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ABSTRACT

Inspired by the promising results of Transformers in object detection in images,
it is interesting to formulate Transformer based methods for temporal action lo-
calization (TAL) in videos. Nonetheless, this is non-trivial to adapt recent object
detection transformers due to two unique challenges with TAL: (1) more complex
spatio-temporal visual observations, and (2) less training data availability. In this
paper, to address the above two challenges, a novel Global Segmentation Mask
Transformer (GSMT) is proposed. Compared to object detection transformers, it
is architecturally reformulated with the core idea to drive the transformer to learn
global segmentation masks of all action instances jointly at the full video length.
Supervised by such global temporal structure signals, GSMT allows to more effec-
tively train from limited complex video data. Due to modeling TAL holistically
rather than locally to each individual proposal, our model also differs significantly
to the conventional proposal-based TAL methods that learn to detect local start
and end points of action instances using more complex architectures. Extensive
experiments show that despite its simpler design, GSMT outperforms existing
TAL methods, achieving new state-of-the-art performance on two benchmarks.
Importantly, it is around 100× faster to train and twice as efficient for inference.

1 INTRODUCTION

Temporal action localization (TAL) aims to identify the temporal interval (i.e., the start and end points)
and the class label of all action instances in an untrimmed video (Idrees et al., 2017; Caba Heilbron
et al., 2015). All existing TAL methods rely on proposal generation by either regressing predefined
anchor boxes (Xu et al., 2017; Chao et al., 2018; Gao et al., 2017; Long et al., 2019) (Fig 1(a))
or directly predicting the start and end times of proposals (Lin et al., 2019; Buch et al., 2017;
Lin et al., 2018; Xu et al., 2020) (Fig 1(b)). In essence, once the proposals have been generated,
existing TAL methods take a local view of the video and focus on each individual proposal for action
instance temporal refinement and classification. Such an approach suffers from several fundamental
limitations: (1) An excessive (sometimes exhaustive) number of proposals are usually required for
good performance. For example, BMN (Lin et al., 2019) generates ∼ 5000 proposals per video by
exhaustively pairing start and end points predicted. Generating and evaluating such a large number of
proposals means high computational cost for both training and inference. (2) Once the proposals are
generated, the subsequent modeling is local to each individual proposal. Missing global context over
the whole video can lead to sub-optimal localization.

Inspired by the success of Transformers (Vaswani et al., 2017) for object detection in images (Carion
et al., 2020; Zhu et al., 2020), a few Transformer based methods for TAL have been introduced (Tan
et al., 2021; Wang et al., 2021; Qing et al., 2021; Nawhal & Mori, 2021). Self-attention can model
global content naturally. However, challenged by less labeled training data (e.g., per-class 193 action
instances in ActivityNet vs. 452 objects in COCO) and higher-dimensional observations, they mostly
consider only the simpler proposal generation/refinement sub-task. Indeed, Nawhal & Mori (2021)
is an exception that further introduces graph structures in the original set prediction framework of
object detection transformers. Further, these methods are inferior in performance compared to top
CNN based alternatives (Bai et al., 2020; Xu et al., 2020).

In this work, we address these challenges by proposing a Global Segmentation Mask Transformer
(GSMT). Concretely, in representation learning we leverage self-attention (Vaswani et al., 2017) for
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Figure 1: Conventional TAL methods are either (a) anchor-based or (b) anchor-free all needs to
generate action proposals. Instead, (c) our global segmentation mask transformer (GSMT) model is
proposal-free.

capturing necessary video-level inter-snippet relationship. Instead of predicting the start/end points
of each action instance, GSMT learns to predict action segmentation masks of an entire video (Fig.
1(c)). Such masks represent the global temporal structure of all action instances in a video; it is thus
intrinsically context-aware and more compatible with self-attentive representative learning. GSMT
takes each local snippet (i.e., a short sequence of consecutive frames of a video) as a predictive unit.
More specifically, taking as input a snippet feature representation for a given video, GSMT then
outputs the target action segmentation mask and class label concurrently. By doing so, we eliminate
the need for instance query and set prediction both of which have non-trivial complexity. Hence,
our GSMT is architecturally different to all the existing object detection and TAL transformers. By
modeling TAL’s prediction globally rather than locally, GSMT not only removes the need for proposal
generation, and the associated design and computational complexity, it is also more effective. To
facilitate the proposed global segmentation mask learning, we further introduce a novel boundary
focused loss that pays more attention to the temporal boundary regions. During inference, once the
masks and class labels are predicted, top-scoring segments can be then selected via non-maximal
suppression (NMS) to produce the final TAL result.

