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Abstract: In many real-world applications of regression, conditional probability1

estimation, and uncertainty quantification, exploiting symmetries rooted in physics2

or geometry can dramatically improve generalization and sample efficiency. While3

geometric deep learning has made significant empirical advances by incorporating4

group-theoretic structure, less attention has been given to statistical learning guaran-5

tees. In this paper, we introduce an equivariant representation learning framework6

that simultaneously addresses regression, conditional probability estimation, and7

uncertainty quantification while providing first-of-its-kind non-asymptotic statisti-8

cal learning guarantees. Grounded in operator and group representation theory, our9

framework approximates the spectral decomposition of the conditional expectation10

operator, building representations that are both equivariant and disentangled along11

independent symmetry subgroups. Empirical evaluations on synthetic datasets and12

real-world robotics applications confirm the potential of our approach, matching13

or outperforming existing equivariant baselines in regression while additionally14

providing well-calibrated parametric uncertainty estimates.15

Keywords: Representation learning, uncertainty quantification, deep learning,16

geometric deep learning17

1 Introduction18

A central problem in machine learning is modeling conditional probabilities—understanding how19

the distribution of a target variable y changes with an observed variable x. This underpins robust20

reasoning under uncertainty in critical applications such as medicine, finance, robotics, and physics21

[1, 2, 3]. However, estimating conditional distributions remains challenging in high-dimensional22

settings without strong inductive biases [4, 5, 6].23

Symmetry priors, in the form of principled assumptions about invariance or equivariance in the24

underlying data-generating process, offer a compelling way to reduce sample complexity and improve25

generalization [7, 8, 9, 10]. These priors naturally arise in inference tasks in chemistry and particle26

physics [11], set-&-graph structured data [9], computer graphics [12, 13], and dynamical systems27

with group-invariant/equivariant laws of motion, which are ubiquitous in fields like physics [11], fluid28

dynamics [14], and robotics [15, 16].29

Over the past few years, Geometric Deep Learning (GDL) has produced a rich ecosystem of archi-30

tectures that encode symmetries, achieving strong empirical performance across various supervised31

[9, 17, 18, 19] and unsupervised tasks [20, 21, 22]. However, the field remains focused on application32

specific designs and architectural innovation, with limited understanding of how symmetry priors can33

be leveraged to learn representations with provable generalization guarantees.34

In this work, we take a different route: rather than proposing new architectures or solving specific35

inference tasks, we ask how to systematically learn symmetry-aware representations that best capture36

conditional structure in the data. Specifically, how should equivariant networks be trained so that their37
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Figure 1: Left: Test set sample efficiency for G-equivariant regression (MSE vs. training samples)
when predicting the G-equivariant linear and angular momentum of a quadruped robot’s center
of mass (CoM) from noisy joint positions and velocities. Right: Uncertainty quantification via
G-equivariant prediction of 90% confidence intervals (CI, light-red area) for the robot’s instantaneous
work Ut and kinetic energy Tt during locomotion over rough terrain for our method (eNCP) and
competitors. The figure shows a trajectory with a strong initial disturbance, where blue markers
denote samples within the predicted CI and red markers denote those outside. Note that only eNCP is
able to predict well-calibrated CI intervals that cover both the disturbance and recovery phases.

learned features reveal conditional distributions, and how does the quality of these representations38

affect performance in downstream tasks such as regression and uncertainty quantification?39

To answer these questions, we bridge two fields rarely studied together: spectral contrastive learning40

[23], a self-supervised approach that learns deep representations of data via operator-theoretic41

modeling of conditional expectations [24, 25], and GDL [9], which enforces symmetry priors as42

architectural constraints in Neural Networks (NNs). Our approach shows how symmetry constraints43

shape the representation space and enhance generalization, opening new avenues for cross-fertilization44

between these fields. Concretely, we demonstrate that our method outperforms GDL techniques on45

regression tasks (see Fig. 1-left) while providing reliable uncertainty quantification on a challenging46

robot locomotion task (see Fig. 1-right).47

Contributions (1) Methodological framework: We introduce Equivariant Neural Conditional Prob-48

ability (eNCP), the first framework to combine equivariant neural networks with operator-theoretic49

estimation of conditional distributions. (2) Task-agnostic representation learning: We show that any50

G-equivariant architecture can be used to learn disentangled, symmetry-respecting representations51

that generalize across diverse downstream inference tasks. (3) Learning guarantees: By linking the52

representation quality directly to sample complexity, we provide the first non-asymptotic statistical53

learning guarantees for equivariant conditional models, including regression and uncertainty quan-54

tification. (4) Empirical results: On both synthetic and real-world robotics tasks, eNCP consistently55

outperforms baselines, including contrastive methods Neural Conditional Probability (NCP) [25]56

and current equivariant models. In particular, eNCP achieves state-of-the-art performance in the57

challenging task of contact force inference in quadruped locomotion.58

Paper structure Sec. 2 reviews modeling conditional probabilities with linear operators and NCP.59

Sec. 3 formally presents the symmetry priors we consider. Sec. 4 introduces our eNCP learning60

framework. Sec. 5 outlines our theoretical learning guarantees. Sec. 6 showcases experiments on61

synthetic and real-world data. Furthermore, because the paper involves complex notation from62

probability, operator theory, and group theory, the appendices include a glossary of notation (App. A)63

as well as detailed expositions on representation theory (App. I), symmetric function spaces (App. J),64

and equivariant linear operators (App. K). Finally, App. B offers an in-depth discussion of related65

work, contrasting our framework with the literature across these rich fields.66

2 Background67

We briefly review the operator-theoretic framework for modeling conditional probabilities, which68

underpins both NCP and our proposed eNCP method. We denote a random variable by x, its69
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Figure 2: Left: NCP’s bilinear NN architecture. Right: eNCP’s G-equivariant bilinear NN
architecture, featuring ϕθ and ψθ as G-equivariant NNs and Eθ as a G-equivariant block-diagonal
matrix. Each block is equivariant to a subgroup G(k) ≤ G and is constrained to have singular spaces
of dimension at least dk—the minimal dimension for a faithful representation of the action of G(k).

realizations by x ∈ X , its probability distribution by P(x) and measure by Px. We write expectations70

as Ex[f(x)] =
∫
X f(x)Px(dx). The same notations apply to other random variables such as y.71

Operator-theoretic modeling of conditional probabilities Kostic et al. [25] proposed to model72

conditional probabilities by approximating the conditional expectation operator [26, 27, 28],73

Ey|x : L2
y → L2

x, a linear integral operator acting on the Hilbert spaces L2
x := L2

Px
(X ,R) and74

L2
y := L2

Py
(Y,R) of square-integrable functions of the random variables x and y, respectively. The75

action of this operator on any function h ∈ L2
y returns the function’s conditional expectation:76

[Ey|xh](x)=E[h(y)|x=x] :=
∫
Y
h(y)Py|x(dy|x)=

∫
Y
h(y)

Pyx(dy,x)

Px(dx)
=

∫
Y
h(y)κ(x,y)Py(dy), (1)

where Py|x is the conditional probability measure, and κ(x,y):= Pxy(dx,dy)
Px(dx)Py(dy)

is the kernel of Ey|x,77

also known as the Pointwise Mutual Dependency (PMD) [29] (see Fig. 3 and App. H).78

The conditional expectation operator is significant because it provides an infinite-dimensional linear79

model—in a nonlinear representation space—for computing conditional probabilities and expecta-80

tions. To see this, note that for any x ∈ X and any measurable set B ⊂ Y we have that:81

P(y ∈ B|x=x) :=
∫
Y
1B(y)Py|x(dy|x)=[Ey|x1B](x), and E[y|x=x] := [Ey|xy](x). (2)

Therefore, to estimate conditional probabilities and expectations, NCP seeks the best finite-82

dimensional approximation of Ey|x. As we explain next, this gives rise to a representation learning83

problem [30], in which the optimal representations of x and y are given by the top left and right84

singular functions of Ey|x.85

Spectral representation learning The problem of approximating the conditional expectation86

operator Ey|x as a rank-r operator Eθ with matrix representation Eθ ∈ Rr×r is defined as87

argmin
θ

∥Ey|x−Eθ∥2HS = ExEy(κ(x,y)− κθ(x,y))
2, s.t. ExEyκθ(x,y)=1 and rank(Eθ) ≤ r. (3)

The optimal solution, denoted E⋆, is the r-truncated Singular Value Decomposition (SVD) of Ey|x88

[31, 25], namely89

[E⋆f ](x) =
∑r

i=0σi ⟨f, vi⟩Py
ui(x), with σiui(x)=[Ey|xvi](x), ∀i ∈ [r], (4)

where (σi, ui, vi) denotes the ith singular value and left/right singular functions of Ey|x, with90

(σ0=1, u0=1Px , v0=1Py) being the constant functions supported on Px and Py, respectively91

[26, 25].92

Consequently, NCP parameterizes Eθ by a bilinear model κθ(x,y) = 1 + ϕθ(x)
⊤Eθψθ(y), com-93

posed of two encoder NNs ϕθ : X → Rr and ψθ : Y → Rr that aim to approximate the span of the94

top r (non-constant) left and right singular functions of Ey|x. See Fig. 2-left.95
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Figure 3: Example of symmetric random variables (x, y) ∼ X ×Y ⊂ R×R, whose marginals P(x)
and P(y); joint P(x, y); and conditional P(y|x) distributions are invariant to reflections of the data:
gr ▷X x = −x and gr ▷Y y = −y, where gr denotes the reflection element of the reflection symmetry
group C2 := {e, gr|g2r = e}. Consequently, the PMD κ(x, y) is C2-invariant.

Since κ is generally unavailable analytically, (3) is solved via the regularized contrastive loss1:96

Lγ(θ) = −2Exyκθ(x,y) + ExEyκθ(x,y)
2 + 2γ

(
∥Exϕθ(x)∥2F + ∥Eyψθ(y)∥2F

+ ∥Cov(ϕθ)− Ir∥2F + ∥Cov(ψθ)− Ir∥2F
)
,

(5)

where the first two regularization terms center the learned representations, ensuring that97

ExEyκθ(x,y)≈1 [25], while the last two enforce approximate orthonormality of the learned bases98

in Fθx := span(ϕθ) ⊂ L2
x and Fθy := span(ψθ) ⊂ L2

y [6]. A key property of NCP is that the99

learned representations enables reliable regression and conditional probability estimation—and thus100

uncertainty quantification—via (2) (see Tab. 3 in the appendix and [25]).101

3 Problem formulation102

This paper tackles the problem of estimating the conditional expectation E[y|x= ·], and, more gener-103

ally, conditional distribution P(y|x), for random variables x∈X and y∈Y , under the assumption104

that2 P(y|x) and P(x) are G-invariant under symmetry transformations of the data (see Fig. 3), i.e.:105

P(y|x)=P(g ▷Y y|g ▷X x), P(x) = P(g▷X x), ∀ g ∈ G, (6)

where G denotes a finite symmetry group (Def. I.1) acting on the data spaces X and Y via the group106

actions, ▷X : G × X → X , and ▷Y : G × Y → Y , with g ▷X x ∈ X and g ▷Y y ∈ Y denoting linear,107

invertible transformations of x and y defined by g ∈ G (see Fig. 3 and Def. I.2).108

These priors imply the G-invariance of the joint distribution P(x,y) and of y’s marginal distribution109

P(y), as well as the G-equivariance of conditional expectations (see Fig. 3-middle and Prop. D.1):110

g ▷Y E[y|x=x]=E[y|x=g ▷X x] ∀ g ∈ G,x ∈ X . (7)

Note that (7) implies the G-equivariance of the regression function x 7→ E[y|x=x]. Therefore, the111

symmetry priors (6) are satisfied whenever we approximate an equivariant/invariant function—that is,112

in virtually all applications of GDL [9].113

The above symmetry priors represent a strong inductive bias for the conditional expectation operator114

(2), as they lead the PMD kernel defining the operator to be G-invariant (see Fig. 3-right):115

κ(x,y) = κ(g ▷X x, g ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y. (8)

In Sec. 4, we extend the NCP framework [25] by leveraging (8) to incorporate the above symmetry116

priors. As we shall see, this enables efficient use of GDL architectures to estimate the G-invariant117

conditional probabilities in (6) and G-equivariant regression in (7), via (2), with strong learning118

1Used in density-ratio fitting [29], representation learning [32, 33], and mutual information estimation [34].
2Throughout, with some abuse of notation we denote by P(x) and P(y|x) both the probability and conditional

probability, respectively, as well as the corresponding densities, when they exist.
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guarantees. In Sec. 4, we extend the NCP framework [25] by leveraging (8) to incorporate symmetry119

priors. This enables efficient estimation of G-invariant conditional probabilities (6) and G-equivariant120

regression (7) using GDL architectures, via (2), with strong learning guarantees.121

4 ENCP method for equivariant representation learning122

In this section, we show how to incorporate the symmetry priors (6) into NCP’s representation learning123

framework. First, we analyze the symmetry constraints on the infinite-dimensional conditional124

expectation operator and prove that, for symmetric random variables x and y, the optimal solution125

of (3) yields G-equivariant representations ϕθ and ψθ and approximates the operator with a G-126

equivariant matrix Eθ. Then, we explain how to embed these structural constraints into the bilinear127

neural network architecture of NCP using any type of equivariant NNs.128

Symmetric function spaces The assumption of G-invariance of the marginal probabilities (Sec. 3)129

implies that the function spaces L2
x and L2

y are symmetric Hilbert spaces of G-equivariant functions,130

as these inherit unitary group actions ▷L2
x
: G × L2

x → L2
x and ▷L2

y
: G × L2

y → L2
y defined via the131

push-forward of symmetry transformations of the data spaces (see details in App. J and in Fig. 13):132

g ▷L2
x
f(·) := f(g−1 ▷X ·) ∈ L2

x, g ▷L2
y
h(·) := h(g−1 ▷Y ·) ∈ L2

y, ∀g ∈ G. (9)

A fundamental property of G-symmetric Hilbert spaces is their orthogonal decomposition into133

niso ≤ |G| subspaces referred to as isotypic subspaces: L2
x=⊕⊥

k∈[1,niso]
L2(k)
x , and L2

y=⊕⊥
k∈[1,niso]

L2(k)
y134

(see Thm. I.8). Where each L2(k)
x and L2(k)

y denote the spaces of G(k)-equivariant functions of x and y,135

with G(k) being a subgroup of G. This standard result from harmonic analysis [35] enables us to136

express any G-equivariant function as a sum of its projections onto the isotypic subspaces:137

f(·)=f inv(·) +
niso∑
k=2

f (k)(·), h(·)=hinv(·) +
niso∑
k=2

h(k)(·), s.t f (k)∈L2(k)
x , h(k)∈L2(k)

y , ∀k ∈ [niso], (10)

where f (k) and h(k) denote the G(k)-equivariant components of f and h, which are by construction138

invariant to all g /∈ G(k). Moreover, by convention, we associate the first subspace (k = 1) with the139

space of G-invariant functions, i.e., G(1)=Ginv={e} (see Example J.4 in the Appendix).140

Equivariant conditional expectation operator The G-invariance of the PMD kernel (8), implies141

that Ey|x is a G-equivariant linear operator (see Def. K.1). This means that Ey|x commutes with the142

group action on the function spaces, and consequently, can be decomposed (disentangled) into a143

direct sum of operators acting on the corresponding isotypic subspaces (see details in App. K):144

g ▷L2
x
[Ey|xh](·)=Ey|x[g ▷L2

y
h](·) ⇐⇒ [Ey|xh](·)=

niso∑
k=1

[E(k)

y|xh
(k)](·) ∀ h ∈ L2

y, g ∈ G, (11)

where each E(k)

y|x : L
2(k)
y → L2(k)

x models the conditional expectation for G(k)-equivariant functions.145

Equivariant disentangled representation learning The G-equivariant structure of Ey|x and its146

disentanglement (11) into isotypic components suggests that computing the conditional expectation of147

a G-equivariant function is equivalent to summing the conditional expectations of its G(k)-equivariant148

components for all k ∈ [niso]. Therefore, the loss function of problem (3), where Ey|x is approximated149

in finite dimensional spaces Fθx and Fθy, decouples into niso independent (disentangled) components:150

argmin
θ

∥Ey|x−Eθ∥2HS =
∑niso

k=1∥E
(k)

y|x−E(k)

θ ∥2HS = ExEy

∑niso
k=1(κ

(k)(x,y)−κ(k)

θ (x,y))2,

s.t. ExEyκθ(x,y)=1, and κθ(g ▷X x, g ▷Y y)=κθ(x,y), ∀g ∈ G, (x,y) ∈ X × Y.
(12)

Eθ = ⊕niso
k=1E

(k)

θ , with each block an rk×rk G(k)-equivariant matrix 3. The corresponding approxi-151

mated PMD kernel is given by:152

κθ(x,y) = 1Px(x)1Py (y) +
∑niso

k=1κ
(k)

θ (x,y), κ(k)

θ (x,y) := ϕ(k)

θ (x)⊤E(k)

θ ψ
(k)

θ (y), (13)

3We chose to use square matrices for notational convenience, however the dimensions can vary
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Task f(x) := Ey[y|x=x] ≈ f̂θ(x) P[y∈B|x ∈ A] ≈ P̂θ[y∈B|x∈A]

Estimate Êy[y]+ϕθ(x)
⊤EθÊy[ψθ(y)⊗ y] Êy[1B]+

Êx[1A(x)⊗ϕθ(x)]⊤Eθ Êy[1B(y)⊗ψθ(y)]

Êx[1A(x)]

Learning
Guarantees

∥f−f̂θ∥L2
x
≲
√

Var[∥y∥]

(
Er
θ+

ln(niso/δ)

(disoN)
α

1+2α

)
|P−P̂θ|≲

√
P[y∈B]

P[x∈G▷XA]

(
Er
θ+

ln(niso/δ)

(disoN)
α

1+2α

)
Table 1: Statistical guarantees for eNCP. The error bounds are shaped by (i) the structure of
the symmetry group G—the number of isotypic subspaces niso and their minimum singular space
dimension diso =

∑niso
k=1 dk (see Fig. 2), which enlarge the effective sample size—, (ii) the quality

of the learned representations Erθ = ∥Ey|x − Eθ∥op ≤
√

Lγ(θ)− Lγ(⋆), and (iii) the operator’s
singular-value decay rate α > 0. Note that G ▷X A := ∪g∈G g ▷X A denotes the group orbit of A.

where 1Px(x)1Py(y) arises since the first singular functions of Ey|x are constant, see (4).153

This parameterization inherently preserves the symmetry constraints of each operator’s singular154

functions, which we leverage in both theory and practice (see Apps. E and K.2.1 for details).155

Disentangled training loss Having introduced the equivariance constraints on the truncated operator156

matrix, to solve (12) we follow the NCP approach and rewrite it using the contrastive loss (5), which,157

reflecting the operator’s isotypic decomposition in (11) becomes separable:158

Lγ(θ) :=
∑niso

k=1

(
−2Exyκ

(k)

θ (x,y)+ExEyκ
(k)

θ (x,y)2+γΩ(k)(θ)
)
+ 2γ

(
∥Exϕ

inv
θ (x)∥2F+∥Eyψ

inv
θ (y)∥2F

)
.

(14)
This decomposes the problem of learning G-equivariant representations of x and y into learning niso159

less constrained G(k)-equivariant representations transforming according to distinct subgroups of G.160

Such representations are known in the literature as disentangled representations [18] (see Def. I.9).161

Moreover, we improve the estimates of the regularization terms in (5) by leveraging our symmetry162

priors to: (i) tighten the centering regularization (14) given that functions in F (k)
x and F (k)

y are centered163

by construction for k ̸= inv (see Cor. L.4)—and (ii) exploit the orthogonality between isotypic164

subspaces (10) to independently regularize orthonormality for each isotypic subspace (see example165

in Fig. 10 in the appendix), leading to better covariance estimates [36]:166

Ω(k)(θ) :=
∑niso

k=1∥Cov(ϕ
(k))−Irk∥

2
F +∥Cov(ψ(k))−Irk∥

2
F . (15)

Given a batch {(xn,yn)}Nn=1 and their corresponding embeddings {(ϕθ(xn),ψθ(yn))}Nn=1, the167

empirical unregularized loss is estimated via U-statistics, yielding an unbiased estimate with an168

effective sample size of N2 [32, 34].169

L̂0(θ)=
∑

k∈[niso]

[
1
N

∑
n∈[N ]κ

(k)

θ (xn,yn)+
1

N(N−1)

∑
a∈[N ]

∑
b∈[N ]\{a} κ

(k)

θ (xa,yb)
2
]
. (16)

Similarly, we use U-statistics to obtain unbiased estimates for orthonormal regularization in (15),170

achieving an effective sample size of dkN2 per isotypic subspace (see App. F.2). Consequently,171

standard NN optimization methods can be employed to learn equivariant representations via the172

approximate model of Ey|x, enabling downstream inference tasks described in the next section.173

5 Inference and learning guarantees174

Once training is complete, the learned G-invariant PMD from (13) can be used, via (2), for G-175

equivariant regression and G-invariant conditional probability estimation. In summary, these estimates176

are obtained using a NN architecture composed of ϕθ, Eθ, and a final linear layer that delivers the177

basis expansion coefficients of the target variable in the y representation space Fθy = span(ψθ).178

Crucially, these parametric estimators come with tight statistical guarantees—summarized in Tab. 1179

and Thm. C.1 and derived in Apps. C and M. These guarantees show that the contrastive objectives (5)180

and (14) serve as faithful surrogates for the standard Mean Squared Error (MSE) regression objective.181

(i) The bounds are governed by a regularity parameter α satisfying
∑
i∈N σ

1/α
i <∞ (with α = ∞182

for finite-rank operators and α = 0 for merely compact ones). In particular, the operator is trace183
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class when α = 1 and Hilbert-Schmidt when α = 1
2—the latter equivalent to κ ∈ L2

Px×Py
(X × Y)184

(see App. M). Accordingly, the learning rates range from arbitrarily slow as α→ 0 to the fast rate185

(disoN)−1/2 as α→ ∞; (ii) equivariant disentangled representations boost the effective sample size186

to disoN ≥ nisoN ≫ N , providing not only the expected niso gain from disentanglement but also187

an additional diso =
∑niso
k=1 dk boost (see Fig. 2-right) by fully exploiting the equivariant structure188

within each isotypic–singular space; (iii) for applications requiring pointwise control, (20) provides a189

set-wise learning bound that quantifies how symmetries mitigate bottlenecks in estimating observables190

tied to rare events—here the effective rarity of x ∈ A is captured by γG′(A), yielding gains up to191

|G|,P[x ∈ A] ≫ P[x ∈ A] when A is asymmetric; and (iv) in the absence of symmetry priors—i.e.,192

when G = e and |G|=niso=diso=1—our framework recovers the baseline results of [37], whereas193

leveraging symmetries amplifies the effective sample size and fundamentally alleviates the intrinsic194

bottlenecks of rare-event estimation.195

6 Experiments196

We present three experiments evaluating our method in (i) approximating the conditional expectation197

operator and the use of the learned operator for (ii) G-equivariant regression and (iii) symmetry-aware198

uncertainty quantification. For additional empirical evidence, and specific details refer to App. G.199

Conditional expectation operator learning This experiment directly quantifies the MSE of200

approximating Ey|x, i.e., κmse := ExEy(κ(x,y) − κθ(x,y))
2. To achieve this, we extend the201

