
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Oscar OSCAR: OPERATING SYSTEM CONTROL VIA
STATE-AWARE REASONING AND RE-PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) and large multimodal models (LMMs) have
shown great potential in automating complex tasks like web browsing and gaming.
However, their ability to generalize across diverse applications remains limited,
hindering broader utility. To address this challenge, we present OSCAR: Operating
System Control via state-Aware reasoning and Re-planning. OSCAR is a gener-
alist agent designed to autonomously navigate and interact with various desktop
and mobile applications through standardized controls, such as mouse and key-
board inputs, while processing screen images to fulfill user commands. OSCAR
translates human instructions into executable Python code, enabling precise con-
trol over graphical user interfaces (GUIs). To enhance stability and adaptability,
OSCAR operates as a state machine, equipped with error-handling mechanisms
and task-driven re-planning, allowing it to efficiently adjust to real-time feedback
and exceptions. We demonstrate OSCAR’s effectiveness through extensive experi-
ments on diverse benchmarks across desktop and mobile platforms, where it trans-
forms complex workflows into simple natural language commands, significantly
boosting user productivity. Our code will be open-source upon publication.

1 INTRODUCTION

Large Language Models (LLMs)(Ouyang et al., 2022; Achiam et al., 2023; Dubey et al., 2024) and
Large Multimodal Models (LMMs)(Li et al., 2023; Team et al., 2023; Liu et al., 2024a; Reid et al.,
2024) have demonstrated exceptional performance on tasks requiring complex reasoning (Liang
et al., 2022; Srivastava et al., 2023; Suzgun & Kalai, 2024), particularly when combined with ad-
vanced planning techniques (Wei et al., 2022; Wang et al., 2023b;c) and external tools (Yang et al.,
2023c; Liu et al., 2023a). These model-centric agents show revolutionary potential for automating
real-world tasks such as web browsing (Gur et al., 2023), gaming (Krzywinska, 2024), and software
development (Hong et al.). However, despite impressive results, these agents struggle to generalize
across different applications due to variations in observation and action spaces. In real-world scenar-
ios, workflows often involve switching between applications and interacting with diverse graphical
or command-line interfaces. This raises an intriguing and practical question: can we build a gen-
eralist agent capable of following user instructions across various applications using standardized
operating system (OS) controls like mouse and keyboard inputs, while processing screen outputs?

Recent work has explored graphical user interface (GUI) control on mobile devices, with a focus
on smartphone GUI understanding (You et al., 2024; Fan et al., 2024; Wu et al., 2024a) and task
automation (Yang et al., 2023d; Guan et al., 2024; Zhang & Zhang, 2024; Wang et al., 2024a). For
desktop computers, existing approaches simulate tasks in black-box systems like AAA games (Tan
et al., 2024) and office workflows (Wang et al., 2024c). Some methods extend this to general OS
control via visual question answering and human action trajectories (Hong et al., 2024; Chen et al.,
2024b; Cheng et al., 2024). However, these systems often lack real-time feedback from the OS and
struggle to adapt dynamically when task execution fails. Without a grounded executable environ-
ment, these methods fall short in real-world scenarios, where real-time feedback and adaptive action
adjustment are crucial for navigating new GUI environments, similar to human behavior. Recently,
new executable environments (Zheng et al., 2024b; Xu et al., 2024; Xie et al., 2024b) have emerged,
offering dynamic feedback and enabling agents to modify their actions on the fly, paving the way
for more autonomous, adaptive agents in OS control tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

User Instruction: “Please open the ‘Report.docx’ file and print it.”

Reference Action Trajectory

Action 1: Click on the Start Menu

Action 2: Search for ‘Report.docx’

Action 3: Open the file

Action 4: Print using the ‘Print’ option in Word

Action 1: Navigate to ‘C:\Documents\Report.docx’

Action 2: Open the file

Action 3: Print using the ‘Ctrl+P’ keyboard shortcut.

Alternative Action Trajectory

Agent that only works

in static environment

Agent that works in

dynamic environment

Compare Fixed

and Dynamic

Environments

Figure 1: Comparison of agent action sequences in static and dynamic OS environments for the task
of opening and printing ’Report.docx’. The static environment (left) requires a fixed action
trajectory and fails if the agent deviates. The dynamic environment (right) allows for alternative
action trajectories, enabling the agent to adapt and successfully complete the task using different
valid methods.