We make the following contributions. (I) We present a novel Global Segmentation Mask Transformer
(GSMT) method for temporal action localization. It not only eliminates the need for proposal genera-
tion, but also better tailors the self-attention of Transformers to more effectively solve the training data
challenges of TAL. (II) This is realized by reformulating the object detection Transformers to predict
global segmentation masks of action instances holistically, without a need for encoder-decoder design
and set prediction. (III) To enhance the learning of temporal boundary, a novel boundary focused loss
function is introduced. (IV) Extensive experiments show that the proposed GSMT method yields new
state-of-the-art performance on two TAL datasets (ActivityNet-v1.3 and THUMOS’14). Importantly,
our method is also significantly more efficient in both training/inference. For instance, it is 98/2.1×
faster than G-TAD (Xu et al., 2020) in training and inference respectively.

2 RELATED WORK

Although all existing TAL methods use proposals, they differ in how the proposals are generated.

Anchor-based proposal learning methods These methods generate proposal based on a pre-
determined set of anchors. Inspired by object detection in static images (Ren et al., 2016), R-C3D
(Xu et al., 2017) proposes to use anchor boxes. It follows the structure of proposal generation
and classification in design. With similar model design, TURN (Gao et al., 2017) aggregates local
features to represent snippet-level features, which are then used for temporal boundary regression
and classification. Later, GTAN (Long et al., 2019) improves the proposal feature pooling procedure
with a learnable Gaussian kernel for weighted averaging. Recently, G-TAD (Xu et al., 2020) learns
semantic and temporal context via graph convolutional networks for better proposal generation. Note
that these anchor boxes are often exhaustively generated so are high in number.

Anchor-free proposal learning methods Instead of using fixed pre-designed anchor boxes, these
methods directly learn to predict temporal proposals (i.e., start and end times/points) (Zhao et al.,
2017; Lin et al., 2018; 2019). For example, SSN (Zhao et al., 2017) decomposes an action instance
into three stages (starting, course, and ending) and employs structured temporal pyramid pooling to
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generate proposals. BSN (Lin et al., 2018) predicts the start, end and actionness at each temporal
location and generates proposals using locations with high start and end probabilities. Later, BMN
(Lin et al., 2019) additionally generates a boundary-matching confidence map to improve proposal
generation. While no pre-defined anchor boxes are required, these methods often have to exhaustively
pair all possible locations predicted with high scores. So both anchor-based and anchor-free TAL
methods have a large quantity of temporal proposals to evaluate. This results in complex model
design, high computational cost and lack of global context modeling. Our GSMT is designed to
address all these limitations by being proposal-free.

Self-attention Our snippet representation is learned based on self-attention, which has been firstly
introduced in Transformers for natural language processing tasks (Vaswani et al., 2017). In computer
vision, non-local neural networks (Wang et al., 2018) apply the core self-attention block from
transformers for context modeling and feature learning. State-of-the-art performances have been
achieved in classification (Dosovitskiy et al., 2020), self-supervised learning (Chen et al., 2020),
semantic segmentation (Zhang et al., 2020; Zheng et al., 2021), few-shot action recognition (Perrett
et al., 2021; Zhu et al., 2021), and object tracking (Chen et al., 2021) by using such an attention
model. More similar methods to our GSMT are object detection transformers (Carion et al., 2020;
Yin et al., 2020; Zhu et al., 2020). Similar to this paper, several recent works (Tan et al., 2021;
Wang et al., 2021; Qing et al., 2021; Nawhal & Mori, 2021) aims to leverage the transformers for
TAL. They focus on either the temporal proposal generation (Tan et al., 2021) and refinement (Qing
et al., 2021), or introduce elaborate query design (Nawhal & Mori, 2021). However, these methods
are still less effective than top CNN alternatives. In this paper, we demonstrate for the first time
the superior performance of transformer for TAL by introducing a novel global segmentation mask
learning strategy, without the complexity of encoder-decoder structure and set matching.

3 METHOD

Our Global Segmentation Mask Transformer (GSMT) model takes as input an untrimmed video
V ′ with a variable number of frames. The video is processed by a feature encoder (e.g., a Kinetics
pre-trained I3D network (Carreira & Zisserman, 2017)) into a sequence of localized snippets. To
train the model, we collect a set of labeled video training set Dtrain = {Vi,Ψi}. Each video Vi is
labeled with temporal segmentation Ψi = {(ψj , ξj , yj)}Mi

j=1 where ψj /ξj denote the start/end time,
yj is the action category, and Mi is the action instance number.

Architecture As depicted in Fig. 2, the GSMT model has two key components: (1) a Transformer
based snippet embedding module that learns feature representations with global temporal context
(Sec. 3.1), and (2) a temporal action location head with two branches for per-snippet multi-class
action classification and binary-class global segmentation mask inference, respectively (Sec. 3.2).

3.1 TRANSFORMER BASED SNIPPET EMBEDDING

Given a training video V , we first extract a feature sequence F ∈ RT×d with temporal dimension T
and feature dimension d at the snippet level using a pre-trained video encoder (e.g., I3D (Carreira
& Zisserman, 2017)). We pre-extract the features F for both training and evaluation following the
common practice (Xu et al., 2020; 2017; Lin et al., 2019). Each snippet is composed of a short
sequence of (e.g., 16) consecutive frames. Hence this representation contains only local spatio-
temporal information while lacking global contextual information as required in TAL. To capture
global context, context-aware snippet embedding is learned by the self-attention mechanism of
Transformers (Vaswani et al., 2017).