Conditional Gaussian Mixture Model (cGMM) of Gilardi et al. [38] to parametrically construct202

symmetric vector-valued random variables x ∈ X and y ∈ Y that satisfy the symmetry priors in (6)203

for arbitrary finite symmetry groups (see a 2D example in Fig. 3). This provides an analytical form of204

the PMD ratio κ, enabling direct estimation of κmse, usually impossible for real-world datasets.205

The results in Fig. 5 compare our model eNCP against its symmetry-agnostic counterpart NCP and206

two baselines—a standard Multi-Layer Perceptron (MLP) and an Equivariant MLP (eMLP)—all with207

equivalent architectural footprint. Where NCP and eNCP are trained using (5) and (14), respectively,208

while MLP and eMLP are trained using standard MSE.209

The results in Fig. 5 demonstrate that our eNCP model outperforms all other baselines in both210

performance and sample complexity. Consistent with [37], the NCP model shows poorer sample211

complexity than MLP and eMLP due to its indirect approach to regression, via approximation of Ey|x.212

However, by incorporating symmetry priors our eNCP model appears to mitigate this limitation.213

G-Equivariant regression To test our model’s potential for performing G-equivariant regression,214

we address the robot’s Center of Mass (CoM) momenta regression task of [15]. The goal is to215

predict a quadruped robot’s CoM linear l ∈ R3 and angular momenta k ∈ R3 given the noisy216

observations of the robot’s generalized positions q ∈ R12 and velocity coordinates q̇ ∈ R12, i.e.,217

[l⊤,k⊤]⊤ = hCoM(q + ϵq, q̇ + ϵq̇) (see details in App. G.2 and Fig. 7 in the appendix). We218

compare eNCP against NCP and two baselines—a standard MLP and an eMLP—all with equivalent219

architectural footprint. Where NCP and eNCP are trained using (5) and (14), respectively, while220

MLP and eMLP are trained using standard MSE.221

The results in Fig. 1 demonstrate that our eNCP model outperforms all other baselines in both222

performance and sample complexity. Consistent with [37], the NCP model shows poorer sample223

complexity than MLP and eMLP due to its indirect approach to regression, via approximation of224

Ey|x. However, by incorporating symmetry priors our eNCP model appears to mitigate this limitation.225

Symmetry aware uncertainty quantification Finally, we demonstrate the practical impact of our226

approach on a core robotics problem: providing robust uncertainty quantification for unavailable227

yet crucial state observables for robot control and state estimation [39, 40]. Specifically, we use228

proprioceptive sensor readings to provide 90% confidence intervals for the robot’s Ground Reaction229

Forces (GRF) τgrf ∈ R12, the instantaneous work exerted or subtracted to the robot U(q, q̇, τ ) ∈ R,230

and the kinetic energy T (q, q̇) ∈ R, while the robot traverses rough terrain (see App. G.3.2). Reliable231
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Figure 4: Prediction of 90% confidence intervals (CI) for the ground-reaction forces τgrf ∈ R12 of a
quadruped robot on rough terrain with varying friction. We compare the eNCP vs. eCQR (see NCP
and CQR in Fig. 4) models based on relaxed coverage and set size (see Tab. 4). CIs are computed for
each leg—front-right (FR), front-left (FL), hind-right (HR), and hind-left—along the x, y, and z axes.
Forces outside the CI are highlighted in red, while those within appear in blue.

probabilistic estimates of these quantities are of crucial relevance for optimal control [39], contact232

detection [40], state estimation [41], and system identification [42].233

r-Coverage ↑ Coverage ↑
eNCP 99.5±0.1% 95.0±0.4%
NCP 99.5±0.0% 56.9±0.3%
eCQR 84.2±0.7% 6.7±1.2%
CQR 80.5±3.7% 8.5±0.9%

Table 2: Relaxed coverage, see (31),
and Coverage, see (30), for the test-set
confidence intervals in quadruped loco-
motion uncertainty estimation of y =
[τ⊤

grf, U, T ]
⊤. Target coverage is: 90%.

This task tests our model’s ability to learn conditional234

distributions from high-dimensional data, considering235

that for the eNCP and NCP models, quantile estima-236

tion is done by regressing the Conditional Cumulative237

Distribution Function (CCDF) for each dimension of238

y = [y1, . . . ] and then applying a linear search to extract239

quantiles (see Fig. 9 in the appendix). This is achieved240

by discretizing the range of each yi into Nb bins and241

estimating P(yi ∈ Ai,n|x = ·) := [Ey|x1Ai,n ](·) for all242

n ∈ [Nb] (see Sec. 5), where Ai,n consists of the first n243

bins. In practice, this means regressing |Y| × Nb con-244

ditional probabilities corresponding to sets of varying sizes in a single forward pass. By contrast,245

the baseline CQR [43] and its equivariant adaptation eCQR directly regress quantiles for a fixed246

coverage level (i.e., the probability that an event lies within the predicted confidence interval) and247

need retraining for different coverage values.248

The results in Tab. 2, Fig. 1 (for U and T ) and in Fig. 12 in the appendix (for τgrf) show eNCP as the249

only model capable of providing robust uncertainty quantification, as it is the only model with an250

empirical coverage on the test set close to the desired value, rendering other models unreliable for251

practical applications. This underscores eNCP’s potential for conditional probability estimation.252

7 Conclusions253

We introduce a novel framework for equivariant representation learning that enables estimation254

of equivariant regression and conditional probabilities with statistical learning guarantees. Our255

approach builds on a recent contrastive representation learning method that approximates the spectral256

decomposition of the conditional expectation operator. By incorporating symmetry priors, we impose257

additional structural constraints that further decompose the conditional expectation operator and258

enhance the effective sample size. We demonstrate the benefits of our approach through both259

theoretical learning bounds and empirical experiments. Notably, we provide the first theoretical260

learning guarantees for equivariant regression using neural network features, thereby bridging spectral261

representation learning and geometric deep learning.262
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Part I474

Appendix475

A Symbols and notation476

Numbers and Arrays
x A scalar, or scalar function x(·)
x A vector, or vector-valued function x(·)
x1 ⊕ x2 Direct sum (stacking) of vectors, such that x1 ⊕ x2 := [ x1

x2
]

K A matrix
A⊕B Direct sum of matrices, such thatA⊕B := [A O

O B ]
K A linear operator
I Identity matrix
δi,j The Kronecker function, equal to 1 when i = j, and 0 when i ̸= j

Sets, Vector Spaces, and Function Spaces
X ,Z,H,F A vector or Hilbert space
R,C The set of real and complex numbers
X ⊕ Y Direct sum of vector spaces X and Y , such that if x ∈ X and y ∈ Y ,

then x⊕ y ∈ X ⊕ Y
L2
x := L2

Px
(X ,R) The Hilbert space of square-integrable functions on X with respect to

the measure Px, defined as L2
Px
(X ) := {f |

∫
X |f(x)|2Px(dx)<∞}

⟨f, f ′⟩Px
Inner product between f an f ′ in L2

Px
X , defined as ⟨f, f ′⟩Px

:=∫
X f(x)f

′(x)Px(dx)

Group and Representation theory
G A symmetry group
g, g1, ga A symmetry group element
g ▷ x The (left) group action of g on x defined by g ▷ x := ρX (g)X
ρX A representation of the group G on the vector space X , defined for a

chosen basis of X
ρ̄k An irreducible representation Def. I.7 of the group G
ρX (g) Representation of the group element g on the vector space X , defined

for a chosen basis X
ρX ⊕ ρY Direct sum of group representations, such that ρX (g) ⊕ ρY(g) :=[

ρX (g)

ρY (g)

]
Gx The group orbit of x, defined as Gx := {g ▷ x | g ∈ G}
γG′(A) The symmetry index of a set A ⊆ X w.r.t. probability distribution on

X and group elements G′ ⊆ G
Ga ×Gb Direct product of groups Ga and Gb

U(X ) Unitary group on the vector space X
GL(X ) General Linear group on the vector space X , a.k.a the space of

invertible matrices in R|X |×|X|

Cn Cyclic group of order n
K4 Klein four-group

Probability Theory
x ∼ P(x) Random vector x ∈ X has distribution P(x)
Px A probability measure on the space X
Ex[f(x)] Expectation of f(x) with respect to Px

Cov(f(x)) Variance of f(x) with respect to Px, define as Ex(f(x)− Exf(x))
2

Cov(f(x), h(y)) Covariance of f(x) and h(y) with respect to the joint distribution
Pxy, defined as Exy(f(x)− Exf(x))(h(y)− Eyh(y))

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ

477
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B Related work478

B.1 Contrastive representation learning479

Contrastive representation learning obtains high-dimensional representations from unlabeled data480

by contrasting positive and negative sample pairs via a noise contrastive loss (similar to Eq. (5))481

[44, 45, 46]. Most works in this field aim to learn representations in a self-supervised fashion482

that transfer well to downstream classification tasks [47, 48, 49, 30, 24, 33]. In contrast, our483

approach targets representations that effectively transfer to (equivariant) regression and uncertainty484

quantification, as in [25]. Given a dataset D = {(xn,yn)}Nn=1 from a target (stochastic) function485

y = f(x), we treat positive pairs as drawn from the joint distribution (x,y) ∼ P(x,y) and negative486

pairs as drawn from the product of the marginals (x,y) ∼ P(x)P(y). In this setting, our contrastive487

loss aims to learn representations that approximate the PMD ratio κ(x,y) = P(x,y)
P(x)P(y) , [25] or488

equivalently, the pointwise mutual information ln(κ(x,y)) [30, 50, 51, 52]. Crucially, our work is489

the first study this problem when there is prior knowledge of the invariance of κ under the action of a490

compact symmetry group, which occurs in most applications of GDL.491

Linear transferability The goal of contrastive representation learning is to acquire representations492

that transfer to diverse downstream inference tasks [53, 45]. While empirical studies demonstrate493

that contrastive learning can outperform supervised methods [48, 30, 51], theoretical works aim to494

establish linear separability/transferability guarantees [54] 4. That is, showing that linear functionals495

of the (frozen) learned representations suffice for regression/classification inference.496

In the context of classification, [45, 46, 47] show that contrastive learning losses serve as surrogates497

for standard supervised classification losses (e.g., the cross-entropy). Where the gap between the498

surrogate and supervised loss diminishes with the number of negative samples [46] (N2 for the loss499

in Eq. (16)). To provide these transferability guarantees, these work assume X = Y , so that the PMD500

ratio κ becomes a positive definite kernel. Consequently, kernel method guarantees can be transferred501

to the classification task, even when the representations are parameterized by NNs [47, 46, 54].502

Considerably fewer works have studied contrastive representation learning in the context of down-503

stream regression tasks [56, 25]. Crucially, Kostic et al. [25] show that a contrastive learning loss504

serves as surrogate to the MSE regression loss (A summary of this method appears in Sec. 2 and in505

Tab. 3). While, to the best of our knowledge, [56] is the only work empirically studying contrastive506

learning for regression in the presence of symmetries.507

Task f(x) := Ey[y|x=x] ≈ f̂θ(x) P[y∈B|x ∈ A] ≈ P̂θ[y∈B|x∈A]

Estimate Êy[y]+ϕθ(x)
⊤EθÊy[ψθ(y)⊗ y] Êy[1B]+

Êx[1A(x)⊗ϕθ(x)]⊤Eθ Êy[1B(y)⊗ψθ(y)]

Êx[1A(x)]

Guarantees ∥f−f̂θ∥L2
x
≲
√

Var[∥y∥]
(
Er
θ+

ln(1/δ)

N
α

1+2α

)
|P−P̂θ|≲

√
P[y∈B]
P[x∈A]

(
Er
θ+

ln(1/δ)

N
α

1+2α

)
Table 3: Statistical learning guarantees of NCP [25] for regression and conditional probability
estimation. The bounds are shaped by the quality of the learned representations Erθ = ∥Ey|x−Eθ∥op ≤√
Lγ(θ)− Lγ(⋆) (see (5)), the sample size N , and the decay rate of Ey|x singular-values α > 0,

which quantifies the difficulty of the problem.

B.2 Equivariant representation learning508

Equivariant contrastive representation learning [57, 58] aims to learn representations that are equiv-509

ariant—instead of invariant—to data transformations. For example, Marchetti et al. [59], Gupta et al.510

[60], Lin et al. [50] provide empirical evidence that representations of 3D scenes, images, and human511

body poses that are equivariant to translations, rotations, or reflections yield improved performance512

4Also refeered to as linear evaluation protocol [55]
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in classification tasks. Additionally, Yerxa et al. [56] show that rotation- and reflection-aware image513

representations enhance the regression of neural responses in the macaque inferior temporal cortex,514

while also providing theoretical justification that such equivariant representations mirror the known515

structure of animal visual perception. By introducing these transformations via data-augmentation of516

the training set, these methods inherently enforce symmetries in the data distributions, which are the517

fundamental priors assumed in Sec. 3.518

Disentangled representations In equivariant representation learning, disentangled representations519

have been extensively studied [22]. Initially, [53] defined disentanglement as decomposing repre-520

sentations into components that capture distinct, independently varying factors. Later, using group521

theory, Higgins et al. [18] formalized that a representation is disentangled if its space decomposes522

into orthogonal subspaces reflecting a symmetry group decomposition, with each subspace influenced523

exclusively by one subgroup (see Def. I.9). As discussed in App. I, this aligns with the isotypic524

decomposition of a Hilbert space [35]: H = ⊕⊥
k=1H(k)—known in dynamical systems [61]—when525

the symmetry group decomposes as G =
∏niso
k=1 G(k). Orthogonality between subspaces follows from526

Schur’s orthogonality relations via Cartan’s and Peter-Weyl’s theorems [62]. This symmetric structure527

is the cause of the achitectural constraints imposed in the eNCP architecture Fig. 2.528

Several empirical works have explored disentanglement in representation learning. For instance,529

Keurti et al. [21] proposed an autoencoder-based method to learn disentangled equivariant represen-530

tations by using loss regularization to enforce latent space equivariance and sparsity for separating531

latent group actions. Unlike our approach, their method does not assume prior knowledge of the532

symmetry group and relies entirely on loss regularization rather than architectural constraints. Simi-533

larly, works such as [see e.g. 63, 20] have investigated various symmetry priors in latent space by534

examining the emergence of disentangled structures and enforcing algebraic constraints. Notably,535

in fields like molecular dynamics, physics, computer graphics, and robotics, symmetry priors are536

intrinsic to the task or system [15, 50, 59], making them natural assumptions. In a similar spirit537

to our work, Marchetti et al. [59] leverage the known SO3 symmetries of the 3D world to learn538

SO3-disentangled equivariant representations using contrastive learning, thereby demonstrating the539

empirical advantages of symmetry-aware, disentangled representations for object classification.540

B.3 Symmetry-aware statistical learning theory541

Existing literature on symmetry-aware learning focuses on group-invariant regression via kernel542

methods [64, 65, 66, 67, 10, 68, 69, 70, 71]. Most of these methods cannot be directly transferred543

to modern GDL architectures. In contrast, in deep learning and GDL, while many works offer a544

group-theoretical analysis and empirical evidence of the benefits of incorporating symmetry priors545

[7, 72, 73, 74], none, to our knowledge, provide statistical learning guarantees that analytically546

quantify these benefits in terms of the structure of the compact/finite symmetry group.547

C Inference and learning guarantees548

Consider vector-valued regression with an observable h ∈ L2
Py
(Y,Z), where Z is a symmetry-

endowed vector space. The target function z : X → Z is the conditional expectation of of h, that is:
z(x) := Ey[h(y)|x = x] = [Ey|xh](x). Then, using the learned model, we estimate z by

[Ey|xh](x) ≈ ẑθ(x) := Êy[h(y)]+ϕ
⊤
θ (x)

⊤Eθ Êy[ψθ(y)⊗ h(y)],

where Êy[ψθ(y)⊗h(y)] denote the basis expansion coefficients of h in the learned basis of Fθy ⊂ L2
y.549

With Êx : L2
x → R and Êy : L2

y → R being the G-invariant empirical expectations defined by:550

Êx[f(x)]=
1

|G|N
∑
g∈G

∑
n∈[N ]

f(g ▷X xn) and Êy[h(y)]=
1

|G|N
∑
g∈G

∑
n∈[N ]

h(g ▷Y yn). (17)

Hence, our method learns representations of x and y that transform nonlinear regression of observ-551

ables into a simple linear regression in the learned space. For example, assuming y has bounded552

variance and setting h(y) = y, we recover the standard (G-equivariant) regression solution (see553
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Tab. 1-left). Equally important, by letting h = 1B—the indicator of a measurable set B ⊆ Y—the554

model estimates conditional probabilities (see Tab. 1-right), thereby supporting both regression and555

uncertainty quantification (e.g., conditional quantiles, covariances; see Sec. 6 and [25]).556

To further illustrate the impact of symmetries in conditional probability estimation, we consider557

conditioning on measurable sets A ⊆ X , leading to the estimate z(A) := Ey[h(y)|x ∈ A] ≈558

Êx[ẑθ(x)]/̂Ex[1A(x)]. In this context, symmetry is crucial in alleviating the bottlenecks of rare event559

estimation, as described next in Thm. C.1. To capture this effect, we introduce the symmetry index of560

A with respect to the probability distribution of x, which quantifies the degree of symmetry in A:561

γG(A) =
1

|G| − 1

∑
g∈G\{e}

P(x ∈ A ∩ g ▷X A)
P(x ∈ A)

. (18)

Observe that γG′(A) ∈ [0, 1]. In particular, γG(A) = 1 if A is G-invariant (e.g., the vertical and562

horizontal reflection planes in Fig. 3), while γG(A) = 0 if g ▷X A ∩ A = ∅ for all g ∈ G (e.g., any563

set disjoint from the reflection planes in Fig. 3). We refer to the latter as a G-asymmetric set.564

The following learning bounds cover the general setting presented above.565

Theorem C.1. Let Pxy and Px be G-invariant, and let Ey|x be a (1/α)-Schatten-class operator.566

Given θ ∈ Θ, let κθ be the kernel given in (13) that defines a rank r = disom G-equivariant operator567

Eθ, where m is the number of distinct singular spaces, and diso =
∑
k∈[niso]

dk ≥ niso denotes568

the “total dimensionality” associated to the group G. Given δ ∈ [0, 1), let Erθ=∥Ey|x−Eθ∥op be the569

representation learning error. Let ε⋆N (δ)= [disoN ]−
α

1+2α ln(niso/δ) and m≍ [Nd−2α
iso ]

1
1+2α .570

If h∈L2
Py
(Y,Z) is either G-invariant or G-equivariant, A ⊂ X is a measurable set and G′ ≤ G,571

then with probability at least 1− δ w.r.t. an iid draw of DN = {(xn,yn)}Nn=1 from Pxy it holds572

∥z − ẑθ∥L2
Px

(X ,Z)
≲
√

Var[∥h(y)∥Z ]
[
Er
θ + ε⋆N (δ)

]
(19)

and573

∥z(A)− ẑθ(A)∥Z ≲

√
1 + (|G′| − 1)γG′(A)

√
Var[∥h(y)∥Z ]√

|G′|P(x ∈ A)

[
Er
θ + ε⋆N (δ)

]
. (20)

Proof. G-invariance of Px and Py allows us to control both bias (Thm. M.2) and variance (Prop.574

M.3) of ẑθ. A simple balancing of m yields the final bound on the error.575

We conclude by highlighting key implications of the theorem. The parameter α quantifies the problem576

regularity via
∑
i∈N σ

1/α
i <∞, with α = ∞ for finite-rank operators and α = 0 for merely compact577

operators. The operator is trace class for α = 1 and Hilbert–Schmidt for α = 1/2, which is equivalent578

to κ ∈ L2
Px×Py

(X×Y) (see App. M). Hence, our results cover learning rates ranging from arbitrarily579

slow (as α → 0) to fast rates [disoN ]−1/2 as α → ∞; (ii) Equivariant disentangled representations580

boost the effective sample size to disoN ≥ nisoN ≫ N , providing not only the expected niso gain581

from disentanglement but also a remarkable diso =
∑niso
k=1 dk boost (see Fig. 2-right)—achieved by582

fully exploiting the equivariant structure within each isotypic-singular space. (iii) Because point-wise583

guarantees are essential in some applications, (20) offers a set-wise learning bound that quantifies584

how symmetries help overcome bottlenecks in estimating observables associated with rare events.585

In particular, the effective rarity of x ∈ A is captured by γG′(A), yielding a maximal gain of586

|G|P[x ∈ A] ≫ P[x ∈ A] when A is asymmetric. (iv) When no symmetry prior exist, that is, when587

G = {e} and |G|=niso=diso =1, our framework recovers the baseline results of [37]. In contrast,588

exploiting symmetries yields substantial statistical gains: it amplifies the effective sample size and589

fundamentally mitigates the inherent bottlenecks of rare event estimation.590

D Symmetry constraints on conditional expectations591

Under the assumed symmetry priors in (6) the conditional expectation of y is a G-equivariant592

function/map. This property is depicted in Fig. 3-center and proved in the following proposition.593
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Proposition D.1 (G-equivariant conditional expectations). Let x ∈ X and y ∈ Y be two vector594

valued random variables satisfying the symmetry priors of Eq. (6). Then, the conditional expectation595

of y given x is G-equivariant, since, for every g ∈ G,x ∈ X ,596

E[y|x = g ▷X x] = g ▷Y E[y|x = x]

=

∫
Y
g ▷Y y Py|x(dy|x)

=

∫
Y
y Py|x

(
g−1 ▷Y dy|x

)
=

∫
Y
y Py|x(dy|g ▷X x) (by Eq. (6))

= E[y|x = g ▷X x].

