzine, and Maksym Korablyov. Properties of minimizing entropy. arXiv preprint
arXiv:2112.03143, 2021.

Armand Joulin and Francis Bach. A convex relaxation for weakly supervised classifiers. arXiv preprint
arXiv:1206.6413, 2012.

Dimitris Kalatzis, David Eklund, Georgios Arvanitidis, and Søren Hauberg. Variational autoencoders with
riemannian brownian motion priors. arXiv preprint arXiv:2002.05227, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der Smagt. Learning hierarchical
priors in vaes. Advances in neural information processing systems, 32, 2019.

Oskar Kviman, Ricky Molén, Alexandra Hotti, Semih Kurt, Vıctor Elvira, and Jens Lagergren. Cooper-
ation in the latent space: The benefits of adding mixture components in variational autoencoders. In
International Conference on Machine Learning, pp. 18008–18022. PMLR, 2023.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision
and recall metric for assessing generative models. Advances in neural information processing systems, 32,
2019.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International conference on machine learning, pp.
1558–1566. PMLR, 2016.

Frantzeska Lavda, Magda Gregorová, and Alexandros Kalousis. Improving vae generations of multimodal
data through data-dependent conditional priors. arXiv preprint arXiv:1911.10885, 2019.

Felix Leeb, Guilia Lanzillotta, Yashas Annadani, Michel Besserve, Stefan Bauer, and Bernhard
Schölkopf. Structure by architecture: Structured representations without regularization. arXiv preprint
arXiv:2006.07796, 2020.

Shuyu Lin and Ronald Clark. Ladder: Latent data distribution modelling with a generative prior. arXiv
preprint arXiv:2009.00088, 2020.

16



Under review as submission to TMLR

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders. In
International Conference on Learning Representations, 2016. URL http://arxiv.org/abs/1511.05644.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually
converge? In International conference on machine learning, pp. 3481–3490. PMLR, 2018.

Alon Oring. Autoencoder image interpolation by shaping the latent space. Master’s thesis, Reichman
University (Israel), 2021.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion
autoencoders: Toward a meaningful and decodable representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10619–10629, 2022.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32, 2019.

Luis A Pérez Rey, Vlado Menkovski, and Jacobus W Portegies. Diffusion variational autoencoders. arXiv
preprint arXiv:1901.08991, 2019.

Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

Antoine Salmona, Valentin De Bortoli, Julie Delon, and Agnès Desolneux. Can push-forward generative
models fit multimodal distributions? Advances in Neural Information Processing Systems, 35:10766–
10779, 2022.

Assaf Shocher, Amil Dravid, Yossi Gandelsman, Inbar Mosseri, Michael Rubinstein, and Alexei A Efros.
Idempotent generative network. arXiv preprint arXiv:2311.01462, 2023.

Anika Shrivastava, Renu Rameshan, and Samar Agnihotri. Latent space characterization of autoencoder
variants. arXiv preprint arXiv:2412.04755, 2024.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder varia-
tional autoencoders. Advances in neural information processing systems, 29, 2016.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1214–1223. PMLR, 2018.

Jakub M Tomczak. Deep generative modeling. Springer, 2022.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in Neural
Information Processing Systems, 33:19667–19679, 2020.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao
Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial intelligence. Nature,
620(7972):47–60, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications.
arXiv preprint arXiv:2209.00796, 2022.

Xu Yang, Cheng Deng, Kun Wei, Junchi Yan, and Wei Liu. Adversarial learning for robust deep clustering.
Advances in Neural Information Processing Systems, 33:9098–9108, 2020.

Zilong Yu, Yunyun Yang, Yongbin Zhu, Bixue Guo, and Chun Li. Cs-introvae: Cauchy-schwarz divergence-
based introspective variational autoencoder. IEEE Transactions on Multimedia, 2023.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from deep generative
models. In International Conference on Machine Learning, pp. 4091–4099. PMLR, 2017.

17

http://arxiv.org/abs/1511.05644


Under review as submission to TMLR

A Preliminaries

The ELBO, given a sample x, can be formulated as:

W (x; q, d) = Ez∼q(z|x) [log pd(x|z)] − KL[q(z|x)||p(z)]

= Ez∼q(z|x) [log pd(x|z)] − Ez∼q(z|x) [log q(z|x)
pz(z) ]

= Ez∼q(z|x) [log pd(z|x) · pd(x)
pz(z) − log q(z|x)

pz(z) ]

= Ez∼q(z|x) [log pd(z|x) + log pd(x) − log q(z|x)]
= log pd(x) − KL[q(z|x)||pd(z|x)] ≤ log pd(x),

(14)

with KL[·||·] denoting the Kullback–Leibler (KL) divergence.

B Nash Equilibrium in S-IntroVAE

In this section, we provide the theorems based on which the prior–decoder cooperation emerges as a viable
option for learning the prior in S-IntroVAE. First, we revisit the derivation of the Nash Equilibrium (NE),
under the fixed prior case (originally provided by Daniel & Tamar (2021)), which we modify to account
for samples outside the support of the real data distribution. The details and the motivation behind the
aforementioned modification are provided in Section B.1.

For simplicity, our analysis is conducted in the discrete domain which is in practice sufficiently re-
vealing as we deal with finite data. From a theoretical standpoint, we can rely on continuity arguments
under the assumption of Leibniz’s continuity.

B.1 S-IntroVAE under a fixed prior (Daniel & Tamar (2021))

The adversarial game as defined by Daniel & Tamar (2021):

Lq(q, d) = Epdata [W (x; q, d)] − Epd

[
1
α

· exp(α · W (x; q, d))
]

,

Ld(q, d) = Epdata [W (x; q, d)] + γ · Epd
[W (x; q, d)] ,

(15)

where α ≥ 1, γ ≥ 0 and pd(x) = Ep(z)[pd(x|z)] with p(z) a fixed prior distribution. Note that although
originally, a standard Gaussian (SG) prior was used the derivation extends to any prior distribution as long
as it is fixed. For notational brevity, we will henceforth refer to the expectation over the real data distribution
Ex∼pdata [·] simply as Epdata [·], the same applies to the generated data distribution as well.

Lemma

Lemma 1. Assuming that [pd(x)]α+1 ≤ pdata(x) for all x such that pdata(x) ≥ 0, the q∗ maximizing the
Lq(q, d) satisfies q∗(d)(z|x) = pd(z|x).

Remark 2. The assumption used in Lemma 1 is a modified version of the one used in (Daniel & Tamar,
2021) in order to account for samples outside of the support of the pdata(x). Specifically we require the
assumption [pd(x)]α+1 ≤ pdata(x) to hold for all x such that pdata(x) ≥ 0 instead to pdata(x) > 0. The utility
of this modification is revealed in the proof below.

Proof. Using the ELBO reformulation provided in 14 we develop the Lq(q, d) objective as:
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Lq(q, d) = Epdata [W (x; q, d)] − Epd

[
1
α

· exp(α · W (x; q, d))
]

= Epdata [log pd(x) − KL[q(z|x)||pd(z|x)]]

− 1
a

· Epd
[exp(log[pd(x)]α − α · KL[q(z|x)||pd(z|x)])]

= Epdata [log pd(x) − KL[q(z|x)||pd(z|x)]]

− 1
a

· Epd
[[pd(x)]α · exp(−α · KL[q(z|x)||pd(z|x)])]

=
∑

x

pdata(x) · (log pd(x) − KL[q(z|x)||pd(z|x)]) − 1
α

· [pd(x)]α+1 · exp(−α · KL[q(z|x)||pd(z|x)])

=



∑
x

pdata(x) ·
(

log pd(x) − KL[q(z|x)||pd(z|x)] − 1
α · [pd(x)]α+1

pdata(x) · exp(−α · KL[q(z|x)||pd(z|x)])
)

=
∑
x

G(q, d), x ∈ {pdata(x) > 0}

∑
x

(
− 1

α · [pd(x)]α+1 · exp(−α · KL[q(z|x)||pd(z|x)])
)

=
∑
x

Q(q, d), x ∈ {pdata(x) = 0}

(16)

The optimal q∗ for each x can be found as the maximizer of the Lq(q, d).

