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ABSTRACT

Enlightened by the InfoMax principle, graph contrastive learning has achieved
remarkable performance in processing large amounts of unlabeled graph data. Due
to the impracticality of precisely calculating mutual information (MI), conven-
tional contrastive methods turn to approximate its lower bound using parametric
neural estimators, which inevitably introduces additional parameters and leads
to increased computational complexity. Building upon a common Gaussian as-
sumption on the distribution of node representations, a computationally tractable
surrogate for the original MI can be rigorously derived, termed as Gaussian Mu-
tual Information (GMI). GMI eliminates the reliance on parameterized estimators
and negative samples, resulting in an efficient contrastive objective with provable
performance guarantees. Another parallel research branch on decorrelation-based
self-supervised methods has also emerged, with the core idea of mitigating di-
mensional collapse by decoupling various representation channels. While the
differences between the two families of contrastive-based and decorrelation-based
methods have been extensively discussed to inspire new approaches, their potential
connections are still obscured in the mist. By positioning the proposed GMI-based
objective with cross-view identity constraint as a pivot, we bridge the gap between
these two research areas from two aspects of approximate form and consistent
solution, which contributes to the advancement of a unified theoretical framework
for self-supervised learning. Extensive comparison experiments and visual analysis
provide compelling evidence for the effectiveness and efficiency of our method
while supporting our theoretical achievements. Besides, the empirical evidence
indicates that even in cases deviating from Gaussianity, our approach continues to
maintain its performance, which significantly extends application scenarios.

1 INTRODUCTION

The scarcity of task-related annotations for graph data, which usually rely on domain knowledge and
specific equipment such as chemical instruments (Liu et al., 2023), urgently calls for the emergence
of advanced unsupervised learning methods without manual supervision. In this context, graph
self-supervised learning (SSL) (Zhu et al., 2020; 2021; You et al., 2020; Thakoor et al., 2022;
Bielak et al., 2021) arises naturally in response to the prevailing demand, approaching and even
surpassing the performance of their supervised counterparts (Kipf & Welling, 2016a; Veličković
et al., 2017; Hamilton et al., 2017). SSL models are trained on well-designed pretext tasks in a task-
agnostic manner, whose optimization results in general, meaningful, and transferable representations
for downstream applications. As a distinguished member of the SSL family, multi-view learning
with Siamese networks (Li et al., 2022) has demonstrated exceptional performance and garnered
widespread interest. At the heart of such methods is to extract invariant or common information
from various augmented views of the same instance (i.e., positive pairs) while adopting specific
strategies to prevent model collapse. The existing multi-view learning methods can be classified into
two distinct categories based on their means of addressing degradation: contrastive (Zhu et al., 2020;
2021; You et al., 2020; Hassani & Khasahmadi, 2020) and non-contrastive (Thakoor et al., 2022;
Bielak et al., 2021; Zhang et al., 2021) approaches. The former suppresses encoded representations
from collapsing into a constant point by pushing negative pairs apart, while the latter employs special
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strategies such as decorrelating different representation dimensions (Zhang et al., 2021; Bielak et al.,
2021) or designing asymmetric network architecture (Thakoor et al., 2022; Grill et al., 2020).

The concept of contrastive multi-view learning originates from information theory (Ash, 2012;
Walters-Williams & Li, 2009), aiming to improve the consistency between various views by maxi-
mizing their mutual information (MI). Nevertheless, the exact computation of mutual information
for high-dimensional continuous variables is usually intractable. To cope with this challenge, some
previous endeavors have attempted to employ parameterized neural estimators to perform an empirical
evaluation of mutual information from finite samples, yielding notable achievements like MINE (Bel-
ghazi et al., 2018), Jensen-Shannon estimator (Nowozin et al., 2016), and InfoNCE (Gutmann &
Hyvärinen, 2010a). Formally, contrastive learning methods equipped with the parameterized estima-
tor of MI manifest as a contrastiveness between positive pairs from a joint distribution and negative
pairs from two marginal ones. Despite their decent performance, these methods are accompanied
by several inherent drawbacks: a) a substantial number of samples are required to obtain reliable
estimation and achieve satisfactory results, which inevitably increases computational burden; b) the
incorporation of parameterized MI estimators amplifies the complexity of SSL models.

Deviating from the conventional graph contrastive learning methods, we delve into lightweight and
efficient alternatives with no reliance on parameterized MI estimators for node-level representation
learning. Assuming node representations obey a Gaussian distribution, a feasible closed-form solution
can be obtained, called Gaussian Mutual Information (GMI), through tractable integration operations
on the native definition of MI. In its mathematical form, GMI exclusively depends on the covariance
matrices. As a result, the estimation of MI is alleviated to that of covariance matrices, which can
be effortlessly obtained from empirical data (i.e., node representations). Independent of additional
architecture, the resultant objective under GMI can be directly calculated within the representation
space, leading to higher computational efficiency and better resource friendliness. Most importantly,
the performance of the proposed method can still hold even when actual scenarios deviate from
Gaussian distributions, thereby extending its applicability beyond Gaussian constraints.

As another indispensable branch of the SSL family, the decorrelation-based non-contrastive meth-
ods (Zhang et al., 2021; Bielak et al., 2021; Bardes et al., 2022; Ermolov et al., 2021) prevent
degenerate solutions and learn diverse representations by decoupling various channels, whose ob-
jective functions exhibit an utterly distinct appearance from those of contrastive-based ones. While
the distinctions between the two branches have been thoroughly discussed, their latent theoretical
relationships remain enshrouded in ambiguity. Imposing a cross-view identity constraint, which
enhances the perfect alignment of representations from different views of the same instance, to
our proposed GMI-based objective function, we employ the newly induced objective as a pivot to
elucidate the underlying connections between decorrelation-based and contrastive-based methods.
On the one hand, the former is formally equivalent to a second-order Taylor series expansion of the
latter. On the other hand, their objectives share consistent solutions. Overall, the decorrelation-based
methods can be regarded as an instantiation of contrastive learning under the Gaussian assumption on
the distribution of node representations and identity constraint.

Our contributions in this paper are summarized as follows:
• Under the common Gaussian assumption for node representations, we propose a computationally

tractable graph contrastive objective based on mutual information maximization. Due to its
simplicity and lightweight nature, it exhibits high efficiency with provable performance guarantees.

• We bridge decorrelation-based self-supervised methods to our proposed contrastive objective from
two aspects of approximation of form and consistency of solution, which points out a clue to
demystify the relationships between various self-supervised learning methods.

• Extensive empirical studies demonstrate the effectiveness and efficiency of our method compared
with state-of-the-art peers. Additionally, exploratory studies and visual analysis further reveal the
advantages of our method and reinforce the understanding of our theoretical achievements.

2 RELATED WORK

2.1 GRAPH SELF-SUPERVISED LEARNING

For its remarkable performance, multi-view-based methods have been the dominant paradigm of
graph self-supervised learning, which expect to explore common information from various augmented
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versions. A crucial aspect of these methods is to prevent degenerate solutions, where all represen-
tations are collapsed to a constant point (i.e., complete collapse) or a subspace (i.e., dimensional
collapse) of the entire representation space. The current methods can be categorized into two groups,
namely contrastive (Zhu et al., 2020; 2021; You et al., 2020; Hassani & Khasahmadi, 2020; Peng et al.,
2020) and non-contrastive (Thakoor et al., 2022; Bielak et al., 2021; Zhang et al., 2021) approaches,
based on their ways to circumvent model collapse.

The contrastive-based methods usually follow the criterion of mutual information maximiza-
tion (Hjelm et al., 2019; Linsker, 1988), whose objective functions take the form of contrasting
positive pairs with negative ones. As pioneer works, Deep Graph Infomax (DGI) (Veličković et al.,
2018) and InfoGraph (Sun et al., 2020) learn unsupervised representations by maximizing mutual
information between node-level representations and a whole graph summary vector based on the
Jenson-Shannon estimator (Nowozin et al., 2016). GraphCL (You et al., 2020), GRACE (Zhu et al.,
2020), and GCA (Zhu et al., 2021) embed the InfoNCE (Gutmann & Hyvärinen, 2010b) loss into
graph contrastive learning framework. From the view of information theory, InfoGCL (Xu et al.,
2021a) investigates how to build appropriate contrastive learning frameworks for specific tasks.

The non-contrastive methods discard negative samples, which require special strategies to avoid
collapsed solutions. BGRL (Thakoor et al., 2022) utilizes asymmetric architecture and a stop-gradient
strategy to prevent the two branches from merging. Graph Barlow Twins (G-BT) (Bielak et al.,
2021) generalizes the celebrated Barlow Twins (Zbontar et al., 2021) from images to graph data.
CCA-SSG (Zhang et al., 2021) learns augmentation-invariant information while decorrelating features
in different dimensions to prevent degenerated solutions.