E G-Equivariant bilinear NN architecture597

This section outlines how to construct a G-equivariant disentangled representation for the random598

variables x and y using any type of G-equivariant NN architecture backbone, such as MLP, CNNs,599

Transformers, and others.600

Let fθ : X 7→ Rr and hθ : Y 7→ Rr be two G-equivariant NNs, whose outputs will be interpreted601

as the basis functions of the truncated symmetric function spaces Fx ⊂ L2
x and Fy ⊂ L2

y. Assume,602

the group representations on Fx and Fy are constructed from multiplicities of the group’s regular603

representation, ρFx
=
⊕r/|G|

n=1 ρreg and ρFy
=
⊕r/|G|

n=1 ρreg—as done usually in practice [17]. Since604

for (most) finite groups, the decomposition of ρreg into irreps is known or can be computed, we605

have access to the analytical change of basis Qx : Fx 7→ Fx and Qy : Fy 7→ Fy to transition to606

the isotypic basis. Consequently, we can directly parameterize the representations of the random607

variables in disentangled form as:608

ϕθ(·) = Q⊤
x (fθ(·)− Ex[fθ(x)]), ψθ(·) = Q⊤

y (hθ(·)− Ey[hθ(y)]). (21)

Given that during training these representations are not orthogonal, the truncated operator is param-609

eterized as the trainable G-equivariant matrix Eθ = ⊕niso
k E(k)

θ = ⊕niso
k O(k) ⊗ Idk with parameters610

{O(k) ∈ Rmk×mk}niso
k=1. Hence, the kernel of each the truncated operator is given in terms of the611

model free parameters by:612

κθ(x,y) = 1Px(x)1Py (y) +

niso∑
k=1

mk∑
s,t

O(k)
s,t

dk∑
i,j

ϕθ(k)s,i (x)ψ
θ(k)
t,j (y). (22)

Note that after training, the SVD of the learned operator can be computed by exploiting the constraints613

imposed by the operator’s G-equivariance (see Thm. K.5 and Fig. 2). Importantly, once changed to614

the spectral basis, the group action on the approximated spectral basis matches that on the isotypic615

basis (see Cor. K.4).616

F Symmetry aware orthonormalization of disentangled representations617

This section covers how to compute unbiased empirical estimates of the orthonormalization and618

centering regularization terms in Eq. (14) in the presence of symmetries.619

Let Ey|x : L2
y 7→ L2

x be the conditional expectation operator and Eθ : Fy 7→ Fx be its r-rank620

approximation on the spaces Fx = span({ϕi}ri=1) and Fy = span({ψi}ri=1). Denote by κ(x,y) :=621
Pxy(x,y)
Px(x)Py(y)

and κθ(x,y) :=
∑r
i,j=1[Eθ]i,jϕi(x)ψj(y) = ϕ(x)⊤Eθψ(y) the kernel functions of622
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the full and restricted operator, respectively. Then we have that:623

∥Ey|x − Eθ∥2HS ≤ −2⟨Ey|x,Eθ⟩HS + ∥Eθ∥2HS, (23a)

≤ −2

∫
X×Y

κ(x,y)κθ(x,y)Px(dx)Py(dy) +

∫
X×Y

κθ(x,y)
2Px(dx)Py(dy)

≤ −2

∫
X×Y

κθ(x,y)Pxy(dx, dy) +

∫
X×Y

κθ(x,y)
2Px(dx)Py(dy)

≤ −2Exyκθ(x,y) + ExEyκθ(x,y)
2. (23b)

For the purpose of our representation learning problem, we consider the scenario in which the chosen624

basis sets include the constant function, and all other basis functions are centered by construction.625

That is, IFx
= {1Px} ∪ {ϕi | ⟨ϕi,1Px⟩x = 0}ri=1 and IFy

= {1Py} ∪ {ψi | ⟨ψi,1Py⟩y = 0}ri=1.626

This results in the (r + 1)-dimensional matrices:627

Vx :=
[
1 0
0 Cx

]
, Vy :=

[
1 0
0 Cy

]
, (24)

where Cx = Cov(ϕ(x),ϕ(x)) ∈ Rr×r, Cy = Cov(ψ(y),ψ(y)) ∈ Rr×r denote the matrix forms628

of the truncated covariance operators Cx : Fx 7→ Fx and Cy : Fy 7→ Fy (see Def. L.5), respectively.629

Then the orthonormality regularization of Eq. (5) becomes:630

∥Vx − I∥2F = ∥Cx − Ir∥2F + 2∥EPxϕ(x)∥
2 ∥Vy − I∥2F = ∥Cy − Ir∥2F + 2∥EPyψ(y)∥

2. (25)

Since ∥Cx∥2F = tr(C2
xy) involves products of covariance matrices, we compute its empirical value631

using unbiased estimators. For generality, we present the unbiased estimator for the cross-covariance.632

Unbiased estimation of Frobenious norm of cross-covariance operators Since ∥Cxy∥2F =633

tr(C2
xy) involves products of covariance matrices, we obtain unbiased estimates from finite samples634

by computing the metric using two independent sampling sets from Pxy. This is observed by:635

∥Cxy∥2F = tr(C2
xy) =

r∑
i=1

[C2
xy]i,i =

r∑
i=1

r∑
j=1

[Cxy]i,j [Cxy]j,i

=

r∑
i=1

r∑
j=1

E(x,y)∼Pxy [ϕc,i(x)ψc,j(y)]E(x′,y′)∼Pxy [ϕc,j(x
′)ψc,i(y

′)]

= E(x,y,x′,y′)∼Pxy [

r∑
i=1

ϕc,i(x)ψc,i(y
′)

r∑
j=1

ϕc,j(x
′)ψc,j(y)]

= E(x,y,x′,y′)∼Pxy [(ϕc(x)
⊤ψc(y

′))(ϕc(x
′)⊤ψc(y))]

≈ 1

N2

N∑
n=1

N∑
m=1

(ϕc(xn)
⊤ψc(y

′
m))(ϕc(x

′
m)⊤ψc(yn)),

(26)

where ϕc(x) = ϕ(x)− EPxϕ(x) denotes the centered basis functions, and ((x,y), (x′,y′)) ∼ Pxy636

indicates two independent sampling sets from Pxy used for the unbiased estimation of ∥Cx∥2F .637

The final equation then provides the unbiased empirical estimator computed on a dataset D =638

{(xn,yn) ∼ Pxy}Nn=1 and any random permutation of it, denoted as D′ = {(x′
n,y

′
n) ∼ Pxy}Nn=1.639

F.1 Unbiased estimation of orthonormal regularization640

The regularization term for optimizing the loss (5) involves encouraging the basis sets to be orthonor-641

mal. The metric quantifying the orthogonality of the basis sets is defined by:642

∥Vx − I∥2F = ∥Cx − Ir∥2F + 2∥EPxϕ(x)∥
2 = tr(C2

x)− 2tr(Cx) + r + 2∥EPxϕ(x)∥
2,

∥Vy − I∥2F = ∥Cy − Ir∥2F + 2∥EPyψ(y)∥
2 = tr(C2

y)− 2tr(Cy) + r + 2∥EPyψ(y)∥
2.

(27)
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Hence given a dataset of samples D = {(xn,yn) ∼ Pxy}Nn=1, and any random permutation of the643

dataset order D′ = {(x′
n,y

′
n) ∼ Pxy}Nn=1 we can derive unbiased empirical estimates of (27) as:644

∥Vx − I∥2F ≈ Ê(x,x′)∼Px [(ϕc(x)
⊤ϕc(x

′))2]− 2ÊPx [ϕc(x)
⊤ϕc(x)] + r + 2∥ÊPxϕ(x)∥

2

≈ 1

N2

N∑
n=1

N∑
m=1

(ϕc(xn)
⊤ϕc(x

′
m))2 − 2

1

N

N∑
n=1

ϕc(xn)
⊤ϕc(xn) + r + 2∥ 1

N

N∑
n=1

ϕ(xn)∥2,

∥Vy − I∥2F ≈ Ê(y,y′)∼Py [(ψc(y)
⊤ψc(y

′))2]− 2ÊPy [ψc(y)
⊤ψc(y)] + r + 2∥ÊPyϕ(y)∥

2

≈ 1

N2

N∑
n=1

N∑
m=1

(ψc(yn)
⊤ψc(y

′
m))2 − 2

1

N

N∑
n=1

ψc(yn)
⊤ψc(yn) + r + 2∥ 1

N

N∑
n=1

ψ(yn)∥2.

(28)

F.2 Orthonormal regularization of symmetric Hilbert spaces645

Since the covariance operators Cx : L2
x 7→ L2

x and Cy : L2
y 7→ L2

y are G-equivariant (see Prop. L.6),646

their matrix representations in the isotypic basis are block-diagonal. Hence (27) becomes:647

∥Vx − I∥2F = ∥Cx − Ir∥2F + 2∥EPxϕ(x)∥
2

= ∥⊕niso
k=1 C

(k)
x − Ir∥2F + 2∥EPxϕ

inv(x)∥2,

=

niso∑
k=1

∥C(k)
x − I (k)

r ∥2F + 2∥EPxϕ
inv(x)∥2

=

niso∑
k=1

(
∥C(k)

x ∥2F − 2tr(C(k)
x ) + rk

)
+ 2∥EPxϕ(x)∥

2

= 2∥EPxϕ(x)∥
2 + r +

niso∑
k=1

∥Z(k)
x ⊗ I|ρ̄k|∥

2
F − 2tr(Z(k)

x ⊗ I|ρ̄k|)

= 2∥EPxϕ(x)∥
2 + r +

niso∑
k=1

|ρ̄k|
(
∥Z(k)

x ∥2F − 2tr(Z(k)
x )
)
,

(29)

where the Frobenius norm of the matricesZ(k)
x andZ(k)

y , for all k ∈ [1, niso], admit unbiased estimators648

as given in equation (26). Similar development follows for the y case.649

G Experimental setup650

In this section we provide details on the experimental setup. We first describe general design choices651

and hyperparameters and then provide details for each experiment.652

Sample efficiency experiments For both the conditional expectation operator approximation and653

the G-equivariant regression experiments, we evaluate model performance by measuring sample654

efficiency/complexity. To do so, we partition the dataset D = {(xn,yn)}Nn=1 into training, validation,655

and testing splits in proportions of 70%, 15%, and 15%, respectively. With fixed validation and656

testing sets, we iteratively train the models on increasing portions of the training set and report the657

test performance for each size.658

For each training set size, we select the model checkpoint with the best validation loss to compute659

the test performance. Thus, these experiments quantify the generalization error (or true risk) and its660

evolution as a function of the training set size.661

NNs architectures and hyperparameters To compare our equivariant representation learning662

framework with other contrastive and supervised methods, all (inference) models share a similar fixed663

architectural footprint. For the baseline models, the only hyperparameter tuned is the learning rate,664

whereas for the NCP and eNCP models we additionally tune the regularization weight γ in Eqs. (5)665

and (14). Further details for each experiment are provided in the corresponding sections below.666
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Code reproducibility All experiments, plots and examples are provided in the open-access reposi-667

tory and python package symm rep learn.668

G.1 Conditional expectation operator approximation669

In this experiment, we extend the conditional Gaussian Mixture Model (GMM) proposed by Gilardi670

et al. [38] to parametrically construct symmetric random variables taking values in arbitrary data671

spaces X and Y and with arbitrary finite symmetry groups G. The GMM is defined by672

z := x⊕ y ∼
∑
g∈G

ng∑
c=1

N (ρZ(g)µz,c , ρZ(g)Σz,cρZ(g)
⊤),

where ρZ(g) := ρX (g) ⊕ ρY(g) are arbitrary group representations of G and ng is the number of673

unique Gaussians with randomly sampled means µz := µx ⊕ µy and block-diagonal covariances674

Σz := Σx⊕Σy. Since every Gaussian appears in group orbits, this symmetric GMM has G-invariant675

marginal distributions and an analytical expression for the conditional expectation operator kernel676

κ(x,y) = pxy(x,y)/Px(x)Py(y) (see 2D example in Fig. 3). Consequently, we can directly estimate677

the approximation of the conditional expectation operator (Eq. (5)) as the mean squared error between678

the true and learned density ratios, i.e., κmse := ExEy ∥κ(x,y)− κθ(x,y)∥2.679

To the best of our knowledge, this is the first synthetic experiment that directly estimates the680

truncation error of the conditional expectation operator in an inference task-agnostic setting, serving681

as a benchmark for future work.

Figure 5: Sample efficiency plots comparing the test set PMD MSE κmse := ExEy(κ(x,y) −
κθ(x,y))

2 versus the number of training samples, in log scales. Each plot corresponds to a symmetric
cGMM with distinct symmetry groups and (x,y) dimensionality. The tested groups are the cyclic
groups C2 and C6, the Dihedral group D6 (order 12), and the Icosahedral group Ih (order 60).

682

Figure 6: Sample efficiency plots comparing test set regression mean-square-error of the density
ratio κ(x,y) = Pxy(x,y)/Px(x)Py(y) (log-scale) vs. the number of samples in the training set (log-
scale). Each plot represents a different symmetric GMM with varying symmetry groups G and
dimensionalities of the random variables |X | and |Y|. The groups tested are the cyclicg grups C2 and
C6, the Dihedral group D6 of order 12 and the Icosahedral group Ih of order 60.

Fig. 5 compares sample efficiency using κmse, while Fig. 6 shows the error in the G-invariant of the683

learned κ ratio versus sample size, highlighting that symmetry-aware methods encode this property684

as an architectural constraint, ensuring a strictly G-invariant learned ratio.685

G.2 G-equivariant regression of robot’s CoM momenta686

In this experiment, we evaluate the quality of the learned representations using the contrastive loss687

Eqs. (5) and (14) alongside supervised learning baselines trained with the standard MSE loss. The task688
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is a G-equivariant benchmark in robotics presented in [15], with the goal of predicting a quadruped689

robot’s CoM linear l ∈ R3 and angular momenta k ∈ R3 from noisy observations of the robot’s690

generalized positions q ∈ R12 and velocity coordinates q̇ ∈ R12. Consequently, the random variables691

are defined as x = q + ϵq ⊕ q̇ + ϵq̇ and y = l⊕ k, where ϵq ∈ R12 and ϵq̇ ∈ R12 are independent692

Gaussian noise terms that model sensor noise. The function computing the CoM momenta from these693

proprioceptive observations is highly non-linear and G-equivariant whenever G is a morphological694

symmetry group of the robot (see Fig. 7 and [15] for details).695

The robot considered is the quadruped robot Solo (Fig. 7-right), which possesses a symmetry group696

of order 8: G = K4 × C2, as depicted in this animation showing 8 symmetric robot configurations697

along with their corresponding linear and angular momenta vectors.698

NN architectures We configure all models under consideration (eNCP, NCP, eMLP, and MLP) to699

have an inference-time NN architecture with a similar footprint. In particular, the encoder network700

for x in NCP and eNCP is designed similarly to the NN used in MLP/eMLP. The idea is to test how701

a model with the same capacity performs on the downstream task of classification when trained using702

either the representation learning loss or a supervised learning loss. The backbone of all architectures703

is a standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed704

by a final hidden layer containing 128 units. This final layer encodes the feature vector r for the NCP705

and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN architecture,706

the encoder NN for eNCP and eMLP comprises ×8 fewer parameters than their symmetry-agnostic707

counterparts.708

Figure 7: Example of morphological finite symmetry in robotics. Left: A humanoid robot with the
reflectional symmetry group G ≡ C2. Right: The quadruped robot Solo with the symmetry group
G = K4 × C2 (only K4 is shown for clarity). The robot’s center of mass linear l ∈ R3 and angular
k ∈ R3 momentum are depicted as orange and green vectors, respectively, for each symmetric
configuration. Images adapted from Ordoñez-Apraez et al. [15] with author approval.

G.3 Uncertainty quantification via conditional quantile regression709

The goal of these experiments benchmark is to learn the family of conditional distributions P(y | x =710

·) for a bivariate random variable y = [y0, y1] ∈ R2 given a scalar covariate x ∈ R. Once P(y | x)711

is recovered, the practitioner can estimate conditional (1 − α)–confidence regions by regressing712

the lower and upper conditional quantiles qα/2(x), q1−α/2(x) for any desired miscoverage level713

α ∈ (0, 1). In particular, a 95% confidence region corresponds to α = 0.05, so the two quantiles of714

interest are q0.025(x) and q0.975(x). See Fig. 8 for a visual representation of the problem.715

Conditional quantile regression models We compare the NCP and proposed eNCP models to a716

standard baseline for parametric NN conditional quantile regression, namely CQR [43], which uses717

two separate NNs to predict the lower and upper quantiles of the conditional distribution, trained with718

a pinball loss function (see [43] for details). Both models use MLP backbones with similar parameter719

counts, ensuring that improvements are solely due to the loss functions.720

Furthermore, CQR can only be trained for specific confidence intervals, requiring retraining for721

different quantiles. In contrast, the NCP and eNCP models, trained using the deep representation722
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Figure 8: Synthetic experiment in uncertainty quantification, originally proposed by Feldman et al.
[43]. The task is to predict the 95% confidence intervals (black bounding boxes) of a random variable
y ∈ R2 conditioned on a scalar random variable x ∈ R. Left: The marginal distribution P(y).
Middle: The marginal distribution P(x). Right: Example conditional distributions P(y|x = ·) for
different conditioning values.

learning approach of Secs. 2 and 4, regress the CCDF of each dimension of y given x. Thus, they723

can estimate conditional quantiles for any confidence interval via the quantile estimation algorithm724

from the CCDF described in Kostic et al. [25] without retraining. See details in Fig. 9.725

Evaluation metrics: coverage and set size Let C1−α(x) ⊆ Rd denote a prediction set of nominal726

level (1− α) produced by a conditional quantile regression model for the response y ∈ Rd given the727

covariate x ∈ Rp. In all experiments we assess two complementary metrics.728

• Coverage. The conditional coverage of C1−α is the probability that the true response is captured729

by the predicted region,730

c1−α(x) := P
(
y ∈ C1−α(x) | x

)
, with the target c1−α(x) ≈ 1− α ∀x. (30)

In practice we report the marginal coverage Êx[c1−α(x)], estimated on a large held-out sample;731

values above (resp. below) 1− α indicate over- (resp. under-) coverage.732

• Relaxed Coverage (r-Coverage). The conditional relaxed coverage of C1−α is defined as the733

probability that each scalar component of the response lies within its corresponding predicted734

confidence interval. Formally, if y = [y1, . . . , yd] and C1−α(x) has corresponding marginal735

intervals C(i)
1−α(x) for i ∈ {1, . . . , d}, then736

rc1−α(x) :=

d∏
i=1

P
(

yi ∈ C(i)
1−α(x)

∣∣∣x), (31)

Figure 9: Prediction of the 80% and 95% confidence intervals for the random variable y in experiment
App. G.3 using the proposed eNCP model. The model estimates the CCDF by discretizing each
dimension of y = [y1, y2] into 100 bins and computing the conditional probabilities P(yi ∈ An|x =
·) := [Ey|x1An

](·) for all n ∈ [100] based on the learned conditional expectation operator κθ(x,y)
(see Sec. 5). Here, An comprises the bins from the 0-th to the n-th. This yields the estimated CCDF
for y1 (center) and y2 (right) at x = 2.7. The CCDFs can then be used to estimate upper and lower
quantiles for any confidence interval [25]. In practice, the eNCP model regresses 2× 100 variables
in a single forward pass. Thus, the final layer of the conditional quantile regression model is a linear
layer of size r × (2× 100), where r is the number of features in the y representation (see Sec. 2).
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with the target rc1−α(x) ≈ 1− α for all x. As with coverage, we report the marginal relaxed737

coverage Êx[rc1−α(x)].738

• Set size. To quantify how informative the region is, we measure its size (volume) under the739

Lebesgue measure λd:740

Size1−α(x) := vol
(
C1−α(x)

)
. (32)

Smaller sets correspond to sharper uncertainty estimates, provided the required coverage is741

met. For multidimensional responses the volume is expressed in the natural units of Rd; for742

d = 1 it reduces to the interval length. As with coverage, we report the marginal expectation743

Êx[Size1−α(x)] so that models can be compared fairly across the entire input distribution.744

G.3.1 Synthetic benchmark745

The goal of these experiments is to learn the conditional distributions P(y | x = ·) for a bivariate746

random variable y = [y0, y1] ∈ R2 given a scalar covariate x ∈ R. Following Feldman et al. [43],747

the covariate is sampled uniformly: x ∼ Unif
(
0.8, 3.2

)
, and the response variable y is produced by748

a non-linear transformation of auxiliary latent variables (see Fig. 8):749

y0 =
z
β x

+ r cosϕ,

y1 = 1
2

(
− cos z + 1

)
+ r sinϕ + sinx,

z ∼ Unif(−π, π),
ϕ ∼ Unif(0, 2π),

r ∼ Unif(−0.1, 0.1).

Here, β > 0 is a scaling constant.750

The additive perturbation r(cosϕ, sinϕ) yields heteroskedastic, anisotropic noise, whereas the751
1
2 (− cos z + 1) and sinx terms introduce strong non-monotonicity and interaction effects between x752

and y. As a result, the conditional quantile functions x 7→ qτ (x) are highly non-linear, making this753

dataset an ideal low-dimensional experiment for conditional quantile regression methods.754

Results The experiment results are depicted in Fig. 11. Where the NCP and eNCP models outper-755

form the baseline CQR model in terms of both coverage and set size. Furthermore, Fig. 10 illustrates756

the basis functions learned by the NCP and eNCP models for the random variable y = [y0, y1].757

In contrast to the standard NCP model, the eNCP model incorporates symmetry priors, enabling a758

clean separation of its latent representation into two orthogonal subspaces: one corresponding to759

C2-invariant functions and the other to functions that change sign under reflection.760

Figure 10: Left: Learned basis functions from the NCP model for y = [y0, y1]. Right: Learned
basis functions from the eNCP model for y. The marginal distribution of y exhibits reflection
symmetry gr ▷Y y = [−y0, y1] under G = C2. Incorporating this prior, the eNCP model decomposes
its latent space as Fy = F inv

y ⊕ F(2)
y , with the first subspace capturing C2-invariant functions and

the second capturing those that change sign under reflection. The orthogonality of these subspaces
allows independent optimization of the basis functions.
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Figure 11: Results of a synthetic experiment in uncertainty quantification comparing CQR, NCP,
and eNCP models. The task, originally proposed by Feldman et al. [43], is to predict the 95%
confidence intervals of a random variable y ∈ R2 conditioned on a scalar random variable x ∈ R.
The conditional distributions P(y|x = ·) are shown in the left and fourth columns for different
conditioning values, while the second-third and fifth-sixth columns display the CCDF predicted by
the eNCP and NCP models, respectively. The CQR model directly regresses the upper and lower
quantiles for each dimension of y and must be retrained if the confidence interval probability changes.
In contrast, since the NCP and eNCP models estimate the CCDF for each dimension, these predictions
can be easily adapted to any confidence interval probability by simply changing the threshold value.
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Validation Test

r-Coverage ↑ Coverage ↑ Set Size ↓ r-Coverage ↑ Coverage ↑ Set Size ↓

eNCP 99.3±0.0% 94.1±0.4% 2.4±0.4×1010 99.5±0.1% 95.0±0.4% 4.3±3.6×109

NCP 96.4±0.0% 56.9±0.1% 3.9±4.5×1010 99.5±0.0% 56.9±0.3% 2.6±1.4×1010

eCQR 70.7±0.6% 7.3±1.7% 3.7±2.6×108 84.2±0.7% 6.7±1.2% 1.7±1.7×107

CQR 67.6±1.8% 7.6±0.4% 2.5±2.4×109 80.5±3.7% 8.5±0.9% 1.4±0.1×108

Table 4: Validation and test set metrics for the prediction of 95% confidence intervals on observables
of a quadruped robot traversing rough terrains (see App. G.3.2). Model performance is evaluated
using three metrics: (i) relaxed coverage (r-Coverage) (Eq. (31)), (ii) coverage (Eq. (30)), and (iii) set
size (Eq. (32)). The best results are highlighted in blue. Note that although the confidence interval
volumes (set size) of the eCQR and CQR models are significantly smaller than those of the NCP
and eNCP models, the former fail to achieve the expected 95% coverage on both the validation and
test sets. In contrast, the eNCP model attains the best overall coverage, proving its effectiveness
for uncertainty quantification. Importantly, the eNCP and NCP models can be adjusted, without
retraining, to provide confidence intervals for any desired coverage level, whereas the CQR and
eCQR models must be retrained for each new level.

G.3.2 Uncertainty quantification in quadruped legged locomotion761

We test how well conditional-quantile models can recover the conditional 95% confidence regions762

of three physically meaningful observables produced by a simulated AlienGo quadruped walking763

over rough terrain (see Fig. 1) under varying friction coefficients. The dataset was collected using the764

Quadruped-PyMPC simulation framework and model predictive controller from [75].765

The observables for which state-dependent uncertainty estimates are desired are yt =766

[Ut, Tt, τ
grf
t ]⊤, with each component defined as follows:767

• G-invariant Kinetic Energy. T (q, q̇) = 1
2 q̇

⊤M(q) q̇ ∈ R, where M(q) is the configuration-768

dependent inertia matrix. Noise is introduced through sensor measurement errors on the robot’s769

degree of freedom (DoF) position q ∈ R12 and velocity q̇ ∈ R12.770

• G-invariant Instantaneous Mechanical Work. U(q, q̇, τ ) ∈ R, representing the instantaneous771

mechanical work exerted or absorbed by the robot. This quantity depends on the actuator torques772

(typically measured with noisy, biased sensors) as well as the external forces (e.g. gravity, contact773

forces) that are not reliably measurable due to unobserved terrain parameters.774

• G-equivariant Ground-Reaction Forces τgrf ∈ R12, a fundamental quantity in quadruped control,775

whose reliable estimation and uncertainty quantification are critical for downstream tasks in robotics776

[41, 76].777

The observables of interest are predicted using a suit of onboard proprioceptive sensory signals778

available at time t:779

xt =
[
qt, q̇t, at, vt, vt,err, ωt, ωt,err, gt, ṗt,feet, τ

cmd
t

]⊤
.