Formally, we set the Q/K/V of a multi-head Transformer encoder as the features F/F/F . The
self-attentive learning between snippets is then formulated as

Ai = F + softmax(
FWQ(FWK)>√

d
)(FWV ), (1)

where WQ/WK/WV are learnable parameters. In a multi-head attention (MA) design, we combine
a set of nh independent heads {Ai} to form a richer learning process. The Transformer outputs the
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Figure 2: Overview of our proposal-free Global Segmentation Mask Transformer (GSMT)
learning architecture. Given an untrimmed video, GSMT first extracts a sequence of T snippet
features with a pre-trained video encoder (e.g., I3D (Carreira & Zisserman, 2017)), and conducts
self-attentive learning to obtain snippet embedding with global context. Subsequently, with each
snippet embedding, GSMT classifies action class (output P ∈ R(K+1)×T with K the action class
number) and predicts full-video-long foreground mask (output M ∈ RT×T ) concurrently in a
two-branch design. During training, GSMT is optimized by minimizing the difference between
class/mask prediction and ground-truth annotations. In inference, GSMT selects top scoring snippets
from the classification output P , and then thresholds the corresponding foreground masks in M to
yield action instance candidates. Finally, softNMS is applied to remove redundant candidates.

snippet embedding E defined as:

E = MLP ([A1 · · ·Anh
]︸ ︷︷ ︸

MA

) ∈ RT×C . (2)

The Multi-Layer Perceptron (MLP) block has one fully-connected layer with residual skip connection.
Layer norm is applied before both the MA and MLP block. We use nh = 4 heads by default.

3.2 TAL HEAD: PARALLEL ACTION CLASSIFICATION AND GLOBAL SEGMENTATION MASKING

Our TAL head consists of two parallel branches: one for multi-class action classification and the
other for binary-class global segmentation mask inference at the snippet level.

Multi-class action classification Given the t-th snippet E(t) ∈ Rc (i.e., the t-th column of E),
our classification branch predicts the probability pt ∈ R(K+1)×1 that it belongs to one of K
target action classes or background. This is realized by a 1-D convolution layer Hc followed by a
softmax normalization. Since a video has been encoded into T temporal snippets, the output of the
classification branch can be expressed in column-wise as:

P := softmax(Hc(E)) ∈ R(K+1)×T . (3)

Global segmentation mask inference In parallel to the classification branch, this branch predicts a
global segmentation mask of action instances in the whole video. Formally, for each snippet E(t), it
outputs a mask prediction mt = [q1, · · · , qT ] ∈ RT×1 with the k-th element qk ∈ [0, 1] indicating
the foreground probability of k-th snippet conditioned on t-th snippet. This prediction process is
implemented by a stack of three 1-D convolution layers Hb as:

M := sigmoid(Hb(E)) ∈ RT×T , (4)

where the t-th column of M is the segmentation mask prediction at the t-th snippet. With the proposed
mask signal as learning supervision, our GSMT model can facilitate context-aware representation
learning, which brings clear benefit on TAL accuracy (see Table 4).
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Figure 3: An illustration of label assignment (see text for more details).

It is also worthwhile noting that, by performing per-snippet class label and segmentation task
inference, GSMT eliminates the set-prediction formulation of previous object detection and TAL
Transformers, leading to a more compact architecture design.

3.3 MODEL TRAINING AND INFERENCE

Training To train our model, the ground-truth needs to be arranged into a specific format. Concretely,
given a training video with temporal intervals and action class labels (Fig 3(a)), we assign all the
snippets (green squares in Fig. 3(b)) lying in action intervals as (positive) action snippets with the
shared action class. All the snippets outside of action intervals are labeled as (negative) background
samples (red squares in Fig. 3(b)). For an action snippet, its segmentation mask label is defined as
the full binary mask of the associated action instance with the whole video length (the rows with a
sequence of blue squares in Fig. 3(c)). When there are multiple action snippets involved in a specific
action instance (e.g., 6/4 snippets covered by the first/second action instance from class C62/C78 in
Fig. 3), each will be assigned with the global segmentation mask label corresponding to this instance.

Learning objectives The classification branch is trained by a combination of cross-entropy based
focal loss and a class-balanced logistic regression loss (Dong et al., 2019). For a training snippet,
we denote y the ground-truth class label, p the classification output, and r the per-class regression
output (discarded in inference). The loss of the classification branch is then written as:

Lc = λ1(1− p(y))γ log(py) + (1− λ1)
(

log(ry)− α

|N |
∑
kεN

(log(1− r(k)))
)
, (5)

where γ = 2 is a focal degree parameter, α = 10 is a class-balancing weight, and N specifies a set
of hard negative classes at size of K/10 where K is the total action class number. We set the loss
trade-off parameter λ1 = 0.4.