As depicted in Figure 1, consider an agent tasked with opening “Report.docx” and printing it. In
a static environment, the agent must follow a predetermined sequence of actions—clicking the Start
Menu, searching for “Report.docx”, opening the file, and printing using the “Print” option in
Word. Any deviation from this sequence, such as navigating directly to “C:\Documents\” direc-
tory, opening the file, and printing using the Ctrl+P shortcut, results in failure because the static
environment cannot accept multiple valid solutions. In contrast, a dynamic environment allows the
agent to adapt its actions based on real-time feedback, successfully completing the task using various
valid methods. This example highlights the importance of adaptability in real-world settings, where
agents must handle unforeseen changes or errors. To address this limitation, we propose leveraging
a large multimodal model (LMM) to develop a generalist agent capable of interpreting user com-
mands, interacting with graphical user interfaces (GUIs), and adjusting its strategy in response to
real-time feedback.

To achieve this, we identify three key challenges in building such a generalist agent for dynamic ex-
ecutable environments: 1) Unified Control Interfaces: The agent must seamlessly operate standard
input methods like mouse and keyboard across various applications. This involves executing precise
actions such as mouse movements, clicks, scrolling, and using keyboard shortcuts (e.g., Ctrl+C for
copying content), all based on visual inputs; 2) GUI Grounding: The agent needs to interpret the
screen and accurately identify relevant elements, such as buttons, menus, or text fields. For example,
when instructed to perform a web search, it must locate and interact with the search box by correctly
grounding the user instructions to the on-screen components; 3) Exploration-Based Simulation
and Re-planning: Similar to how humans navigate unfamiliar software interfaces, the agent must
have the ability to explore and adjust its plan dynamically. This includes retrying actions, handling
exceptions like software crashes, and adapting its strategy based on real-time feedback from the
system. By addressing these challenges, we aim to develop a robust agent capable of navigating
a wide range of computer applications in a flexible and reliable manner. This dynamic interaction
between the agent and the operating system—driven by real-time feedback—forms the foundation
of our approach, moving beyond the limitations of static, pre-scripted workflows.

In this paper, we introduce OSCAR, a general-purpose agent designed to autonomously interact
with dynamic OS environments through code-centric control. OSCAR generates executable Python
code to directly interface with the OS, enabling semantically clear and precise actions, ensuring
broad applicability across diverse tasks. To enhance GUI understanding, OSCAR augment screen
observation with visual grounding and semantic grounding inputs by leveraging the OS window
API to extract interactable elements and their spatial layout. OSCAR operates as a state machine,
continuously looping through planning, action, and re-planning to handle execution failures and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

system exceptions. To optimize efficiency, we incorporate task-driven re-planning, allowing the
agent to adjust specific tasks rather than entire workflows, minimizing overhead and enhancing
adaptability in dynamic environments.

We validated OSCAR’s effectiveness and generalizability across diverse benchmarks involving both
desktop and smartphone OS environments. On the GAIA (Mialon et al., 2023) benchmark, OSCAR
outperformed previous methods, achieving a 28.7% average success rate, with a notable 13.5% suc-
cess rate on the most complex Level 3 tasks, nearly doubling the prior state-of-the-art performance.
On the OSWorld (Xie et al., 2024b) and AndroidWorld (Rawles et al., 2024) benchmarks, OSCAR
consistently surpassed other agents, achieving a 24.5% success rate on OSWorld, and 61.6% on An-
droidWorld, demonstrating superior adaptability across real-time dynamic OS tasks. These results
highlight OSCAR’s advancement in transforming tedious tasks into natural language commands,
showcasing its adaptability and strong general-purpose capability.

2 METHODOLOGY

In this section, we introduce OSCAR, an intelligent agent designed for general-purpose control and
navigation within operating systems. As illustrated in Figure 2, OSCAR operates as a state ma-
chine (Girault et al., 1999; Yannakakis, 2000), enabling it to handle dynamic OS environments
through systematic state transitions. This framework allows OSCAR to efficiently process user in-
structions, observe the environment, plan and execute actions, and verify outcomes, while managing
potential OS exceptions. We now detail the state transition process, highlighting how OSCAR inte-
grates GUI grounding, task-driven re-planning, and code-centric control in each operational state.