2.2 ESTIMATING MUTUAL INFORMATION

Mutual information is a powerful and commonly used measure for general correlation between random
variables, which has been applied to a range of fields, including medical image processing (Pluim
et al., 2003), feature selection (Estevez et al., 2009; LIU, 2009), information bottleneck (Goldfeld
& Polyanskiy, 2020), and recommendation system (Sankar et al., 2020). Nevertheless, the exact
computation of MI for high-dimensional variables is notoriously difficult. An alternative scheme is to
estimate MI from empirical observations.

The non-parametric estimators make no assumptions about the underlying distribution of data and
require no specification of any parameters. The most popular class in this branch is the k-nearest-
neighbor-based estimators and their extensions (Singh et al., 2003; Kraskov et al., 2004; Gao et al.,
2015). Besides, the methods based on kernel density estimation (KDE) first estimate the probability
density function and then compute MI by Monte-Carlo integration (Silverman, 1986; Scott, 2015).

The research on neural-network-based MI estimation (Belghazi et al., 2018; Nowozin et al., 2016;
Gutmann & Hyvärinen, 2010a) has also made significant process, which has been widely applied in
representation learning. The key technical ingredient of these methods is to approximate the lower
bound of MI based on dual representations of the f -divergence (Nowozin et al., 2016).

3 METHODOLOGY

3.1 PRELIMINARIES AND OVERALL FRAMEWORK

Preliminaries. Before further discussion, the preliminary conceptions presented in this paper are
first provided. A graph is denoted by G(A,X) with node set V = {v1, ..., vN} and edge set E , where
|V| = N indicates the number of nodes. Each node vi ∈ V has a D-dimensional feature vector
xi ∈ RD. Node feature matrix X = [x1, ...,xN ]⊤ ∈ RN×D contains feature information of all nodes
and adjacency matrix A ∈ RN×N describes the connection relationship between nodes. The task of
node-level graph self-supervised learning is to seek good node representations H̃ = [h̃1, ..., h̃N ]⊤ ∈
RN×d through learning a continuous mapping fθ(A,X) : RN×N ×RN×D → RN×d without labels,
where θ denotes learnable parameters and d indicates the representation dimension.

Graph View Generation. Let the transformation τ ∈ T : G(A,X) → G′(A′,X′) map the
original graph to an augmented version, where T denotes the whole function space for augmentation.
Specifically, the graph augmentation τ is jointly implemented from two aspects of graph topology and
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Figure 1: An overview of the overall framework based on GMIM. The outputs of well-trained fθ(·)
can be applied to various node-level downstream tasks. Best viewed in colors.

feature, following previous works (Zhu et al., 2020). For topology-level augmentation, edge removal
is adopted, randomly removing edges of a certain ratio pe on the original graph. For feature-level
augmentation, node feature masking randomly sets feature channels of a specific number D · pf in
feature matrix X ∈ RN×D to zero, where pf is the masking ratio.

Overall Framework. In terms of basic framework, this paper inherits the common practice of prior
studies. As shown in Figure 1, two various views G′

A(A
′
A,X

′
A) = τA(G) and G′

B(A
′
B ,X

′
B) =

τB(G) are firstly generated based on two graph augmentation functions τA and τB randomly sampled
from T . The two augmented versions are fed into a shared graph convolutional network (Kipf &
Welling, 2016a) fθ(·) to obtain representations H̃A = [h̃A

1 , ..., h̃
A
N ]⊤ and H̃B = [h̃B

1 , ..., h̃
B
N ]⊤. To

facilitate subsequent discussion, H̃A and H̃B are further batch-normalized into HA = [hA
1 , ...,h

A
N ]⊤

and HB = [hB
1 , ...,h

B
N ]⊤, each representation channel in which obey a distribution with 0-mean and

1-standard deviation. “GMIM” is the optimization objective proposed in the following sections.

3.2 GAUSSIAN MUTUAL INFORMATION MAXIMIZATION

Contrastive learning is initially enlightened by the InfoMax principle (Bell & Sejnowski, 1995), which
expects to maximize mutual information between representations from various views.
Definition 1 (Mutual Information). Let X and Y denote two d-dimensional continuous variables
with marginal probability functions px(X) and py(Y ), respectively. Their joint probability density is
indicated by px,y(X,Y ). The mutual information I(X;Y ) between X and Y is defined as

I(X;Y ) =

∫
X

∫
Y
px,y(X,Y ) ln

px,y(X,Y )

px(X) · py(Y )
dXdY, (1)

where X and Y denote domains corresponding to X and Y , respectively.

Nevertheless, the exact computation of mutual information for high-dimensional continuous variables
is usually infeasible. First, it is challenging to estimate the probability densities from empirical
observations. Second, even though they can be obtained, which may have complex forms, the integral
operation in Eq. (1) remains difficult, even intractable. To tackle these issues, the conventional
contrastive leaning methods employ parametric networks to directly estimate a lower bound of MI,
which can be trained alongside the backbone via back-propagation in an end-to-end manner.

Divergent from the peer works, this paper assumes a latent Gaussian distribution for node represen-
tations and drops parametric estimators, which leads to a computationally tractable surrogate. The
Gaussian assumption is justifiable and extensively employed in numerous disciplines to simplify
analysis and calculation, including economics, data science, and physics (Park et al., 2013).
Proposition 1 (Gaussian Mutual Information). If the variables X and Y obey two multi-dimensional
Gaussian distributions, respectively, the Gaussian mutual information IG(X;Y ) between them is

IG(X;Y ) =
1

2
ln

det(ΣX) · det(ΣY )

det(ΣX,Y )
, (2)
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where det(·) indicates the determinant of a matrix, ΣX and ΣY are the covariance matrices of X

and Y , respectively, and ΣX,Y =

[
ΣX ΣXY

Σ⊤
XY ΣY

]
is the covariance matrix of variable [X⊤, Y ⊤]⊤

with the cross-covariance matrix ΣXY .

Proof. Please refer to Appendix A.

The three covariance matrices ΣX , ΣY , and ΣX,Y can be effortlessly estimated from the empirical
data, which results in a straightforward calculation of Gaussian mutual information. The covariance
matrix is a real symmetric matrix whose eigenvalues are all greater than or equal to zero. Mathe-
matically, the determinant of a matrix is numerically equal to the product of all eigenvalues. Due
to the underlying dimensional collapse issue during self-supervised pretraining, many eigenvalues
of the empirical covariance matrix tend to be zero, which causes its determinant to approach zero.
Therefore, a direct adoption of Eq. (2) for constructing a contrastive learning objective will bring
about numerical instability. One feasible strategy to alleviate the numerical issue is to offset and
scale the eigenvalues of the matrix performed by det(·). As a result, a practical objective based on
Gaussian Mutual Information Maximization (GMIM) can be formulated as

LGMIM = ln
det(I+ η ·ΣA,B)

det(I+ η ·ΣA) · det(I+ η ·ΣB)
, (3)

where ΣA = 1
NH⊤

AHA, ΣB = 1
NH⊤

BHB , ΣA,B = 1
N

[
H⊤

AHA H⊤
AHB

H⊤
BHA H⊤

BHB

]
, I is an identity matrix,

and η is a scaling factor with a typical value of 0.1. The eigenvalues of I+ η ·ΣA fall into [1,+∞),
and so do the other two sibling matrices.

According to (Cover, 1999), the following property holds:
Property 1. For variables X and Y , the relationship between entropy and mutual information is

I(X;Y ) = H(X)−H(X|Y ), (4)

where H(X) = −
∫
X px(X) ln px(X)dX denote the information entropy of X under px(X), and

H(X|Y ) =
∫
X
∫
Y px,y(X,Y ) ln

px,y(X,Y )
py(Y ) dXdY is the conditional entropy of X given Y . If X is

deterministic given Y , H(X|Y ) = 0. Symmetrically, I(X,Y ) = H(Y )−H(Y |X) holds.

From Property 1, it can be known that mutual information maximization actually involves two
potential processes: increasing information entropy and reducing conditional entropy. The conditional
entropy is minimized when the relationship between X and Y can be described by a deterministic
function g(·), that is, Y ′ = g(X ′) holds for any pair (X ′, Y ′) ∼ px,y. In our setup of overall
framework, a shared graph neural network is employed, expecting that representations of different
versions from the same instance can match each other perfectly. In this circumstance, g(·) is preferred
to be an identity mapping. By imposing the cross-view identity constraint to mutual information
maximization with the preservation of entropy maximization, we can obtain an objective under
Gaussian Mutual Information Maximization with Identity Constraint (GMIM-IC):

LGMIM-IC =
1

N

∑
v∈V

∥hA
v − hB

v ∥22︸ ︷︷ ︸
identity constraint

−β ·
(
ln det(I+ η ·ΣA) + ln det(I+ η ·ΣB)

)
︸ ︷︷ ︸

entropy maximization

, (5)

where β is a coefficient balancing identity constraint term and entropy maximization term. Some
analysis about Eq. (5) is placed in Appendix B.