Given x such that pdata(x) > 0 the optimal q∗ can be found as the maximizer of the function G(q, d). In
that case, we observe that q contributes to G(q, d) only via the KL term. Based on that, the saddle point
can be found by analyzing the derivative of G(q, d) with respect to the KL.

∂G(q, d)
∂KL[q(z|x)||pd(z|x)] = pdata(x) ·

(
−1 + [pd(x)]a+1

pdata(x) · exp(−α · KL[q(z|x)||pd(z|x)])
)

. (17)

For x such that pdata(x) > 0 and [pd(x)]α+1

pdata(x) < 1 , we observe that the ∂G(q,d)
∂KL[q(z|x)||pd(z|x)] < 0 for

KL(q(z|x)||pd(z|x)) ∈ [0, ∞) (KL is non negative), that is the G(q, d) monotonically decreases with respect
to KL[q(z|x)||pd(z|x)].

For x such that pdata(x) > 0 and [pd(x)]α+1

pdata(x) = 1 we observe that the ∂G(q,d)
∂KL[q(z|x)||pd(z|x)] = 0 only

when KL[q(z|x)||pd(z|x)] = 0.
Additionally ∂G(q,d)

∂2KL[q(z|x)||pd(z|x)] = pdata(x) ·
(

−α · [pd(x)]a+1

pdata(x) · exp(−α · KL[q(z|x)||pd(z|x)])
)

≤ 0.

Based on these two cases above, we conclude that KL[q∗(z|x)||pd(z|x)] = 0 is a global maxima of Lq(q, d)
for x such that pdata(x) > 0 and [pd(x)]α+1

pdata(x) ≤ 1 .

For x such that pdata(x) = 0 the optimal q∗ can be found as the maximizer of the function Q(q, d).

∂Q(q, d)
∂KL[q(z|x)||pd(z|x)] = [pd(x)]a+1 · exp(−α · KL[q(z|x)||pd(z|x)]). (18)

We observe that ∂Q(q,d)
∂KL[q(z|x)||pd(z|x)] > 0, given that KL[q(z|x)||pd(z|x)] ∈ [0, ∞) we conclude q∗(z|x) such

that KL[q∗(z|x)||pd(z|x)] = ∞ is a global maxima of Lq(q, d) for x such that pdata(x) = 0. The result above
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contradicts what has been argued in (Daniel & Tamar, 2021) and is the motivation behind extending the
assumption used in Lemma 1 to account for samples outside of the support of pdata(x) (i.e. pdata(x) ≥ 0
instead of pdata(x) > 0 used in (Daniel & Tamar, 2021)). Under the modified assumption, for x such that
pdata(x) = 0 we also have pd(x) = 0. In this case samples outside the support of the real data distribution
do not contribute to the Lq(q, d) objective and therefore do not influence the optimal q∗.

Given that the KL is a proper divergence and under the assumption that [pd(x)]α+1 ≤ pdata(x) holds for all
x such that pdata(x) ≥ 0, we conclude that q∗(z|x) = pd(z|x)) is the global maxima of the Lq(q, d), that is:

Lq(q(d), d) ≤ Lq(q∗(d), d) for all q. (19)

Let us define d∗ as:

d∗ ∈ arg min
d

{KL[pdata(x)||pd(x)] + γ · H[pd(x)]} . (20)

Assumption 3 (Modified - (Daniel & Tamar, 2021)). For all x such that pdata(x) ≥ 0 we have that
[pd∗(x)]α+1 ≤ pdata(x).
Theorem 2 ((Daniel & Tamar, 2021)). Under the Assumption 3, the pair of optimal q∗ = pd∗(z|x) and d∗

as defined in (20) constitutes a NE of the game (15).

Proof. First, we develop the Ld(q, d) as:

Ld(q, d) = Epdata [W (x; q, d)] + γ · Epd
[W (x; q, d)]

= Epdata [log pd(x) − KL[q(z|x)||pd(z|x)]]
+ γ · Epd

[log pd(x) − KL[q(z|x)||pd(z|x)]]

= Epdata

[
log pd(x)

pdata(x) + log pdata(x) − KL[q(z|x)||pd(z|x)]
]

+ γ · Epd
[log pd(x) − KL[q(z|x)||pd(z|x)]]

= Epdata [log pdata(x)]
− KL[pdata(x)||pd(x)] − γ · H[pd(x)]
− Epdata [KL[q(z|x)||pd(z|x)]] − γ · Epd

[KL[q(z|x)||pd(z|x)]],

(21)

with H[·] denoting the Shannon entropy. Note that since KL[q(z|x)||pd(z|x)] ≥ 0 = KL[q∗(z|x)||pd(z|x)] the
d∗ maximizing the Ld(q, d) can be found as the maximizer of Ld(q∗, d). Based on that we set q = q∗(d) in
21 and find the expression of d that maximizes the objective Ld(q∗(d), d) as:

Ld(q∗(d), d) = Epdata [log pdata(x)]
− KL[pdata(x)||pd(x)] − γ · H[pd(x)]

−
�������������:0

Epdata [KL[q∗(z|x)||pd(z|x)]] − γ ·
������������:0
Epd

[KL[q∗(z|x)||pd(z|x)]],

(22)

as the Epdata [log pdata(x)] is fixed given a distribution pdata(x) while the KL[·||·] and H[·] are non-negative,
we can derive the maximizer d∗ according to (20). Based on that and according to Lemma 1,

Lq(q(d∗), d∗) ≤ Lq(q∗(d∗), d∗) for all q,

Ld(q∗(d), d) ≤ Lq(q∗(d∗), d∗) for all d,
(23)
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and therefore we conclude that the pair q∗ and d∗ such that:

q∗(z|x) = pd∗(z|x),
d∗ ∈ arg min

d
{KL[pdata(x)||pd(x)] + γ · H[pd(x)]} . (24)

is a NE of the (15).

We refer the readers to the original work by Daniel & Tamar (2021) for the proof that for any pdata(x) there
always exists γ > 0 such that the assumption 3 holds for pd∗(x).

B.2 S-IntroVAE under a trainable prior

Let Λ denote the set of possible parameterizations of the prior distributions. We now assume that the prior
pz(z) is learnable and henceforth is denoted as pλ(z) with λ ∈ Λ while the generated distribution under that
prior is pλ

d(x) = Epλ(z)pd(x|z). Consequently the adversarial game (15) is modified as:

Lq(λ, q, d) = Epdata [W (x; λ, q, d)] − Epλ
d

[
1
α

· exp(α · W (x; λ, q, d))
]

,

Ld(λ, q, d) = Epdata [W (x; λ, q, d)] + γ · Epλ
d

[W (x; λ, q, d)] .

(25)

B.2.1 Prior–encoder cooperation

Here we conjecture the infeasibility of learning the prior in collaboration with the encoder while maintaining
the same NE of the S-IntroVAE. Intuitively, this formulation seeks to find the optimal prior as the balance
between maximizing the real ELBO and minimizing the fake exp(ELBO).

Similarly, the definition in Eq (20) is modified as:

d∗(λ) ∈ arg min
d

{
KL[pdata(x)||pλ

d(x)] + γ · H[pλ
d(x)]

}
, (26)

to account for the parameterized prior. Let pλ
d(x) a discrete distribution of sample size N and e’s non-negative

real numbers realizing the unnormalized probability masses of pλ
d(x) distribution such that the likelihood of

sample xk is calculated as:

pλ
d(xk) = ek

N∑
j=1

ej

.
(27)

Let us define the entropy H[pλ
d(x)] and the α-order regularization3 A[pλ

d(x)] as:

H[pλ
d(x)] = −

N∑
i=1

pλ
d(xi) · log (pλ

d(xi)), (28a)

A[pλ
d(x)] =

N∑
i=1

pλ
d(xi) · [pλ

d(xi)]α. (28b)

3The α hyperparameter is the same used in (15)
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Lemma 2. Minimizing H[pλ
d(e)] with respect to mass ek requires a positive(negative) update if log ek is

larger(smaller) than E[log e].