2.1 FORMULATION OF STATE TRANSITIONS

[Init → Observe]. In the [Init] state, OSCAR awaits user instructions. Upon receiving a
command, the system transitions to the [Observe] state to begin processing the input. This is the
starting point for each task, and the agent returns to this state after completing or terminating a task.

[Observe → Plan]. After receiving the user’s request, OSCAR captures a screenshot of the
current environment and interprets it by performing GUI grounding detailed in Section 2.2. This in-
volves identifying screen elements, such as buttons and input fields, to understand the user interface
context. The system then transitions to the [Plan] state.

[Plan → Execute, Plan → Verify]. In the [Plan] state, OSCAR generates an action
plan based on the current screenshot, user instructions, context memory, and any previous verifica-
tion feedback from the OS (if available). As detailed in Section 2.3, it utilizes task-driven re-planning
to invoke the model backend and determine the next action.

• If more actions are needed to complete the task, OSCAR stores the planning results and gener-
ated actions in the context memory and transitions to the [Execute] state to interact with the
operating system via executable Python code.

• If no further actions are necessary (the whole task completion is indicated), OSCAR transitions
directly to the [Verify] state.

[Execute → Plan, Execute → Observe → Plan]. In the [Execute] state, the
Python code is executed to interact with the operating system. There are two possible outcomes:

• If execution fails due to invalid code (e.g., syntax errors or attempts to access non-existent GUI
elements), OSCAR transitions back to the [Plan] state, incorporating the interpreter’s error mes-
sage for re-planning.

• If execution succeeds, OSCAR first transitions to the [Observe] state to capture a new screen-
shot, reflecting the updated state of the environment. Subsequently, OSCAR moves to the [Plan]
state to plan the next action based on the new context.

[Verify → Success, Verify → Plan, Verify → Fail]. In the [Verify]
state, OSCAR runs evaluation scripts to validate the outcomes of the executed actions. These scripts
check system or application settings and analyze file content to confirm that the intended tasks were

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

[Init] [Observe]

[Reset]

[Plan] [Execute]

Invalid action

[Verify]

N
o

 m
o

re

a
ct

io
n

 n
ee

d
ed

More action needed

[Success]

[Fail]

Verification fails

AND attempts > max

V
erifica

tio
n

 fa
ils

A
N

D
 attem

p
ts <=

 m
ax

[Error]

[User Request] [Context Memory]

State Transition

Data Input / Output

System Error Handling

Figure 2: Illustration of the state machine model used in OSCAR. The model consists of multi-
ple states—[Init], [Observe], [Plan], [Execute], [Verify], [Success], [Fail],
[Reset], and [Error]—and handles transitions between them. Transitions are triggered by
user request, planning completion, verification results, or OS errors, allowing for dynamic interac-
tion with the environment.

successfully completed. Based on the results, OSCAR either transitions to the [Success] state
if verification passes or returns to the [Plan] state if it fails. If the failure exceeds the allowed
maximum number of attempts, OSCAR transitions to the [Fail] state.

[Success → Init]. If the task verification passes, OSCAR enters the [Success] state, sig-
naling successful task completion and notifying the user. The system then transitions to the [Init]
state, ready to process the next user query.

[Fail → Reset]. If the task cannot be completed after the maximum number of allowed at-
tempts, OSCAR transitions to the [Fail] state, notifying the user of the failure and then transition-
ing to the [Reset] state.

[Plan → Error, Execute → Error, Verify → Error, Error → Reset].
OSCAR transitions to the [Error] state when a critical system exception or crash occurs, such as
a local model backend failure or when too many files or processes are open in the OS. In this state,
the task is terminated, and the user is notified of the error. User intervention may be required to
resolve the issue before OSCAR transitions to the [Reset] state.

[Reset → Init]. In the [Reset] state, OSCAR restores the operating system to its pre-query
configuration by terminating processes and closing file handlers. Once the reset is complete, OSCAR
returns to the [Init] state, ready to process the next user query.