Specifically, qt ∈ Rnq and q̇t ∈ Rnq are the joint positions and velocities, respectively; at ∈ R3 is780

the linear acceleration of the robot’s base frame measured by the IMU; vt ∈ R3 is the base linear781

velocity, while vt,err ∈ R3 the command error base linear velocity; ωt ∈ R3 and ωt,err ∈ R3 are782

the base angular velocity and its command error; gt ∈ R3 is the gravity vector expressed in the783

base frame; ṗt,feet ∈ R12 stacks the linear velocities of the four feet (three components each); and784

τ cmd
t ∈ Rnq contains the commanded joint torques.785

Hence we design the experiments to compare models of similar footprint in number of parameters,786

while the loss used for training differs between the NCP and eNCP models w.r.t to the CQR and787

eCQR models.788

NN architectures We configure all models considered eNCP, NCP, eCQR, and CQR to have789

an inference-time NN architecture of the similar footprint. The backbone of all architectures is a790
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standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed by791

a final hidden layer containing 128 units. This final layer serves to encode the feature vector r for792

the NCP and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN793

architecture the encoder NN for eNCP, eCQR have ×2 less parameters than their symmetry-agnostic794

counterparts.795

Results. Given sensory input x, the model predicts a set C0.95(x) ⊆ R14 satisfying P(y ∈796

C0.95(x) | x) ≈ 0.95, while minimizing its volume Êx[vol(C0.95(x))]. Empirically high coverage797

implies that the true G-invariant kinetic energy, instantaneous mechanical work, and the G-equivariant798

12-dimensional ground-reaction forces lie within the predicted confidence set. In contrast, relaxed799

coverage (r-Coverage) quantifies the reliability of the estimates on a per-dimension basis. Tab. 4800

summarizes the validation and test results for the eNCP, NCP, CQR, and eCQR models, and Fig. 12801

illustrates a trajectory of GRF and their respective 90% confidence intervals for each model. Both802

CQR and eCQR tend to produce confidence intervals of smaller volume but fail to achieve the desired803

coverage on the testing set, implying that the models’ confidence intervals are not reliable and require804

further calibration through retraining or conformal calibration [43]. In contrast, the eNCP model805

achieves the desired coverage on the test set while producing confidence intervals of larger volume,806

hence yielding reliable confidence intervals.807

Figure 12: Prediction of 90% confidence intervals (CI) for the ground-reaction forces τgrf ∈ R12

of a quadruped robot on rough terrain with varying friction. We compare the eNCP, NCP, eCQR,
and CQR models based on relaxed coverage and set size (see Tab. 4). CIs are computed for each
leg—front-right (FR), front-left (FL), hind-right (HR), and hind-left—along the x, y, and z axes.
Forces outside the CI are highlighted in red, while those within appear in blue. Terrain variations
cause significant variability in the x and y components due to differences in surface orientation and
friction, whereas the z component is mainly influenced by local height changes that alter contact
timing and produce short-duration high-impact forces.
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H Conditional probability modeling via the conditional expectation operator808

This section introduces the modelling of conditional probabilities for two random variables via809

the conditional expectation operator. Our goal is to understand conditional expectation from810

an operator-theoretic perspective. We begin by describing the marginal, joint, and conditional811

probabilities of the random variables within a measure-theoretic framework. This discussion extends812

the exposition of Kostic et al. [37].813

Given two random variables (x,y) taking values in the measure spaces (X ,ΣX , Px) and (Y,ΣY , Py),814

we have that the marginal probability of any set A ∈ ΣX and B ∈ ΣY are given by815

P(x ∈ A) =
∫
X
1A(x)Px(dx) =

∫
A
Px(dx) and P(y ∈ B) =

∫
Y
1B(y)Py(dy) =

∫
B
Py(dy), (33)

where 1A ∈ L2
x and 1B ∈ L2

y denote the characteristic functions of sets A and B, respectively.816

Furthermore, under the reasonable assumption that the joint probability measure is absolutely continu-817

ous w.r.t to the product of the marginals Pxy ≪ Px × Py, we have that there exist a Radon-Nikodym818

derivative κ : X × Y → R+ such that Pxy(dx, dy) = κ(x,y)Px(dx)Py(dy). Note that κ is a819

kernel function that pointwise deforms the product of the marginals to produce the joint distribution820

[29] (see Fig. 3). This kernel function enable us to express the joint probability by:821

P(x ∈ A,y ∈ B)=
∫
X×Y

1A(x)1B(y)κ(x,y)Py(dy)Px(dx)︸ ︷︷ ︸
Pxy(dx,dy)

=

∫
A×B

k(x,y)Px(dx)Py(dy). (34)

Furthermore, given that P(y∈B|x∈A) = P(x∈A,y∈B)/P(x ∈ A), the conditional probability of any set822

B ∈ ΣY given a value of the random variable x=x is given by:823

P(y∈B|x=x)=
∫
Y
1B(y)Py|x(dy|x)=

∫
Y
1B(y)κ(x,y)Py(dy) =

∫
B
κ(x,y)Py(dy), (35)

where Py|x : ΣY ×X 7→ [0, 1] denotes the conditional probability measure. This is a well-defined824

probability measure considering that:825

P(x ∈ A) := P(x ∈ A,y ∈ Y) =

∫
A

(∫
Y
κ(x,y)Py(dy)

)
︸ ︷︷ ︸
EPy|x(dy|x=x)=1 ∀x∈X

Px(dx) =

∫
A
Px(dx).

The operator perspective Every measurable function h ∈ L2
y can be approximated by simple func-826

tions—that is, as a combination of characteristic functions on measurable sets: h(·) ≈
∑
i∈N βi1Ai

(·).827

Thus, Eq. (35) is a special case of the more general problem of approximating the conditional expec-828

tation of any function h ∈ L2
y given x. This conditional expectation is captured by the action of a829

linear integral operator:830

Definition H.1 (Conditional expectation operator). Let (x,y) be two random variables defined831

on the measure spaces (X ,ΣX , Px) and (Y,ΣY , Py), respectively, and let L2
x and L2

y denote832

the corresponding spaces of square-integrable functions. The conditional expectation operator833

Ey|x : L2
y → L2

x is the linear integral operator—defined via the PMD Radon–Nikodym deriva-834

tive κ(x,y) = Pxy(dx, dy)/Px(dx)Py(dy) —which acts on any function h ∈ L2
y by computing its835

conditional expectation:836

[Ey|xh](x)=E[h(y)|x=x]:=
∫
Y
h(y)Py|x(dy|x)=

∫
Y
h(y)

Pxy(dy,x)
Px(dx)

=

∫
Y
h(y)κ(x,y)Py(dy).

From a learning perspective, approximating the conditional expectation operator sufficiently well for837

a relevant set of functions in L2
y implies that we can approximate the conditional probability measure838

of any set A ∈ ΣY . This enables both regression and uncertainty quantification applications with a839

single model (see Eq. (2)).840
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I Background on group and representation theory841

Group actions and representations This section provides a concise overview of the fundamental842

concepts in group and representation theory, which are used to define the symmetries of the random843

variables we consider in this work. For a comprehensive background on these topics in finite-844

dimensional vector spaces, see Weiler et al. [17]; for the infinite-dimensional case, consult Knapp845

[77]. These concepts will be referenced as needed in the main text. To begin, we define a group as an846

abstract mathematical object.847

Definition I.1 (Group). A group is a set G, endowed with a binary composition operator defined as:848

(◦) : G ×G −→ G
(g1, g2) −→ g1 ◦ g2,

(36a)

such that the following axioms hold:849

Associativity: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), ∀ g1, g2, g3 ∈ G, (36b)
Identity: ∃ e ∈ G such that e ◦ g = g = g ◦ e, ∀ g ∈ G, (36c)
Inverses: ∀ g ∈ G, ∃ g−1 ∈ G such that g ◦ g−1 = e = g−1 ◦ g. (36d)

We are primarily interested in symmetry groups, i.e., groups of transformations acting on a set X .850

Each transformation is a bijection that leaves a fundamental property invariant. For example, if X851

represents states of a dynamical system, the invariant property is the state energy (see Fig. 7); if X is852

a data space, the preserved quantity is typically the probability density/distribution (see Fig. 3).853

Definition I.2 (Group action on a set [17]). Let X be a set endowed with symmetry group G. The854

(left) group action of the group G on the set X is a map:855

(▷) : G ×X −→ X
(g,x) −→ g ▷ x

(37a)

that is compatible with the group composition and identity element e ∈ G, in the sense that:856

Identity: e ▷ x = x, ∀ x ∈ X (37b)
Associativity: (g1 ◦ g2) ▷ x = g1 ▷ (g2 ▷ x), ∀ g1, g2 ∈ G,∀ x ∈ X . (37c)

We are primarily interested in studying symmetry transformations on sets with a vector space857

structure. In most practical cases, the group action on a vector space is linear, allowing symmetry858

transformations to be represented as linear invertible maps. These maps can be expressed in matrix859

form once a basis for the space is chosen.860

Definition I.3 (Linear group representation). Let X be a vector space endowed with symmetry group861

G. A linear representation of G on X is a map, denoted by ρX , between symmetry transformation862

and invertible linear maps on X (i.e., elements of the general linear group GL(X )):863

ρX : G −→ GL(X )
g −→ ρX (g),

(38a)

such that the following properties hold:864

composition : ρX (g1 ◦ g2) = ρX (g1)ρX (g2), ∀ g1, g2 ∈ G, (38b)
inversion : ρX (g

−1) = ρX (g)
−1, ∀ g ∈ G. (38c)

identity : ρX (g ◦ g−1) = ρX (e) = I, (38d)

Whenever the vector space is of finite dimension n <∞, linear maps admit a matrix form ρX (g) ∈865

Rn×n, once a basis set IX for the vector space X is chosen. In this case, Eqs. (38b) to (38d) show866

how the composition and inversion of symmetry transformations translate to matrix multiplication867

and inversion, respectively. Moreover, ρX allows to express a (linear) group action (Def. I.2) as a868

matrix-vector multiplication:869

(▷) : G ×X −→ X
(g,x) −→ g ▷ x := ρX (g)x.

(38e)
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Since the matrix form of linear maps depends on the choice of basis, we can relate different matrix870

representations of the same linear map through changes of basis. This leads us to the concept of871

equivalent group representations.872

Definition I.4 (Equivalent group representations). Let X be a vector space endowed with symmetry873

group G, and let ρ′X and ρX be two group representations of G on X . They are said to be equivalent,874

denoted by ρ′X ∼ ρX , if there exists a change of basisQ : X → X such that875

ρ′X (g) = QρX (g)Q
−1, ∀ g ∈ G. (39)

Equivalent representations arise when the same group action (▷) : G × X → X is expressed in876

different coordinate frames or bases. For instance, let AX and BX be two bases for X = span(AX ) =877

span(BX ), and let QB
A : X → X denote the change of basis from AX to BX , so that xB = QB

Ax
A878

for all xA ∈ X . Then the group action admits equivalent representations, ρAX ∼ ρBX , since879

g ▷ xB := QB
A(g ▷ x

A), ∀g ∈ G,

ρBX (g)x
B = QB

A
(
ρAX (g)x

A) = (QB
Aρ

A
X (g)Q

B
A
−1
)
xB,

ρBX (g) = Q
B
Aρ

A
X (g)Q

B
A
−1
.

(40)

To reveal the modular structure of symmetric vector spaces, we often change bases to decompose880

them into subspaces stable under the action of the group G, termed G-stable subspaces. This881

decomposition mirrors how a symmetry group breaks down into subgroups and is essential for882

analyzing and simplifying group representations. We introduce the following definition.883

Definition I.5 (G-stable and irreducible subspaces). Let X be a vector space endowed with a group884

action (▷) of the symmetry group G. A subspace X ′ ⊆ X is said to be G-stable if the action of any885

group element on any vector in the subspace remains within the subspace, that is,886

g ▷ x ∈ X ′, ∀ x ∈ X ′ ⊆ X ,∀ g ∈ G.

If the only G-stable subspaces of X are {0} and X itself, then X is a irreducible G-stable space.887

Decomposing symmetric vector spaces into G-stable subspaces corresponds to decomposing the888

group representation associated with ▷ into smaller representations acting on these G-stable subspaces:889

Definition I.6 (Decomposable representation). Let X be a vector space with a group action (▷)890

defined by the representation ρX in a chosen basis AX . The representation is decomposable if it is891

equivalent to a direct sum of two lower-dimensional representations, ρX ∼ ρX1
⊕ ρX2

, where X1 and892

X2 are G-stable subspaces of X . Equivalently, there exists a change of basisQB
A : X → X such that893

ρBX =
[
ρX1

0

0 ρX2

]
= QB

AρXQ
B
A
−1
, and g ▷ xB := ρBX (g)x

B =
[
ρX1

(g)xB
1

ρX2
(g)xB

2

]
, whereQB

Ax =
[
xB
1∈X1

xB
2∈X2

]
This shows that the decomposition ρX ∼ ρX1

⊕ ρX2
corresponds to splitting the vector space into894

G-stable subspaces, X = X1 ⊕X2. Moreover, if the representation is block-diagonal in some basis895

set BX , then BX is the union of disjoint basis sets BX1
and BX2

for X1 and X2, respectively.896

Definition I.7 (Irreducible representation). Let X be a vector space endowed with a group action897

(▷) of a symmetry group G. A representation ρX of G on X is said to be irreducible if it cannot be898

decomposed into smaller representations acting on proper G-stable subspaces (Def. I.5). That is, the899

only G-stable subspaces X ′ ⊆ X are X ′ = {0} and X ′ = X itself.900

We have now equipped all the necessary tools to decompose symmetric vector spaces into their901

smallest building blocks: irreducible G-stable subspaces.902

Irreducible representations are the fundamental building blocks for all representations of the group903

G. Any unitary representation can be decomposed into a direct sum of irreducible representations,904

analogous to the prime factorization of integers. In terms of the vector spaces on which the group acts,905

this decomposition of the representation corresponds to decomposing the space into G-irreducible906

subspaces (Def. I.5):907
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Theorem I.8 (Isotypic decomposition of symmetric Hilbert spaces [77]). Let G be a compact group908

and H a separable Hilbert space with a unitary group representation ρH : G → U(H). Then we909

can identify niso ≤ |G| irreducible representations ρ̄k : G → U(H̄k) that allow us to decompose910

H into a sum of orthogonal subspaces, denoted isotypic subspaces: H =
⊕⊥

1≤k≤niso
Hk where911

each Hk =
⊕mk

j=1 Hk,j is the sum of at most mk ≤ ∞ countably many subspaces isometrically912

isomorphic to H̄k.913

Isotypic decomposition and disentangled representations Whenever the symmetric vector space914

of interest defines a vector valued representation of some data, the isotypic decomposition of the915

representation space is intricately linked with the concept of disentangled representations916

Definition I.9 (Disentangled representation (Higgins et al. [18])). A vector representation is called917

a disentangled representation with respect to a particular decomposition of a symmetry group into918

subgroups, if it decomposes into independent subspaces, where each subspace is affected by the919

action of a single subgroup, and the actions of all other subgroups leave the subspace unaffected.920

The subspaces of Def. I.9 reefer to each of the isotypic subspaces Hi, and the symmetry subgroups921

refer to the effective (matrix) group encoded by each irreducible representation ρ̄k : G 7→ U(H̄k).922

Which we denote in the main body as G(k).923

I.1 Maps between symmetric vector spaces924

We will frequently study and use linear and non-linear maps between symmetric vector spaces. Our925

focus is on maps that preserve entirely or partially the group structure of the vector spaces. These926

types of maps can be classified as G-equivariant, G-invariant maps:927

Definition I.10 (G-equivariant and G-invariant maps). Let X and Y be two vector spaces endowed928

with the same symmetry group G, with the respective group actions ▷X and ▷Y . A map f : X 7→ Y is929

said to be G-equivariant if it commutes with the group action, such that:930

g ▷Y y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.
ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f

��

X

f

��

Y
▷Y Y

(41a)

A specific case of G-equivariant maps are the G-invariant ones, which are maps that commute with931

the group action and have trivial output group actions ▷Y such that ρY(g) = I for all g ∈ G. That is:932

y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.
y = ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f
  

X

f

��

Y

▷Y

RR

(41b)

I.2 Structure of G-equivariant linear maps933

Definition I.11 (Homomorphism, Isomorphism, and G-equivariant linear maps). Let X and Y be934

two vector spaces endowed with the same symmetry group G, with the respective group actions935

▷X : G ×X 7→ X and ▷Y : G × Y 7→ Y . The spaces are said to be G-homomorphic if there exists a936

linear map A : X 7→ Y that commutes with the group action, such that g ▷Y (Ax) = A(g ▷X x) for937

all x ∈ X . They are said to be G-isomorphic if the linear map is invertible. Graphically, X and Y938
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are G-homomorphic or G-isomorphic if the following diagrams commute:939

X
▷X

A

��

X

A

��

Y
▷Y Y︸ ︷︷ ︸

Homomorphism

A ∈ HomoG(X ,Y) or X
▷X

A

��

OO

A−1

X

A

��

OO

A−1

Y
▷Y Y︸ ︷︷ ︸

Isomorphism

A ∈ IsoG(X ,Y). (42)

Here, HomoG(X ,Y) denotes the space of G-equivariant linear maps between X and Y , and940

IsoG(X ,Y) denotes the space of G-equivariant invertible linear maps between X and Y .941

Lemma I.12 (Schur’s Lemma for unitary representations [77, Prop 1.5]). Consider two Hilbert942

spaces, H and H′, endowed with the irreducible unitary representations ρ̄H : G 7→ U(H) and943

ρ̄H′ : G 7→ U(H′), respectively. Let T : H 7→ H′ be a linear G-equivariant operator such that944

ρ̄H′T = Tρ̄H. If the irreducible representations are not equivalent, i.e., ρ̄H ≁ ρ̄H′ , then T is the945

trivial (or zero) map. Conversely, if ρ̄H ∼ ρ̄H′ , then T is a constant multiple of an isomorphism946

(Def. I.11). Denoting I as the identity operator, this can be expressed as:947

ρ̄H ≁ ρ̄H′ ⇐⇒ 0H′ = Th | ∀ h ∈ H (43a)

ρ̄H ∼ ρ̄H′ ⇐⇒ T = αU, α ∈ C,U · UH = I (43b)
ρ̄H = ρ̄H′ ⇐⇒ T = αI (43c)

For intiution refeer to the following blog post948

J Representation theory of symmetric function spaces949

In this section, we study symmetry group actions on infinite-dimensional function spaces and specify950

the conditions needed to approximate these spaces in finite dimensions. Specifically, given a set X951

with a compact symmetry group G acting via (▷) (Def. I.2), the space of scalar-valued functions952

Figure 13: Left: Diagram of the group action ▷F on functions f1(x) = x2+c and f2(x) = x3 defined
on the domain X := R endowed with the reflectional symmetry group G := C2 = {e, gs}, with the
reflection action acting on the domain by gs ▷ x = −x and on the function space F := {f | f : X 7→
R} by [g ▷F f ](x) = f(g ▷X x) = f(−x). Hence we have that f1 is a G-invariant function, gs ▷F
f1(x) = f1(x) and f2 a G-equivariant function gs ▷F f2(x) = −x3. Center: Diagram representing
the action ▷F on the (arbitrarily chosen) function f(x) = N (x; c1, 2)+N (x; c2, 1) defined over the
symmetric domain X = R2 with the cyclic symmetry group G = C3 = {e, g120, g240} and group
action g ▷ x = ρX (g)x = Rgx, whereRg is a rotation matrix in 2D. Here, g120 ▷F f is equivalent
to evaluating f on a domain rotated by −120◦. The same holds for g240 ▷F f . Note that the z-offsets
are added for visualization purposes. Right: Diagram representing the action ▷F on the function
z ∈ F̂ , defined to be a member of the finite-dimensional symmetric function space F̂ := span(IF̂ ),
constructed from a basis set composed of the group orbit of the (arbitrarily chosen) function f ∈ F ,
that is IF̂ := Gf = {f, g120 ▷F f, g240 ▷F f}. This function space is G-stable by construction, since
GIF̂ = IF̂ . Note that the z-offsets are added for visualization purposes.
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on X , F = {f | f : X 7→ R}, becomes a symmetric function space. The action of a symmetry953

transformation on a function is defined as:954

Definition J.1 (Group action on a function space). Let X be a set endowed with the symmetry group955

G, and let F be the space of scalar-valued functions on X . The (left) action of G on a function956

f ∈ F is defined as the composition of f with the inverse of the group element g−1:957

(▷F) : G ×F −→ F
(g, f) −→ [g ▷F f ](x) := [f ◦ g−1](x) = f(g−1

▷ x), ∀ x ∈ X . (44a)

In other words, the point-wise evaluation of f on a g−1-transformed set X is equivalent to the958

evaluation of the transformed function g ▷F f ∈ F on the original set X (see simple examples959

in Fig. 13). Any function space that is stable under the group action Eq. (44a) is refereed to as a960

symmetric function space. Note that this action is compatible with the group composition and identity961

element e ∈ G, such that the following properties hold:962

Identity: e ▷F f(·) = f(·), (44b)
Associativity: [(g2 ◦ g1) ▷F f ](·) = [g2 ▷F [g1 ▷F f ]](·), ∀ g1, g2 ∈ G. (44c)

Remark J.2. From an algebraic perspective, the inversion g−1 (contragredient representation) emerges963

to ensure that the associativity property of the group action (Eq. (44c)) holds:964

[(g2 ◦ g1) ▷F f ](x) = [g2 ▷F [g1 ▷F f ]](x), ∀ x ∈ X
f((g2 ◦ g1)−1 ▷ x) = [g1 ▷F f ](g

−1
2 ▷ x) = f(g−1

1 ▷ (g−1
2 ▷ x))

f((g2 ◦ g1)−1 ▷ x) = f((g1 ◦ g2)−1 ▷ x).

In the context of this work, we will study the scenario where the function space F is a separable965

Hilbert space and the group action of G on F is unitary, i.e., it preserves the inner product of the966

function space. This setup is crucial to enable us to approximate F and the group action on F in967

finite dimensions.968

J.1 Unitary group representation on function spaces969

Assume our symmetric set X is endowed with a measure space structure (X ,ΣX , Px), where970

Px : ΣX 7→ R is the space measure. Then, consider a function space with a separable Hilbert space971

structure F := L2
Px
X ,R, and inner product ⟨f1, f2⟩Px

=
∫
X f1(x)f2(x)Px(dx) for all f1, f2 ∈ F .972

Then, the action ▷F of the group G on the function space F is termed unitary if it preserves the inner973

product of the function space:974

⟨f1, f2⟩Px
= ⟨g ▷F f1, g ▷F f2⟩Px

∀ f1, f2 ∈ F , g ∈ G∫
X
f1(x)f2(x)Px(dx) =

∫
X
(g ▷F f1)(x)(g ▷F f2)(x)Px(dx)

=

∫
X
f1(g

−1 ▷ x)f2(g
−1 ▷ x)Px(dx)

=

∫
g▷X=X

f1(x)f2(x)Px(g ▷ dx).