4 BRIDGING CONTRASTIVE-BASED TO DECORRELATION-BASED

Based on the symbols in this article, the decorrelation-based self-supervised method (taking CCA-
SSG (Zhang et al., 2021) as an example) can be formularized as

LCCA-SSG =
1

N
∥HA −HB∥2F︸ ︷︷ ︸
invariance term

+λ ·
(
∥ΣA − I∥2F + ∥ΣB − I∥2F

)
︸ ︷︷ ︸

decorrelation term

, (6)
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where λ denotes a balancing factor and ∥ · ∥F indicates the Frobenius norm of a matrix. Since the
diagonal elements of ΣA are always 1, the following equation holds:

∥ΣA − I∥2F =

d∑
i=1

d∑
j=1,j ̸=i

(Σij
A)

2, (7)

where Σij
A represents the element in the i-th row and the j-th column of ΣA. The conclusion in Eq.

(7) still holds for B. Next, we will establish connections between the decorrelation-based methods
and our objective LGMIM-IC from two perspectives.

4.1 EXPLAINATION 1: APPROXIMATE FORM

Lemma 1. For a square matrix M, det(exp(M)) = exp(tr(M)). Replace M with ln(I+ η ·Σ∗) :

ln det(I+ η ·Σ∗) = tr(ln(I+ η ·Σ∗)), (8)

where ∗ ∈ {A,B} 1. Applying Taylor expression to the logarithmic function in tr(ln(I+ η ·Σ∗)), it
can be known that

ln det(I+ η ·Σ∗) = tr

(
+∞∑
k=1

(−1)k+1

k
(η ·Σ∗)

k

)
. (9)

Based on Lemma 1, we can obtain a second-order Taylor approximation:

− ln det(I+ η ·ΣA) ≈
η2

2
·

d∑
i=1

d∑
j=1,j ̸=i

(Σij
A)

2 +
η2

2
· d− η · d. (10)

The proof of Lemma 1 and detailed derivations of Eq. (10) are placed in Appendix C.1.

Comparing Eq. (7) with Eq. (10), ∥ΣA − I∥2F is equivalent to the second-order Taylor expression
of − ln det(I+ η ·ΣA) without considering the constant term. Symmetrically, the finding can be
extended to view B. Besides, the invariance term in Eq. (6) has an identical form with the identity
constraint term in Eq. (5). Thus, we can conclude that the objective of decorrelation-based methods
such as CCA-SSG has a approximate form with that of GMIM-IC.

4.2 EXPLAINATION 2: CONSISTENT SOLUTION

Certainly, the objective function in Eq. (6) is minimized when the representations from the two views
are perfectly matched and their empirical covariance matrices tend towards the identity matrix.

Proposition 2. When ln det(I+η ·Σ∗) or ln det(Σ∗) is maximized, the empirical covariance matrix
Σ∗ will converge to an identity matrix.

Proof. Refer to Appendix C.2.

Obviously, the identity constraint term is minimized in Eq. (5) when HA and HB is completely
aligned. Combining this observation with Proposition 2, it can be concluded that the decorrelation-
based objective in Eq. (6) has the same solution as the objective based on GMIM-IC.

Explaination 1 and 2 demonstrate the relationship between two objectives LCCA-SSG and LGMIM-IC

from two aspects of approximation in form and consistency in final solutions. Consequently, the
following corollary emerges naturally.

Corollary 1. The decorrelation-based graph self-supervised methods, which expect to align multiple
views and disentangle different representation dimensions, can actually be viewed as a special
instance of mutual-information-maximization-based contrastive learning under the Gaussian assump-
tion and identity constraint.

1In the remaining sections of this article, ∗ is used to represent either A or B.
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5 THEORETICAL ANALYSIS

5.1 PREVENTING DIMENSIONAL COLLAPSE

When dimensional collapse issue exists, various representation channels are coupled to each other
and present a certain correlation. Another manifestation of dimensional collapse is that data points
exhibit differences in distributions along different principal directions, where some directions exhibit
loose distributions with higher variance, while others present tight distributions with lower variance.

Property 2. For empirical covariance matrix Σ = 1
NH⊤H ∈Rd×d with batch-normalized represen-

tations H = [h1, ...,hN ]⊤ ∈ RN×d, which has d eigenvalues [λ1, λ2, . . . , λd] corresponding to d
eigenvectors [q1,q2, . . . ,qd], the variance of data H along the k-th principal direction (that is, the
direction of qk) is numerically equal to λk.

Proof. Please refer to Appendix C.3.

Property 2 potentially suggests that the unevenness of the eigenvalues of the covariance matrix leads
to the issue of dimensional collapse. Combining with Proposition 2, it can be known that maximizing
the logarithm of determinant can ensure entropy maximization and realize isotropic covariance,
which actually guarantees the evenness of eigenvalues of the covariance matrix and thus prevents
dimensional collapse issue. From the perspective of representation learning, this result will enhance
the diversity, richness, and discriminability of node representations, thereby conferring advantages to
downstream tasks.

5.2 RELATION WITH InfoNCE

As the commonest indicator in contrastive learning, the InfoNCE loss guides the model to learn
meaningful and diverse representations by pulling together embeddings from positive pairs and
pushing apart those from negative ones on the unit hypersphere.

A previous work (Wang & Isola, 2020) decomposes the classical InfoNCE objective into two terms:
alignment term and uniformity term. The alignment term expects to match two views, which shares the
same purpose as our identity constraint. The uniformity term is utilized to distribute representations
uniformly on the unit hypersphere Sd−1.

Proposition 3. When the representations scatter over the unit hypersphere Sd−1 uniformly (that is,
they obey a complete uniform distribution), their entropy will reach the maximum value.

Proof. Please refer to Appendix C.4.

Proposition 3 suggests that the uniformity term implicitly realize the maximization of entropy by
distributing the representations uniformly over the hypersphere. In contrast, our method explicitly
maximizes the entropy of representations under the assumption of Gaussian distribution. In general,
the two approaches reach the similar goal by different routes.

6 EXPERIMENTS

6.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. To assess our approach, six widely used benchmark datasets are adopted for experimental
study, including three citation networks Cora, Citeseer, and Pubmed (Sen et al., 2008), two
co-purchase networks Amazon-Computers and Amazon-Photo (Shchur et al., 2019), and one
co-authorship network Coauthor-CS (Shchur et al., 2019).

Experimental Setup. The representation encoder is implemented by Graph Convolutional Network
(GCN) (Kipf & Welling, 2016a). The model parameters are initialized via Xavier initialization (Glorot
& Bengio, 2010) and trained by Adam optimizer (Kingma & Ba, 2017). All experiments are conducted
on a TITAN RTX GPU with 24 GB memory. The representations are first learned by our method in
an unsupervised manner and then evaluated by a simple linear classifier.
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Table 1: Node classification accuracy with standard deviation in percentage on six datasets. The
“Input” column illustrates the data used in the training stage, and Y denotes labels. The bold font
highlights the best results. “OOM” means Out-Of-Memory.

Algorithm Input Cora Citeseer Pubmed Computers Photo Coauthor-CS
MLP X, Y 57.8 ± 0.2 54.2 ± 0.1 72.8 ± 0.2 79.81 ± 0.06 86.36 ± 0.08 91.32 ± 0.11
GCN X, A, Y 81.5 70.3 79.0 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31
GAT X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24

U
ns

up
er

vi
se

d

DeepWalk A 68.5 ± 0.5 49.8 ± 0.2 66.2 ± 0.7 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22
GAE X, A 72.1 ± 0.5 66.5 ± 0.4 71.8 ± 0.6 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71
GMI X, A 83.0 ± 0.3 72.4 ± 0.1 79.9 ± 0.2 82.21 ± 0.31 90.68 ± 0.17 OOM
GRACE X, A 81.9 ± 0.4 71.3 ± 0.3 80.1 ± 0.2 86.53 ± 0.28 92.24 ± 0.17 92.98 ± 0.05
GCA X, A 81.7 ± 0.3 71.1 ± 0.4 79.5 ± 0.5 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01
GraphMAE X, A 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4 88.12 ± 0.30 92.97 ± 0.21 93.03 ± 0.16
G-BT X, A 84.0 ± 0.4 73.0 ± 0.3 80.7 ± 0.4 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17
CCA-SSG X, A 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4 88.74 ± 0.28 93.14 ± 0.14 93.31 ± 0.22
InfoGCL X, A 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 - - -
CorInfoMax X, A 82.6 ± 0.4 72.2 ± 0.5 80.4 ± 0.4 87.98 ± 0.14 92.63 ± 0.10 92.88 ± 0.15
MVGRL X, A 83.7 ± 0.6 73.6 ± 0.3 79.9 ± 0.2 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12
DGI X, A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63

GMIM X, A 83.4 ± 0.6 72.5 ± 0.5 81.6 ± 0.5 88.64 ± 0.22 92.95 ± 0.17 92.48 ± 0.10
GMIM-IC X, A 84.6 ± 0.5 73.7 ± 0.4 81.8 ± 0.6 88.80 ± 0.49 93.10 ± 0.26 93.45 ± 0.17

6.2 COMPARISON EXPERIMENTS

Here, we compare our method with state-of-the-art baselines in terms of performance and efficiency.