For training the segmentation mask branch, we combine a novel boundary IOU (bIOU) loss and a
dice loss (Milletari et al., 2016) to model two types of structured consistency respectively: mask
boundary consistency and inter-mask consistency. Inspired by the boundary IOU metric (Cheng
et al., 2021), bIOU is designed particularly to penalize incorrect temporal boundary prediction w.r.t.
the ground-truth segmentation mask. Formally, for a snippet location, we denote m ∈ RT×1 the
predicted segmentation mask, and g ∈ RT×1 the ground-truth mask. The overall segmentation mask
loss is formulated as:

Lm = 1−
(Φ(m) ∩ Φ(g)

Φ(m) ∪ Φ(g)

)
+

1

Φ(m) ∩ Φ(g) + ε

‖m− g‖2
c

+ λ2

(
1− m>g∑T

t=1

(
m(t)2 + g(t)2

)), (6)

where Φ(·) represents a kernel of size k (7 in our default setting, see Tab 14 in Appendix A.1) used
as a differentiable morphological erosion operation (Riba et al., 2020) on a mask and c specifies the
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ground-truth mask length. In case of no boundary overlap between the predicted and ground-truth
masks, we use the normalized L2 loss. The constant ε = e−8 is introduced for numerical stability.
We set the loss trade-off coefficient λ2 = 0.4.

The overall objective loss function for training GSMT is defined as: L = Lc + Lm.

Inference At test time, we generate the action instance predictions for each test video based on
the classification P and segmentation mask M predictions jointly. From P we select the top M1

scoring snippets S = {Sti}
M1
i=1 as action snippets, where ti ∈ [1, · · · , T ]. For each Sti , we then

obtain the segmentation mask predictions by thresholding the corresponding ti-th column of M . We
have two different ways to obtain the segmentation masks depending on the characteristics of action
definition. For long actions (e.g., those in ActivityNet), after applying a threshold θi, we take the
first activated snippet as the start and the last activated as the end, i.e., yielding one detection per
snippet per threshold. For short actions (e.g., THUMOS), we output each activated subsequence of
snippets as a candidate and there might be multiple candidates per snippet. To generate sufficient
candidates, we apply a set of threshold values Θ = {θi} to yield action candidates with varying
lengths and confidences and combine all the outputs. For each candidate, we compute its confidence
score s by multiplying the classification score from P and the maximal segmentation mask score
from M . Thereafter, we further filter out candidates with low confidence by a threshold θc, select top
M2 scoring ones, and apply SoftNMS (Bodla et al., 2017) to obtain the final predictions. In summary,
once the global segmentation mask is predicted, the rest of inference is very similar to most recent
TAL methods.

4 EXPERIMENTS

Datasets We conduct extensive experiments on two popular TAL benchmarks. (1) ActivityNet-
v1.3 (Caba Heilbron et al., 2015) has 19,994 videos from 200 action classes. We follow the standard
setting to split all videos into training, validation and testing subsets in ratio of 2:1:1. (2) THU-
MOS14 (Idrees et al., 2017) has 200 validation videos and 213 testing videos from 20 categories with
labeled temporal boundary and action class.

Implementation details We use two pre-extracted encoders for feature extraction, for fair com-
parisons with previous methods. One is a pre-trained two-stream model (Simonyan & Zisserman,
2014), with downsampling ratio 16 and stride 2. Each video feature sequence F is rescaled to
T = 100/256 snippets for AcitivtyNet/THUMOS using linear interpolation. The other is Kinetics
pre-trained I3D model (Carreira & Zisserman, 2017) with a downsampling ratio of 5. Our model
is trained for 15 epochs using SGD with learning rate of 10−4/10−5, weight decay of 10−3/10−5

for AcitivityNet/THUMOS respectively. The batch size is set to 200 for ActivityNet and 50 for
THUMOS. During testing, we set the threshold set for segmentation mask Θ = {0.1 ∼ 0.9} with
step 0.1, and the confidence threshold θc = 0.1. We set M1 = 50 (top action snippet selection) and
M2 = 200 (final prediction selection). For post-processing, the SoftNMS threshold is set as 0.4/0.6
for THUMOS/ActivityNet.

4.1 MAIN RESULTS

Results on ActivityNet From Table 1, we can make the following observations: (1) GSMT with I3D
feature achieves the best result in average mAP. Despite the fact that our model is much simpler in
both architecture and loss designs compared to the existing alternatives. This validates our assumption
that with proper global context modeling, explicit proposal generation is not only redundant but also
less effective. (2) When using the relatively weaker two-stream (TS) features, our model remains
highly strong and even surpasses I3D based BU-TAL (Zhao et al., 2020) and A2Net (Yang et al.,
2020) by a large margin. (3) Compared to RTD-Net and AGTr both of which adopt the architecture
of object detection Transformers, our GSMT is significantly superior in performance particularly on
ActivityNet. This validates the advantage of our model formulation in exploiting the Transformer for
the TAL task with smaller but more complex video training data when compared to object detection
in images.