In a nutshell, the state machine architecture of OSCAR introduces continuous feedback loops, en-
abling dynamic interaction and error recovery, which enhances its robustness in dynamic OS en-
vironments. Additionally, unlike previous methods that relied on linear action sequences and re-
planning from scratch (Yang et al., 2023d; Zhang et al., 2024a; Wu et al., 2024c), OSCAR’s state
machine integrates real-time verification feedback for fine-grained, task-driven re-planning, signif-
icantly improving efficiency and adaptability. Most importantly, its modular state transitions allow
for flexible generalization across diverse OS environments, such as desktop and smartphone OS.

2.2 GUI-GROUNDED OBSERVATION

While LLMs exhibit strong capabilities in understanding general visual information and grounding
in broad domains, feeding a screenshot into the model to facilitate planning and output control
over the screen remains insufficient. This insufficiency stems from the fact that GUI images differ

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

User Instruction: “Open Notepad, create a new file named ‘draft.txt’,

type ‘This is a draft.’, and save it to the Documents folder.”

[Init] [Observe]

GUI-grounded observation

Semantic Grounding Input Screenshot Visual Grounding Input

We map the numerical

coordinates of UI elements

into bounding boxes to get

SoM visual prompt.

The original screenshot

contains no bounding

boxes of UI elements.

27

Figure 3: Illustration of GUI-grounded observation in OSCAR, which includes original screenshot,
semantic grounding input, and set-of-mark (SoM)-based visual grounding input.

significantly from natural images (Cheng et al., 2024), as they are densely packed with text and
diverse interaction elements, such as icons and widgets, often rendered at a small scale relative to
high-resolution screens. As a result, it is difficult for models to accurately locate all interaction
elements and understand GUI semantics. For instance, both and could represent a settings
icon, depending on the application.

To address this, we introduce a dual-grounding observation approach to enhance GUI understanding,
i.e. incorporating both visual grounding and explicit semantic grounding. Firstly, we leverage a
Set-of-Mark (SoM) prompting (Yang et al., 2023a) technique to enhance GUI visual grounding.
SoM prompting, a visual prompting technique that adds marks to image regions to significantly
improve LMM performance on fine-grained vision tasks. Specifically, we utilize native window API
to extract the Accessibility (A11Y) tree, a kind of structural representation providing the location,
properties, and states of UI components (Consortium, 2018). Based on the A11Y tree, we extract
precise numerical coordinates of UI elements and map them into bounding boxes to generate SoM
visual prompts (Figure 3). The A11Y tree offers greater precision and robustness than the commonly
adopted detection+OCR pipeline (Gao et al., 2023; Wang et al., 2024a), particularly in complex
screens with numerous UI elements where OCR often fails (see Section 3.1 for ablation analysis).

In addition to visual grounding, we further enhance GUI understanding through explicit semantic
grounding by adding descriptive labels to key elements, such as: (ID: 14, Label: Start, X1:
0.35, Y1: 0.95, X2: 0.38, Y2: 1.00). These labels not only offer semantic descriptions of
UI components but also facilitate code-centric control by allowing precise references to elements
(e.g. by element ID).

By combining the screenshot with dual-grounding observations, OSCAR can not only grasp the over-
all layout and context of the GUI, but also focus on relevant areas of the screen, while flexibly re-
ferring to specific elements when needed. This approach significantly enhances GUI understanding,
ensuring robust and efficient task execution in dynamic OS environments.

2.3 TASK-DRIVEN RE-PLANNING

Interacting with dynamic environments for open-ended tasks has been well-studied in domain-
specific agents, such as those agents in Minecraft (Wang et al., 2023a;d) and data analysis (Guo
et al.; Zhang et al.). Iterative planning with exploration in self-instructed task curricula has proven
effective, as agents adjust their plans based on environmental feedback. These methods typically
involve two stages: exploration and deployment. During the exploration phase, agents comprehen-
sively interact with the environment to gather knowledge and experience. In the deployment phase,
agents apply the learned strategies from exploration to operate and navigate new environments.

However, while navigating dynamic operating systems shares the goal of determining feasible action
sequences for complex tasks, it introduces significant efficiency challenges, as agents must respond

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

[Self-Reflection on Next Actions]
Additional actions are required.