Performance Comparison. To evaluate the effectiveness of our approach, we compare our method
with the state-of-the-art baselines on node classification task under the simple linear classifier. The
average classification accuracy with standard deviation of 20 results is reported for each dataset.
We compare our approach with unsupervised methods including DeepWalk (Perozzi et al., 2014),
GAE (Kipf & Welling, 2016b), DGI (Veličković et al., 2018), GMI (Peng et al., 2020), GRACE (Zhu
et al., 2020), GCA (Zhu et al., 2021), G-BT (Bielak et al., 2022), CCA-SSG (Zhang et al., 2021)
InfoGCL (Xu et al., 2021b), GraphMAE (Hou et al., 2022), CorInfoMax (Ozsoy et al., 2022) and
MVGRL (Hassani & Khasahmadi, 2020). Furthermore, some supervised models including multi-
layer perceptron (MLP), GCN (Kipf & Welling, 2016a), and GAT (Veličković et al., 2017) are
also as baselines. We adopt the public splits on Cora, Citeseer and Pubmed, and a 1:1:8 split for
training/validation/testing on the other three datasets. To make a fair comparison, for the methods
without adopting the same splits as ours, we conduct experiments to get relevant results based on the
officially released source code with a hyper-parameter search. Table 1 reports the classification results
on six datasets. It can be observed that our method achieves high performance on all datasets and
outperforms the state-of-the-art peers on five out of six datasets. These results clearly demonstrate
the effectiveness of our approach. After subjecting the node representations to a rigorous statistical
hypothesis testing, we discover that they do not actually conform to a Gaussian distribution (Refer to
Appendix E for further details). In other words, our method remains highly effective in non-Gaussian
scenarios. Overall, GMIM-IC surpasses GMIM. One reason is that the identity constraint imposes
stricter demands on cross-view consistency and aligns with the practical design of the shared network
architecture. Besides, GMIM-IC demonstrates comparable performance with CCA-SSG, which can
serve as empirical support for our theoretical analysis.

Efficiency Comparison. Please refer to Appendix H.1.

6.3 HYPERPARAMETER SENSITIVITY ANALYSIS AND EXPLORATORY EXPERIMENTS

Effect of representation dimension. We conduct experiments by varying the representation
dimension to investigate its impacts on performance. Figure 2 summarizes the results of the three
variants based on Eq. (2), Eq. (3), and Eq. (5) on four datasets. It can be observed that our method
achieves optimal performance with an appropriately large dimension, because the representations
exhibit better discriminability and linear separability in high-dimensional space. However, as the
dimension becomes excessively large such as 1,024, there is a slight decrease in performance. This
can be blamed on the fact that an excessively high representation dimension hinders the model from
learning compact and information-dense representations. Another non-negligible underlying factor
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for declining performance is that higher dimensions lead to poorer estimation of the covariance
matrix. Even in low-dimensional settings, our method still delivers decent performance. This finding
can be attributed to the effective maximization of information entropy, which prevents dimensional
collapse, enhances the diversity of representations, and ultimately improve model performance within
limited dimensions. Under the objective based on Eq. (2), the results in high-dimensional settings
and on Computers are unavailable. In such scenarios, the covariance matrix exhibits numerous
small eigenvalues, causing its determinant to approach zero. This phenomenon introduces numerical
instability and eventually disrupts training process.

Impact of balancing coefficient. We study the impacts of the balancing coefficient β in LGMIM−IC

on performance. Figure 3 illustrates the variation of classification accuracy with varying values of
the coefficient. The performance exhibits a pattern of initially increasing and later decreasing as β
goes up. When β is small, the entropy maximization term cannot fully exploit its role in promoting
diversity of representations. When β is too large, too much emphasis on maximizing information
entropy leads to informative yet meaningless representations.

Synergistic changes between opposite of entropy and decorrelation loss. Taking LGMIM−IC as the
optimization objective, we visualize the joint changes of decorrelation loss in Eq. (6) and opposite of
entropy in Eq. (5). For each dataset in Figure 4, the decorrelation loss (dashed line) exhibits a nearly
identical trend to the opposite of entropy. Experimental observations potentially indicate a similar
effect between them, which can serve as an empirical support for Section 4.

7 LIMITATIONS, CONCLUSION, AND FUTURE WORK

Limitations. Due to extreme limitations in computational resources, we only conducted empirical
studies on graphs. Extension experiments on other types of data, such as images, are left for future.

Conclusion. In this paper, we have presented a graph contrastive learning method under the
common Gaussian assumption for node representations, which does not rely on any parametric
mutual information estimators and negative samples. Furthermore, we provide two theoretical
explanations regarding the relationship between decorrelation-based methods and contrastive-based
methods. Our analysis reveals that the decorrelation-based method can be interpreted as a variant of
contrastive methods when the Gaussian assumption and identity constraint are considered. Extensive
comparative experiments and visual analysis have demonstrated the effectiveness, efficiency, and
theoretical soundness of our method. Overall, the Gaussian assumption motivates our research,
but empirical evidence demonstrates the continued effectiveness of our method in non-Gaussian
scenarios, which extends the practical application scope of our work.

Future Work. Our research paves a new path for graph self-supervised learning. The prospect of
extending the Gaussian assumption to other distributions, such as the Gamma distribution, stands as a
viable endeavor. Furthermore, the exploration of relationships among distinct variants under different
distributions represents a valuable and exciting pursuit. In addition, enhancing the reliability of
covariance matrix estimation (Ledoit & Wolf, 2020) is a promising aspect for improving our method.
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Deep graph infomax. In International Conference on Learning Representations. OpenReview.net,
2018.

Janett Walters-Williams and Yan Li. Estimation of mutual information: A survey. In Rough Sets and
Knowledge Technology, pp. 389–396. Springer Berlin Heidelberg, 2009.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In Proceedings of the 37th International Conference on
Machine Learning, Proceedings of Machine Learning Research, pp. 9929–9939. PMLR, 2020.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. In Advances in Neural Information Processing Systems, pp.
30414–30425. Curran Associates, Inc., 2021a.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. Advances in Neural Information Processing Systems, 34, 2021b.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Advances in Neural Information Processing Systems,
pp. 5812–5823. Curran Associates, Inc., 2020.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In Proceedings of the 38th International Conference on
Machine Learning, pp. 12310–12320. PMLR, 2021.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. In Advances in Neural Information Processing
Systems, pp. 76–89. Curran Associates, Inc., 2021.

Yufeng Zhang, Wanwei Liu, Zhenbang Chen, Ji Wang, and Kenli Li. On the properties of kullback-
leibler divergence between multivariate gaussian distributions, 2023.

Zhanghao Zhouyin and Ding Liu. Understanding neural networks with logarithm determinant entropy
estimator, 2021.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069–2080.
Association for Computing Machinery, 2021.

13



Under review as a conference paper at ICLR 2024

A DERIVATIONS OF GAUSSIAN MUTUAL INFORMATION

The formal derivation relies on the following lemma:
Lemma 2. For matrices A ∈ RN×K and B ∈ RK×N ,

tr(AB) = tr(BA), (11)

where tr(·) denotes the trace of a matrix.

Proof.

tr(AB) =

N∑
i=1

K∑
j=1

Aij ·Bji =

K∑
j=1

N∑
i=1

Bji ·Aij = tr(BA).

The mutual information IG(X;Y ) can be expanded as follows:

IG(X;Y ) =

∫
X

∫
Y
px,y(X,Y ) ln

px,y(X,Y )

px(X) · py(Y )
dXdY

=

∫
X

∫
Y
px,y(X,Y ) ln px,y(X,Y )dXdY

−
∫
X

∫
Y
px,y(X,Y ) ln px(X)dXdY

−
∫
X

∫
Y
px,y(X,Y ) ln py(Y )dXdY.

(12)

In order to obtain the desired result, we will perform integration on the three terms in Eq. (12),
respectively.

For a Gaussian variable X with mean µX and covariance matrix ΣX , its probability density function
can be expressed as

px(X) =
1√

(2π)d det(ΣX)
exp

(
−1

2
(X − µX)TΣ−1

X (X − µX)

)
. (13)

Thus, it can be known that

−
∫
X

∫
Y
px,y(X,Y ) ln px(X)dXdY

=−
∫
X

∫
Y
px,y(X,Y )dY ln px(X)dX

=−
∫
X
px(X) ln px(X)dX

=−
∫
X
px(X)

(
ln

1√
(2π)d det(ΣX)

− 1

2
(X − µX)TΣ−1

X (X − µX)

)
dX

=
1

2

∫
X
px(X) ln

(
(2π)d det(ΣX)

)
dX +

1

2

∫
X
px(X)(X − µX)TΣ−1

X (X − µX)dX

=
ln
(
(2π)d det(ΣX)

)
2

∫
X
px(X)dX +

1

2

∫
X
px(X)(X − µX)TΣ−1

X (X − µX)dX

=
1

2
ln det(ΣX) +

d

2
ln(2π) +

1

2

∫
X
px(X)(X − µX)TΣ−1

X (X − µX)dX.