Results on THUMOS14 Similar conclusions can be drawn in general on THUMOS from Table
1. There is only one noticeable difference: We find that I3D is now much more effective than
two-steam (TS), e.g., around 7.8% gain in average mAP with GSMT over TS, compared with 1.2%

6



Under review as a conference paper at ICLR 2022

on ActivityNet. This is mostly likely caused by the distinctive characteristics of the two datasets in
terms of action instance duration and video length.

Table 1: Performance comparison with state-of-the-art methods on THUMOS14 and ActivityNet-v1.3.
The results are measured by mAP at different IoU thresholds, and average mAP in [0.3 : 0.1 : 0.7] on
THUMOS14 and [0.5 : 0.05 : 0.95] on ActivityNet-v1.3. Prop. free = Proposal free. ∗: Using the
object detection Transformer architecture.

Type Model Backbone THUMOS14 ActivityNet-v1.3
0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Anchor
R-C3D (Xu et al., 2017) C3D 44.8 35.6 28.9 - - - 26.8 - - -

TAL (Chao et al., 2018) I3D 53.2 48.5 42.8 33.8 20.8 39.8 38.2 18.3 1.3 20.2

GTAN (Long et al., 2019) P3D 57.8 47.2 38.8 - - - 52.6 34.1 8.9 34.3

Actionness

BMN (Lin et al., 2019) TS 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

DBG (Lin et al., 2020) TS 57.8 49.4 42.8 33.8 21.7 41.1 - - - -

G-TAD (Xu et al., 2020) TS 54.5 47.6 40.2 30.8 23.4 39.3 50.4 34.6 9.0 34.1

BU-TAL (Zhao et al., 2020) I3D 53.9 50.7 45.4 38.0 28.5 43.3 43.5 33.9 9.2 30.1

BC-GNN (Bai et al., 2020) TS 57.1 49.1 40.4 31.2 23.1 40.2 50.6 34.8 9.4 34.3

TCANet (Qing et al., 2021) TS 60.6 53.2 44.6 36.8 26.7 - 52.2 36.7 6.8 35.5

RTD-Net∗ (Tan et al., 2021) I3D 68.3 62.3 51.9 38.8 23.7 - 47.2 30.7 8.6 30.8

Mixed A2Net (Yang et al., 2020) I3D 58.6 54.1 45.5 32.5 17.2 41.6 43.6 28.7 3.7 27.8

GTAD+PGCN (Zeng et al., 2019) I3D 66.4 60.4 51.6 37.6 22.9 47.8 - - - -

Prop. free
AGTr∗ (Nawhal & Mori, 2021) I3D 65.0 58.1 50.2 - - - - - - -

GSMT I3D 68.5 62.6 54.3 43.8 28.7 51.6 56.0 36.8 9.4 36.2
GSMT TS 60.9 52.1 45.0 36.9 24.0 43.8 53.2 34.9 9.1 35.6

Table 2: Model training and test cost.

Model Epoch Train Test

BMN 13 9.45 hr 0.21 sec
G-TAD 11 3.91 hr 0.19 sec

GSMT 9 0.04 hr 0.09 sec

Table 3: Model parameter # and FLOPs.

Model Params (in M) FLOPs (in G)

BMN 5.0 91.2
GTAD 9.5 97.2
GSMT 2.9 0.6

Computational cost comparison One of the key motivations to design a proposal-free TAL model
is to reduce the model training and inference cost. For comparative evaluation, we evaluate GSMT
against two representative and recent TAL methods (BMN (Lin et al., 2019) and G-TAD (Xu et al.,
2020)) using their released codes. All the methods are tested on the same machine with one Nvidia
2080 Ti GPU. We measure the convergence time in training and average inference time per video
in testing. The two-stream video features are used. It can be seen in Table 2 that our GSMT is
drastically faster, e.g., 98/236× for training and 2.1/2.3× for testing in comparison to G-TAD/BMN,
respectively. Besides, GSMT needs less epochs to converge. Table 3 also shows that our GSMT has
the smallest FLOPs and the least parameter number.

4.2 ABLATION STUDY AND FURTHER ANALYSIS

Transformer vs. CNN We compare the Transformer with CNN for snippet feature learning. To this
end, we consider two CNN designs: (1) a 1D CNN with 3 dilation rates (1, 3, 5) each with 2 layers,

Table 4: Transformer vs. CNN on ActivityNet.