Proof. 4According to the definitions Eqs. (28a) and (27), the entropy can be developed with respect to the
probability masses e’s as:

H[e] = −
N∑

i=1

ei

N∑
j=1

ej

· log

 ei

N∑
j=1

ej

. (29)

Based on (29), the derivative of H[e] with respect to the mass ek can be computed as:

∂H
∂ek

[e] = − ∂

∂ek


N∑

i=1

ei

N∑
j=1

ej

· log

 ei

N∑
j=1

ej




= − ∂

∂ek

 ek

N∑
j=1

ej

· log

 ek

N∑
j=1

ej

 +
N∑

i=1
i̸=k

ei

N∑
j=1

ej

· log

 ei

N∑
j=1

ej




= −

N∑
j=1

ej − ek

(
N∑

j=1
ej)2

log

 ek

N∑
j=1

ej

 −

N∑
j=1

ej − ek

(
N∑

j=1
ej)2

−
N∑

i=1
i ̸=k

 ei

(
N∑

j=1
ej)2

· log

 ei

N∑
j=1

ej

 − ei

(
N∑

j=1
ej)2



= −

N∑
j=1
j ̸=k

ej

(
N∑

j=1
ej)2

log

 ek

N∑
j=1

ej

 −

�
�
�
�
�
�
�N∑

j=1
j ̸=k

ej

(
N∑

j=1
ej)2

−
N∑

i=1
i ̸=k

 ei

(
N∑

j=1
ej)2

· log

 ei

N∑
j=1

ej


 +

�
�
�
�
�
��

N∑
i=1
i̸=k

ei

(
N∑

j=1
ej)2

= −
N∑

i=1
i ̸=k

 ei

(
N∑

j=1
ej)2

· log
(

ek

ei

) =
N∑

i=1
i ̸=k

 ei

(
N∑

j=1
ej)2

· log
(

ei

ek

)

=
N∑

i=1

 ei

(
N∑

j=1
ej)2

· log
(

ei

ek

) −

��
���

���
��*

0
ek

(
N∑

j=1
ej)2

· log
(

ek

ek

)

= 1
N∑

j=1
ej

·
N∑

i=1

 ei

N∑
j=1

ej

· log
(

ei

ek

) = 1
N∑

j=1
ej

·


N∑

i=1

 ei

N∑
j=1

ej

· log ei

 − log ek

 .

(30)

The update towards minimizing the entropy regularization reads as e′
k = (ek − η · ∂H

∂ek
[e])+. According to

(30), the update −η · ∂H
∂ek

[e] of mass ek is positive if log ek is larger than E[log e] and vice versa.
4The proof was originally provided by Ji et al. (2021)
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Lemma 3. Minimizing A[pλ
d(e)] with respect to mass ek requires a negative(positive) update if eα

k is
larger(smaller) than E[eα

k ].

Proof. According to the definitions Eqs. (28b) and (27), the α-order regularization can be developed with
respect to the probability masses e’s as:

A[e] =
N∑

i=1

ei

N∑
j=1

ej

·

 ei

N∑
j=1

ej


α

=
N∑

i=1

 ei

N∑
j=1

ej


(α+1)

. (31)

Based on (31), the derivative of A[e] with respect to the mass ek can be computed as:

∂A
∂ek

[e] = ∂

∂ek


N∑

i=1

 ei

N∑
j=1

ej


(α+1)

 = ∂

∂ek


 ek

N∑
j=1

ej


(α+1)

+
N∑

i=1
i̸=k

 ei

N∑
j=1

ej


(α+1)



=
(α + 1) · eα

k · (
N∑

j=1
ej)(α+1)

(
N∑

j=1
ej)2·(α+1)

−
(α + 1) · e

(α+1)
k · (

N∑
j=1

ej)α

(
N∑

j=1
ej)2·(α+1)

−
N∑

i=1
i ̸=k


(α + 1) · e

(α+1)
i · (

N∑
j=1

ej)α

(
N∑

j=1
ej)2·(α+1)



= (a + 1) ·

 eα
k

(
N∑

j=1
ej)(α+1)

−
N∑

i=1

 e
(α+1)
i

(
N∑

j=1
ej)(α+2)


 = (a + 1)

(
N∑

j=1
ej)(α+1)

·

eα
k −

N∑
i=1

 ei

N∑
j=1

ej

· eα
i



(32)

Similarly to the entropy minimization case, the update towards minimizing the α-order regularization reads
as e′

k = (ek − η · ∂A
∂ek

[e])+. According to (32), the update −η · ∂A
∂ek

[e] of mass ek is negative if eα
k is larger

than E[eα] and vice versa.

d∗(λ) ∈ arg min
d

{
KL[pdata(x)||pλ

d(x)] + γ · H[pλ
d(x)]

}
, (26 revisited)

Lemma 4. For q∗ = pλ
d(z|x), the d∗ maximizing the Ld(λ, q∗, d) satisfies (26).

Proof. Similar to Theorem 2, we develop the Ld(λ, q, d) as:

Ld(λ, q, d) = Epdata [log pdata(x)]
− KL[pdata(x)||pλ

d(x)] − γ · H[pλ
d(x)]

− Epdata [KL[q(z|x)||pλ
d(z|x)]] − γ · Epλ

d
[KL[q(z|x)||pλ

d(z|x)]],
(33)

with H[·] denoting the Shannon entropy. Note that since KL[q(z|x)||pλ
d(z|x)] ≥ 0 = KL[q∗(z|x)||pλ

d(z|x)] the
d∗ maximizing the Ld(λ, q, d) can be found as the maximizer of Ld(λ, q∗, d). Based on that we set q = q∗(λ, d)
in 33 and find the d∗ that maximizes the objective Ld(λ, q∗(λ, d), d) as:
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Ld(λ, q∗(λ, d), d) = Epdata [log pdata(x)]
− KL[pdata(x)||pλ

d(x)] − γ · H[pλ
d(x)]

−
�������������:0

Epdata [KL[q∗(z|x)||pλ
d(z|x)]] − γ ·

������������:0

Epd
[KL[q∗(z|x)||pλ

d(z|x)]].

(34)

Based on (34), we can derive the maximizer d∗ according to (26).

Let us now define:

λ∗(d) ∈ arg min
λ

{
KL[pdata(x)||pλ

d(x)] + 1
α

· A[pλ
d(x)]

}
. (35)

Lemma 5. Assuming that [pλ
d(x)]α+1 ≤ pdata(x) for all x such that pdata(x) ≥ 0, for q∗ = pλ

d(z|x), the λ∗

maximizing the Lq(λ, q∗, d) satisfies (35).

Proof. Given the trainable prior pλ(z) the Lq(λ, q, d) becomes:

Lq(λ, q, d) =
∑

x

pdata(x)(log pλ
d(x) − KL[q(z|x)||pλ

d(z|x)]

− 1
α

· [pλ
d(x)]α+1 · exp(−α · KL[q(z|x)||pλ

d(z|x)])).
(36)

Let q∗(z|x) = pλ
d(z|x), the objective Lq(λ, q∗, d) reads as:

Lq(λ, q∗, d) =
∑

x

pdata(x) · (log pλ
d(x) −

����������:0
KL[q∗(z|x)||pλ

d(z|x)])

− 1
α

· [pλ
d(x)]α+1 ·

��������������:1

exp(−αKL[q∗(z|x)||pλ
d(z|x)])

=
∑

x

pdata(x) · log pλ
d(x) − 1

α
· [pλ

d(x)]α+1

=
∑

x

pdata(x) · (log pλ
d(x) − log pdata(x) + log pdata(x)) − 1

α
· [pλ

d(x)]α+1

=
∑

x

pdata(x) · log pλ
d(x)

pdata(x)

+
∑

x

pdata(x) · log pdata(x) − 1
α

·
∑

x

[pλ
d(x)]α+1

= −
∑

x

pdata(x) · log pdata(x)
pλ

d(x)

+
∑

x

pdata(x) · log pdata(x) − 1
α

·
∑

x

pλ
d(x) · [pλ

d(x)]α

= −KL[pdata(x)||pλ
d(x)]

+ Epdata [log pdata(x)] − 1
α

· A[pλ
d(x)]

(37)

Based on (37), we observe that the Epdata [log pdata(x)] is fixed given pdata while A[·] is non-negative, therefore
we can derive the maximizer λ∗ according to 35.
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d∗(λ) ∈ arg min
d

{
KL[pdata(x)||pλ

d(x)] + γ · H[pλ
d(x)]

}
, (26 revisited)

Lemmas 2 and 3 suggest that minimizing the entropy and the α-order push towards the Dirac and uniform
distributions respectively. Based on that and the minimization objectives of the d and λ players, we formulate
a conjecture on the incompatibility of prior–encoder cooperation.