[Current Task] 1/3 Open Notepad
1. Click on the Start Menu button on the taskbar.
2. Type "Notepad" into the search bar.
3. Press Enter or click on the Notepad application from

the search results to open it.

[Observe] [Plan] [Execute]
[Plan]

[Self-Reflection on Task Re-planning]
1. This is the initial planning phase with no feedback

received, Task re-planning is not necessary at this time.
2. No task list exists in context memory; creating a new

task list based on the user's instruction.

[New Task List]
1. Open Notepad.
2. Type "This is a draft." into Notepad.
3. Save file as "draft.txt" in the Documents folder.

[Current Action] Click on the Start Menu
```python
mouse.move(id=14)    # Move to “Start”

mouse.single_click() # Click on "Start”

```

[Execute]

[Instruction] & [Demonstrations]

[Context Memory]:
Task List: []
History Actions: []

[Observation Input]:
User Request
GUI-grounded Observation

[Feedback Input]:
Execution Feedback on Action
Verification Feedback on Task

[Input]

Task-driven Re-planning

Code-Centric Action

Figure 4: Illustration of task-driven re-planning and code-centric control in OSCAR. Based on the
current observation, context memory, and real-time OS feedback from execution or verification,
OSCAR generates a refined task list and determines the next action. The action refers to GUI ele-
ments using semantic grounding input and includes executable Python code to control the OS, such
as clicking the “Start” button (id=14 in Figure 3) and launching applications.

promptly to user requests. The plan-after-fully-exploration approach is inefficient for OSCAR in
these contexts. To balance efficiency and effectiveness, we introduce task-driven re-planning,
while storing action trajectories and planning results in context memory to summarize and leverage
past experiences. Specifically, we draw inspiration from plan-and-solve prompting (Wang et al.,
2023b; Zhang et al., 2024b), a planning-based chain-of-thought (Wei et al., 2022) approach that
simplifies complex tasks by breaking them into a hierarchy of sub-tasks and mapping them into
executable actions. As shown in Figure 4, we instantiate this concept as two-level planning. Level
1: Decompose user instructions into tasks using standardized operating procedures (SOPs) (Hong
et al.), improving clarity in task decomposition. Level 2: For each task, generate actions step-by-
step, interleaving planning and execution within OSCAR’s state machine.

A significant advantage of task-driven re-planning is fine-grained self-refinement (Shinn et al., 2023;
Tao et al., 2024), i.e. when negative feedback is received from dynamic evaluation in the state tran-
sition of [Verify] → [Plan], OSCAR can re-plan only specific tasks, rather than re-planning
the entire workflow or just the current action. This approach improves planning efficiency by en-
abling fine-grained re-planning of tasks. It also helps avoid error propagation (Zhang & Zhang,
2024), where incorrect actions early on prevent successful completion of user requests, regardless
of how well subsequent actions are planned. For example, in a workflow involving multiple applica-
tions—extracting information from a Word document, observing a figure in Photos, and summariz-
ing content in PowerPoint—each task requires several interactions. Errors in earlier tasks, such as
copying text or capturing an image, will propagate and result in incorrect summaries in PowerPoint.

Formally, the complete prompt input for invoking the model is summarized in Figure 4, which in-
cludes user request, context memory, GUI-grounded observation and feedback from both execution
and verification phases. The full version of system prompt can be found in the Appendix B.

2.4 CODE-BASED ACTION

As portrayed in Figure 4, leveraging the textualized SoM from observed screenshots, OSCAR can
easily refer interaction elements on the screen using element ID or numerical coordinates. This
allows OSCAR to generate code to control these elements with logically clear semantics. To oper-
ationalize OSCAR’s action space, we employ the widely-used PyAutoGUI library 1 for mouse and
keyboard control. This library enables various mouse behaviors (movement, left-click, right-click,
double-click, scroll) and keyboard interactions (single key presses, key shortcuts). Further details
are summarized in Table 5.