Network mAP
0.5 Avg

1D CNN 46.8 26.4
MS-TCN 53.1 33.8
Transformer 56.0 36.2

and (2) a multi-scale Temporal Convolutional
Network MS-TCN (Farha & Gall, 2019). Each
CNN design substitutes the Transformer respec-
tively while remaining all the others. The re-
sults in Table 4 shows that the Transformer is
clearly superior to both 1D-CNN and a relatively
stronger MS-TCN. This suggests that our global
segmentation mask learning is more compati-
ble with self-attention models due to stronger
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(a) 1D-CNN (b) MS-TCN (c) Transformer

Figure 4: Inter-snippet cosine similarity in the embedding space for a random ActivityNet val video.

contextual learning capability. For qualitative
analysis, we examine the cosine similarity scores of all snippet feature pairs on a random ActivityNet
val video. As shown in Fig. 4, the Transformer can better identify the separation between foreground
and background in the feature representation space.

Top PredictionTop Prediction Top Prediction

GSMT BMN R-C3D

(a) (b) (c)

Figure 5: False positive profile of GSMT, BMN and R-C3D on ActivityNet. We use top up-to 10G
predictions per video, where G is the number of ground truth action instances.

Proposal-based vs. proposal-free We compare our proposal-free GSMT with conventional proposal-
based TAL methods BMN (Bai et al., 2020) and R-C3D (Xu et al., 2017) via false positive analysis
(Alwassel et al., 2018). We sort the predictions by the scores and take the top-scoring predictions per

Table 5: Effect of different GSMT loss
objectives on ActivityNet.

Loss mAP
0.5 Avg

GSMT (full) 56.0 36.2

w/o Focal Loss 53.8 34.2
w/o Balanced LR Loss 54.4 35.2

w/o Dice Loss 54.1 34.9
w/o bIOU Loss 53.2 34.3

video. Two major errors of TAL are considered: (1) Local-
ization error, which is defined as when a proposal/mask
is predicted as foreground, has a minimum tIoU of 0.1 but
does not meet the tIoU threshold. (2) Background error,
which is the case when a proposal/mask is predicted as fore-
ground but its tIoU with ground truth instance is smaller
than 0.1. In this test, we use ActivitityNet. We observe
in Fig. 5 (a,b,c) that our GSMT identifies more precisely
positive samples than BMN and R-C3D in all the cases.

Effect of various loss objectives The results in Table 5
show that each loss is beneficial for TAL’s accuracy. In
particular, focal loss and balanced logistic regression (LR)
loss in Eq (5) and binary dice loss in Eq (6) all can tackle
the imbalance problem between action and background classes, whilst our proposed boundary IOU
(bIOU) loss in Eq. (6) is helpful in sharpening the foreground mask prediction. More specifically,
bIOU contributes 2.8% in mAP@0.5 and 1.9% in Avg mAP, indicating the importance of temporal
boundary and the effectiveness of our loss design in regulating more capacity for boundary inference.
To visualize the effect of bIOU loss, we randomly select a video from ActivityNet validation set and
compare the mask predictions with and without bIOU loss. Fig. 6 shows that with bIOU loss the
model can more accurately capture the temporal boundary of action instance, avoiding the otherwise
over-split mistakes.
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Figure 6: The effect of our bIOU loss an a random ActivitNet val video.

Table 6: Improvement analysis on Activi-
tyNet. GT: Ground-Truth.

Model mAP
0.5 Avg

GSMT 56.0 36.2

+ GT class 69.2 43.2
+ GT mask 61.0 47.0

Table 7: Analysis of network components on
ActivityNet.

Model mAP
0.5 Avg

GSMT(Full) 56.0 36.2

w/o Mask Branch 45.8 28.9
w/o Class Branch + UNet 49.7 31.8

Direction of improvement analysis Two subtasks are involved in TAL – temporal localization and
action classification, each of which would affect the final performance. Given the two-branch design
in GSMT, the performance effect of one subtask can be individually examined by simply assigning
ground-truth to the other subtask’s output at test time. From Table 6, the following observations can
be made: (1) There is still a big scope for improvement on both subtasks. (2) Regarding the benefit
from the improvement from the other subtask, the classification subtask seems to have the most to
gain at mAP@0.5, whilst the localization task can benefit more on the average mAP metric. Overall,
this analysis suggests that further improving the efficacy on the classification subtask would be more
influential to the final model performance.

Analysis of components We can see in Table 7 that without the proposed segmentation mask
branch, the model will degrade significantly, e.g., a drop of 7.3% in average mAP. This is due to
its fundamental capability of modeling the global temporal structure of action instances and hence
yielding better action temporal intervals. Further, for GSMT we use a pre-trained UntrimmedNet
(UNet) (Wang et al., 2017) as an external classifier instead of using the classification branch, resulted
in a 2-stage method. This causes a performance drop of 4.4%, suggesting the advantage of our 1-stage
design in both accuracy and efficiency.