When training the prior player λ in cooperation with the encoder player q (i.e. to maximize the same
Lq(λ, q, d) objective), there does not exist λ∗ such that the triplet λ∗, q∗ satisfiying q∗(z|x) = pλ∗

d∗ (z|x) and
d∗ as defined in (26) constitutes a NE of the game (25), under the assumption that pλ∗

d∗ (x, z) ̸= pλ∗

d∗ (x)·pλ∗

d∗ (z).

Remark 3. The Conjecture B.2.1 suggests that the prior–encoder cooperation scheme is not a variable
option for prior learning in S-IntroVAE, in the sense that it does not share the same NE with its fixed prior
counterpart.

B.2.2 Prior–decoder cooperation

Here, we consider the same game defined in (25) but under a prior–decoder cooperation scheme where both
the prior λ and decoder d players maximize the same objective Lq(λ, q, d). First, let us extend Lemma 1 for
the trainable prior case.

Lemma 6. Assuming that [pλ
d(x)]α+1 ≤ pdata(x) for all x such that pdata(x) ≥ 0, the q∗ maximizing the

Lq(λ, q, d) satisfies q∗(λ, d)(z|x) = pλ
d(z|x).

Proof. We develop the Lq(λ, q, d) objective as:

Lq(λ, q, d) = Epdata [W (x; λ, q, d)] − Epd

[
1
α

· exp(α · W (x; λ, q, d))
]

= Epdata

[
log pλ

d(x) − KL[q(z|x)||pλ
d(z|x)]

]
− 1

a
· Epλ

d

[
exp(log[pλ

d(x)]α − α · KL[q(z|x)||pλ
d(z|x)])

]
= Epdata

[
log pλ

d(x) − KL[q(z|x)||pλ
d(z|x)]

]
− 1

a
· Epλ

d

[
[pλ

d(x)]α · exp(−α · KL[q(z|x)||pλ
d(z|x)])

]
=

∑
x

pdata(x) · (log pλ
d(x) − KL[q(z|x)||pλ

d(z|x)]) − 1
α

· [pλ
d(x)]α+1 · exp(−α · KL[q(z|x)||pλ

d(z|x)])

(38)

We follow the same reasoning used in Lemma 1 and conclude that under the assumption that [pλ
d(x)]α+1 ≤

pdata(x) holds for all x such that pdata(x) ≥ 0 q∗(z|x) = pd(z|x)) is the global maxima of the Lq(q, d), that
is:

Lq(λ, q(λ, d), d) ≤ Lq(λ, q∗(λ, d), d) for all q. (39)

Let us define λ∗ and d∗ as:

(λ∗, d∗) ∈ arg min
λ,d

{
KL[pdata(x)||pλ

d(x)] + γ · H[pλ
d(x)]

}
. (40)

Now we also modify the Assumption 3 as:
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Assumption 4. For all x such that pdata(x) ≥ 0 we have that [pλ∗

d∗ (x)]α+1 ≤ pdata(x).

Corollary 2. Under the Assumption 4, when training the prior player λ in cooperation with the decoder
player d then the triplet q∗ = pλ∗

d∗ (z|x), λ∗ and d∗ as defined in (40) constitutes a NE of the game (25).

Proof. Similar to Theorem 2, we develop the Ld(λ, q, d) as:

Ld(λ, q, d) = Epdata [log pdata(x)]
− KL[pdata(x)||pd(x)] − γ · H[pd(x)]
− Epdata [KL[q(z|x)||pλ

d(z|x)]] − γ · Epλ
d

([KL[q(z|x)||pλ
d((z|x)]],

(41)

with H[·] denoting the Shannon entropy. Note that since KL[q(z|x)||pλ
d(z|x)] ≥ 0 = KL[q∗(z|x)||pλ

d(z|x)]
the (λ∗, d∗) maximizing the Ld(λ, q, d) can be found as the maximizer of Ld(λ, q∗, d). Based on that we set
q = q∗(λ, d) in 41 and find the (λ∗, d∗) that maximizes the objective Ld(λ, q∗(λ, d), d) as:

Ld(λ, q∗(λ, d), d) = Epdata [log pdata(x)]
− KL[pdata(x)||pd(x)] − γ · H[pd(x)]

−
�������������:0

Epdata [KL[q∗(z|x)||pd(z|x)]] − γ ·
������������:0
Epd

[KL[q∗(z|x)||pd(z|x)]].

(42)

We can now derive the maximizer (λ∗, d∗) according to (40). Based on that and according to Lemma 6,

Lq(λ, q(λ∗, d∗), d∗) ≤ Lq(q∗(λ, d∗), d∗) for all q,

Ld(λ, q∗(λ, d), d) ≤ Lq(q∗(λ∗, d∗), d∗) for all λ and d,
(43)

and therefore we conclude that the triplet λ∗, q∗ and d∗ such that:

q∗(z|x) = pλ∗

d∗ (z|x),
(λ∗, d∗) ∈ arg min

λ,d
{KL[pdata(x)||pd(x)] + γ · H[pd(x)]} . (44)

is a NE of the (25).

As the proof of the existence of the γ does not assume the nature of the prior, the proof provided by Daniel
& Tamar (2021) can be trivially extended for our case of pλ∗

d∗ to show that there exists γ such that the pλ∗

d∗

with (λ∗, d∗) as defined in (40) satisfies the Assumption 4.

B.3 Optimal ELBO in the assumption-free setting

In the previous section, the NE of the S-IntroVAE under the prior–decoder cooperation scheme (25)
was analyzed under the Assumptions 4. In practice, however, such an assumption might not always be
satisfied, particularly in the early stages of training. For instance, it is common in adversarial training
for the generator/decoder to generate samples of very low quality (i.e. outside of the support of real data
distribution) or to experience mode-collapse (i.e. generating some realistic samples at a disproportionately
higher frequency compared to the real data distribution). Evidently, both these cases might lead to
violations of said assumption.

Analyzing the behavior of the encoder in the assumption-free setting provides insights into the train-
ing dynamics of S-IntroVAE, enabling a better understanding of the method and its relationship to
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traditional VAEs. Furthermore conducting the analysis with respect to the ELBO W (x; λ, q, d) offers a
practical tool since the ELBO is comprised of the reconstruction and the KL divergence losses as opposed
to the KL[q(z|x)||pλ

d(z|x)] term (used in Lemma 6) which is intractable.

Let X = {x|x ∈ pdata(x) > 0 ∪ pλ
d(x) > 0} , we define the ELBO W (x; λ, q∗, d) as:

W (x; λ, q∗, d) =


−∞, x ∈ {x ∈ X | pdata(x) = 0}
1
α · log pdata(x)

pλ
d

(x) , x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ
d(x)]α+1 > pdata(x)}

log pλ
d(x), x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ

d(x)]α+1 ≤ pdata(x)}}
(45)

Proposition 2. Given a fixed generated data distribution pλ
d(x) the q∗ maximizing Lq(λ, d, q) in (25) is such

that the ELBO W (x; λ, q∗, d) satisfies 45.

Proof. Similarly to Lemma 6, we develop Lq(λ, q, d) as:

Lq(λ, q, d) =
∑

x

pdata(x) · (log pλ
d(x) − KL[q(z|x)||pλ

d(z|x)]) − 1
α

· [pλ
d(x)]α+1 · exp(−α · KL[q(z|x)||pλ

d(z|x)])

=



∑
x

pdata(x) ·
(

log pλ
d(x) − KL[q(z|x)||pλ

d(z|x)] − 1
α · [pλ

d (x)]α+1

pdata(x) · exp(−α · KL[q(z|x)||pλ
d(z|x)])

)
=

∑
x

G(λ, q, d), x ∈ {pdata(x) > 0}

∑
x

(
− 1

α · [pλ
d(x)]α+1 exp(−α · KL[q(z|x)||pλ

d(z|x)])
)

=
∑
x

Q(λ, q, d), x ∈ {pdata(x) = 0}

(46)

Again, we can find the q∗ maximizing Lq(λ, q, d) by analyzing the derivatives of the functions G(λ, q, d) and
Q(λ, q, d). In particular, we identify four cases.