(45)

That is, the group action is unitary if Px is a G-invariant measure Px(g ▷ dx) = Px(dx), ∀ g ∈975

G, dx ⊆ X . Note that an G-invariant measure (and inner product) exists whenever G is finite,976

because for any measure η : ΣΩ 7→ R, we can use the group-average trick to obtain one, given by977

Px(X) = Σg∈Gη(g ▷ X).5978

The importance of the Hilbert space structure is that it enables the definition of a unitary group979

representation. Unitary representations have a well-studied modular structure that allows their980

decomposition (Thm. I.8) into G-stable subspaces (Def. I.5), which is crucial for approximating981

symmetric function spaces using a finite set of basis elements. Let IF = {ϕi | ϕi ∈ L2
x}i∈N be an982

orthogonal basis for the function space F = span(IF ), so that any function f ∈ F can be represented983

5Such a G-invariant measure exists for any (finite or continuous) compact group. See discussion.
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by its basis expansion coefficients α = [⟨ϕi⟩Px
f ]i∈N, since fα(x) =

∑
i∈N ⟨ϕi, f⟩Px

ϕi(x). In this984

basis, the group action of G on F defines a unitary group representation mapping group elements to985

unitary linear integral operators on F , which can be expressed in matrix form.986

Definition J.3 (Unitary group representation on a function space). Let F = L2
Px
X ,R be a separable987

Hilbert space of scalar-valued functions on a set X endowed with the symmetry group G. Let IF be988

an orthogonal basis set spanning F . Then, the group action of G on F (Def. J.1) defines a unitary989

group representation mapping group elements to unitary linear integral operators on F:990

ρF : G −→ U(F)
g −→ ρF (g)

, s.t. ρF (g)
∗ = ρF (g

−1). (46)

Each unitary operator ρF(g) : F 7→ F admits an infinite-dimensional matrix representation with991

entries [ρF(g)]i,j := ⟨f̂i, g ▷F f̂j⟩Px
, which characterize how the group action transforms the chosen992

basis functions. Consequently, once the group representation for a chosen basis set is defined, the993

group action on a function fα ∈ F can be expressed as an (infinite-dimensional) matrix transforma-994

tion of its basis expansion coefficients α, given by:995

[g ▷F fα](·) :=
∑
i∈N

⟨f̂i, g ▷F fα⟩Px
f̂i(·) =

∑
i∈N

(∑
j∈N

⟨f̂i, g ▷F f̂j⟩Px
⟨f̂j , f⟩Px︸ ︷︷ ︸

αj

)
f̂i(·). (47)

Example J.4 (Isotypic decomposition of symmetric function space). Let (X ,ΣX , Px) be a symmetric996

2D measure space with domain X ∼ R2 and cyclic symmetry group G := C3 = {e, g120, g240},997

acting on the 2D plane by 120◦ rotations (Fig. 14). Define the finite-dimensional function space998

Fx ⊂ L2
x with basis IFx

= {ϕ, g120 ▷ ϕ, g240 ▷ ϕ}, where ϕ ∈ Fx is an arbitrary measurable function999

(Fig. 14-left). In this basis, the group action ▷Fx
for any function zα ∈ Fx is given by the regular1000

representation ρFx
= ρreg acting on the coefficient vector α ∈ R3 (Fig. 7-right).1001

[g ▷Fx zα](·) =
3∑

i=1

⟨ϕi, g ▷Fx zα⟩Px
ϕi(·) ≡ (ρreg(g)α)

⊤
[

ϕ(·)
g120▷ϕ(·)
g240▷ϕ(·)

]
, ρreg(g) =


I3, if g = e[
0 1 0
0 0 1
1 0 0

]
, if g = g120[

0 0 1
1 0 0
0 1 0

]
, if g = g240

(48)
The group C3 possesses two types of (real-valued) irreducible representations, niso = 2: the trivial1002

irreducible representation ρ̄inv and a 2D rotation representation ρ̄2π/3, defined by:1003

ρ̄inv(g) = I1, ∀ g ∈ C3, and ρ̄2π/3(g) =
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, s.t. θ =


0◦, if g = e

120◦ if g = g120
240◦ if g = g240

(49)

Applying the appropriate change of basis, we decompose the regular representation into a direct sum1004

of the group’s irreducible representations: ρreg = Q(ρ̄inv ⊕ ρ̄2π/3)Q
−1, where Q transitions from1005

the regular basis to the isotypic basis of Fx. Since C3 is abelian, Q corresponds to the linear map1006

defining the Fourier transform.1007

By Thm. I.8, this results in the orthogonal decomposition of the finite-dimensional function space1008

into two orthogonal subspaces; Fx = F inv
x ⊕⊥ F(2)

x , where F inv
x denotes the 1-dimensional subspace1009

of G-invariant functions, and F(2)
x is the 2-dimensional subspace with group actions defined by the1010

2D irreducible representation ρ̄2π/3. We can construct the basis set in the isotypic basis given:1011

Iiso
Fx

= Q

[
ϕ(·)

g120▷ϕ(·)
g240▷ϕ(·)

]
=

[
uinv(·)
u
(2)
1 (·)

u
(2)
2 (·)

]
s.t. Q =

[
1/

√
3 1/

√
3 1/

√
3

2/
√

6 −1/
√

6 −1/
√

6

0 1/
√

2 −1/
√

2

]
(50)

The new basis functions in the isotypic basis are depicted in Fig. 14-right, and elucidate that the1012

symmetry constraints on this 3-dimensional function space, result in m = 2 unique functions, each1013

associated with a unique irreducible representation.1014

Assuming Px is a G-invariant probability measure, we compute the expected value of each basis1015

function. In the regular basis, functions related by a symmetry transformation share the same expected1016

value, i.e., Exϕ = Exg ▷ ϕ for all g ∈ C3. In the isotypic basis, functions lacking a G-invariant1017

component (i.e., u(2)1 , u
(2)
2 ) are centered: Exu

(2)
1 = Exu

(2)
2 = 0. In our example this constraint1018

becomes clear from the nature of the change of basisQ. Eq. (50).1019
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Figure 14: Visualization of the basis functions in the finite-dimensional symmetric function space
Fx from Example J.4. Left: Depiction of the basis functions in the regular basis IFx

= {ϕ, g120 ▷

ϕ, g240 ▷ ϕ}, generated by the action of the cyclic group C3 on an arbitrary function ϕ ∈ Fx. Right:
Depiction of the basis functions in the isotypic basis Iiso

Fx
= {uinv, u

(2)
1 , u

(2)
2 }, obtained via the change

of basis matrix Q. The first basis function uinv corresponds to the G-invariant subspace F inv
x and

is visually invariant under the action of C3 on X . The other two basis functions u(2)1 , u(2)2 are
constrained to span a G-stable subspace of L2

x, denoted by F(2)
x that transform according to the

irreducible representation ρ̄2π/3. Meaning for any function f ∈ F(2)
x , the group action g ▷Fx

f can be
computed by a linear transformation of its basis expansion coefficients.

K G-equivariant linear integral operators1020

This section gives an overview of G-equivariant linear integral operators between symmetric function1021

spaces. We define these operators, discuss their properties, and specify conditions under which they1022

commute with group actions. In App. K.1 we examine their infinite-dimensional matrix form and the1023

resulting algebraic constraints from G-equivariance. In App. K.2 we then show how to exploit these1024

constraints in a finite-rank approximation.1025

Let G be a compact group acting on two measure spaces (X ,ΣX , Px) and (Y,ΣY , Py) via the1026

group actions ▷X and ▷Y (see Def. I.2). Assume that the measures Px and Py are G-invariant, i.e.,1027

Px(g ▷X B) = Px(B) and Py(g ▷Y A) = Py(A) for all g ∈ G, B ∈ ΣX , and A ∈ ΣY (see Def. I.10).1028

Let L2
x = {f : X 7→ R | ∥f∥Px

< +∞} and L2
y = {h : Y 7→ R | ∥h∥Py

< +∞} be the1029

Hilbert spaces of square-integrable functions with respect to Px and Py, respectively. Since X and1030

Y have a G-action, the spaces L2
x and L2

y inherit group actions defined by [g ▷L2
x
f ](x) = f(g−1

▷X1031

x), [g ▷L2
y
h](y) = h(g−1

▷Y y), for all f ∈ L2
x and h ∈ L2

y (see Def. J.1).1032

We consider linear integral operators T : L2
x 7→ L2

y defined by1033

h(y) = [Tf ](y) =

∫
X
κ(x,y)f(x)Px(dx), (51)

where k : X × Y 7→ R is the kernel function of T. In this work we focus on those operators whose1034

kernels are G-invariant such operators are called G-equivariant.1035

Definition K.1 (G-equivariant linear intergral operators). Let (X ,ΣX , Px) and (Y,ΣY , Py) be two1036

measure spaces endowed with group actions ▷X and ▷Y and G-invariant measures Px and Py for1037

a given compact symmetry group G. Let T : L2
x 7→ L2

y be a linear integral operator between the1038

spaces of square-integrable functions defined on the two measure spaces. The operator T is said to1039
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be G-equivariant if it commutes with the group action, that is ∀ f ∈ L2
x, g ∈ G and y ∈ Y:1040

[T[g ▷L2
x
f ]](y) = [g ▷L2

y
[Tf ]](y) (52a)∫

X
κ(x,y)f(g−1 ▷X x)Px(dx) = g ▷L2

y

(∫
X
κ(x,y)f(x)Px(dx)

)
∫
X
k(g ▷X x,y)f(x)Px(g ▷X dx) =

∫
X
k(x, g−1 ▷Y y)f(x)Px(dx) s.t. g ▷X X := X∫

X
k(g ▷X x,y)f(x)Px(dx) =

∫
X
k(x, g−1 ▷Y y)f(x)Px(dx) s.t. Px(g ▷X dx) = Px(dx)

k(g ▷X x,y) = k(x, g−1 ▷Y y) ⇐⇒ k(g ▷X x, g ▷Y y) = κ(x,y). (52b)

Notice that the G-equivariance of the operator T is linked to the G-invariance of its kernel function,1041

which is required to satisfy Eq. (52b).1042

Multiple approaches exist to parameterize and approximate linear integral operators with finite1043

resources [78, sec. 4]. Here, we assume that both the input and output function spaces are separable1044

Hilbert spaces, so that the operator can be represented as an infinite-dimensional matrix once1045

appropriate basis sets are chosen. Its finite-dimensional (truncated or finite-rank) approximation is1046

then obtained by selecting a finite number of basis functions in each space.1047

K.1 Infinite-dimensional matrix form of the operator1048

Since L2
x and L2

y are Hilbert spaces with inner products ⟨·, ·⟩Px
and ⟨·, ·⟩Py

respectively, we can1049

choose orthogonal bases for both spaces: IL2
x
= {ϕi | ϕi ∈ L2

x}i∈N and IL2
y
= {ψj | ψj ∈ L2

y}j∈N.1050

This choice allows any function f ∈ L2
x and h ∈ L2

y to be represented by their infinite-dimensional1051

coefficient vectors α = [⟨ϕi, f⟩Px
]i∈N and β = [⟨ψj , h⟩Py

]j∈N, so that:1052

f(x) := fα(x) =

∞∑
i=1

⟨ϕi, f⟩Px
ϕi(x) ≡ αTϕ(x) h(y) := hβ(y) =

∞∑
j=1

⟨ψj , h⟩Py
ψj(y) ≡ βTψ(y)

(53)
Here, αTϕ(x) and βTψ(y) represent the function as the dot product of its expansion coefficients1053

with the basis evaluations ϕ(x) = [ϕi(x)]i∈N and ψ(y) = [ψj(y)]j∈N. This notation is useful when1054

we later select a finite number of basis functions to form a finite-dimensional approximation of T.1055

With the chosen bases, the action of a linear integral operator T : L2
y → L2

x on any f ∈ L2
x is1056

determined by its action on the basis functions:1057

[Tfα](y) =

∫
X
κ(x,y)

(∑
i∈N

αi ϕi(x)
)
Px(dx) =

∑
i∈N

αi

∫
X
κ(x,y)ϕi(x)Px(dx) =

∑
i∈N

αi [Tϕi](y)

(54)
Since [Tϕi] ∈ L2

y, each [Tϕi](y) can be expanded using the output basis as [Tϕi](y) =1058 ∑
j∈N ⟨ψj , Tϕi⟩Py

ψj(y). Thus, the operator T can be represented by the infinite-dimensional1059

matrix T with entries Tij = ⟨ψi, Tϕj⟩Py
. Therefore, the action of T on any fα ∈ L2

x is given by the1060

matrix–vector product β = T α, i.e.,1061

[Tfα](y) =
∑
j∈N

αj [Tϕj ](y) =
∑
j∈N

αj

∑
i∈N

⟨ψi, Tϕj⟩Py
ψi(y)

=
∑
i∈N

∑
j∈N

Tij αj ψi(y) ≡ (T α)T ψ(y)
(55)

Eq. (55) shows that knowing the action of T on the bases IL2
x

and IL2
y

determines its action on1062

any function in L2
x. In the sections that follow, we describe how symmetry constrains this action1063

by requiring the bases to be G-stable and by imposing G-equivariance on T , thereby introducing1064

exploitable algebraic constraints for improved finite-rank approximations.1065

K.1.1 G-equivariant matrix form of the operator1066

Whenever the function spaces carry a symmetry group G, the group action on their bases IL2
x

and IL2
y

1067

is defined by the unitary representations ρL2
x
: G → U()L2

x and ρL2
y
: G → U()L2

y (see Def. J.3). As1068

36



in Eq. (55), these representations can be expressed in (infinite-dimensional) matrix form so that the1069

group action is given by a matrix-vector product:1070

[g ▷L2
x
fα](·) ≡ (ρL2

x
(g)α)Tϕ(·), ∀ fα ∈ L2

x, g ∈ G

[g ▷L2
y
hβ](·) ≡ (ρL2

y
(g)β)Tψ(·), ∀ hβ ∈ L2

y, g ∈ G
(56)

Since the operator T is G-equivariant by construction (Eq. (52a)), the matrix form T of the operator1071

must also be G-equivariant with respect to the group representations ρL2
x

and ρL2
y
:1072

[T[g ▷L2
x
fα]](y) = [g ▷L2

y
[Tfα]](y) ∀ fα ∈ L2

x, g ∈ G,y ∈ Y

(TρL2
x
(g)α)⊤ψ(y) = (ρL2

y
(g)Tα)⊤ψ(y) s.t. Eqs. (55) and (56)

TρL2
x
(g) = ρL2

y
(g)T

(57)

With bases IL2
x

and IL2
y

for L2
x and L2

y, the kernel (Def. K.1) can be written as κ(x,y) =1073 ∑
i,j∈N Ti,j ϕj(x)ψi(y). Hence, the G-invariance condition (Eq. (52b)) on the kernel directly1074

implies that the matrix T is G-equivariant, as stated in the following proposition:1075

Proposition K.2 (G-invariant kernel implies G-equivariant matrix form). Let T : L2
x 7→ L2

y be a1076

G-equivariant operator between symmetric function spaces endowed with the group actions ▷L2
x

1077

and ▷L2
y

of a compact symmetry group G. Let ρL2
x

and ρL2
y

be the group representation of the on the1078

input/output function spaces on the chosen basis sets IL2
x

and IL2
y
. Then the G-invariance of the1079

operator’s kernel function (Eq. (52b)) implies that the matrix form of the operator, in the chosen basis1080

sets, is G-equivariant w.r.t the group representations ρL2
x

and ρL2
y

(Eq. (57)).1081

Proof. The proof follows by choosing appropriate G-stable basis sets {ϕi} ⊂ L2
x and {ψj} ⊂ L2

y, so1082

that for all g ∈ G we have g ▷L2
x
ϕi = ϕg▷i and g ▷L2

y
ψj = ψg▷j with g ▷ i, g ▷ j ∈ N. This basis1083

sets the G-invariance of the kernel translates into algebraic constraints on the matrix form T .1084

k(x,y) = k(g−1 ▷X x, g
−1 ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y∑

i∈N

∑
j∈N

Ti,jϕi(x)ψj(y) =
∑
i∈N

∑
j∈N

Ti,j [g ▷L2
x
ϕi](x)[g ▷Y ψj ](y) =

∑
i∈N

∑
j∈N

Ti,jϕg▷i(x)ψg▷j(y)
(58)

That is, the kernel is G-equivariant if the operator’s matrix satisfies Ti,j = Tg▷i, g▷j for all g ∈1085

G, i, j ∈ N. This condition exactly characterizes the G-equivariance of the matrix form.1086

Ti,j = ⟨ψi,Tϕj⟩Py
= ⟨ψg▷i,Tϕg▷j⟩Py

= Tg▷i,g▷j ∀g ∈ G, i, j ∈ N

= ⟨g ▷L2
y
ψi,T[g ▷L2

x
ϕj ]⟩Py

= ⟨g ▷L2
y
ψi, g ▷L2

y
[Tϕj ]⟩Py

s.t. Eq. (52a)

= ⟨ψi,Tϕj⟩Py
= Ti,j s.t. Eq. (45)

(59)

1087

K.1.2 Block-diagonal structure of the operator matrix form1088

According to Thm. I.8, a Hilbert space with a compact symmetry group G decomposes into niso1089

orthogonal subspaces—one for each irreducible representation type—yielding an orthogonal decom-1090

position of the operator’s input and output spaces:1091

L2
x := ⊕⊥

1≤k≤nisoL
2(k)
x , and L2

y := ⊕⊥
1≤k≤nisoL

2(k)
y , (60)

where L2(k)
x and L2(k)

y denote the k-th isotypic subspaces of L2
x and L2

y, respectively. Such that any1092

function in these spaces can be decomposed into a sum of its projections onto the isotypic subspaces:1093

f(x) =

niso∑
k=1

f (k)(x), h(y) =

niso∑
k=1

h(k)(y) with f (k) ∈ L2(k)
x , h(k) ∈ L2(k)

y . (61)

The orthogonal decomposition of the function spaces implies there exist unitary operators A : L2
x →1094

L2
x and B : L2

y → L2
y (with matrix formsA andB), that describe a change of basis from the canonical1095

basis to an isotypic basis, Iiso
L2
x
= ∪niso

k=1IL2(k)
x

= AIL2
x

and Iiso
L2
y
= ∪niso

k=1IL2(k)
y

= BIL2
y
, where the group’s1096

representations decompose into a direct sum of representations per isotypic subspace (see Def. I.4):1097

ρiso
L2

x
(·) := AρL2

x
(·)A∗ = ⊕niso

k=1ρL2(k)
x
(·) and ρiso

L2
y
(·) := BρL2

y
(·)B∗ = ⊕niso

k=1ρL2(k)
y
(·). (62)
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Then, denoting the matrix form of T in the isotypic basis by T iso = B∗TA, the G-equivariance of T1098

results in the matrix form of the operator in the isotypic basis being block-diagonal, with each block1099

being G-equivariant with respect to the group representations on the isotypic subspaces:1100

T iso = ρiso
L2

y
(g)T isoρiso

L2
x
(g−1)

= ⊕niso
k=1ρL2(k)

y
(g)T iso ⊕niso

k=1 ρL2(k)
x
(g−1) s.t. Eqs. (57) and (62)

T (k) = ρL2(k)
y
(g)T (k)ρL2(k)

x
(g−1), ∀ k = 1, . . . , niso T iso = ⊕niso

k=1T
(k) =

 T (1)

. . .
T (niso)

. (63)

Each T (k) represents the matrix form of the operator T(k) : L2(k)
x 7→ L2(k)

y in the isotypic basis, acting1101

on the isotypic subspaces of type k in the input and output spaces. This shows that G-equivariant1102

operators preserve the structure of isotypic subspaces without mixing functions from different types.1103

This property is crucial for the finite-rank approximation of the operator T, as it reduces the problem1104

to approximating lower-rank operators T(k) : L2(k)
x 7→ L2(k)

y , for k ∈ [1, niso]. Moreover, the block1105

diagonal structure of T iso allows us to rewrite Eq. (55) in the isotypic basis in terms of the action of1106

each T(k) on the projection f (k) of the function onto the kth isotypic subspace, see (61), such that:1107

[Tfα](y) =

niso∑
k=1

[T(k)f (k)](y) ≡
niso∑
k=1

(T (k)α(k))⊤ψ(k)(y). ψ(k)(·) = [ψ(k)

j (·)]j∈N, ∀ ψ(k)

j ∈ IL2(k)
y
. (64)

In the isotypic basis Iiso
L2
x
= ∪niso

k=1IL2(k)
x

, the expansion coefficient vector α = ⊕niso
k=1α

(k) is formed1108

from the projections of f onto each isotypic subspace: α(k) = [⟨ϕ(k)

i , f⟩Px
]i∈N. The block-diagonal1109

structure of T iso is only one of the algebraic constraints imposed on the matrix form of T by the1110

G-equivariance condition. The next section describes the further structural constraints on each block.1111

K.1.3 Structure of operators between isotypic subspaces1112

In this section, we shift the focus from the input and output function spaces, L2
x and L2

y; and the1113

operator T : L2
x 7→ L2

y, to their individual isotypic subspaces, L2(k)
x and L2(k)

y for k ∈ [1, niso], and the1114

operators T(k) : L2(k)
x 7→ L2(k)

y (Eq. (60)).1115

Recall from Thm. I.8, that each isotypic subspace possesses unitary group representations that1116

decompose into direct sums of (infinitely many) multiplicities of the irreducible representation of1117

type k; that is:1118

ρL2(k)
x
(g) ∼ ⊕∞

p=1ρ̄k(g) and ρL2(k)
y
(g) ∼ ⊕∞

p=1ρ̄k(g). (65)

This implies that each isotypic subspace further decomposes into (infinitely many) finite-dimensional1119

G-stable subspaces: L2(k)
x := ⊕∞

p=1L2k,p
x and L2(k)

y := ⊕∞
p=1L2k,p

y . Each subspace L2k,p
x (and simi-1120

larly L2k,p
y ) has finite dimension dk ≤ ∞ and its elements transform according to the irreducible1121

representation ρ̄k of the group G.1122

The modular structure of the isotypic subspaces implies that the G-equivariant operator T(k) fur-1123

ther decomposes into G-equivariant components acting between finite-dimensional, G-stable sub-1124

spaces: T(k,i,j) : L2k,i
x 7→ L2k,j

y for i, j ∈ N. This is advantageous since—by Schur’s lemma1125

(Lem. I.12)—the space of G-equivariant maps between irreducible subspaces is one-dimensional,1126

i.e., dim(HomoG(L2k,i
x ,L2k,j

y )) = 1 for all i, j ∈ N.1127

To reveal the modular structure of T(k) in matrix form, we select bases for the isotypic subspaces1128

L2(k)
x and L2(k)

y that separate the basis functions by irreducible subspace, i.e., IL2(k)
x

= ∪∞
p=1IL2k,p

x
and1129

IL2(k)
y

= ∪∞
p=1IL2k,p

y
, so that ρL2(k)

x
(g) = ⊕∞

p=1ρ̄k(g) and ρL2(k)
y
(g) = ⊕∞

p=1ρ̄k(g). In these bases, each1130

map T(k,i,j) reduces to a scalar multiple of the identity, namely, T(k,i,j) = θ(k)i,j Ik, where θ(k)i,j ∈ R1131

captures the only degree of freedom (see (43c)). Consequently, the matrix representation of T(k)1132

consists of blocks that are scalar multiples of the identity.1133

T (k) =


θ
(k)
1,1Ik θ

(k)
1,2Ik ···

θ
(k)
2,1Ik

. . . ···

...
...