1https://pyautogui.readthedocs.io/

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

Benchmarks. We evaluate OSCAR on real-world workflow automation benchmarks involving com-
plex user requests. The first benchmark is GAIA (Mialon et al., 2023), which consists of 466
question-answering (QA) structured into three levels: Level 1 includes simple tasks requiring no
more than five steps; Level 2 involves more complex tasks with 5-10 steps and multiple tools; and
Level 3 presents advanced tasks requiring over 10 actions and tool usage. The second benchmark is
OSWorld (Xie et al., 2024b), an interactive dynamic environment with real-time OS feedback. It in-
cludes 369 tasks covering OS settings, office software, daily applications (e.g. Chrome), professional
tools (e.g. VSCode), and multi-application tasks. Without a gold-standard reference action sequence,
the environment allows for multiple valid solutions, which are evaluated through dynamic execution
testing—verifying modified files or displayed text content in windows. Additionally, similar to OS-
World, AndroidWorld (Rawles et al., 2024) provides a dynamic smartphone OS environment with
116 tasks spread across 20 diverse applications, and human annotated difficulty level: easy, medium,
hard. Please refer to Appendix D and Appendix E for more experiments on the GUI understanding
and static navigation benchmark.

Table 1: Real-world workflow results on the
GAIA benchmark using the exact match metric.
Since MMAC does not publicly release their code,
we report MMAC’s results as stated in their paper
and use the same base model (i.e. GPT-4-turbo) in
all of the baseline models, for a fair comparison.

Model Level 1 Level 2 Level 3 Average

GPT-4-turbo 9.7 6.9 0.0 5.5
GPT-4 plugins 30.3 9.7 0.0 13.3

UFO 36.9 16.1 5.4 19.4
FRIDAY 40.9 20.1 6.1 22.4
MMAC 45.2 20.8 6.1 24.0

OSCAR 47.0 25.6 13.5 28.7

Table 2: Quantitative results on the OSWorld
benchmark, measured by success rate (SR). All
baselines incorporate the SoM visual prompt as
auxiliary GUI-grounded input and use GPT-4o as
the base model to ensure a fair comparison.

Model OS Office Daily Prof. Multi Avg.

Cradle 16.7 3.5 6.6 20.4 5.5 10.5
UFO 37.5 6.8 12.8 14.3 10.9 16.5

FRIDAY 45.8 8.5 14.1 18.4 6.9 18.8

OSCAR 58.3 12.0 16.7 22.4 12.9 24.5

Table 3: Quantitative results on the AndroidWorld
benchmark using the same model and input set-
tings as OSWorld.

Model Easy Medium Hard Average

M3A 41.0 33.3 26.3 33.5
Mobile Agent 49.2 41.7 31.6 40.8

AppAgent 82.0 55.6 42.1 59.9

OSCAR 65.6 66.7 52.6 61.6

Baselines. We compare OSCAR with seven
generalist agents designed to handle dynamic
OS feedback. For the desktop OS environ-
ment, we include Cradle (Tan et al., 2024),
UFO(Zhang et al., 2024a), FRIDAY (Wu et al.,
2024c), and MMAC (Song et al., 2024). For
the smartphone OS environment, we evalu-
ate against M3A (Rawles et al., 2024), Ap-
pAgent (Yang et al., 2023d), and Mobile
Agent (Wang et al., 2024a). Implementation
details of OSCAR and these baselines are pro-
vided in Appendix B.

Results. Table 1 summarizes the results on
the GAIA benchmark, where OSCAR achieves
the best performance across all three levels of
workflow complexity. In particular, for Level
3 tasks, OSCAR significantly outperforms pre-
vious methods, achieving 13.5% compared to
MMAC’s 6.1%, demonstrating the effective-
ness of OSCAR’s task-based planning. Addi-
tionally, as shown in Table 2, OSCAR consis-
tently surpasses other methods across various
applications in dynamic desktop OS environ-
ments. In challenging tasks involving multiple
applications, OSCAR achieves a 12.9% success
rate, outperforming the multi-agent baseline,
UFO, which leverages dual agents to coordinate
workflow decomposition and execution. When
adapting OSCAR’s action space to a mobile en-
vironment, as shown in Table 3, it achieves
better average performance than the two-phase
approach (comprehensive exploration followed
by execution) of AppAgent, particularly in the
medium and hard subsets, highlighting the ef-
fectiveness and efficiency of OSCAR’s task-
driven re-planning.