• x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ
d(x)]α+1 > pdata(x)}

In this case, the q∗ can be found as:

∂G(λ, q, d)
∂KL[q(z|x)||pλ

d(z|x)]
= 0 ⇔

pdata(x) ·
(

−1 + [pλ
d(x)]a+1

pdata(x) · exp(−α · KL[q(z|x)||pλ
d(z|x)])

)
= 0 ⇔

exp(−α · KL[q(z|x)||pλ
d(z|x)]) = pdata(x)

[pd(x)]a+1 ⇔

−KL[q(z|x)||pλ
d(z|x)] = 1

α
· log pdata(x)

[pλ
d(x)]a+1 ⇔

log pλ
d(x) − KL[q(z|x)||pλ

d(z|x)] = 1
α

· log pdata(x)
[pλ

d(x)]a+1 + log pλ
d(x) (14)⇔

W (x; λ, q, d) = 1
α

· log pdata(x)
[pλ

d(x)]a+1 + 1
α

· log[pλ
d(x)]α ⇔

W (x; q, d) = 1
α

· log pdata(x)
pλ

d(x)
.

(47)
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Note that ∂G(λ,q,d)
∂2KL[q(z|x)||pλ

d
(z|x)] = pdata(x) ·

(
−α · [pλ

d (x)]a+1

pdata(x) · exp(−α · KL[q(z|x)||pλ
d(z|x)])

)
≤ 0 there-

fore the q∗ such that W (x; λ, q∗, d) = 1
α · log pdata(x)

pλ
d

(x) is the maximizer of Lq(λ, q, d) for x ∈ {x ∈ X |
pdata(x) > 0 ∩ [pλ

d(x)]α+1 > pdata(x)}.

• x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ
d(x)]α+1 ≤ pdata(x)}

In this case, the maximizer of Lq(λ, q, d) was found in Lemma 1 as the q∗ such that
KL[q∗(z|x)||pλ

d(z|x)] = 0. Substracting log pλ
d(x) to both sides and using (14) we get

that the q∗ such that W (x; λ, q∗, d) = log pλ
d(x) is the maximizer of Lq(λ, q, d) for

x ∈ {x ∈ X | pdata(x) > 0 ∩ [pλ
d(x)]α+1 ≤ pdata(x)}.

• x ∈ {x ∈ X | pdata(x) = 0}

In this case, the maximizer of Lq(λ, q, d) was found in Lemma 1 as the q∗ such that
KL[q∗(z|x)||pλ

d(z|x)] = ∞. Substracting log pλ
d(x) to both sides, using (14) and given that

log pλ
d(x) ≤ 0 we get that the q∗ such that W (x; λ, q∗, d) = −∞ is the maximizer of Lq(λ, q, d) for

x ∈ {x ∈ X | pdata(x) = 0}.

• x ∈ {x ∈ X | pdata(x) = 0 ∩ pλ
d(x) = 0} = ∅

Note that the {pdata(x) = 0 ∩ pλ
d(x) = 0} set refers to samples x outside of the support of

both real and generated data distributions which are of no practical relevance. In practice, the
encoder maximizes the Lq over the expectation of empirical real and generated data distributions,
motivating the definition of X as the union of their supports.

Interestingly, the ELBO W (x; λ, q∗, d) at the optimal q∗ is a continuous function with respect to pdata(x).
Additionally, it is revealed that the higher the sample-wise likelihood mismatch between the real pdata(x)
and generated pλ

d(x) data distribution, the lower (more negative) the ELBO W (x; λ, q∗, d) is. The
aforementioned behavior aligns with our intuition as the encoder in S-IntroVAE acts as a discriminator.

On the other hand, given a fixed pλ
d(x), it can trivially shown that the encoder of regularly trained VAEs

converges to true posterior which is equivalent to WVAE
5(x; λ, q∗, d) = log pλ

d(x). Naturally, these two
observations relate the behavior of the encoders of VAEs and S-IntroVAEs where the latter behaves similarly
to the former only if pλ

d(x) is sufficiently enclosed by the pdata(x). Given a pdata(x), the enclosed term refers
to the generated data distribution pλ

d(x) for which the Assumption 3 holds.

C Implementation

In this section, we provided the details behind some implementation choices.

C.1 Adaptive variance soft-clipping

The (Chang et al., 2023; Chua et al., 2018) works realize log variance soft-clipping as:

5We used this notation to distinguish it between the ELBO of the S-IntroVAE which we still refer to that simply as W.
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Figure 6: The behavior of soft-clipping depends on the clipping range. Note that when using identical
β′s (e.g. β = 1) the clipping behavior changes depending on the range (rows). On the other hand, when
formulating the β as a function of the range and the K hyperparameter the behavior remains consistent.
Increasing the K (columns) leads to retaining a bigger portion of the original clipping range.

fc(logvar) = logvar − softplus(logvar-b) + softplus(a - logvar)

= logvar − 1
β

· log(1 + exp(β · (logvar − b)))

+ 1
β

· log(1 + exp(β · (a − logvar))),

(48)

where fc(logvar) is the soft-clipped output, [a, b] is the clipping interval and β a positive hyperparameter
controlling the steepness of softplus function. In these works a pre-specified [a, b] range was used and
naturally finding the optimal β hyperparameter for softplus is subject to proper fine-tuning. In practice,
the default option of β = 1 was used in both studies.

In our case, different clipping intervals are applied to each latent dimension, that is [aj , bj ] for each jth latent
dimension. The [aj , bj ] interval was determined based on the minimum and maximum variance of the prior’s
modes in each latent dimension as emerged during the VAE pre-training stage. Based on that, identifying
the optimal βj ’s through manual fine-tuning is not a feasible option. Towards overcoming this challenge we
model the βj ’s as:

βj = K

bj − aj
, (49)

with K being a controllable hyperparameter. Based on these, we derive the K such that:

fc(bj) − fc(aj)
bj − aj

≥ ρ, (50)
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with ρ ∈ (0, 1). Intuitively the (50) suggests that the initial range should be proportionally maintained post
the soft-clipping. The maintained proportion is controlled by ρ. Developing (50) based on the soft-clipping
function defined in (48) we get:

fc(bj) − fc(aj) ≥ ρ · (bj − aj)

bj − 1
βj

· log(1 + exp(βj · (bj − bj))) + 1
βj

· log(1 + exp(βj · (aj − bj)))

−ai + 1
βj

· log(1 + exp(βj · (aj − bj))) − 1
βj

· log(1 + exp(βj · (aj − aj))) ≥ ρ · (bj − aj)

bi − 1
βj

· log(2) + 1
βj

· log(1 + exp(βi · (aj − bj))) − aj + 1
βj

· log(1 + exp(βj · (aj − bj))) − 1
βj

· log(2)

≥ ρ · (bj − aj)

(bj − aj) − 2
βj

· log(2) + 2
βj

· log(1 + exp(βj · (aj − bj)))

≥ ρ · (bj − aj)

βj · (1 − ρ) · (bj − aj) ≥ log(4) − 2 log(1 + exp(βj · (aj − bj))).
(51)

We can derive K using the formulation defined in (49) as:

(1 − ρ) · K ≥ log(4) − 2 log(1 + exp(−K)). (52)

Note that the K only depends on ρ and therefore can be tuned for all latent dimensions simultaneously
irrespectively of the soft-clipping range [aj , bj ] (see Fig. 6). In our study, we used a ρ of 0.85 and found
that K = 10 satisfies the condition (52). In other words, having an adapting βj = 10

bj−aj
guarantees that

at least 85% of the initial range is maintained, post-clipping, in all latent dimensions. Alternatively, our
β-adapting formulation can be interpreted as a mechanism where the soft-clipping function maintains the
same average rate of change in all latent dimensions, as suggested by (50). Finally, the adaptive clipping
function fc becomes:

fc(logvarj) = logvarj − 1
βj

· log(1 + exp(βj · (logvarj − bj)))

+ 1
βj

· log(1 + exp(βj · (aj − logvarj))).
(53)

C.2 Losses in S-IntroVAE with trainable prior

Let xreal a real sample and zλ ∼ pλ(z). The encoder, the decoder, and the prior players minimize the LE ,
LD and LP losses respectively which write as:

LE(xreal, λ) = βrec · Lrec(xreal) + βKL · LKL(xreal) + 1
α

· exp(−α · (βrec · Lrec(D(zλ)) + βneg · LKL(D(zλ)))),

LD(xreal, zλ) = βrec · Lrec(xreal) +((((((((
βKL · LKL(xreal) + γ · (γρ · βrec · Lrec(sg(D(zλ))) + βKL · LKL(D(zλ))),

LP (xreal, zλ) =((((((((
βrec · Lrec(xreal) + βKL · LKL(xreal) + γ · (

((((((((((
βrec · Lrec(sg(D(zλ))) + βKL · LKL

6(D(zλ))),
(54)
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where D(zλ) is the fake sample generated from decoding the latent zλ, while Lrec and LKL the reconstruc-
tion and the KL losses respectively. Both LE and LD are identical to the original S-IntroVAE (Daniel &
Tamar, 2021) with γρ a hyperparameter also set to 1e−8. Note that the crossed-out terms do not affect the
optimization, as they are constant with respect to the network being updated (e.g., the reconstruction losses
are constant with respect to the prior when minimizing the LP ).