(14)

We will deal specially with
∫
X px(X)(X − µX)TΣ−1

X (X − µX)dX . Actually, X − µX is vector
∈ Rd and (X − µX)TΣ−1

X (X − µX) is a scalar value. If we regard X − µX as a matrix ∈ Rd×1,
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(X − µX)TΣ−1
X (X − µX) will be a matrix ∈ R1×1. The original expression can be rephrased as

tr
(
(X − µX)TΣ−1

X (X − µX)
)
. Taking (X − µX)T as A in Eq. (11) and Σ−1

X (X − µX) as B,
respectively, we can know that∫

X
px(X)tr

(
(X − µX)TΣ−1

X (X − µX)
)
dX

=

∫
X
px(X)tr

(
Σ−1

X (X − µX)(X − µX)T
)
dX

=tr
(
Σ−1

X

∫
X
px(X)(X − µX)(X − µX)T dX

)
=tr

(
Σ−1

X ΣX

)
=d

. (15)

Plugging the result of Eq. (15) into Eq. (14), it can be concluded that

−
∫
X

∫
Y
px,y(X,Y ) ln px(X)dXdY =

1

2
ln det(ΣX)+

d

2
ln(2π)+

d

2
=

1

2
ln det(ΣX)+

d

2
ln(2πe).

(16)

Symmetrically, it can be obtained that

−
∫
X

∫
Y
px,y(X,Y ) ln py(Y )dXdY =

1

2
ln det(ΣY ) +

d

2
ln(2πe). (17)

Similarly,∫
X

∫
Y
px,y(X,Y ) ln px,y(X,Y )dXdY = −1

2
ln det(ΣX,Y )−

d+ d

2
ln(2πe). (18)

Plugging Eq. (16), (17), and (18) into IG(X;Y ) in Eq. (12), it results in the following closed-form
of Gaussian mutual information:

IG(X;Y ) =
1

2
ln

det(ΣX) · det(ΣY )

det(ΣX,Y )
. (19)

The derivation of Gaussian mutual information can also be referenced from other literature (Bouhlel
& Dziri, 2019; Zhang et al., 2023; Zhouyin & Liu, 2021; Cover, 1999). However, few studies have
provided a complete derivation process. Thus, for the self-completeness of this paper, we give the
complete derivation here.

B DERIVATION AND ANALYSIS ABOUT GMIM-IC

According to Property 1, the Gaussian mutual information IG(X;Y ) = 1
2 ln

det(ΣX)·det(ΣY )
det(ΣX,Y ) can be

restated as
IG(X;Y ) = HG(X)−HG(X|Y ), (20)

where HG(X) = −
∫
X px(X) ln px(X)dX is the entropy of X and HG(X|Y ) is its conditional

entropy given Y . Based on Eq. (14) and (16), HG(X) = 1
2 ln det(ΣX) + d

2 ln(2πe), that is,
HG(X) ∝ ln det(ΣX). As mentioned in the main text, directly optimizing ln det(ΣX) can lead to
numerical instability. After adjusting the eigenvalues by applying shifting and scaling operations, we
can obtain a feasible substitution ln det(I+ η ·ΣX). Therefore, maximizing ln det(I+ η ·ΣX) can
be equivalent to increasing the entropy HG(X).

As discussed in the main text, the conditional entropy HG(X|Y ) is minimized when the relationship
between X and Y can be determined by a function. Considering the prior of network design, which
has two shared branches, we expect that this function is an identity mapping. Concretely, this is
realized by imposing identity constraint to Eq. (20). In our practice, the node representations from
view A can be regarded as N empirical samples of X while those from view B are related to Y .
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Taking all the above factors into consideration, we can derive an objective based on Eq. (20):

LA
GMIM-IC =

1

N

∑
v∈V

∥hA
v − hB

v ∥22 − γ · ln det(I+ η ·ΣA), (21)

where γ indicates a balancing factor. Symmetrically, we can obtain an objective LB
GMIM-IC correspond-

ing to view B. Combining the two terms, it results in

LGMIM-IC =
1

N

∑
v∈V

∥hA
v − hB

v ∥22 − β ·
(
ln det(I+ η ·ΣA) + ln det(I+ η ·ΣB)

)
. (22)

Minimizing the objective LGMIM-IC is equivalent to maximizing Gaussian mutual information while
imposing identity constraint across various views.

C PROOFS AND DERIVATIONS IN SECTION 4 AND 5

C.1 PROOF OF LEMMA 1

For convenience, we restate Lemma 1:

Lemma 1. For a square matrix M, det(exp(M)) = exp(tr(M)). Replace M with ln(I+ η ·Σ∗) :

ln det(I+ η ·Σ∗) = tr(ln(I+ η ·Σ∗)), (23)

where ∗ ∈ {A,B}. Applying Taylor expression to the logarithmic function in tr(ln(I+ η ·Σ∗)), it
can be known that

ln det(I+ η ·Σ∗) = tr

(
+∞∑
k=1

(−1)k+1

k
(η ·Σ∗)

k

)
. (24)

Proof. Assuming {λ′
1, λ

′
2, . . . , λ

′
d} are d eigenvalues of the matrix M, {eλ′

1 , eλ
′
2 , . . . , eλ

′
d} are

d eigenvalues of the matrix exp(M) accordingly. Thus, det(exp(M)) =
∏d

i=1 e
λ′
i =

exp(
∑d

i=1 λ
′
i) = exp(tr(M)) . Taking M = ln(I+ η ·Σ∗), we can obtain det(I+ η ·Σ∗) =

exp(tr(ln(I+ η ·Σ∗))), that is, ln det(I+ η ·Σ∗) = tr(ln(I+ η ·Σ∗)).

Applying the Taylor expression ln(1 + x) =
∑∞

k=1
(−1)k+1·xk

k , we have

ln det(I+ η ·Σ∗)

=tr(ln(I+ η ·Σ∗))

=tr

(
+∞∑
k=1

(−1)k+1

k
(η ·Σ∗)

k

)
.

(25)

Furthermore, we can obtain a second-order Taylor approximation:

− ln det(I+ η ·Σ∗)

≈ − tr

(
2∑

k=1

(−1)k+1

k
(η ·Σ∗)

k

)

=
η2

2
· tr
(
(Σ∗)

2
)
− η · tr(Σ∗)

=
η2

2
· ∥Σ∗∥2F − η · d

=
η2

2
·

d∑
i=1

d∑
j=1,j ̸=i

(Σij
∗ )

2 +
η2

2
· d− η · d.

(26)
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Ignoring constant terms,
∑d

i=1

∑d
j=1,j ̸=i(Σ

ij
∗ )

2 is equivalent to a second-order Taylor expansion

of − ln det(I+ η ·Σ∗). Thus, minimizing
∑d

i=1

∑d
j=1,j ̸=i(Σ

ij
∗ )

2 has a similar effect to reducing
− ln det(I+ η ·Σ∗).

We have completed the entire deviation.

C.2 PROOF OF PROPOSITION 2

The formal proof of Proposition 2 relies on the following lemma:
Lemma 3. For a real symmetric matrix A whose eigenvalues are all 1, it must be the identity matrix.

Proof. For a real symmetric matrix A, it can be diagonalized by an orthogonal matrix, that is,
A = UDU⊤ with the orthogonal matrix U and the diagonal matrix D. Since the eigenvalues of A
are all 1, D is equal to an identity matrix I. Thus, A = UIU⊤ = I.

For convenience, we restate Proposition 2 here.

Proposition 2. When ln det(I+η ·Σ∗) or ln det(Σ∗) is maximized, the empirical covariance matrix
Σ∗ will converge to an identity matrix.

Proof. Assuming {λ1, λ2, . . . , λd} are d eigenvalues of the covariance matrix Σ∗, det(I+ η ·Σ∗) =∏d
i=1(1+η ·λi). Besides,

∑d
i=1(1+η ·λi) = tr(I+ η ·Σ∗) = d+η ·d. According to the AM-GM

Inequality (Hirschhorn, 2007), it can be known that
det(I+ η ·Σ∗)

=

d∏
i=1

(1 + η · λi)

≤
(
1 + η · λ1 + 1 + η · λ2 + · · ·+ 1 + η · λd

d

)d

=(1 + η)d.

(27)

det(I + η · Σ∗) achieves the upper bound of (1 + η)d when the eigenvalues {λ1, . . . , λd} of Σ∗
are all equal to 1. Similarly, applying the above derivation to det(Σ∗), we can easily conclude that
det(Σ∗) reaches a maximum value of 1 when all eigenvalues are equal to 1.

Σ∗ = 1
NH⊤

∗ H∗ is a real symmetric matrix. According to Lemma 3, Σ∗ will converge to the identity
matrix when its eigenvalues are all equal to 1. Thus, we conclude the proof.

C.3 PROOF OF PROPERTY 2 AND FURTHER STATEMENT

Property 2. For empirical covariance matrix Σ = 1
NH⊤H ∈Rd×d with batch-normalized represen-

tations H = [h1, ...,hN ]⊤ ∈ RN×d, which has d eigenvalues [λ1, λ2, . . . , λd] corresponding to d
eigenvectors [q1,q2, . . . ,qd], the variance of data H along the k-th principal direction (that is, the
direction of qk) is numerically equal to λk.