. . .

 = Θ(k) ⊗ Ik, s.t.

rank(Ik) = dk,

ρL2(k)
y
(g)T (k) = T (k)ρL2(k)

x
(g), ∀ g ∈ G

(⊕∞
p=1ρ̄k(g))T

(k) = T (k)(⊕∞
p=1ρ̄k(g)),

(66)
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where the (infinite-dimensional) matrix Θ(k) parameterizes the degrees of freedom of T (k).1134

Eq. (66) reveals the Kronecker product structure of G-equivariant operators between isotypic sub-1135

spaces when the appropriate input and output basis sets are chosen. To illustrate, consider a function1136

f (k)
α ∈ L2(k)

x with basis coefficients given by α = ⊕∞
p=1αp, where each αp = [⟨ϕ(k,p)i , f (k)⟩Px

]dki=1 ∈1137

Rdk represents the projection of f (k) onto the pth irreducible subspace L2k,p
x . Then, if h(k)

β = T(k)f (k)
α ,1138

the coefficients are computed as β = Θ(k)α.1139

β︷ ︸︸ ︷

⟨ψ(k,1)
1 ,T(k)f (k)⟩

Py

⟨ψ(k,1)
2 ,T(k)f (k)⟩

Py

...
⟨ψ(k,1)

dk
⟩
Py

T(k)f (k)

⟨ψ(k,2)
1 ,T(k)f (k)⟩

Py

⟨ψ(k,2)
2 ,T(k)f (k)⟩

Py

...
⟨ψ(k,2)

dk
,T(k)f (k)⟩

Py

...



=

T (k)=Θ(k)⊗Ik︷ ︸︸ ︷

θ
(k)
1,1 0 ··· 0

0 θ
(k)
1,1 ··· 0

...
...

. . .
...

0 0 ··· θ(k)1,1

θ
(k)
1,2 0 ··· 0

0 θ
(k)
1,2 ··· 0

...
...

. . .
...

0 0 ··· θ(k)1,2

· · ·

θ
(k)
2,1 0 ··· 0

0 θ
(k)
2,1 ··· 0

...
...

. . .
...

0 0 ··· θ(k)2,1

. . . · · ·

...
...

. . .



α︷ ︸︸ ︷

⟨ϕ(k,1)
1 ,f (k)⟩

Px

⟨ϕ(k,1)
2 ,f (k)⟩

Px

...
⟨ϕ(k,1)

dk
,f (k)⟩

Px

⟨ϕ(k,2)
1 ,f (k)⟩

Px

⟨ϕ(k,2)
2 ,f (k)⟩

Px

...
⟨ϕ(k,2)

dk
,f (k)⟩

Px

...



(67)

This structure can be interpreted as a constraint on the dimensionality of the singular spaces of the1140

operator T to be of dimension larger than dk, as summarized in the following proposition:1141

Proposition K.3 (Minimum dimensionality of singular space of G-equivariant operators between1142

isotypic subspaces). Let T(k) : L2(k)
x 7→ L2(k)

y be a G-equivariant operator between isotypic subspaces1143

L2(k)
x and L2(k)

y of type k. Then, the minimum dimension of a singular space of the operator is dk.1144

Proof. Let IL2(k)
x

= ∪∞
p=1IL2k,p

x
and IL2(k)

y
= ∪∞

p=1IL2k,p
y

be the basis sets that expose the Kronecker1145

structure of the matrix form T (k) = Θ(k) ⊗ Ik, as per Eq. (66). Then the singular value decomposition1146

of the matrix form inherits the Kronecker product structure such that T (k) = U (k)Σ(k)(V (k))∗ =1147

(W (k) ⊗ Ik)(Σ(k) ⊗ Ik)((Q(k))∗ ⊗ Ik), where Θ(k) = W (k)Σ(k)(Q(k))∗. The Kronecker structure1148

of the diagonal singular value matrix (Σ(k) ⊗ Ik) implies that each singular value has a minimum1149

multiplicity of dk. While the Kronecker strucuture of the change of bases U (k) and V (k) encodes the1150

dk orthogonal basis vectors of the singular spaces.1151

K.2 Finite-rank approximation of G-equivariant operators1152

In practical applications, infinite-dimensional operators are approximated by finite-dimensional1153

ones to enable computation. For any linear integral operator T : L2
x 7→ L2

y, the optimal rank-r1154

approximation in the Hilbert-Schmidt norm is obtained by truncating its SVD to the top r singular1155

values and associated left/right singular functions. Let {σi}∞i=1 be the singular values of T in1156

decreasing order and let {ui}∞i=1 ⊂ L2
x, {vi}∞i=1 ⊂ L2

y be the corresponding singular functions1157

satisfying ⟨vi,Tui⟩Py
= σi for each i ∈ N and ⟨vi,Tuj⟩Py

= 0 when i ̸= j. The best rank-r1158

approximation of T is then given by [31]:1159

Trf =

r∑
i=1

σi⟨ui, f⟩Px
vi, ∀f ∈ L2

x, ⇐⇒ κ(x,y) ≈
r∑

i=1

σiui(x)vi(y). (68)

Since the left and right singular functions form orthonormal bases for L2
y and L2

x, a rank-r approxima-1160

tion reduces these infinite-dimensional spaces to the r-dimensional subspaces Fx = span({ui}ri=1)1161

and Fy = span({vi}ri=1).1162

When L2
x and L2

y are symmetric function spaces with group actions ▷L2
x

and ▷L2
y

of a compact group G,1163

and T is G-equivariant, the finite-rank approximation Tr : Fx → Fy must satisfy that for all f ∈ Fx,1164
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h ∈ Fy, and g ∈ G, both g ▷L2
x
f ∈ Fx and g ▷L2

y
h ∈ Fy. This ensures that g ▷L2

y
[Trf ] = Tr[g ▷L2

x
f ]1165

(see App. J).1166

Moreover, since L2
x and L2

y decompose orthogonally into isotypic subspaces, L2
x = ⊕⊥

1≤k≤niso
L2(k)
x and1167

L2
y = ⊕⊥

1≤k≤niso
L2(k)
y , the operator T is completely determined by the niso operators T(k) : L2(k)

x → L2(k)
y1168

(see App. K.1.2). Thus, the G-equivariance of Tr depends on that of each finite-rank operator1169

T(k)
rk : F (k)

x → F (k)
y , which requires the approximated subspaces F (k)

x and F (k)
y to be G-stable. For1170

simplicity, we assume |F (k)
x | = |F (k)

y | = rk, although this equality need not hold in general.1171

K.2.1 Finite-rank approximation of G-equivariant operators between isotypic subspaces1172

Each approximation of an isotypic subspace L2(k)
x (and similarly L2(k)

y ) is G-stable if the group1173

representation is defined using a truncated multiplicity mk <∞ for the kth irreducible representation,1174

i.e. ρF (k)
x

∼ ⊕mk
p=1ρ̄k and ρL2(k)

y
∼ ⊕mk

p=1ρ̄k. Consequently, the dimension of the approximated1175

subspaces is multiple of the irreducible representation’s dimension: rk = dkmk (see App. K.1.3).1176

Given this structure, by Prop. K.3 the singular spaces of the finite-rank operators T(k)
rk have a minimum1177

dimensionality of dk. Consequently, the SVD of T(k)
rk exhibits a Kronecker structure:1178

T(k)
rk = U (k)Σ(k)(V (k))∗ ∈ Rrk×rk ,

= (W (k) ⊗ Ik) (Σ(k) ⊗ Ik) ((Q(k))∗ ⊗ Ik)
s.t.

Θ(k) =W (k)Σ(k)(Q(k))∗ ∈ Rmk×mk ,

rank(Ik) = dk.

(69)
Here, Θ(k) accounts for the m2

k degrees of freedom of T(k)
rk , with each coefficient θ(k)i,j providing an1179

isotropic scaling between the subspaces L2k,i
y and L2k,j

x . Equation Eq. (69) constrains the finite-rank1180

approximation of G-equivariant operators between isotypic subspaces to approximate singular spaces1181

of minimal dimensionality dk.1182

This shows that the group representation on the isotypic basis also governs the singular (spectral)1183

basis sets. As summarized in the following corollary:1184

Corollary K.4 (Group action on the spectral basis). The group representation on the spectral basis of1185

each isotypic subspace L2(k)
x is given by its isotypic representation ρL2(k)

x
:= ⊕mk

p ρ̄k. Similarly for L2(k)
y .1186

Proof. Lets consider a single isotypic subspace L2(k)
x and its group representation in the basis of1187

singular functions:1188

ρsng
L2(k)

x
:= U∗(k)ρL2(k)

x
U (k) = (W ∗(k) ⊗ Idk)(Imk

⊗ ρ̄k)(W (k) ⊗ Idk)
= (W ∗(k) ⊗ ρ̄k)(W (k) ⊗ Idk)
= (W ∗(k)W (k))⊗ (ρ̄kIdk) = ⊕mk

p ρ̄k = ρL2(k)
x
.

(70)

1189

K.2.2 Finite-rank approximation of a G-equivariant operator1190

Given the block-diagonal structure of the operator T in the isotypic basis (Eq. (63)), the truncated1191

SVD of T reduces to performing the truncated SVD of each per-isotypic operator T(k) (Eq. (69)).1192

Let Fx ⊂ L2
x and Fy ⊂ L2

y be the G-stable finite-dimensional approximations of the input/output1193

spaces of T, endowed with group representations ρFx
= ⊕niso

k=1ρF (k)
x
= ⊕niso

k=1 ⊕
mk
p=1 ρ̄k and ρFy

=1194

⊕niso
k=1ρF (k)

y
= ⊕niso

k=1⊕
mk
p=1 ρ̄k. Here, mk ∈ N denotes the multiplicity of the irreducible representation1195

of type k, and dk := |ρ̄k| is its dimension. Then, the structural constraints on the SVD of the restriction1196

of T to these spaces are summarized in the following theorem:1197

Theorem K.5 (Isotypic-spectral basis). Let T be a G-equivariant operator and let T⋆ : Fy → Fx1198

be its G-equivariant restriction in finite dimensions. Then, the singular value decomposition of the1199

restricted operator matrix representation T⋆ reduces to:1200

T⋆ = ⊕niso
k=1T

(k)
⋆ = ⊕niso

k=1W
(k)
⋆ S

(k)
⋆ M

(k)⊤
⋆ = ⊕niso

k=1(U
(k)
⋆ Σ(k)

⋆ V
(k)⊤
⋆ )⊗ Idk

Where Idk denotes the identity matrix in dk-dimensions andO(k) := U (k)
⋆ Σ(k)

⋆ V
(k)⊤
⋆ denotes the SVD1201

of the free parameters of T (k)
⋆ .1202
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Thm. K.5 shows that symmetries force each isotypic subspace’s singular space to have dimension at1203

least dk, which is the minimum required for a faithful representation of G(k) (see Def. I.7). Because1204

in practice our goal is to approximate the top r singular spaces of T, this result precisely characterizes1205

the constraints imposed by G-equivariance on the optimal rank-r truncation’s spectral basis and1206

corresponding kernel function in Eq. (13), as summarized in the following corollary:1207

Corollary K.6 (Symmetry constraints on the spectral basis). Let T be a G-equivariant operator and1208

let T⋆ : Fy → Fx be its G-equivariant restriction in r-dimensions. Then, the spectral basis of T⋆ is1209

given by:1210

κ⋆(x,y) =

niso∑
k=1

κ(k)
⋆ (x,y) =

niso∑
k=1

rk∑
s=1

σ(k)
s u

(k)

s,i(x)v
(k)

s,i(y), (71)

where {u(k)

s,i}i∈[dk] and {v(k)s,i}i∈[dk] are the left and right singular basis sets of the sth singular space1211

of T(k). Note that the truncated dimension is restricted by the dimensionality and multiplicities of the1212

individual irreducible representations r =
∑diso
k=1 rk =

∑diso
k=1 dkmk.1213

L Relevant G-equivariant operators in probability theory1214

In this section we study the properties of expectations and covariances of functions of symmetric1215

random variables in the presence our assumed symmetry priors Eq. (6). In a nutshell, we characterize1216

how expectations of observables of symmetric random variables are invariant to the group action, and1217

that the covariance and cross-covariance matrices in these spaces are G-equivariant and hence inherit1218

rich structural constraints that can aid in empirical estimation.1219

Let (x,y) be two vector-valued random variables over the probability spaces (X ,ΣX , Px) and1220

(Y,ΣY , Py), with L2
x and L2

y being the corresponding square-integrable function spaces and 1Px ∈ L2
x,1221

1Py ∈ L2
y the characteristic functions of sets with nonzero probability.1222

When L2
x and L2

y are symmetric function spaces (see App. J), denote their orthogonal isotypic1223

decompositions by L2
x := ⊕niso

k=1L
2(k)
x and L2

y := ⊕niso
k=1L

2(k)
y (cf. Thm. I.8). Any function f ∈ L2

x or1224

h ∈ L2
y decomposes as f =

∑niso
k=1 f

(k) and h =
∑niso
k=1 h

(k) (see Eq. (61)). By convention, the first1225

isotypic subspace corresponds to the trivial group action. Thus, we write L2inv
x := L21

x ⊂ L2
x and1226

denote the G-invariant component of f by f inv := f (1) (and similarly for L2
y).1227

L.1 The expectation operator1228

The expected value of a function f ∈ F := L2
x can be interpreted as the result of applying a linear1229

integral operator that projects each f ∈ F to a constant function evaluating to the function’s expected1230

value EPxf .1231

Definition L.1 (Expectation operator). Let F ⊆ L2
x be a function space. The expectation operator1232

Ex : F 7→ F is a linear integral operator defined by a constant kernel function kE(x,x
′) =1233

1Px(x)1Px(x
′) for all x,x′ ∈ X , such that this operator maps any function f to a constant function1234

that evaluates to the function’s expected value 1Px(·)EPxf , that is:1235

[Exf ](x
′) =

∫
X
kE(x,x

′)f(x)µ(dx) = 1Px(x
′)

∫
X
f(x)µ(dx) ≡ 1Px(x

′)EPxf. (72)

Whenever F is a symmetric function space, the operator Ex commutes with the group action and is1236

G-invariant (Def. I.10):1237

Proposition L.2 (G-invariant expectation operator). Let F be a symmetric function space with the1238

action ▷F of a compact symmetry group G. Then, the expectation operator commutes with the group1239

action and is a G-invariant operator Ex : F 7→ F inv ⊆ F:1240

Ex[g ▷F f ] = g ▷F [Exf ] and Exf = Ex[g ▷F f ] ∈ F inv, ∀ f ∈ F , g ∈ G. (73)

Proof. The operator Ex commutes with the group action as its kernel function kE is constant and1241

therefore G-invariant (Def. K.1). Furthermore since the image of the expectation operator are constant1242

functions, these functions belong to the subspace of G-invariant functions, F inv.1243
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As an operator that commutes with the group action, the expectation operator decomposes into1244

Ex := ⊕niso
k=1E

(k)
x , where E(k)

x : F (k) 7→ F (k) denotes the restriction of Ex to the isotypic subspace F (k)1245

(App. K.1.2). However, since the image of the operator lies in the subspace of G-invariant functions,1246

Im(Ex) ⊂ F inv, it follows that E(k)
x = 0 for every k ̸= inv. Consequently, we obtain the following:1247

Corollary L.3 (Expectation of a function depends only on its G-invariant component). For any1248

function f ∈ F , the expectation depends only on its G-invariant component:1249

[Exf ](·) =
niso∑
k=1

[E(k)
x f

(k)](·) = [Einv
x f

inv](·) := 1µ(·)Eµf inv. (74)

Corollary L.4 (Functions without a G-invariant component are centered). Any function f =1250 ∑niso
k=1 f

(k) ∈ L2
x without a G-invariant compoment, i.e., f inv = 0, is centered:1251

[Exf ](·) =
niso∑
k=2

[E(k)
x f

(k)](·) = 1µ(·)0, ⇐⇒ Eµf = 0, ∀ f ∈ L2inv
x

⊥. (75)

To better comprehend these concepts we refer the reader to Example J.4.1252

L.2 The cross-covariance operator1253

Given two vector-valued random variables (x = [x1, . . . , xn],y = [y1, . . . , ym]) defined on the1254

measure spaces (X ,ΣX , Px) and (Y,ΣY , Py), a key statistic assessing the linear relationship between1255

scalar components is the covariance:1256

Cov(xi, yj) = EPxy [(xi − Ex[xi])(yj − Ey[yj ])] = EPxy [xiyj ]− Ex[xi]Ey[yj ].

For vector-valued random variables, the cross-covariance matrix Cov(x,y) ∈ Rn×m is defined1257

entrywise by Cov(x,y)i,j := Cov(xi, yj). The cross-covariance operator is the extension of this1258

concept to the Hilbert spaces of functions L2
x and L2

y.1259

Definition L.5 (Cross-covariance operator [28]). Let Fx ⊆ L2
x and L2

y ⊆ L2
y be two Hilbert spaces1260

of functions defined on the random variables x and y, which take values in the measure spaces1261

(X ,ΣX , Px) and (Y,ΣY , Py), respectively. The cross-covariance operator Cxy : L2
y 7→ L2

x is a1262

linear integral operator defined by1263

⟨f,Cxyh⟩Px
:= Cov(f, h) = EPxy [f(x)h(y)]− Ex[f(x)]Ey[h(y)], ∀ f ∈ L2

x, h ∈ L2
y. (76)

Choosing separable basis sets for the two spaces, IL2
x
= {ϕi}i∈N and IL2

y
= {ψi}i∈N, the matrix rep-1264

resentation of the cross-covariance operator has entries [Cx,y]i,j := ⟨ϕi,Cxyψj⟩Px
= Cov(ϕi, ψj),1265

where the covariance is computed with respect to the joint measure Pxy and the marginals Px and1266

Py. Given a dataset of N samples from the joint distribution (x,y) ∼ Pxy, the empirical estimate of1267

the matrix form of the cross-covariance operator is1268

Ĉxy =
1

N

N∑
n=1

ϕ(xn)ψ(yn)
⊤ − Êx[ϕ(xn)] Êy[ψ(yn)]

⊤, ϕ(·) = [ϕ(·)]i∈N, ψ(·) = [ψ(·)]i∈N. (77)

Note that the adjoint of the operator is defined by C∗
xy = Cyx : L2

x 7→ L2
y. In the case L2

x = L2
y, the1269

cross-covariance operator reduces to the covariance operator, and has an analog definition to Def. L.5.1270

Covariance and cross-covariance operators of symmetric Hilbert spaces of functions Whenever1271

L2
x and L2

y are symmetric function spaces, and the joint probability measure is G-invaraint, the cross-1272

covariance operator Cxy commute with the group action and is G-equivariant (App. I.2):1273

Proposition L.6 (G-equivariant cross-covariance operator). Let L2
x ⊆ L2

x and L2
y ⊆ L2

y be symmetric1274

Hilbert spaces of functions endowed with the group actions ▷L2
x

and ▷L2
y

of a compact symmetry group1275

G. Then, whenever the joint probability measure is G-invariant, i.e., Pxy(B,A) = Pxy(g ▷X B, g ▷Y1276

A) for all g ∈ G,B ∈ ΣX ,A ∈ ΣY , the cross-covariance operator Cxy : L2
y 7→ L2

x (Def. L.5)1277

commutes with the group actions and is a G-equivariant operator (Def. K.1):1278

g ▷L2
x
[Cxyh] = Cxy[g ▷L2

y
h], ∀ h ∈ L2

y, g ∈ G. (78)
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Proof. To proof that the operator is G-equivariant we must show its kernel function is G-invariant1279

(see Def. K.1). The proof follows naturally in any regular basis of the input and output functions1280

spaces IL2
x
= {ϕi}i∈N and IL2

y
= {ψi}i∈N, in which the group action on basis functions acts by1281

permutations of basis functions, such that, g ▷L2
x
ϕi ≡ ϕg▷i ∈ IL2

x
and g ▷L2

y
ψj ≡ ψg▷j ∈ IL2

y
, where1282

g ▷ i, g ▷ j ∈ N. Then we must show that that:1283

k(x,y) = k(g−1 ▷X x, g
−1 ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y∑

i∈N

∑
j∈N

[Cx,y]i,jϕi(x)ψj(y) =
∑
i∈N

∑
j∈N

[Cx,y]i,j [g ▷L2
x
ϕi](x)[g ▷Y ψj ](y) s.t. Defs. J.1 and L.5

∑
i∈N

∑
j∈N

Cov(ϕi, ψj)ϕi(x)ψj(y) =
∑
i∈N

∑
j∈N

Cov(ϕi, ψj)ϕg▷i(x)ψg▷j(y).

(79)
Hence, the cross-covariance operator’s kernel function is G-invariant only if the covariance is1284

G-invariant:1285

Cov(ϕi, ψj) = Cov(g ▷L2
x
ϕi, g ▷Y ψj) ∀ g ∈ G, i, j ∈ N

EPxy [ϕi(x)ψj(y)] = EPxy [ϕi(g
−1 ▷X x)ψj(g

−1 ▷Y y)] Eµf = Eµg ▷ f∫
X×Y

ϕi(x)ψj(y)Pxy(dx, dy) =

∫
X×Y

ϕi(g
−1 ▷X x)ψj(g

−1 ▷Y y)Pxy(dx, dy)

=

∫
X×Y

ϕi(x)ψj(y)Pxy(g ▷ dx, g ▷ dy)

= Cov(ϕi, ψj).
(80)

1286

An equivalent result follows for covariance operators of symmetric Hilbert spaces.1287

M Statistical Learning Theory1288

This section provides the development and proofs of the statistical learning guarantees in Thm. C.11289

for regression and conditional probability estimation using our proposed model.1290

Recall that regression and conditional probabilities can be expressed in terms of the conditional1291

expectation operator Ey|x : L2
y → L2

x (see Eqs. (1) and (2)). Given that the operator is compact [37], it1292

admits a singular value decomposition. Hence, the kernel function defining the operator Eq. (1) can1293

be expanded in terms of the operator spectral basis:1294

κ(x,y) :=
dPxy(x,y)

d(Px(x)× Py(y))
=

∞∑
i=0

σiui(x)vi(y). (81)

Where (σi)i∈N denotes the operator’s singular values, and (ui)i∈N and (vi)i∈N denote the left and1295

right singular functions, which form complete orthonormal basis sets for L2
x and L2

y, respectively.1296

Given that the operator’s first singular value is σ0 = 1, associated with the constant functions1297

u0 = 1X , v0 = 1Y , the conditional expectation operator can be defined as:1298

Ey|x =

∞∑
i=1

σiui⟨vi, ·⟩Py
= 1X ⟨1Y , ·⟩Py

+

∞∑
i=1

σiui⟨vi, ·⟩Py︸ ︷︷ ︸
Dy|x

. (82)

Where Dy|x denotes the deflated operator, excluding the first eigen triplet (σ0, u0, v0). Leveraging1299

the SVD of Ey|x, we approximate the operator’s action for any h ∈ L2
y using a rank-r (1 < r <∞)1300

operator given by:1301

E[h(y)|x=x] = [Ey|xh](x) ≈ E[h(y)] +
r∑
i=1

σiu
θ
i (x)E[vθi (y)h(y)],

s.t. E[uθi (x)] = E[vθi (y)] = 0,∀ i ≥ 1.