C.3 Responsibilities regularization

In this subsection, we provide the theoretical motivation behind the responsibilities regularization which
we utilize to discourage the formation of inactive prior modes. The notion of inactivity describes a prior
mode that contributes negligibly in supporting the aggregated posterior compared to other more dominant
modes. Sampling from inactive prior modes leads to unconstrained generation, which may negatively impact
generation performance. To this end, analyzing the minimization behavior of the LKL(xreal) terms in (54)
is key to avoiding and/or eliminating the inactive prior modes as these are the terms that induce fitness
between the real aggregated posterior and the prior.

Let q(z|xs) = N (z|µs, σ2
sI) be the posterior distribution of the a sample xs, an M-modal prior distribution

pλ(z) =
M∑

i=1
wi · N (z|µi, σ2

i I) and a uni-modal prior distribution pi(z) = N (z|µi, σ2
i I) corresponding to the

ith mode of pλ(z) distribution.

According to the notation defined above, the LKL(xs) approximates the KL divergence between the uni-
modal posterior q(z|xs) and the multi-modal prior pλ(z) (i.e., KL[q(z|xs)||pλ(z)]) as:

KL[q(z|xs)||pλ(z)] ≈ 1
T

·
T∑

t=1
log q(zt

s|xs)
pλ(zt

s) = LKL(xs), (55)

using T MC samples with zt
s ∼ N (z|µs, σ2

sI). Similarly we define the Li
KL(xs) as the approximation of the KL

divergence between the uni-modal posterior q(z|xs) and the ith prior component pi(z) (i.e., KL[q(z|xs)||pi(z)])
as:

KL[q(z|xs)||pi(z)] ≈ 1
T

·
T∑

t=1
log q(zt

s|xs)
pi(zt

s) = Li
KL(xs), (56)

For simplicity, we now assume that T = 1 and drop the index t for notational brevity, that is we refer to the
z1

s simply as zs.

C.3.1 Responsibilities computation - encoder update

First, let us analyze the minimization behavior from the encoder’s perspective. For a single MC sample zs,
the LKL(xs) can be computed as:

LKL(xs) = log q(zs|xs) − log pλ(zs)

= log N (zs|µs, σ2
sI) − log

M∑
i=1

wi · N (zs|µi, σ2
i I).

(57)

Based on that, we can now compute the derivative of LKL(xs) above with respect to zs as:

6When computing this particular KL term we only propagate the gradient for prior as a source while applying the sg operator
for prior as a target.
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∂LKL(xs)
∂zs

= 1
(((((((N (zs|µs, σ2

sI) ·(((((((N (zt|µs, σ2
sI) · µs − zs

σ2
s

−
M∑

i=1

wi · N (zs|µi, σ2
i )

M∑
l=1

wl · N (zs|µl, σ2
l )

· (µi − zs

σ2
i

)

= µs − zs

σ2
s

−
M∑

i=1
cs

i · (µi − zs

σ2
i

)

=
�
�
�
�7

1
M∑

i=1
cs

i · µs − zs

σ2
s

−
M∑

i=1
cs

i · (µi − zs

σ2
i

),

(58)

with cs
i = wi·N (zs|µi,s2

i )
M∑

l=1

wl·N (zs|µl,s2
l
)

denoting the responsibility of mode i to zs of the sample xs.

Similarly we can calculate the derivative of Li
KL(xs) with respect to zs as:

∂Li
KL(xs)
∂zs

=µs − zs

σ2
s

− µi − zs

σ2
i

. (59)

Based on Eqs. 58 and 59 we conclude that:

∂LKL(xs)
∂zs

=
M∑

i=1
cs

i · ∂Li
KL(xs)
∂zs

. (60)

The decomposition provided above reveals the effect that responsibilities of each prior component have
when fitting uni-modal posterior into multi-modal prior distributions. More specifically, it is shown that zs

minimizes the LKL by seeking the prior modes according to the responsibilities cs
i . Motivated by this, we

define the expected responsibility of mode i to the real aggregated posterior as:

ci = Ex∼pdata(x)Ez∼qϕ(z|x)

[
wi · N (z|µi, σ2

i I)∑M
l=1 wl · N (z|µl, σ2

l I)

]
. (61)

C.3.2 Inactive modes and vanishing gradients - prior update

When computing the derivative of the LKL(xs) concerning the contribution wi we will need to take into
account that sum of all contributions has to be 1. To ease the computation we can model wi = ei

M∑
l=1

el

,

where ei is a non-negative real number realizing the unormalized probability mass of the ith component, and
compute the derivative with respect the normalized energy ei. Based on that :
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∂LKL(xs)
∂ei

= −
∂ log

M∑
l=1

wl · N (zs|µl, σ2
l I)

∂ei

= − 1
M∑

l=1
wl · N (zs|µl, σ2

l I)
· ( 1

M∑
l=1

el

· (1 − wi) · N (zs|µi, σ2
i I)

− 1
M∑

l=1
el

·
M∑

l=1
l ̸=i

wl · N (zs|µl, σ2
l I))

= − 1

�
�
��

1
M∑

l=1

el

·
M∑

l=1
ei · N (zs|µl, σ2

l I)
·

�
�
�
�1

M∑
l=1

el

· (N (zs|µi, σ2
i I)

−
M∑

l=1
wl · N (zs|µl, σ2

l I))

= 1
M∑

l=1
ei · N (zs|µl, σ2

l I)
· (

M∑
l=1

wl · N (zs|µl, σ2
l I) − N (zs|µi, σ2

i I)).

(62)

The result above aligns with our intuition as it suggests that given a latent zs the energy ei corresponding
to the unnormalized contribution of ith component increases if it is more likely to have been sampled from
that mode compared to the MoG prior, and vice versa.

Similarly, we compute the derivatives of LKL(xs) with respect with respect to µi and σi corresponding to
the mean and the standard deviation of the ith prior component respectively. In this case the gradient steps
write as:

∂LKL(xs)
∂µi

= −cs
i · zs − µi

σ2
i

and

∂LKL(xs)
∂σi

= −cs
i · (zs − µi)2 − σ2

i

σ3
i

.

(63)

The derivatives above reveal the behavior of the individual prior components in the presence of inactive
modes. In particular, an inactive mode i manifests as low ci responsibility (i.e., cs

i close to zero for all real
sample xs), due to insufficiently supporting the real aggregated posterior relative to other, more dominant
modes. Consequently, a vanishing gradient issue arises, where the mean and the standard deviation of
the inactive mode i are not updated (towards supporting the posterior) as indicated by 63. On the other
hand, the unnormalized contributions of the inactive modes tend to vanish in favor of other more dominant
modes as Eq 62 suggests. Based on these observations, it is clear that in the presence of inactive modes,
allowing for learnable contributions enables the prior player to eliminate inactive modes. Conversely, not
allowing learnable contributions leaves the prior with inactive modes that cannot adapt to the aggregated
posterior, due to their low responsibility and consequently vanished gradients rendering the model prone to
unconstrained generation.