Proof. For N d-dimensional data points H = [h1, . . . ,hN ]⊤ ∈ RN×d, which has been normalized to
0-mean and 1-standard-deviation along sample direction (i.e., 1

N

∑N
i=1 hi = 0), its covariance matrix

is Σ = 1
NH⊤H. After eigendecomposition for Σ, we can obtain d unit orthogonal eigenvectors

[q1, . . . ,qd] associated to eigenvalues [λ1, . . . , λd], respectively. According to 1
NH⊤Hqk = λkqk,

it can be known that
1

N
q⊤
k H

⊤Hqk = λkq
⊤
k qk = λk. (28)

Taking a principal direction qk as explanation, the projection of a sample hi onto this direction is
zi = q⊤

k hi, and the mean of all projections is

z̄ =
1

N

N∑
i=1

zi =
1

N

N∑
i=1

q⊤
k hi = 0. (29)
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Thus, along the principal direction qk, the variance is

1

N

N∑
i=1

(zi − z̄)2

=
1

N

N∑
i=1

q⊤
k hih

⊤
i qk

=
1

N
q⊤
k (

N∑
i=1

hih
⊤
i )qk

=
1

N
q⊤
k H

⊤Hqk

=λk.

(30)

The above equation demonstrates that the variance of data H along the direction qk is equal to λk.
Thus, the proof is concluded.

C.4 PROOF OF PROPOSITION 3

For convenience, we restate Proposition 3 here.

Proposition 3. When the representations scatter over the unit hypersphere Sd−1 uniformly (that is,
they obey a complete uniform distribution), their entropy will reach the maximum value.

Proof. Assuming that the representations follow a distribution p(X) on the unit hypersphere Sd−1,
proving Proposition 3 is equivalent to demonstrate that when p(X) is a uniform distribution, the
entropy of variable X is maximized. The corresponding mathematical expression can be stated as
follows:

max −
∫
Sd−1

p(X) ln p(X)dX

s.t.

∫
Sd−1

p(X)dX = 1

. (31)

To find the optimal form of p(X) subject to the constraint
∫
Sd−1 p(X)dX = 1, we construct the

following Lagrangian function:

L(p(X), λ) = −
∫
Sd−1

p(X) ln p(X)dX + λ ·
(∫

Sd−1

p(X)dX − 1
)
, (32)

where λ denotes Lagrange multiplier.

Taking the derivative of the Lagrangian function L(p(X), λ) with respect to p(X) and setting it equal
to zero, we know that

∂L(p(X), λ)

∂p(X)
= − ln p(X)− 1 + λ = 0. (33)

Hence, the optimal form of the probability density function is
p(X) = eλ−1. (34)

To satisfy the constraint
∫
Sd−1 p(X)dX = 1, we have∫

Sd−1

p(X)dX =

∫
Sd−1

eλ−1dX = eλ−1

∫
Sd−1

dX = 1. (35)

Letting S =
∫
Sd−1 dX represent the surface area of the unit hypersphere Sd−1, we can know that

λ = 1− lnS. (36)

According to (Rennie, 2005), we can obtain that S = 2πd/2

Γ(d/2) , where Γ(·) denotes the gamma function.
Taking Eq. (36) into Eq. (34), it can be known that

p(X) =
1

S
=

Γ(d/2)

2πd/2
, (37)

which is a uniform distribution on the unit hypersphere. Thus, it can be known that the entropy
of representations on the unit hypersphere reach the maximum value when they obey a uniform
distribution. We conclude the proof.

18



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
Eigenvalue Index

0

20

40

60

80

100

120

E
ig

en
va

lu
es

Coauthor-CS
Cora
Citeseer
Pubmed

Figure 5: Eigenvalues of covariance matrices of node representations from the randomly initial
representation encoder.

Algorithm 1 Hypothesis Testing based on scipy.
import numpy as np
from scipy import stats

# H: node representation matrix with the size of (N, d)
ret = stats.normaltest(H, axis=0)[1] # results with the shape of (d,)

D VISUALIZATIONS OF INITIAL EIGENVALUES

In the main text, we have pointed out that it is inappropriate to directly construct an objective function
(that is, LG = ln

det(ΣA,B)
det(ΣA)·det(ΣB) ) based on IG(X;Y ) = 1

2 ln
det(ΣX)·det(ΣY )

det(ΣX,Y ) , as it would result in
numerical instability.

Figure 5 visualizes the eigenvalues of covariance matrices of node representations in the initial
epoch of the pretraining phase. It can be observed that a significant portion of the eigenvalues
are close to or equal to zero. This phenomenon leads to the determinant of the covariance matrix,
which is numerically equivalent to the product of all eigenvalues, being zero. Therefore, including
the determinant of the original covariance matrix in the objective function will potentially lead to
computational instability. Our empirical experiments suggest that when representation dimension is
greater than 64, the determinant of the original covariance matrix becomes zero for nearly all datasets.

E DISCUSSION ABOUT THE GAUSSIAN ASSUMPTION

In a previous research, we conducted a visualization of the histograms of representations, as illustrated
in Figure 6. At first glance, the distribution of representations exhibits a Gaussian appearance. This
observation sparked our curiosity about the possibility of directly calculating mutual information
between two variables (i.e., two views) under the Gaussian assumption. In general circumstances,
mutual information cannot be directly computed and the current contrastive learning methods rely
on additional neural estimators to approximate a lower bound. If our idea proves effective, it
will substantially simplify existing methods. Without disappointment, extensive empirical studies
demonstrate the effectiveness of our approach. Subsequently, we conducted a rigorous hypothesis
testing on individual channels of representation matrices of multiple datasets based on library scipy,
as shown in Algorithm 1. The outcomes indicated that node representations do not actually conform
to a Gaussian distribution. This result is, in fact, promising, which implies that our approach will
no longer be confined to Gaussian scenarios. In summary, visualized histograms and the Gaussian
assumption provided the initial impetus for our research, while the fact that our approach still remains
its performance under the non-Gaussian conditions extends the application scenarios of our method.
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Figure 6: Histograms of individual representation channels on six datasets. Each curve represents a
Gaussian distribution with mean and variance from the corresponding histogram. The histograms
appear to exhibit a Gaussian appearance, but based on rigorous statistical tests, they do not strictly
adhere to Gaussian distributions.

F COMPARISON WITH A PEER WORK AND RELATION WITH DISENTANGLED
REPRESENTATION LEARNING

F.1 COMPARISON WITH A PEER WORK

Towards the conclusion of our work, we observed that a peer study (Ozsoy et al., 2022), called
CorInfoMax, shares certain similarities with our method, especially in terms of the objective function.
Despite the similarities, the two works still exhibit significant distinctions as follows:

Motivation. As described in the main text and Appendix E, our research starts from the Gaussian
assumption with the expectation of enabling direct computation of mutual information, thereby
eliminating mutual information neural estimators and simplifying existing contrastive learning
methods. The core motivation of CorInfoMax is to leverage information entropy maximization to
overcome the collapse issues and learn informative representations, as can be reflected in the title,
abstract, and introduction of their paper.

Network Architecture. Our method does not utilize additional projection heads. Our loss function
directly operates on the output representations of the encoder fθ(·), while CorInfoMax first employs
a projector of 3-layer MLP to map the outputs of the encoder to a new embedding space and then
calculate loss function in the new space. Our approach reduces model complexity and enhances
efficiency by directly optimizing the output space of the encoder. This distinction is not only reflected
in the variations in network architecture but, more importantly, it actually indicates the disparities
in motivations and underlying concepts between the two works. The purpose of our research is to
enable the direct calculation of mutual information under the Gaussian assumption without relying
on estimators and extra designs. The projectors introduced in CorInfoMax completely deviate from
our initial motivation.

Numerical Stability During Training. An important issue we addressed in our research is that
directly incorporating the logarithm of the determinant of the covariance matrix in the objective
function can lead to numerical instability, which is detailedly analyzed and discussed in Subsection 3.2
and Appendix D. To cope with this issue, we adopt the strategy of offsetting and scaling eigenvalues
to be around 1. CorInfoMax turns to adding a disturbance in their objective. The comparisons
between the two strategies are placed in Figure 7. When dimensions are higher than 128, the training
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Figure 7: Performance of two strategies under various dimensions. O&S: offsetting and scaling
eigenvalues in our work; disturbance: the strategy of adding a disturbance in CorInfoMax. For
“disturbance”, when dimension is set to higher than 128, the training process is terminated due to
numerical instability, and the results are not obtainable.

process under the strategy of adding disturbance is terminated due to numerical instability, because it
cannot change the fact that many eigenvalues remain very close to 0.

Explanations of Relationship Between Various SSL Methods. We establish connections between
contrastive and decorrelation-based methods, providing an explanation for decorrelation-based
methods from the perspective of MI maximization. These contributions are of significant importance
in establishing a unified theoretical framework for self-supervised learning methods. The work (Ozsoy
et al., 2022) does not involve these aspects.