(83)
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Where (uθi )
r
i=1 and (vθi )

r
i=1 denote parametrizations of the top-r left and right singular func-1302

tions. Given that the operator’s kernel Eq. (81) preserves the probability mass, that is1303 ∫
X×Y κ(x,y)dPx(x)dPy(y) = 1, every non-constant singular function is constrained to be centered,1304

as described in the r.h.s of Eq. (83).1305

In the context of symmetries, we note that Dy|x admits a block-diagonal structure w.r.t. to isotypic1306

basis of associated L2 spaces. Indeed we have the following from Thm. K.5.1307

Q∗
xDy|xQy = ⊕niso

k=1Q
(k)∗
x D(k)

y|xQ
(k)
y = ⊕niso

k=1

[
(U(k)S(k)V(k)∗)⊗ Idk

]
. (84)

Where the unitary operators Qx : L2
x → L2

x and Qy : L2
y → L2

y change the basis to the isotypic1308

decompositions IL2
x
= {ϕ(k)

i,j}k∈[niso], i∈[mk], j∈[dk] and IL2
y
= {ψ(k)

i,j}k∈[niso], i∈[mk], j∈[dk], with i1309

indexing each irreducible G-stable subspace and j indexing the dimensions within that subspace (see1310

App. K.2.2).1311

Further, by Thm. K.5, the SVD of Dy|x forces each isotypic subspace to have dimension at least1312

dk = ρ̄k for every k ∈ [niso].1313

Q(k)∗
x D(k)

y|xQ
(k)
y =

[
U(k) ⊗ Idk

][
S(k) ⊗ Idk

][
V(k) ⊗ Idk

]∗
, k ∈ [niso], (85)

where Q(k)
x Q(k)∗

x and Q(k)
y Q(k)∗

y are orthogonal projectors on k-th isotypic subspace, and1314

Q∗
xDy|xQy =

[
Iniso ⊗ U(k) ⊗ Idk

][
Iniso ⊗ S(k) ⊗ Idk

][
Iniso ⊗ V(k) ⊗ Idk

]∗
. (86)

Further, observe that the singular values of Dy|x are elements of positive diagonal operators S(k),1315

denoted as (S(k))i = σ(k)

i , while the left and right singular functions are u(k)

i ⊗ edkj and v(k)i ⊗ edkj ,1316

respectively, for i ∈ N, j ∈ [dk] and k ∈ [niso], where edj is j-th vector of standard basis of Rd.1317

Given the constraints on the spectral basis of G-equivariant operators (see Cor. K.6), our representation1318

learning procedure approach results in feature maps:1319

uθ(·) =
∑

k∈[niso],i∈[m],j∈[dk]

[eniso
k ⊗ emi ⊗ edkj ]uθ(k)

i,j (·) : X → Rrm

vθ(·) =
∑

k∈[niso],i∈[m],j∈[dk]

[eniso
k ⊗ emi ⊗ edkj ] vθ(k)

i,j (·) : X → Rrm ,
(87)

which can further be separated into niso orthogonal blocks u(k)

θ =
∑
i∈[m],j∈[dk]

ϕθ(k)

i,j and ψ(k)

θ =1320 ∑
i∈[m],j∈[dk]

ψθ(k)

i,j as1321

u(k)

θ =
∑

i∈[m],j∈[dk]

[emi ⊗ edkj ]uθ(k)

i,j (·) and v(k)

θ =
∑

i∈[m],j∈[dk]

[emi ⊗ edkj ] vθ(k)

i,j (·). (88)

In addition, the singular value matrices have a tensor form Sθ = diag(S
(1)
θ , . . . ,S

(niso)
θ ), where1322

S(k)

θ = diag(σθ(k)

1 , . . . , σθ(k)
m ) ⊗ Idk and σθ(k)

i ∈ [0, 1] , i ∈ [m], k ∈ [niso]. Thus, we obtain the1323

operator Dθ = Eθ − 1Px ⊗ 1Py in block form, Dθ = ⊕k∈[niso]D
(k)

θ , where each D(k)

θ acts on the k-th1324

isotypic subspace as1325

[D(k)

θ f ](x) := u
(k)

θ (x)⊤S(k)

θ Ey[v
(k)

θ (y)f (k)(y)], f ∈ L2
y, (89)

and hence1326

[Dθf ](x) := uθ(x)
⊤Sθ Ey[vθ(y)f(y)], f ∈ L2

y. (90)

Finally, we extend the definition of Dθ to vector-valued observables h : Y → Z via basis expansions.1327

[Dθh](x) :=
∑
ℓ

uθ(x)
⊤Sθ Ey[vθ(y)(⟨h(y), zℓ⟩Zzℓ)], h ∈ L2

y(Y,Z) (91)

where (zi)i∈[nZ ] is the orthonormal basis of Z .1328

By doing so, we ensure that Dθ and, consequently, Eθ are G-equivariant operators for both the scalar1329

map L2
y → L2

x and the vector-valued map L2
y(Y,Z) → L2

x(X ,Z). Moreover, a direct consequence of1330

(91) is as follows.1331
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Proposition M.1. Let with Z being a real Euclidean space endowed with symmetry group G, and let1332

Eθ : L2
Py
(Y,Z) 7→ L2

Px
(X ,Z) be given by Eθf = Ey[f(y)] + Dθf . Then for every G-equivariant1333

f ∈ L2
Py
(Y,Z) and every x ∈ X1334

[Eθf ](g ▷X x) = Ey[f(y)] + [Dθf ](g ▷X x) = Ey[f(y)] + g ▷Z [Dθf ](x) = g ▷Z [Eθf ](x). (92)

Proof. Since Dθ is G-equivaraint, for every g ∈ G we have that1335

[Dθh](g
−1 ▷X x) = [Dθ[h(g

−1 ▷Y ·)]](x) =
∑
i

uθ(x)
⊤Sθ Ey[vθ(y)⟨h(g−1 ▷Y y), zi⟩Zzi],

which, using g instead of g−1 and the assumption that f is G-equivariant, implies1336

[Dθh](g ▷X x)=
∑
i

(uθ(x)
⊤SθEy[vθ(y)⟨g ▷Z h(y),zi⟩Zzi]

=
∑
i

(uθ(x)
⊤Sθ Ey[vθ(y)⟨h(y), g−1 ▷Z zi⟩Z)zi.

Thus, changing the basis to (g−1
▷Z zi)i∈[nZ ] we obtain the result when Ey[h(y)] = 0. But since1337

1X (g ▷X x) = 1 for every x ∈ X and g ∈ G, the same holds for Eθ.1338

Recall that for the effective latent dimension m the true latent dimension is constrained by the1339

dimensionality of the singular spaces, i.e., rm =
∑
k∈[niso]

rk =
∑
k∈[niso]

mdk. Further, given1340

a measurable set A ⊆ X and collection of group elements G′ ⊆ G, let us define the following1341

symmetry index of a set A w.r.t. probability distribution of random variable x1342

γG′(A) = 1

|G′|(|G′| − 1)

∑
g1,g2∈G′

g1 ̸=g2

P[x ∈ g1 ▷ A ∩ g2 ▷ A]
P[x ∈ A]

, (93)

which in the case when G′ is a subgroup of G simplifies as1343

γG′(A) = 1

|G′| − 1

∑
g∈G′

g ̸=e

P[x ∈ A ∩ g ▷ A]
P[x ∈ A]

. (94)

Observe that always γG′(A) ∈ [0, 1], where extremes correspond to the cases γG′(A) = 1 when set1344

A is G′ invariant, and γG′(A) = 0 when A equals its coset w.r.t. G′, that is g ▷ A ∩ A = ∅ for all1345

g ∈ G′, meaning that the set is fully asymmetric w.r.t transformations g ∈ G′.1346

We first generalize the approximation error bound in Lemma 1 from [37] to the case of vector valued1347

functions in the presence of symmetries.1348

Theorem M.2 (Approximation error). Given a group of symmetries G, let X , Y and Z be Hilbert1349

spaces endowed with symmetry group G, and let Px, Py and Pxy be G-invariant probability1350

distributions on X , Y and X × Y . Then, for every h ∈ L2
y(Y,Z) it holds that1351

∥Ey[h(y) |x = ·]− Eθh∥L2
Px

(X ,Z) ≤
(
σ⋆rm+1 +

∥∥[[Dy|x]]rm − Dθ
∥∥) ∥h∥L2

y(Y,Z). (95)

Moreover, denoting1352

Eθ[f(y) |x ∈ A] = Ey[f ] +
Ex[1A(x)[Dθf ](x)]

P[x ∈ A]
, (96)

if h is either G′-invariant or G′-equivariant for some G′ ⊆ G, then for every measurable set A1353

∥E[h(y) |x ∈ A]−Eθ[h(y) |x ∈ A]∥Z≤
(
σ⋆
rm+1 +

∥∥[[Dy|x]]rm − Dθ
∥∥) ∥f∥L2

y(Y,Z)√
P[x∈A]

√
1+(|G′|−1)γG′ (A)

|G′| .

(97)

Proof. Start by observing that1354

∥E[h(y) |x = ·]− Eθh∥L2
Px

(X ,Z) ≤
∥∥Dy|x − Dθ

∥∥
L2
y(Y,Z)→L2

Px
(X ,Z)

∥h∥L2
y(Y,Z)

=
∥∥Dy|x − Dθ

∥∥
L2
Py

(Y)→L2
Px

(X )
∥h∥L2

y(Y,Z),
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where the equality holds since we extended operators Dy|x and Dθ to vector valued setting as integral1355

operators with the same scalar kernel. Hence, (95) readily follows.1356

To prove (97), start with noting1357

E[h(y) |x ∈ A]− Eθ[h(y) |x ∈ A] =
Ex[1A(x)[(Dy|x − Dθ)h](x)]

P[x ∈ A]
.

Then, if h is G-equivariant, then, using that invariance of the probability distribution Px, G-1358

equivariance of Dy|x and, due to Proposition M.1, of Dθ, we have that for every g ∈ G′ ⊆ G1359

Ex[1A(x)[(Dy|x − Dθ)h](x)] = Ex[1A(g ▷X x)[(Dy|x − Dθ)h](g ▷X x)]

= Ex[1g−1▷XA(x) g ▷Z [(Dy|x − Dθ)h](x)]

= Ex[1g−1▷XA(x)ρ̄Z(g) [(Dy|x − Dθ)h](x)].

Hence, averaging over G′ we obtain1360

E[h(y) |x ∈ A]− Eθ[h(y) |x ∈ A] = Ex[H(x)z(x)],

where1361

H(x) =
1

|G′|P[x ∈ A]
∑
g∈G′

1g−1▷XA(x)ρ̄Z(g) and z(x) = [(Dy|x − Dθ)h](x).

Since due to Cauchy-Schwartz inequality we have1362

∥Ex[H(x)z(x)]∥2Z ≤ [Ex∥H(x)∥2Z→Z ][Ex∥z(x)∥2Z ] = ∥z∥2L2
Px

(X ,Z) [Ex∥H(x)∥2Z→Z ]

and ∥z∥L2
Px

(X ,Z) ≤
∥∥Dy|x − Dθ

∥∥
L2
y(Y,Z)→L2

Px
(X ,Z)

∥h∥2L2
y(Y,Z), it remains to bound1363

Ex∥H(x)∥2Z→Z . But, the group actions in the vector spaces are unitary, so using the G-invariance of1364

the distribution of x we obtain1365

Ex∥H(x)∥2Z→Z ≤ Ex

[ 1

|G′|P[x ∈ A]
∑
g∈G′

1g−1▷XA(x)
]2

=
1

|G′|2P[x ∈ A]2
∑

g,g′∈G′

Ex[1g−1▷XA(x)1g′−1▷XA(x)]

=
1

|G′|2P[x ∈ A]2
∑

g,g′∈G′

Ex[1g▷XA∩g′▷XA(x)]

=
1

|G′|2P[x ∈ A]
∑

g,g′∈G′

P[x ∈ g ▷X A ∩ g′ ▷X A]
P[x ∈ A]

=
1

P[x ∈ A]
1 + (|G′| − 1)γG′(A)

|G′|
,

which completes the proof of (97) for G′-equivariant functions. Finally, if f is G′-invariant, the proof1366

follows the same lines by replacing group actions (▷Z) by their respective group representation ρZ1367

(see Def. I.3) with identity.1368

Next we analyze the errors when, instead of applying learned operators Eθ, we apply their empirical
counterparts in inference tasks. To that end, we define now estimators of E[h(x)] and E[z(y)]
exploiting the G-invariance of the distributions of x and y. First, define the empirical G-invariant
distributions

P̂x :=
1

|G|N

N∑
i=1

∑
g∈g

δg▷xi(·), P̂y :=
1

|G|N

N∑
i=1

∑
g∈g

δg▷yi(·).

Hence we can define the equivariant empirical mean of any function f ∈ L2
x, h ∈ L2

y as1369

Êx[f ] =
1

|G|N

N∑
i=1

∑
g∈G

f(g ▷X xi), Êy[h] =
1

|G|N

N∑
i=1

∑
g∈G

h(g ▷Y yi). (98)
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This extends naturally to operator on a function space L2
y(Y,Z) where Z is endowed with an inner1370

product ⟨·, ·⟩ = ⟨·, ·⟩Z . If the distribution of y is G′-invariant, then for any h ∈ L2
y(Y,Z), we use1371

the estimator Êy[h(y)] in (98) as an estimator of E[h(y)]:1372

Êy[h] =
1

|G|N

N∑
i=1

∑
g∈G

h(g ▷Y yi). (99)

In this notation, we define our empirical estimators1373

[Eθh](x) ≈ [Êθh](x) = Êy[h(y)] +
∑

k∈[niso]

∑
i∈[m]

∑
j∈[dk]

σθ(k)

i uθ(k)

i,j (x)Êy[v
θ(k)

i,j h]

and1374

Eθ[h(y) |x ∈ A]≈ Êθ[h(y) |x ∈ A]= Êy[h] +
∑

k∈[niso]

∑
i∈[m]

∑
j∈[dk]

σθ(k)

i

Êx[u
θ(k)

i,j 1A]

Êx[1A]
Êy[v

θ(k)

i,j h].

and, by choosing h = 1B,1375

P [y∈B | x∈A] ≈ P̂θ[y∈B | x∈A]= Êy[1B] +
∑

k∈[niso]

∑
i∈[m]

∑
j∈[dk]

σθ(k)

i

Êx[u
θ(k)

i,j 1A]

Êx[1A]
Êy[v

θ(k)

i,j 1B].

Direct consequence of the above construction which ensures that P̂x and P̂y are G-invariant is the1376

following result.1377

Proposition M.3. Let Px and Py are G-invariant, and Dθ from (90) is G-equivariant model, and let1378

z ∈ L2
x(X ,R) and h ∈ L2

Px
(Y,Z) be arbitrary. If for every k ∈ [niso]1379 {∥∥D(k)

y|x − D(k)

θ

∥∥,∥∥∥Ex[u
(k)

θ (1)
(x)u(k)

θ (1)
(x)⊤]− Im

∥∥∥,∥∥∥Ey[v
(k)

θ (1)
(y)v(k)

θ (1)
(y)⊤]− Im

∥∥∥} ≤ E (k)

θ

holds with u(k)

θ (1)
= [uθ(k)

1,1 | . . . |u
θ(k)

m,1]
⊤ ∈ Rm and v(k)

θ (1)
= [vθ(k)

1,1 | . . . |vθ(k)

m,1]
⊤ ∈ Rm, and if1380 ∥∥∥Êx[u

(k)

θ (1)
z(k)1 ]− Ex[u

(k)

θ (1)
(x)z(k)1 (x)]

∥∥∥∥∥∥z(k)1

∥∥∥
L2
x

≤ A(uθ, z),

∥∥∥Êy[v
(k)

θ (1)
⊗ h(k)

1 ]− Ey[v
(k)

θ (1)
(y)⊗ h(k)

1 (y)]
∥∥∥∥∥∥h(k)

1

∥∥∥
L2
y

≤ A(vθ,h),

(100)

where z =
∑
k∈[niso]

∑
j∈[dk]

z(k)j and h =
∑
k∈[niso]

∑
j∈[dk]

h(k)

j are isospectral decompositions,1381

then1382 ∥∥∥Eθh−Êθh
∥∥∥2
L2
Px

(X ,Z)
≤
∥∥∥Ey[h(y)− Êy[h]]

∥∥∥2
Z
+
[
1 + max

k∈[niso]
E (k)

θ

]3
∥h∥2L2

y(Y,Z) [A(vθ,h)]
2.

(101)
Moreover, the empirical estimation error is upper bounded by1383 ∥∥∥Ex[z(x)[Dθh](x)]−Êx[z[D̂

(k)

θ h]]
∥∥∥2
Z
≤

(1 + Eθ)3
[
A(uθ, z) +A(vθ,h) +A(uθ, z)A(vθ,h)

]2
∥z∥2L2

Px
(X )∥h∥

2
L2
y(Y,Z).

(102)

Proof. First, observe that due to G-invariance of distribution Pxy and G-equivaraince of Eθ and Dθ1384

we have that1385

Eθh = Ey[h
(1)(y)] +

∑
k∈[niso]

D(k)

θ h
(k), (103)
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and1386

Ex[z(x)[Eθh](x)] = Ex[z
(1)(x)]Ey[h

(1)(y)] +
∑

k∈[niso]

Ex[z
(k)(x)[D(k)

θ h
(k)](x)]. (104)

In the same way, since the empirical distributions P̂x and P̂y are G-invariant, we have that1387

Êθh = Êy[h
(1)] +

∑
k∈[niso]

D̂(k)

θ h
(k), (105)

and1388

Êx[z[Êθh]] = Êx[z
(1)]Êy[h

(1)] +
∑

k∈[niso]

Êx[z
(k)[D̂(k)

θ h
(k)]], (106)

where1389

[D̂(k)

θ h
(k)](x) = u(k)

θ (x)⊤S(k)

θ Êy[v
(k)

θ ⊗ h(k)]. (107)

Therefore, combining (103) and (105), we obtain that1390

[Eθh](x)− [Êθh](x) =
(
Ey[h

(1)(y)]− Êy[h
(1)]
)
1X (x)

+
∑

k∈[niso]

(
[D(k)

θ h
(k)](x)− [D̂(k)

θ h
(k)](x)

)
,

which after taking the norm in L2
Px
(X ,Z), due to orthonormality of isotypic subspaces gives1391 ∥∥∥Eθh− Êθ[h]

∥∥∥2
L2

Px
(X ,Z)

=
∥∥∥Ey[h

(1)(y)]− Êy[h
(1)]
∥∥∥2
Z

+
∑

k∈[niso]

∥∥∥[D(k)

θ h
(k)]− [D̂(k)

θ h
(k)]
∥∥∥2
L2

Px
(X ,Z)

.

Now, observe that, since1392

[D(k)

θ h
(k)](x)− [D̂(k)

θ h
(k)](x) = u(k)

θ (x)⊤S(k)

θ

(
Ey[v

(k)

θ ⊗ h(k)]− Êy[v
(k)

θ ⊗ h(k)]
)

applying the norm we have that
∥∥∥[D(k)

θ h
(k)]− [D̂(k)

θ h
(k)]
∥∥∥2
L2
Px

(X ,Z)
equals1393

(
Ey[v

(k)

θ ⊗h(k)]− Êy[v
(k)

θ ⊗h(k)]
)⊤
S(k)

θ

(
Ex[u

(k)

θ (x)u(k)

θ (x)⊤]
)
S(k)

θ

(
Ey[v

(k)

θ ⊗h(k)]− Êy[v
(k)

θ ⊗h(k)]
)

which using constraints within each isotypic block and1394

Ex[u
(k)

θ (m)
(x)u(k)

θ (m)
(x)⊤] ⪯

∥∥∥Ex[u
(k)

θ (m)
(x)u(k)

θ (m)
(x)⊤]

∥∥∥Im ≤ (1 + E (k)

θ )Im,

implies, due to (100), that1395 ∥∥∥D(k)

θ h
(k) − D̂(k)

θ h
(k)

∥∥∥2
L2

Px
(X ,Z)

≤ dk (1 + E (k)

θ ) (σθ(k)

1 )2

·
∥∥∥Ey[v

(k)

θ (1)
(y)⊗ h(k)

1 (y)]− Êy[v
(k)

θ (1)
⊗ h(k)

1 ]
∥∥∥2
Rm×Z

≤ dk (1 + E (k)

θ ) (σθ(k)

1 )2 [A(vθ,h)]
2
∥∥∥h(k)

1

∥∥∥2
L2
Px

(Y,Z)
.

Therefore, bounding σθ(k)

1 ≤ σ(k)

1 + |σ(k)

1 − σθ(k)

1 | ≤ 1 +
∥∥∥D(k)

y|x − D(k)

θ

∥∥∥ and summing over isotypic1396

components, since ∥h∥2L2
Px

(Y,Z) =
∑
k∈[niso],j∈[dk]

∥∥∥h(k)

j

∥∥∥2
L2
Px

(Y,Z)
=
∑
k∈[niso]

dk

∥∥∥h(k)

1

∥∥∥2
L2
Px

(Y,Z)
,1397

we complete the proof of (101).1398

To show (102), we combine (104) and (106), and obtain that Ex[z(x)[Dθh](x)]−Êx[z[D̂θh]] can be1399

written as1400 ∑
k∈[niso]

dk

[
Ex[u

(k)

θ (1)
(x)z(k)

1 (x)]⊤S(k)

θ Ey[v
(k)

θ (1)
(y)⊗h(k)

1 (y)]−Êx[u
(k)

θ z
(k)

1 ]⊤S(k)

θ Êy[v
(k)

θ (1)
⊗h(k)

1 ]

]
.
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Adding and subtracting mixed terms we then obtain for each isotypic component,1401
1
dk
Ex[z(x)[D

(k)

θ h](x)]− Êx[z[D̂
(k)

θ h]] can be expressed as1402

Ex[u
(k)

θ (1)
(x)z(k)1 (x)]⊤S(k)

(
Ey[v

(k)

θ (1)
(y)⊗h(k)

1 (y)]−Êy[v
(k)

θ (1)
⊗h(k)

1 ]

)

+

(
Ex[u

(k)

θ (1)
(x)z(k)1 (x)]−Êx[u

(k)

θ 1
z(k)1 ]

)⊤

S(k)Ey[v
(k)

θ (1)
(x)⊗h(k)

1 (y)]

+

(
Ex[u

(k)

θ (1)
(x)z(k)1 (x)]−Êx[u

(k)

θ 1
z(k)1 ]

)⊤

S(k)

(
Ey[v

(k)

θ (1)
(y)⊗h(k)

1 (y)]−Êy[v
(k)

θ (1)
⊗h(k)

1 ]

)
,

and consequently bounded using (100) as1403 ∥∥∥Ex[z(x)[D
(k)

θ h](x)]− Êx[z[D̂
(k)

θ h]]
∥∥∥
Z
≤ dkσ

θ(k)
1

[
A(uθ, z) +A(vθ,h)

+A(uθ, z)A(vθ,h)
]∥∥∥z(k)1

∥∥∥
L2

Px
(X )

∥∥∥h(k)
1

∥∥∥
L2

y(Y,Z)
.