C.4 Exploding variance - prior update

In this subsection, we provide the theoretical motivation behind the log-variance clipping that was used to
stabilize training. We now assume a posterior zs such that:
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|zs − µi| > t · σi with t ≫ 1. (64)

The formulation above suggests that the sample zs is highly unlikely under the Gaussian distribution defined
by the ith prior component, with the parameter t controlling the degree of unlikeliness. Under the assumption
of (64) the magnitude of the update rules derived in (63) write as:

∣∣∣∣∂LKL(xs)
∂µi

∣∣∣∣ > |cs
i | · t

σi
and∣∣∣∣∂LKL(xs)

∂σi

∣∣∣∣ > |cs
i | · t2 · σ2

i − σ2
i

σ3
i

= |cs
i | · t2 − 1

σi
≈ |cs

i | · t2

σi
.

(65)

The derivation above suggests that the gradient magnitudes of the µi and σi parameters scale linearly and
quadratically with t, respectively. Based on this, it is evident that the standard deviation, and therefore the
variance, of the prior are more sensitive to explosions in the presence of highly unlikely posterior samples
zs. Note that since the contributions cs

i are computed relative to all prior modes, it is possible for zs to
be unlikely under the ith prior component while cs

i remains non-negligible. Finally given that (64) holds,
( ∂LKL(xs)

∂σi
) = −1 suggesting that the explosion of variance in the presence of unlikely posterior samples can

only increase the variance towards minimizing the KL divergence.

D Additional Details and Results

D.1 Baseline reproduction for 2D datasets

Due to the inherent randomness involved in evaluating the generation quality, the grid-search-based hyper-
parameter tuning and the computation of KL-divergence in a Monte-Carlo fashion, in table 4 we compare
the baseline performance across five key settings. Namely, the baseline as (i) reported in (Daniel & Tamar,
2021) (ii) reproduced by us using the official code-base (Daniel & Tamar, 2021), reproduced by our code-base
computing KL both (iii) in closed-form (c) and (iv) in Monte-Carlo (s) manner and finally (v) replicated by
our full pipeline of hyperparameter tuning which can result in selecting different optimal hyperparameter
for each dataset (compared to those provided by Daniel & Tamar (2021)). Although computing the KL
divergence in a Monte-Carlo fashion is unnecessary for the uni-modal prior (baseline) it is important to
verify that both closed and Monte-Carlo-based KL computation lead to comparable performance.

2D - Dataset βrec βkl βneg

8Gaussian 0.2 (0.2) 0.3 (0.3) 0.9 (0.9)
2Spirals 0.2 (0.2) 0.05 (0.5) 0.2 (1)

Checkerboard 0.05 (0.2) 0.2 (0.1) 0.8 (0.2)
Rings 0.2 (0.2) 0.2 (0.2) 0.6 (1)

Table 3: Optimal hyperparameter under the standard Gaussian prior for each dataset as found using grid-
search and as reported by Daniel & Tamar (2021) (in parenthesis).
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S-IntroVAE (SG)

Source → reported official
(reproduced)

ours
(reproduced)

ours
(replicated)

KL Calculation
Mode → c c c s s

8G
au

ss
ia

n gnELBO ↓ 1.25 ±0.35 0.62 ±0.13 0.52 ±0.09 0.51 ±0.15 0.51 ±0.15

KL ↓ 1.25 ±0.11 1.33 ±0.52 1.36 ±0.41 1.23 ±0.11 1.23 ±0.11

JSD ↓ 0.96 ±0.15 1.16 ±0.15 1.16 ±0.11 1.01 ±0.18 1.01 ±0.18

2S
pi

ra
ls gnELBO ↓ 5.21 ±0.04 5.47 ± 0.05 5.47 ± 0.06 5.47 ±0.14 6.41 ±0.61

KL ↓ 8.13 ±0.3 10.21 ±0.39 10.66 ±0.19 10.26 ±0.39 9.5 ±1.23

JSD ↓ 3.37 ±0.04 4.03 ±0.1 4.11 ±0.16 4.08 ±0.06 4.21 ±0.5

C
he

ck
er

bo
ar

d gnELBO ↓ 4.47 ±0.29 6.28 ±0.56 6.22 ±0.80 6.33 ±0.75 7.21 ±0.12

KL ↓ 20.27 ±0.21 19.72 ±0.23 19.99 ±0.28 19.94 ±0.37 19.62 ±0.57

JSD ↓ 9.06 ±0.15 9.04 ±0.19 9.34 ±0.19 9.19 ±0.17 8.87 ±0.15

R
in

gs

gnELBO ↓ 6.3 ±0.08 5.81 ±0.06 5.8 ±0.05 5.85 ±0.13 6.03 ±0.12

KL ↓ 9.18 ±0.33 10.67 ±0.5 10.75 ±0.29 10.89 ±0.45 9.99 ±0.59

JSD ↓ 4.13 ±0.09 4.37 ±0.12 4.35 ±0.12 4.2 ±0.11 4.05 ±0.15

Table 4: Baseline performance across five key settings. For each setting, we report the performance (mean ±
standard deviation) over five runs. When reporting the performance for columns 2 to 4 we used the optimal
hyperparameters as provided (reproduced) by Daniel & Tamar (2021) (also found in parenthesis in Table 3)
whereas, for the 5th column, we used the optimal hyperparameters found by our grid-search implementation
(replicated). Note that for the 8Gaussian dataset, we found the same optimal hyperparameters leading to
identical performance between the 4th and the 5th columns. The ’c’ and ’s’ refer to closed-form and sample-
based computation of KL divergence.

D.2 MoG ablation on the image experiments

In Table 5 we provide the full ablation on the image generation benchmark suggesting that utilizing a
sufficient number of prior modes is crucial for achieving optimal generation and representation learning
performance.
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Model → S-IntroVAE S-IntroVAE

Prior Type → SG MoG(10) MoG(100)

LC Flag → N/A ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

IP Flag → N/A ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

M
N

IS
T

rentropy 0 10 0 1 100 10 10 1 10

Entr. 0 0.966 ±0.008 0.952 ±0.014 0.948 ±0.009 0.988 ±0.001 0.892 ±0.002 0.882 ±0.001 0.882 ±0.002 0.853 ±0.004

FID (GEN) ↓ 1.414 ±0.025 1.38 ±0.049 1.356 ±0.1 1.427 ±0.02 1.365 ±0.031 1.322 ±0.025 1.352 ±0.052 1.32 ±0.061 1.309 ±0.027

FID (REC) ↓ 1.503 ±0.031 1.488 ±0.072 1.51 ±0.049 1.629 ±0.171 1.472 ±0.069 1.342 ±0.05 1.473 ±0.1 1.363 ±0.075 1.385 ±0.081

Recall (GEN) ↑ 0.565 ±0.003 0.569 ±0.001 0.545 ±0.006 0.554 ±0.007 0.552 ±0.002 0.562 ±0.003 0.553 ±0.008 0.556 ±0.003 0.557 ±0.001

Precision (GEN) ↑ 0.522 ±0.004 0.533 ±0.002 0.563 ±0.012 0.54 ±0.01 0.553 ±0.005 0.55 ±0.005 0.556 ±0.001 0.561 ±0.005 0.562 ±0.005

2K-SVM ↑ 0.93 ±0.001 0.956 ±0.002 0.972 ±0.001 0.957 ±0.002 0.959 ±0.002 0.961 ±0.001 0.97 ±0.004 0.962 ±0.002 0.972 ±0.002

10K-SVM ↑ 0.93 ±0.001 0.957 ±0.002 0.972 ±0.001 0.957 ±0.002 0.958 ±0.002 0.961 ±0.001 0.97 ±0.004 0.962 ±0.002 0.972 ±0.002

5-NN ↑ 0.763 ±0.003 0.866 ±0.01 0.943 ±0.005 0.876 ±0.007 0.842 ±0.014 0.916 ±0.004 0.947 ±0.011 0.92 ±0.001 0.957 ±0.004

100-NN ↑ 0.87 ±0.003 0.897 ±0.01 0.949 ±0.006 0.907 ±0.006 0.885 ±0.009 0.934 ±0.002 0.953 ±0.007 0.935 ±0.001 0.958 ±0.002

FM
N

IS
T

rentropy 0 10 10 0 1 0 10 10 10

Entr. 0 0.978 ±0.004 0.982 ±0 0.951 ±0.007 0.82 ±0.024 0.931 ±0.003 0.931 ±0.001 0.944 ±0.001 0.903 ±0.005