Research on Dimensional Collapse. In Section 5.1, we theoretically demonstrate from the per-
spective of eigen spectrum that the entropy maximization term can prevent dimensional collapse. In
Section 5.2, we show that InfoNCE potentially maximizes information entropy. The work (Ozsoy
et al., 2022) does not involve these contents, which primarily provides empirical evidence for the
effectiveness of their method in preventing dimension collapse.

Finally, we express our gratitude to the authors of CorInfoMax for their outstanding contributions to
the self-supervised learning community.

F.2 RELATION WITH DISENTANGLED REPRESENTATION LEARNING

Our method expects to enforce the representations to achieve an isotropic Gaussian distribution with
the aim of decoupling various dimensions and learning diverse representations, which is closely
linked to a branch of deep learning called Disentangled Representation Learning (DRL) (Reddy et al.,
2022; Shen et al., 2022; Bengio et al., 2013). The objective of disentangled representation learning is
to achieve a clear separation of the distinct, independent, and informative generative factors inherent
in the data (Bengio et al., 2013). DRL emphasizes the statistical independence among latent variables,
which can be traced back to Independent Component Analysis (ICA) (Stone, 2004).

Independent Component Analysis, a computationally efficient Blind Source Separation (BSS) (Naik
et al., 2014) technique, thinks that the observed mixed signals are obtained through a linear combina-
tion of source signals and aims to recover latent variables from observations. The traditional ICA
assumes that the source signals follow non-Gaussian distributions and are statistically independent.
The assumption of statistical independence among latent variables is, in fact, a disentangled or
independence constraint. Non-linear ICA (Karhunen, 2001) posits that the observed signals are
obtained through a nonlinear transformation of the source signals.

The variational autoencoder (VAE) (Kingma & Welling, 2022) is a modification of the autoencoder
that incorporates the concept of variational inference, which can realize dimension-wise disentangle-
ment. In VAEs, there is a term used to minimize the KL divergence between the variational posterior
and the prior distribution. The chosen prior distribution is typically selected to satisfy certain inde-
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Algorithm 2 PyTorch-style Code for GMIM.
# f: shared neural encoder
# d: representation dimension
# adj: original graph topology
# feat: original node features
# eta: scaling factor
# epochs: total training epochs
# N: number of nodes

Id, I2d = torch.eye(d), torch.eye(2 * d)
for _ in range(epochs):

# generate two randomly augmented views of original graph
adj_A, feat_A = augment(adj, feat)
adj_B, feat_B = augment(adj, feat)

# get output representations of encoder
H_tilde_A = f(adj_A, feat_A)
H_tilde_B = f(adj_B, feat_B)

# normalize representations along sample direction
H_A = (H_tilde_A - H_tilde_A.mean(0)) / H_tilde_A.std(0)
H_B = (H_tilde_B - H_tilde_B.mean(0)) / H_tilde_B.std(0)

# compute covarance matrix
Cov_A = torch.mm(H_A.T, H_A) / N
Cov_B = torch.mm(H_B.T, H_B) / N
CrossCov = torch.mm(H_A.T, H_B) / N
JointCov = torch.cat([torch.cat([Cov_A, CrossCov], dim=1),

torch.cat([CrossCov.T, Cov_B], dim=1)], dim=0)

# calculate loss function
loss = torch.log(torch.det(I2d + eta * JointCov) / torch.det(Id + eta * Cov_A)

/ torch.det(Id + eta * Cov_B))

# update parameters
loss.backward()
optimizer.step()

pendent properties, such as an isotropic Gaussian distribution. As a result, the KL divergence term
potentially imposes a independent constraint on the latent variables. The β-VAE (Higgins et al.,
2017) multiplies the KL divergence term by a penalty factor β to enhance the disentangling effect on
the latent variables. The KL divergence term shares a similar underlying principle with the entropy
maximization term in our paper. Chen et al. (2018) demonstrate that the penalty term in β-VAE tends
to enhance the dimension-wise independence of the latent variable, but it also diminishes the capacity
of the latent variables to preserve information from the input. Similar to decorrelation-based self-
supervised learning methods such as CCA-SSG, DIP-VAE (Kumar et al., 2018) directly regularizes
the elements in the covariance matrix of the posterior distribution, making it approach the identity
matrix. FactorVAE (Kim & Mnih, 2018) introduces a term known as Total Correlation to quantify
the level of dimension-wise independence.

G ALGORITHM

The overall algorithm flows for GMIM and GMIM-IC in the form of PyTorch-style pseudocode are
placed in Algorithm 2 and 3, respectively.

H MORE EXPERIMENTS AND STATISTICS OF DATASETS

H.1 EFFICIENCY COMPARISON

Efficiency Comparison. To illustrate the simplicity and efficiency of our model, we compare
our method with other graph contrastive methods based on mutual information estimators in terms
of numbers of model parameters, time consumption of training stage, and memory costs. Table 2
summarizes all indicators of various methods. Overall, compared to other methods, our method has
fewer model parameters, shorter training time, and smaller memory costs in most cases. This is
because our method doesn’t rely on additional projection heads, parameterized mutual information
estimator, and negative samples, which add extra calculation, additional parameters, and storage
burden. Besides, the short training time potentially indicates the fast convergence of our algorithm.
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Algorithm 3 PyTorch-style Code for GMIM-IC.
# f: shared neural encoder
# d: representation dimension
# adj: original graph topology
# feat: original node features
# eta: scaling factor
# beta: balancing factor
# epochs: total training epochs
# N: number of nodes

Id = torch.eye(d)
for _ in range(epochs):

# generate two randomly augmented views of original graph
adj_A, feat_A = augment(adj, feat)
adj_B, feat_B = augment(adj, feat)

# get output representations of encoder
H_tilde_A = f(adj_A, feat_A)
H_tilde_B = f(adj_B, feat_B)

# normalize representations along sample direction
H_A = (H_tilde_A - H_tilde_A.mean(0)) / H_tilde_A.std(0)
H_B = (H_tilde_B - H_tilde_B.mean(0)) / H_tilde_B.std(0)

# compute covarance matrix
Cov_A = torch.mm(H_A.T, H_A) / N
Cov_B = torch.mm(H_B.T, H_B) / N

# calculate loss function
loss_ic = (H_A - H_B).pow(2).sum() / N
loss_em = - torch.log(torch.det(Id + eta * Cov_A) * torch.det(Id + eta * Cov_B))
loss = loss_ic + beta * loss_em

# update parameters
loss.backward()
optimizer.step()

Table 2: Comparison of numbers of model parameters, training time, and memory costs between
various graph contrastive methods.

Algorithm
Cora Citeseer Pubmed Computers

Paras Time Memory Paras Time Memory Paras Time Memory Paras Time Memory

DGI 996K 6.8s 3.8GB 2158K 9.4s 7.8GB 194K 44.9s 11.2GB 1,808K 71.2s 11.3GB
GRACE 433K 5.1s 1.2GB 2,159K 7.4s 1.5GB 519K 1,169s 12.2GB 263K 362.8s 7.4GB
MVGRL 1,731K 23.7s 3.8GB 4,055K 48.4s 7.9GB 322K 2,010s 9.1GB 1,049K 78.8s 16.6GB
GMIM 997K 2.8s 2.5GB 1,896K 2.5s 2.6GB 289K 9.1s 2.8GB 656K 7.5s 3.2GB
GMIM-IC 997K 3.1s 2.5GB 1,896K 2.9s 2.6GB 289K 6.6s 2.8GB 656K 8.7s 3.2GB

The simplicity of our model and the efficiency of the calculation of objective function significantly
reduce the time and space complexity of our method.

H.2 VISUALIZATION OF CORRELATION MATRIX

Figure 8 provides visualizations of correlation matrices of node representations under various settings
on Cora and Pubmed. Specifically, for a representation matrix H ∈ RN×d which has been normalized
to 0-mean and 1-standard deviation, the correlation matrix is 1

NH⊤H. In other words, each element of
correlation matrix denotes the Pearson correlation coefficient of two variables (i.e., two channels). As
shown in Figure 8(a,d), the off-diagonal elements of correlation matrices are large without considering
entropy maximization term in GMIM-IC, indicating that various channels of representation matrix
coupled together. That is to say, the issue of dimensional collapse has occurred. Moreover, the two
proposed variants, GMIM and GMIM-IC, can effectively decorrelate various representation channels
and mitigate the dimensional collapse issue.

H.3 SYNERGISTIC EVOLUTION BETWEEN GMI AND THAT WITH SHIFTED AND SCALED
EIGENVALUES

In the main context, considering that directly designing the objective function based on Gaussian
mutual information IG(X;Y ) = 1

2 ln
det(ΣX)·det(ΣY )

det(ΣX,Y ) will lead numerical instability, we proposed
a feasible alternative by shifting and scaling the eigenvalues of the covariance matrix, denoted as
I ′G(X;Y ) = ln det(I+η·ΣX)·det(I+η·ΣY )

det(I+η·ΣX,Y ) .
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(a) Cora: GMIM-IC w/o entropy
maximization.