Summing across isotypic components and bounding σθ(k)

1 as before, we complete the proof.1404

First note that coupling (101) with (95) ensures that we can prove regression bound via concentration1405

result ensuring (100). To obtain similar result for set-wise regression, we set z = 1A and use (102) to1406

obtain the following.1407

Proposition M.4. Under the assumptions of Proposition M.3, letA(uθ,1A)A(vθ,h) ≤ A(uθ,1A)+1408

A(vθ,h). If1409

|Ex[1A(x)]− Êx[1A]|/Ex[1A(x)] ≤ ηA (108)

and ηA < 1/2, then1410 ∥∥∥Eθ[h(y)|x ∈ A]− Êθ[h(y)|x ∈ A]
∥∥∥
Z
≤
∥∥∥Ey[h]− Êy[h]

∥∥∥
Z
+

2∥h∥L2
Px

(Y,Z)√
P [x ∈ A]

×
[
2(1 + Eθ)

(
A(uθ,1A) +A(vθ,h)

)
+ ηA

]
,

(109)

and for h = 1B1411

|P [y ∈ B | x ∈ A]−P̂θ[y ∈ B | x ∈ A]| ≤
∥∥∥Ey[h]−Êy[h]

∥∥∥
Z

+
2

Êx[h]

√
P [y ∈ B]
P [x ∈ A]

[
2(1 + Eθ)[A(uθ,1A)+A(vθ,1B)]+ηA

]
.

(110)

Proof. Leveraging the representations in (104) and (106) with z = 1A, we get1412

Eθ[h(y)|x∈A]− Êθ[h(y)|x∈A] = Ey[h]− Êy[h]+
Ex[1A(x)[Dθh](x)]

E[1A]
− Êx[1A[D̂θh]]

Êx[1A]
=

Ey[h]− Êy[h]+Ex[1A(x)[Dy|xh](x)]
(

1
E[1A(x)]

− 1

Êx[1A]

)
+

Ex[1A(x)[Dθh](x)]−Êx[1A[D̂θh]]

Êx[1A]
.

By triangular inequality applied to the norm in Z , we get1413 ∥∥∥Eθ[h(y)|x ∈ A]− Êθ[h(y)|x∈A]
∥∥∥
Z

≤
∥∥∥Ey[h]− Êy[h]

∥∥∥
Z
+∥E[1A(x)[Dθf(x)]]∥Z

∣∣∣ 1
E[1A(x)]

− 1

Êx[1A]

∣∣∣+∥Ex[1A(x)[Dθh](x)]−Êx[1A[D̂θh]]∥Z
Êx[1A]

≤
∥∥∥Ey[h]− Êy[h]

∥∥∥
Z
+∥E[1A(x)[Dθh](x)]∥Z

2ηA
P[x∈A] +

∥Ex[1A(x)[Dθh](x)]−Êx[1A[D̂θh]]∥Z
Êx[1A]

,
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where we have used Condition (108) in the last line to get that∣∣∣∣∣ 1

P[x ∈ A]
− 1

Êx[1A]

∣∣∣∣∣ ≤ ηA
(1− ηA)P[x ∈ A]

≤ 2ηA
P[x ∈ A]

.

From Proposition M.3 and Condition (108) we get that1414

1

Êx[1A]

∥∥∥Ex[1A(x)[Dθh](x)]−Êx[1A(x)[D̂θh]]
∥∥∥
Z
≤

2(1+Eθ)

[
A(uθ,1A)A(vθ,h)

]
P(x∈A) ∥1A∥L2

Px

∥h∥L2
Py

(Y,Z)

Cauchy’s Schwarz’s inequality again and ∥Dθ∥ ≤ 1 give

∥E[1A(x)[Dθh](x)]∥Z ≤ ∥1A∥L2
Px

∥Dθ∥∥h∥L2
Py

≤ ∥1A∥L2
Px

∥h∥L2
Py

=
√

P[x ∈ A]∥h∥L2
Py

(Y,Z).

Combining the last four displays give the first result. The second result follows immediately for1415

h = 1B.1416

Consequence of this result is that we can bound the error in probability as we can derive concentration1417

inequalities on the terms in (100) and (108). Then an union bound gives the estimation result for1418

regression conditional on sets.1419

Next, we recall that Ey|x being (1/α)-Schatten class operator, implies:1420

Assumption M.5. Let there exist some constant c > 0 such that for α > 0, any i ≥ 1 and any1421

k ∈ [niso], we have σ(k)

i ≤ c i−α.1422

Further, for any h ∈ L2
y(Y,Z), we define h(y) = h(y)− E[h(y)] and1423

γG′(h) :=
1

|G′| − 1

∑
g∈G′

g ̸=e

E[⟨h(y),h(g ▷Y y)⟩]. (111)

In the following, we consider observables h satisfying the following condition (that is clearly satisfied1424

for an indicator of a set of positive measure)1425

Assumption M.6. Let there exists an absolute constant C0 ≥ 1 such that (|G′| − 1)γG′(h) ≤1426

C0 E[∥h(y)∥2Z ].1427

Define1428

ηA = ηA(δ) :=

(
1− P[x ∈ G ▷ A]
P[x ∈ G ▷ A]

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ G ▷ A]
P[x ∈ G ▷ A]

.

Theorem M.7. Let Assumptions M.6 and M.5 be satisfied. Let Px and Py are G-invariant, and Dθ1429

from (90) is G-equivariant model, and let h ∈ L2
y(Y,Z) and f ∈ L2

x(X ,Z) (with values in Z) be1430

subGaussian random variables. Assume in addition that the event A is anti-symmetric for G and that1431

mk = m for all k ∈ [niso]. Assume that N ≥ |G|. Then for any δ ∈ (0, 1), it holds w.p.a.l 1− δ1432 ∥∥∥E[h(y) |x ∈ A]− Êθ[h(y)|x∈A]
∥∥∥
Z
≲C0

∥h∥L2
y(Y,Z)√

P[x∈G▷XA]

(
Eθ +

log(2nisoδ
−1)

(disoN)
α

1+2α

)
,

and1433

|P(y∈B | x∈A)− P̂θ(y∈B | x∈A)| ≲C0

√
P[y∈B]

P[x∈G▷XA]

(
Eθ +

log(2nisoδ
−1)

(disoN)
α

1+2α
+
√

|G|ηA
)
.

Proof. This result follows immediately from Propositions M.3 and M.4 combined with Lemmas M.91434

and Lemma M.10. Set1435

A(uθ,f) := C
√

1
|G′|N

√
C0 ∨ |G′|

N log
(
2nisoδ

−1
)
,

A(vθ,h) := C

√
maxk∈[niso]

{mk}
|G′|N

√
C0 ∨ |G′|

N log
(
2nisoδ

−1
)
,
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for some large enough absolute constant C > 0.1436

Then an union bound based on Lemmas M.9 and M.10 guarantees that (109) is satisfied w.p.a.l. 1− δ1437

(up to a rescaling of the constant C):1438 ∥∥∥Eθ[h(y)|x ∈ A]− Êθ[h(y)|x ∈ A]
∥∥∥
Z
≤

C
∥h∥L2

x(X ,Z)√
P [x ∈ A]

[
2(1 + Eθ)

(√
maxk∈[niso]

{mk}
|G′|N

√
C0 ∨ |G′|

N
log
(
2nisoδ

−1))].
Next we use our bound on the representation bias in (97)1439

∥E[y(y) |x ∈ A]− Eθ[y(y) |x ∈ A]∥Z ≤
(
σ⋆rm+1 + Eθ

) ∥h∥L2
y(Y,Z)√

P[x ∈ A]

√
1+(|G′|−1)γG (A)

|G′| . (112)

Recall that Eθ = maxk∈[niso]{E
(k)

θ }. Under Assumption M.5, we have
∥∥[[Dy|x]]rm − Dθ

∥∥ ≤ 1
(disom)α .1440

In addition, (|G′| − 1)γG(A) ≤ C0 under Assumption M.6.1441

Combining the last two display gives w.p.a.l 1− δ1442 ∥∥∥E[h(y) |x ∈ A]− Êθ[h(y)|x∈A]
∥∥∥
Z
≲C0

∥h∥L2
y(Y,Z)√

P[x∈G▷XA]

(
Eθ + 1

(disom)α +
√

m
N log

(
2nisoδ

−1
))
.

Balancing the previous display w.r.t. dimension m, we get that m ≍ (d−2α
iso N)

1
1+2α and the first1443

result follows.1444

The bound for the conditional probability follows by picking y = 1B.1445

M.1 Quadratic error regression bound1446

Our goal is to estimate the conditional expectation function

z(x) = E[h(y)|x=x] = E[h(y)] + [Dy|xh](x).

Our estimator is
ẑθ(·) = Êy[y] + [D̂θh](·).

Theorem M.8. Assume that Y is a sub-Gaussian random vector. Let Assumption M.5 be satisfied.1447

Assume in addition that Eθ ≤ 1, mk = m for all k ∈ [niso]. Then for any δ ∈ (0, 1) such that1448

N ≥ (cu ∨ cv)2m log
(
eδ−1niso

)
∨ |G|, it holds w.p.a.l. 1− δ1449

∥z − ẑθ∥2L2
x(X ,Z) ≲ Tr(Cov(Y ))

(
E2
θ + (diso|G|N)

−2α
1+2α log2(δ−1niso)

)
. (113)

Discussion When the training of the NN is successful, we expect the statistical rate to dominate1450

the optimization error maxk∈[niso]{E
(k)

θ } for large enough sample size N . For distribution containing1451

symmetry invariants with large isotopic components (m is large), we observe that exploiting this1452

information in the construction of the NCP operator yields a substantial improvement in the statistical1453

error rate as we go from a rate N− α
1+2α for standard NCP to (N m)−

α
1+2α for eNCP.1454

Proof. Combining (101) with Lemma M.9 gives w.p.a.l. 1− δ1455 ∥∥∥Eθ y − Êθ y
∥∥∥2
L2

Px
(X )

≲ (1 + Eθ)3Tr(Cov(y))
m

|G|N log2(2nisoδ
−1)

≲ Tr(Cov(y))
m

|G|N log2(nisoδ
−1),

provide that Eθ ≤ 1. We derived in (95) an upper bound on the bias term1456 ∥∥Ey|x[y |x = ·]− Eθy
∥∥2
L2
Px

(X ,Z)
≤ Tr(Cov(y))

(
1

(disom)2α
+ E2

θ

)
. (114)

Balancing the two bounds in the last two displays w.r.t. m ≍ (|G|disoN)
1

1+2α , we get the result.1457
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M.2 Auxiliary results.1458

Consider the function space L2
y(Y,Z) where Z is endowed with an inner product ⟨·, ·⟩ = ⟨·, ·⟩Z . If1459

the distribution of y is G′-invariant, then for any h ∈ L2
y(Y,Z), we use the estimator Êy[h] in (98)1460

as an estimator of E[h(y)].1461

Lemma M.9. Assume that the distribution Py of y is G-invariant and let G′ ≤ G. Let there exists a
function h ∈ L2

y(Y,Z) such that h(y) is subGaussian. Then there exists an absolute constant C > 0
such that for any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

∥∥∥Êy[h]− E[h(y)]
∥∥∥
Z
≤ C

√
log2 2δ−1

|G′|N

√
E[
∥∥h(y)∥∥2Z ] + (|G′| − 1)γG′(h) +

|G′|E[
∥∥h(y)∥∥2Z ]
N

.

Assume in addition that there exists an absolute constant C0 ≥ 1 such that (|G′| − 1)γG′(h) ≤
C0 E[∥h(y)∥2Z ]. Then for any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

∥∥∥Êy[h]− E[h(y)]
∥∥∥
Z
≤ C

√√√√E[
∥∥h(y)∥∥2Z ]
|G′|N

√
(1 + C0) +

|G′|
N

log 2δ−1.

Note that similar bounds hold valid for the G-invariant distribution Px and any function f ∈1462

L2
Px
(X ,Z) such that f(x) is subGaussian.1463

Proof. We note that1464

Êy[h]− E[h(y)] =
1

N

N∑
i=1

Zi with Zi =
1

|G′|
∑
g∈G′

h(g ▷Y yi)− Eyi [h(g ▷Y yi)], ∀i ∈ [N ].

Define1465

Z :=
1

|G′|
∑
g∈G′

h(g ▷Y y)− Ey[h(g ▷Y y)], (115)

and, for brevity, set ∥z∥ = ∥z∥Z =
√

⟨z, z⟩Z for any z ∈ Z . We apply Proposition M.12, to get
w.p.a.l. 1− δ ∥∥∥Êy[h]− Ey[h(y)]

∥∥∥ ≤ 4
√
2√
N

√
Vary(∥Z∥) +

∥Z∥2ψ2

N
log

2

δ
.

Using the triangular inequality successively on ∥·∥ and ∥·∥ψ2
and the G′-invariance of Py,∥∥h(g ▷Y y)

∥∥
ψ2

=
∥∥h(y)∥∥

ψ2
for any g ∈ G′, we get that

∥∥Z∥∥ψ2
≲
∥∥∥∥h(y)∥∥∥∥

ψ2
.

We note next that
∥∥h(y)∥∥ is subGaussian. Consequently the well-known property of equivalence of1466

moments for subGaussian distributions gives ∥Z∥ψ2
≲
∥∥∥∥h(y)∥∥∥∥

ψ2
≲ E[

∥∥h(y)∥∥2]. We derive now1467

a control on Vary(∥Z∥) ≤ E[∥Z∥2]. Using the G′-invariance of Py, we get1468

Var(∥Z∥) ≤
E[
∥∥h(y)∥∥2]
|G′| +

1

|G′|
∑
g∈G′

g ̸=e

E[⟨h(y)− E[h(y)],h(g ▷Y y)− E[h(y)]⟩

=
E[
∥∥h(y)∥∥2]
|G′| +

(|G′| − 1)γG′(h)

|G′| ≤ (1 + C0)
E[
∥∥h(y)∥∥2]
|G′| . (116)

Hence we get the result.1469

1470
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We focus now on a concentration bound for indicator functions z = 1A for any event A ∈ ΣX . We1471

define1472

ZA := Êx[1A]− P[x ∈ A] =
1

|G′|
∑
g∈G′

(1g−1▷XA(x)− E[1g−1▷XA(x)])

=
1

|G′|
∑
g∈G′

(
1g−1▷XA(x)− P[x ∈ A]

)
=

(
1

|G′|
∑
g∈G′

1g−1▷XA(x)

)
− P[x ∈ A]. (117)

Note that we always have |ZA| ≤ 1 but this bound can be quite conservative as we could get a1473

much sharper bound for some events A. We denote by γG′,∞(A) the smallest deterministic upper-1474

bound on 1
|G′|
∑
g∈G′ 1g−1▷XA(x) (For instance when A is an antisymmetric event, then we have1475

γG′,∞(A) = 1/|G′|). Then we have1476

−P[x ∈ A] ≤ ZA ≤ γG′,∞(A)− P[x ∈ A]. (118)

Define also1477

ΥG′,X(A) := P(x ∈ A)(1− P(x ∈ A)) + (|G′| − 1)
(
γG′(A)− P[x ∈ A]

)
P[x ∈ A]. (119)

Lemma M.10. Let the distribution of x be G′-invariant. Then for any A ∈ ΣX and any δ ∈ (0, 1),1478

it holds w.p.a.l. 1− δ1479 ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣ ≤ ∣∣γG′,∞(A)− P[x ∈ A]

∣∣ log 2δ−1

N
+

√
ΥG′,x(A)

|G′|

√
2
log 2δ−1

N
.

Assume in addition that g ▷ A ∩ A = ∅ for all g ∈ G′ \ {e}. Then it holds w.p.a.l. 1− δ1480 ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(
1− P[x ∈ G′

▷ A]
P[x ∈ G′ ▷ A]

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ G′ ▷ A]
P[x ∈ G′ ▷ A]

.

If the distribution of y is G′-invariant, then an identical result is immediately available for y by the1481

same proof argument.1482

Remark M.11. Using the standard empirical mean estimator that does not take advantage of G-1483

invariance, we obtain a concentration bound with a slower rate. For example, for an antisymmetric1484

event A, we would achieve, w.p.a.l. 1− δ, the following result:1485 ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(
1− P[x ∈ A]
P[x ∈ A]

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ A]
P[x ∈ A]

.

Specifically, leveraging G′-invariance allows us to replace P[x ∈ A] with P[x ∈ G′
▷X A], which1486

represents the probability of the entire orbit of A under the action of G′. This becomes particularly1487

interesting when P[x ∈ A] ≪ P[x ∈ G′
▷X A], especially in the case of rare events where1488

P[x ∈ A] ≈ 0.1489

Proof. Since Px is G′-invariant, we have E[1g−1▷A(x)] = P[x ∈ A] and Var(1g−1▷A(x)) =1490

Var(1A(x)) = P[x ∈ A](1− P[x ∈ A]), for any g ∈ G′. Hence1491

Êx[1A]− E[1A(x)] =
1

N

N∑
i=1

Zi with Zi =
1

|G′|
∑
g∈G′

1g−1▷A(xi)− E[1g−1▷A(xi)], ∀i ∈ [N ].

The Zi’s are i.i.d. copies of Z = ZA. In view of (118), we can apply Hoeffding’s inequality Bercu1492

et al. [79, Theorem 2.16]. We get for any δ ∈ (0, 1) w.p.a.l 1− δ1493 ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣ ≤ γG′,∞(A)

√
log 2δ−1

2N
. (120)
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We propose to prove another bound based on application of Bernstein’s inequality. We first prove an1494

improved bound on Var(Z) as compared to the standard empirical mean estimator which does not1495

exploit G-invariance. Indeed we have1496

Var(Z) =
1

|G′|2

∑
g∈G′

Var(1g−1▷A(x)) +
∑
g ̸=g′

Cov

(
1g−1▷A(x),1(g′)−1▷A(x)

)
=

P(x ∈ A)(1− P(x ∈ A))
|G′| +

1

|G′|2
∑
g ̸=g′

Cov

(
1g−1▷A(x),1(g′)−1▷A(x)

)
.

Next, using again that PX is G-invariant, we get for any g, g′ ∈ G′1497

Cov

(
1g−1▷A(x),1(g′)−1▷A(x)

)
= (121)

P[x ∈ g−1 ▷ A ∩ (g′)−1 ▷ A]− P[x ∈ g−1 ▷ A]P[x ∈ (g′)−1 ▷ A]
= P[x ∈ g−1 ▷ A ∩ (g′)−1 ▷ A]− P[x ∈ A]2. (122)

Using again the invariance assumption, we note that∑
g ̸=g′

Cov
(
1g−1▷A(x),1(g′)−1▷A(x)

)
= |G′|

( ∑
g∈G′,g ̸=e

P[x ∈ A ∩ g ▷ A]
)
− |G′|(|G′| − 1)P[x ∈ A]2

Consequently by definition of γG′(A) in (93) and (94), we get∑
g∈G′,g ̸=e

P[x ∈ A ∩ g ▷ A] = (|G′| − 1) γG′(A)P(x ∈ A).

Combining the last four displays, we get1498

Var(Z) =
P(x∈A)(1−P(x∈A))+(|G′|−1) (γG′ (A)−P[x∈A])P[x∈A]

|G′| =
ΥG′,x(A)

|G′|
. (123)

We note that for any p ≥ 3

N∑
i=1

E[
(
max(0, Zi)

)p
] ≤ p!

2
max

(
0, γG′,∞(A)− P[x ∈ A]

)p−2
N Var(Z).

Then Bercu et al. [79, Theorem 2.1] gives w.p.a.l. 1− δ1499

Êx[1A]− E[1A(x)] ≤ max
(
0, γG′,∞(A)− P[x ∈ A]

) log δ−1

N
+
√
Var(Z)

√
2
log δ−1

N
.

Applying the same reasoning to variables −Z1, . . . ,−ZN and an union bound gives gives w.p.a.l.1500

1− 2δ1501 ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣ ≤ ∣∣γG′,∞(A)− P[x ∈ A]

∣∣ log δ−1

N
+
√

Var(Z)

√
2
log δ−1

N
. (124)

Next, we note that when g ▷ A ∩ A = ∅ for all g ∈ G′ \ {e}, then γG′(A) = 0 and P[x ∈ A] =
P[x ∈ G′

▷ A]/|G′|. Consequently we get

ΥG′,x(A) = P[x∈G′
▷A](1−P[x∈G′

▷A])
|G′| and

γG′,∞(A)−P[x∈A]
P[x∈A] =

1

P[x ∈ G′ ▷ A]
− 1.

Hence under the additional assumptions, dividing by E[1A(x)] = P[x ∈ A] gives w.p.a.l. 1− 2δ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(

1

P[x ∈ G′ ▷ A]
− 1

)
log δ−1

N
+

√
2
log δ−1

N

√
1− P[x ∈ G′ ▷ A]
P[x ∈ G′ ▷ A]

.

Replacing δ by δ/2 gives w.p.a.l. 1− δ1502 ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(

1

P[x ∈ G′ ▷ A]
− 1

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ G′ ▷ A]
P[x ∈ G′ ▷ A]

. (125)
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Proposition M.12. Let Ai, i ∈ [N ] be i.i.d copies of a random variable A in a separable Hilbert1504

space with norm ∥·∥. If there exist constants L > 0 and σ > 0 such that for every m ≥ 2,1505

E∥A∥m ≤ 1
2m!Lm−2σ2, then with probability at least 1− δ1506 ∥∥∥∥∥∥ 1

N

∑
i∈[N ]

Ai − EA

∥∥∥∥∥∥ ≤ 4
√
2√
N

√
σ2 +

L2

N
log

2

δ
. (126)

Lemma M.13 ((Sub-Gaussian random variable) Lemma 5.5. in [80]). Let Z be a random variable.1507

Then, the following assertions are equivalent with parameters Ki > 0 differing from each other by at1508

most an absolute constant factor.1509

1. Tails: P{|Z| > t} ≤ exp
(
1− t2/K2

1

)
for all t ≥ 0;1510

2. Moments: (E|Z|p)1/p ≤ K2
√
p for all p ≥ 1;1511

3. Super-exponential moment: E exp
(
Z2/K2

3

)
≤ 2.1512

A random variable Z satisfying any of the above assertions is called a sub-Gaussian random variable.1513

We will denote by K3 the sub-Gaussian norm.1514

Consequently, a sub-Gaussian random variable satisfies the following equivalence of moments
property. There exists an absolute constant c > 0 such that for any m ≥ 2,(

E|Z|m
)1/m ≤ cK3

√
m
(
E|Z|2

)1/2
.

Lemma M.14. Assume that Y is sub-Gaussian with sub-Gaussian norm K. We set σ2
θ(Y ) :=

Var(∥Y − E[y]∥). Then there exists an absolute constant C > 0 such that for any δ ∈ (0, 1), it holds
w.p.a.l. 1− δ ∥∥∥Êy[y]− E[y]

∥∥∥ ≤ C√
N

√
σ2(y) +

K2

N
log
(
2δ−1

)
.

Proof. Set Z := ∥y − Ey∥ and we recall that σ2(y) := Var(∥y − E[y]∥). We check that the
moment condition,

EZm ≤ 1

2
m!Lm−2σ2(y)2, ∀m ≥ 2,

for some constant L > 0 to be specified.1515

The condition is obviously satisfied for m = 2. Next for any m ≥ 3, the Cauchy-Schwarz inequality
and the equivalence of moment property give

EZm ≤
(
EZ2(m−2)

)1/2 (
EZ4

)1/2 ≤ 4K2
3σ

2
θ(Y )2

(
EZ2(m−2)

)1/2
.

Next, by homogeneity, rescaling Z to Z/K1 we can assume that K1 = 1 in Lemma M.13. We recall
that if Z is in addition non-negative random variable, then for every integer p ≥ 1, we have

EZp =
∫ ∞

0

P{Z ≥ t} ptp−1 dt ≤
∫ ∞

0

e1−t
2

ptp−1 dt =
(ep
2

)
Γ
(p
2

)
.

With p = 2(m − 2), we get that EZp ≤ e(m − 2)Γ
(
m − 2

)
= e(m − 2)! = em!/2. Using again1516

Lemma M.13, we can take L = cK for some large enough absolute constant c > 0. Then Proposition1517

M.12 gives the result.1518

1519
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