FID (GEN) ↓ 3.326 ±0.039 2.778 ±0.09 3.019 ±0.095 2.836 ±0.089 2.987 ±0.072 2.785 ±0.051 3.025 ±0.139 2.727 ±0.079 2.831 ±0.1

FID (REC) ↓ 3.76 ±0.097 3.102 ±0.062 3.406 ±0.036 3.189 ±0.092 3.339 ±0.081 2.994 ±0.05 3.129 ±0.095 3.185 ±0.101 3.511 ±0.074

Recall (GEN) ↑ 0.314 ±0.012 0.348 ±0.005 0.327 ±0.004 0.338 ±0.014 0.336 ±0.004 0.35 ±0.003 0.336 ±0.007 0.346 ±0.004 0.341 ±0.008

Precision (GEN) ↑ 0.518 ±0.009 0.556 ±0.005 0.551 ±0.003 0.558 ±0.007 0.560 ±0.004 0.553 ±0.005 0.558 ±0.004 0.576 ±0.006 0.574 ±0.003

2K-SVM ↑ 0.681 ±0.001 0.703 ±0.011 0.681 ±0.010 0.715 ±0.005 0.68 ±0.012 0.731 ±0.003 0.695 ±0.007 0.712 ±0.005 0.696 ±0.003

10K-SVM ↑ 0.731 ±0.006 0.771 ±0.004 0.763 ±0.006 0.775 ±0.003 0.765 ±0.002 0.78 ±0.002 0.772 ±0.003 0.778 ±0.002 0.773 ±0.002

5-NN ↑ 0.425 ±0.009 0.594 ±0.016 0.649 ±0.012 0.604 ±0.015 0.618 ±0.013 0.683 ±0.006 0.693 ±0.008 0.678 ±0.006 0.707 ±0.005

100-NN ↑ 0.606 ±0.014 0.682 ±0.014 0.691 ±0.008 0.69 ±0.010 0.659 ±0.009 0.736 ±0.003 0.729 ±0.006 0.731 ±0.003 0.739 ±0.004

C
IF

A
R

-1
0

rentropy 0 10 10 10 0 10 100 100 10

Entr. 0 0.895 ±0.005 0.886 ±0.006 0.914 ±0.012 0 0.839 ±0.007 0.94 ±0.002 0.929 ±0.003 0.511 ±0.043

FID (GEN) ↓ 4.424 ±0.064 4.538 ±0.1 4.876 ±0.075 4.547 ±0.079 4.595 ±0.046 4.465 ±0.038 4.385 ±0.140 4.417 ±0.031 4.594 ±0.235

FID (REC) ↓ 4.13 ±0.068 4.379 ±0.053 4.686 ±0.143 4.539 ±0.092 4.519 ±0.059 4.205 ±0.091 4.084 ±0.006 4.141 ±0.039 4.585 ±0.373

Recall (GEN) ↑ 0.283 ±0.003 0.266 ±0.007 0.253 ±0.003 0.268 ±0.002 0.267 ±0.001 0.281 ±0.001 0.283 ±0.003 0.282 ±0.008 0.264 ±0.012

Precision (GEN) ↑ 0.685 ±0.004 0.687 ±0.008 0.689 ±0.008 0.69 ±0.003 0.68 ±0.003 0.676 ±0.002 0.679 ±0.004 0.677 ±0.007 0.685 ±0.006

2K-SVM ↑ 0.245 ±0.009 0.241 ±0.005 0.264 ±0.005 0.246 ±0.01 0.224 ±0.003 0.25 ±0.002 0.271 ±0.006 0.26 ±0.002 0.256 ±0.003

10K-SVM ↑ 0.391±0.005 0.385 ±0.004 0.379 ±0.002 0.387 ±0.002 0.365 ±0.002 0.396 ±0.003 0.407 ±0.007 0.401 ±0.002 0.396 ±0.002

5-NN ↑ 0.206 ±0.001 0.175 ±0.002 0.238 ±0.004 0.175 ±0.003 0.174 ±0.004 0.189 ±0 0.239 ±0.005 0.196 ±0.001 0.219 ±0.002

100-NN ↑ 0.308 ±0.007 0.192 ±0.010 0.305 ±0.001 0.186 ±0.005 0.219 ±0.016 0.216 ±0.008 0.32 ±0.005 0.259 ±0.003 0.273 ±0.004

Table 5: Quantitative performance on the images datasets. The LC flag refers to mixture component
contributions being learnable while the IP flag refers to training the prior (i.e., prior–decoder cooperation
scheme). Reported values are mean ± standard error over three runs. The rentropy row corresponds to the
regularization used to obtain the optimal FID(GEN) for each training configuration, where the Entr. row
refers to the normalized entropy of the responsibilities where the closer to one its value the more uniformly
the aggregated posterior is supported by the prior components.
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D.3 Illustrating the effect of regularizing the entropy of the responsibilities

Regularizing the entropy of the responsibilities, as described in C.3, was essential for avoiding the formation
of inactive modes in our prior–decoder cooperation scheme. Here we provide empirical evidence for that
choice by analyzing the curves of normalized entropy of the responsibilities for different regularization
intensities controlled by the rentropy hyperparameter and the corresponding FID(GEN) measuring the
generation quality. Towards identifying the optimal value we experimented with rentropy ∈ [0, 1, 10, 100],
however, to enhance the readability of Fig. 7, we omitted the curves for rentropy = 1 as they displayed
similar behavior to rentropy = 0.

Inspecting Fig. 7 reveals interesting insights into the effect of responsibilities’ regularization. First, it can
be seen that different optimal rentropy are to be expected depending on the prior learning configuration
and the datasets as indicated by the FID(curves). Additionally, we observe that the issue of inactive prior
mode formation is more pronounced under the IP formulation. The blue lines, representing unregularized
responsibilities, tend to converge to a lower level compared to the fixed MoG prior setting. We attribute this
behavior to the prior modes being updated to support the aggregated posterior, which adapts according to
a discriminating objective. Interestingly, we also observe that when allowing for learnable contribution (i.e.
LC) under the IP generally decreases the entropy of the responsibilities. This observation can be explained
by the derivative of KL with respect to the energy contributions as given by Eq 62. More specifically it was
shown that the contributions of inactive prior modes tend to decrease in favor of more dominant ones, fur-
ther reducing the normalized entropy of the responsibilities. Finally, the FID(GEN) curves corresponding to
CIFAR-10 dataset highlight the detrimental effect of generating samples from inactive modes. More specif-
ically, when the responsibilities’ entropy approaches zero (blue curves in CIFAR-10) the FID(GEN) tends
to increase when not allowing for learnable contributions (dotted blue curves). In other words, generating
samples from modes that do not support the aggregated posterior (i.e., inactive modes) leads to degraded
generation quality.
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Figure 7: The effect of regularizing the entropy of the responsibilities under the 10− and 100−modal MoG
priors.
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D.4 Latent Space Inspection

Here, we provide visualizations of the latent space of S-IntroVAE under the different configurations
considered for the image generation task. More specifically we are interested in understanding how allowing
for a trainable prior affects the latent space learned in S-IntroVAEs. Overall, the quantitative results
suggest that learning the prior during the adversarial training leads to significantly different latent space.
In particular, we observe that the prior components are spread more evenly when allowing for trainable
prior compared to when fixing it (see Fig. 8).

Figure 8: Visualizing the first 2 latent dimensions of S-IntroVAE under different prior configurations along
with samples from the aggregated posterior. Different colors correspond to different classes. Note that
learning the prior during the adversarial learning leads to significantly different latent space. The black dots
refer to the means of the prior components, when applicable (i.e. w/ LC) the size of these dots refers to the
contribution of this component in the MoG (e.g. the smaller the size the lower the contribution).

We also employed the t-SNE dimensionality reduction technique to visually inspect how prior learning affects
the high-dimensional latent space. The quantitative results indicate that prior learning tends to create better-
separated clusters. Although the separation effect is less pronounced when modeling the prior with many
components (e.g. 100 vs 10 components), it remains noticeable (see Fig. 9).

Figure 9: Visualizing the high-dimensional latent space of the aggregated posterior using t-SNE dimension-
ality reduction technique. Note that learning the prior during the adversarial learning generally leads to
better-separated clusters in the latent space. Different colors correspond to different classes.
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