(b) Cora: GMIM-IC. (c) Cora: GMIM.

(d) Pubmed: GMIM-IC w/o en-
tropy maximization.

(e) Pubmed: GMIM-IC. (f) Pubmed: GMIM.

Figure 8: Visualizations of the correlation matrices (absolute value) of representations under various
settings on Cora and Pubmed.
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Figure 9: Synergistic evolution between GMI and that with shifted and scaled eigenvalues. Specifi-
cally, the original GMI (solid line) is adopted as the optimization objective while the corresponding
values (dashed line) of GMI with shifted and scaled eigenvalues are recorded.

We visualize the synergistic evolution between IG and I ′G during the training phase in Figure 9. It
is worth mentioning that all experiments are conducted under low-dimensional settings, where the
original GMI IG remains normal and valid values. It can be observed that the two lines exhibit
consistent patterns of variation in each subfigure. This phenomenon provides evidence supporting the
rationality of obtaining a viable objective function through shifting and scaling the eigenvalues.

H.4 EFFECT OF AUGMENTATION INTENSITY

We conduct a sensitivity analysis on the augmentation intensity by examining the effects of various
combinations of the edge removal ratio pe and the feature masking ratio pf . The results, presented in
Figure 10, indicate that our method is more sensitive to augmentation in features (pf ) compared to that
in graph structure (pe). Overall, within an appropriate range of pe and pf , our approach consistently
achieves competitive results. Even when subjected to strong augmentation (e.g., pe = 0.6 and
pf = 0.6), our method still maintains a satisfactory performance level.
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(a) Cora: GMIM. (b) Citeseer: GMIM. (c) Pubmed: GMIM.

(d) Cora: GMIM-IC. (e) Citeseer: GMIM-IC. (f) Pubmed: GMIM-IC.

Figure 10: The classification accuracy under various combinations of feature masking ratio pf and
edge removal ratio pe.

H.5 T-SNE VISUALIZATIONS.

To achieve a more profound understanding of our approach and conduct a comprehensive comparison
with different methods, a series of t-SNE plots (Van der Maaten & Hinton, 2008) is employed to
visualize the raw features and learned representations under various methods and distinct configura-
tions in Figure 11. In Figure 11(a), the 2-dimensional t-SNE embeddings of the raw features present
a chaotic distribution and can not show discriminative clusters. The visualization in Figure 11(b),
characterized by a complex elliptical shape, highlights that the method lacking the identity constraint
term can not capture semantically meaningful information. in Figure 11(c), the two dimensions of
the t-SNE embeddings show a certain correlation, potentially indicating dimensional collapse issue
in high-dimensional representation space. This phenomenon illustrates the effect of the entropy
maximization term in learning diverse representations and avoiding dimensional collapse. In Figure
11(d), the t-SNE results form discernible and interpretable clusters based on their true categories,
indicating that our method can learn meaningful and diverse representations. The second row in
Figure 11 shows t-SNE embeddings of the other four methods, and the visual results of various
methods do not exhibit significantly distinct appearance. However, upon closer inspection, our
method demonstrates better inter-class discriminability, especially concerning the clusters in purple,
green, and blue.

H.6 EXPERIMENTS ON OGBN-ARXIV

To further evaluate the effectiveness and efficiency of our method, we conduct experiments on a
large-scale graph Ogbn-Arxiv (Hu et al., 2020). Table 3 reports the validation and test accuracy of
various graph self-supervised methods, where our method obtains good performance. It is worth
mentioning that GRACE and GCA do not operate on a full graph manner but a subset of nodes are
sampled as negative samples to avoid memory issues. Moreover, Figure 12 simultaneously presents
the test accuracy and training time, indicating that our method can effectively balance performance
and efficiency.
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(a) Raw features (b) GMIM-IC w/o identity
constraint

(c) GMIM-IC w/o entropy
maximization

(d) GMIM-IC

(e) DGI (f) GRACE (g) MVGRL (h) GMI

Figure 11: t-SNE visualizations of the raw features and learned representations of various methods
on Cora. ”w/o” stands for ”without”. Best viewed in colors.

Table 3: Validation and test accuracy on Ogbn-
Arxiv. “OOM” indicates out-of-memory on a
GPU with 24GB memory.

Validation Test

DGI 71.19 ± 0.24 70.28 ± 0.23
MVGRL OOM OOM
GMI OOM OOM
CCA-SSG 72.35 ± 0.17 71.33 ± 0.21
BGRL 72.58 ± 0.14 71.52 ± 0.14
GRACE 71.82 ± 0.18 70.91 ± 0.21
GCA 71.63 ± 0.20 70.77 ± 0.22

GMIM (ours) 72.26 ± 0.16 71.27 ± 0.21
GMIM-IC (ours) 72.48 ± 0.18 71.42 ± 0.19
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Figure 12: Classification accuracy in test set
and training time on Ogbn-Arxiv.

H.7 DETAILS OF HYPERPARAMETER CONFIGURATION

The details of hyperparameter configuration for GMIM and GMIM-IC are placed in Table 4 and 5,
respectively.

H.8 DETAILS OF THE EXPERIMENTAL DATASETS

The statistics of the experimental datasets are summarized in Table 6. The details of the datasets are
as follows:

• Cora, Citeseer, and Pubmed are citation networks where nodes represent documents and
edges denote citation relationships. Each document is assigned a class label that indicates
its subject category, and it is characterized by a bag-of-words feature vector.

• Amazon-Computers and Amazon-Photo are two graphs derived from the Amazon dataset,
capturing co-purchase relationships. The nodes in these graphs represent products, and
an edge exists between two nodes if they are frequently purchased together. Each node is
associated with a sparse bag-of-words feature vector based on product reviews. The category
of each node is indicated by its label.
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Table 4: Hyperparameter configuration of the experiments for GMIM. “lr” indicates learning rate
while “wd” denotes weight decay.

Dataset GMIM

Layers Representation dim lr wd pf pe
Cora 2 512 1e-3 0 0.4 0.5

Citeseer 1 512 1e-3 0 0.4 0.5
Pubmed 2 64 1e-3 0 0.2 0.6

Computers 2 512 1e-3 0 0.1 0.3
Photo 2 512 1e-3 0 0.2 0.3

Coauthor-CS 2 512 1e-3 0 0.2 1.0

Table 5: Hyperparameter configuration of the experiments for GMIM-IC.

Dataset GMIM-IC

Layers Representation dim β lr wd pf pe
Cora 2 512 1.0 1e-3 0 0.1 0.5

Citeseer 1 512 0.5 1e-3 0 0.0 0.6
Pubmed 2 64 3.0 1e-3 0 0.3 0.5

Computers 2 512 4.0 1e-3 0 0.1 0.3
Photo 2 512 7.0 1e-3 0 0.2 0.3

Coauthor-CS 2 512 1.0 1e-3 0 0.2 1.0

• Coauthor-CS is an academic network in the field of computer science, where nodes
represent authors and edges indicate co-authorship relationships. Two authors are connected
by an edge if they have collaborated on a research paper.

• Ogbn-Arxiv is a directed citation network among some computer science arXiv papers.
Each node on the graph corresponds to an arXiv paper, while directed edges indicate the
citing relationships between papers. Each paper is associated with a 128-dimensional feature
vector.
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Table 6: Statistics of the experimental datasets.

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
Ogbn-Arxiv 169,343 2,332,386 128 40

28


	Introduction
	Related Work
	Graph Self-Supervised Learning
	Estimating Mutual Information

	Methodology
	Preliminaries and Overall Framework
	Gaussian Mutual Information Maximization

	Bridging Contrastive-based to Decorrelation-based
	Explaination 1: approximate form
	Explaination 2: consistent solution

	Theoretical Analysis
	Preventing Dimensional Collapse
	Relation with InfoNCE

	Experiments
	Datasets and Experimental Setup
	Comparison Experiments
	Hyperparameter Sensitivity Analysis and Exploratory Experiments

	Limitations, Conclusion, and Future Work
	Derivations of Gaussian Mutual Information
	Derivation and Analysis about GMIM-IC
	Proofs and Derivations in Section 4 and 5
	Proof of Lemma 1
	Proof of Proposition 2
	Proof of Property 2 and Further Statement
	Proof of Proposition 3

	Visualizations of Initial Eigenvalues
	Discussion about the Gaussian Assumption
	Comparison with A Peer Work and Relation with Disentangled Representation Learning
	Comparison with A Peer Work
	Relation with Disentangled Representation Learning

	Algorithm
	More Experiments and Statistics of Datasets
	Efficiency Comparison
	Visualization of Correlation Matrix
	Synergistic Evolution Between GMI and that with Shifted and Scaled Eigenvalues
	Effect of Augmentation Intensity
	t-SNE Visualizations.
	Experiments on Ogbn-Arxiv
	Details of Hyperparameter Configuration
	Details of the Experimental Datasets