5 CONCLUSION

In this work, we have presented a novel Global Segmentation Mask Transformer (GSMT) method
for temporal action localization. Compared to the encoder-decoder architecture of object detection
Transformers, we resort to a simpler encoder-only design, without the complexity of set prediction.
To address the smaller training data challenge, we introduce the global segmentation mask learning
idea for more effective self-attention representation learning in the Transformers. When compared
to previous proposal based alternatives, our GSMT is significantly simpler in design with more
efficient training and inference. Extensive experiments validated that the proposed GSMT yields new
state-of-the-art performances on two TAL benchmarks, and with clear efficiency advantages on both
model training and inference. Further, we demonstrate the superiority of our model over conventional
proposal-based methods under the more realistic and more challenging cross-domain setting.
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A APPENDIX

A.1 MORE ABLATION STUDIES

Failure cases and limitations of our approach A failure case is shown in Fig. 7. The segments
marked in red are the wrong detections. In this example, the duration of background instance between
two diving instances (21 vs 22, 24 vs 25) is very small. In such a situation, GSMT may wrongly
consider the background in between as foreground. Since snippet is the smallest prediction unit, any
foreground/background segments with a duration close to the snippet length will challenge any TAL
methods that use snippets as input. Improving the sensitivity of our model on detecting short-duration
action instances is thus part of the future work.

GT: Cliff Diving

Temporal SegmentsTime ( in secs ) :

7 10 Cliff Diving19 21 Diving22 24 Diving25 30 Cliff Diving61 64 Cliff Diving86 90 126

GTAD : 9 38 62 88Cliff Diving Cliff Diving

GSM (Ours) : 20 Cliff Diving 98

Figure 7: A failure case from THUMOS14

Ablation of component design in GSMT Our GSMT primarily consists of a Snippet Embedding
Transformer and 1-D Convolution heads for classification and localization branch. We ablate the
number of 1-D CNN layers for both the branch heads in Table 8. As the results suggest, only 1 layer
is enough for classification branch. A plausible reason for this is that for classification it needs global
information and stacking multiple 1-D CNN may affect the global information. For localization
branch, it is observed that 3 layers give best performance. This is probably because for predicting the
masks the network needs to process local information captured by 1-D CNNs. Additionally, we also
ablate the performance of transformer design in head size. Table 9 demonstrates that the performance
of GSMT improves significantly with the increase of heads in the Transformer. However, excessive
heads will lead to overfitting. The performance peaks at four heads.

Cross-domain generalization The experiments so far assumed that the training and test data come
from the same dataset/domain. However, in real-world applications a trained model typically needs
to handle many different deployment situations out of the box. To simulate this more realistic
deployment setting, we design a cross-domain experiment using a subset of classes shared by
ActivityNet-v1.3 and THUMOS14. We manually match the class semantics across the two datasets
and then merge those classes with same semantics but different names. This results in a total of 12
classes. G-TAD (Xu et al., 2020) is selected for comparative evaluation. We then train each model
on one dataset and test on the other. We observe from Table 10 that: (1) Both models’ performance
degrades (vs. Table 1) under this more challenging setting due to the data distribution shift. (2)
Importantly, our model’s advantage over G-TAD is even bigger compared to the same-domain setting,
suggesting that our model is more suited to real-world deployments. This is not surprising as simpler
models often generalize better.
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Table 8: Analysis of number of 1-D CNN
Layers for classification and mask branches
on ActivityNet.

# Layers Class. brch Mask brch

0.5 Avg 0.5 Avg

1 56.0 36.2 52.7 34.2
2 55.8 36.0 53.8 35.1
3 55.2 35.9 56.0 36.2
4 54.3 35.1 56.0 36.1
5 53.8 34.7 55.9 36.0

Table 9: Impact of the head number in the
Transformer on ActivityNet.

Number of heads mAP

0.5 Avg

1 53.8 34.8
2 54.6 35.0
3 55.2 35.7
4 56.0 36.2
5 55.8 35.9

Table 10: Cross-domain generalization.

Methods ActivityNet→ Thumos Thumos→ ActivityNet
mAP@0.5 Avg mAP mAP@0.5 Avg mAP

GTAD (Xu et al., 2020) 27.5 28.2 34.5 22.1

GSMT 32.7 30.3 43.4 25.6

Transformer for existing TAL methods We examine how well existing TAL methods work with
GSTM’s transformer for snippet embedding. We select a representative model BMN (Lin et al.,
2019) and insert our snippet embedding module right after the video encoder. As shown in Table 11,
self-attention can also improve the performance of BMN, demonstrating the importance of temporal
relationship modeling for temporal action localization task. However, it is still significantly inferior
to our GSMT model.

Table 11: Transformer for existing TAL methods on ActivityNet.

Network mAP
0.5 Avg

BMN (Lin et al., 2019) 50.1 33.9
Transformer + BMN 51.6 34.8

Performance vs. video length We additionally analyze the fine-grained performance by video length.
Following (Alwassel et al., 2018), the videos of THUMOS dataset are classified into 5 different
categories by the temporal duration: extra-small, small, medium, long and extra-long. We compare
our GSMT with BMN (Bai et al., 2020) and R-C3D (Xu et al., 2017) on each of these 5 duration
categories individually. As seen in Fig. 8, our proposal-free GSMT performs better for short, medium
and extra long action instances, whilst the proposal-based methods are better in extra-small and long
cases. This suggests some potential space of further improving our GSMT via taking inspirations
from previous proposal methods, which will be part of our future work.

Snippet length We evaluate the impact of the video snippet length for GSMT on ActivityNet. As
shown in Table 12, when the snippet length is small (e.g., 50), we observe a performance drop of 4%
in mAP@0.5. This may be due to that too small snippets are less capable to represent local motion
patterns. We found that the length of 100 is the best, confirming the same findings as GTAD (Xu
et al., 2020) and BMN (Lin et al., 2019).

Inference speed For comparison with more previous methods with no training code released, we
can only compare with their reported inference speed measured in FPS. As different GPU hardware
is used in previous papers, for easier comparison we translate the FPS speed according to their
specification. For this comparison, I3D features on THUMOS14 are used. It is evident from Fig. 9
that our GSMT runs much faster, e.g., 4/5× faster than PGCN/SSTAD.

Role of positional encoding in GSMT To evaluate the effect of position encoding in GSMT on
ActivityNet. As shown in Table 13, it is interesting to see that position encoding is not necessary and
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Figure 8: Fine-grained performance on video subsets with different temporal lengths on THUMOS.

Table 12: Impact of snippet length on ActivityNet

Snippet Length mAP

0.5 Avg

50 52.2 33.5
100 56.0 36.2
150 55.7 36.0
200 55.1 35.8

Figure 9: Translated FPS based on Titan XM.
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Table 13: Effect of positional encoding in GSMT
on ActivityNet.

# Position Encoding mAP

0.5 Avg

No Encoding 56.0 36.2
Learned Encoding 53.9 33.4

Fixed Encoding 44.7 28.0

Table 14: Impact of kernel size on bIOU loss
on ActivityNet.

Kernel Size mAP

0.5 Avg

3 53.3 34.3
5 55.1 35.7
7 56.0 36.2
9 55.7 36.0

even harmful to the performance. This indicates that with our current formulation, the snippet level
temporal information does not bring extra useful information.

A.2 QUALITATIVE RESULTS

In this section, to make more visual examination we provide additional qualitative results by GTAD
(Xu et al., 2020) and our GSMT model on both ActivityNetv1.3 and THUMOS14 dataset. We focus
on two challenging situations: (i) a single short-duration action instance per video Fig 11 and (ii)
multiple short-duration action instances per video Fig 12 . From these examples, we have a similar
observation that compared to G-TAD, our proposed GSM method can localize the target action
instances more accurately with a much smaller number of outputs, thus6being more efficient at
inference.
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Figure 10: Qualitative TAL result comparison on videos from (a) ActivityNet-v1.3 and (b) Thu-
mos14. We compare our GSMT (first 3 rows) with G-TAD Xu et al. (2020) (last 3 rows). For each
method, we show a number of top action detection candidates, with the confidence score given inside
each detection box. It can be seen that for both cases, our GSMT produces more accurate action
instance detection with much less candidates compared to G-TAD.
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Figure 11: Qualitative TAL result comparison on single-instance videos from (a) ActivityNet-v1.3
and (b) Thumos14.

17



Under review as a conference paper at ICLR 2022

GroundTruth : Applying Sunscreen

Final Prediction

36 79

41

(a) ActivityNet v1.3

GTAD : Final Prediction

Predicted
Global 
Mask

0

1

Time ( in secs ) :

14

22

GroundTruth : 

Temporal SegmentsTime ( in secs ) :

Predicted
Start/End

Point
0

1

TennisSwing4 121

GSM ( Ours ) :  

C : 0.48 

C : 0.63

GSM ( Ours ) : 
[ Before NMS ] 

C : 0.49

C : 0.93

GTAD : 
[ Before NMS ] 

C : 0.37

Final Prediction 8

GTAD : 

Predicted
Global 
Mask

0

1

3

Predicted
Start/End

Point
0

1

GSM ( Ours ) :  

GSM ( Ours ) : 
[ Before NMS ] 

GTAD : 
[ Before NMS ] 

C : 0.10

(b) THUMOS14

117 Masks

598 Proposals

105 Masks

2781 Proposals

7 103Final Prediction

Temporal Segments

C : 0.52

Final Prediction

Applying Sunscreen45 52

C : 0.53

C : 0.14 C : 0.50

Final Prediction46 51

C : 0.17

C : 0.44

C : 0.07

C : 0.78

28 61

TennisSwing TennisSwing3 6 8 89 91

C : 0.45

C : 0.21

C : 0.15C : 0.13

4 90

C : 0.61 C : 0.52

C : 0.13 C : 0.18

C : 0.30C : 0.45C : 0.20C : 0.29

Figure 12: Qualitative TAL result comparison on multi-instance videos from (a) ActivityNet-v1.3
and (b) Thumos14.
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