3.1 ABLATION ANALYSIS

We conduct ablation analysis on the individual components of OSCAR, including GUI-grounded
observation and various planning techniques. Specifically, we first compare our GUI-grounded ob-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

servation against baseline that omits the SoM visual prompt, i.e. feeding raw screenshots as input.
Additionally, we replace A11Y tree-based extraction with a Detection+OCR pipeline.

 OS

Office

Daily

Professional

Multi

 OS
0.7 0.8 0.9 1.0

Raw Screenshot
Detection+OCR
Direct Prompt
ReAct
Chain-of-Action
OSCAR

Figure 5: Decomposed performance of different
ablation baselines. Scores are re-scaled using
max-min normalization for each capability to im-
prove clarity.

For the baselines in planning techniques, we
replace our task-driven re-planning with state-
of-the-art methods used in multi-step decision-
making tasks, particularly for long action se-
quences. These include ReAct (Yao et al.,
2022b), plan-and-solve (Wang et al., 2023b),
and chain-of-action (Zhang & Zhang, 2024).

The results of different baselines on the OS-
World benchmark are illustrated in Figure 5.
We have the following observation: 1) Both
GUI-grounding and task-driven re-planning
significantly enhance performance. Specifi-
cally, raw screen input without GUI grounding
and direct prompts without fine-grained plan-
ning achieve only 70% and 80% of OSCAR’s
full performance, respectively. 2) The Detec-
tion+OCR pipeline is less effective than the
original A11Y tree-based method, particularly on the subset of professional tools with numerous
UI elements, where it only marginally outperforms raw screenshot input. Furthermore, the Detec-
tion+OCR method introduces additional processing time, reinforcing the A11Y tree as the superior
choice for dynamic OS environments. 3) Advanced planning strategies can significantly enhance
workflow performance. For instance, ReAct and Chain-of-Action achieve results that are compara-
ble to OSCAR in daily application and office software scenarios. 4) However, without considering
real-time OS feedback and efficient re-planning, ReAct and Chain-of-Action struggle in professional
software and multi-application scenarios, highlighting OSCAR’s advantage in adapting to dynamic
OS environments.

3.2 IN-DEPTH ANALYSIS

Instance-level analysis on planning efficiency. To better understand why OSCAR achieves superior
performance, particularly in dynamic OS environments, we take a closer look at the final success
rate results and conduct an instance-level analysis for both successful and failed user requests on the
OSWorld benchmark. Specifically, for the successful cases with OSCAR, we track the number of re-
planning occurrences before verification failures exceed the allowed maximum number of attempts
i.e. the upper bound for re-planning is the maximum number of allowed attempts. We also track the
total action steps taken and the ratio of the successful action path length to the total steps, serving
as a proxy for the action matching score in dynamic environments, where no reference action path
exists as it does in static environments (Rawles et al., 2023). It is used to quantify the planning
and execution efficiency in the fail-and-re-planning setting, is also referred as process score (PS) by
Wang et al. (2024a), or as completion rate (CR) by Zhang et al. (2024a).

For failed cases, following Xu et al. (2024), we categorize failures into three classes: False Com-
pletion (FC), where the agent incorrectly believes the task is completed; Reach Step Limit (RSL),
where the agent reaches the maximum step limit without completing the task; and Invalid Action
(IA), where the agent produces outputs that do not follow instructions, including invalid formats,
nonexistent actions, or incorrect action parameters. Since OSCAR can handle invalid actions and
false completions through execution and verification feedback, i.e.[Execute] → [Plan] and
[Verify] → [Plan] state transitions, FC and IA errors do not occur in OSCAR. We further
analyze a subclass of RSL, where re-planning generates the same task list or action trajectory that
has already been marked as a verification failure in previous attempts. We refer to this subclass
as Redundant Re-plan (RR). For comparison, we also analyze these metrics for FRIDAY, the most
competitive baseline in dynamic OS environments, as shown in Table 2.

OSCAR requires fewer re-planning attempts. As shown in Figure 6, in the successful re-
quests, over 80% of the samples using OSCAR required fewer than 3 re-planning attempts,
whereas in FRIDAY, more than 50% of the successful samples needed 3 to 4 re-planning attempts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

10

20

30

Di
st

rib
ut

io
n

OSCAR
FRIDAY

0 1 2 3 4
Number of re-planning attempts

0

20

40

60

80

100

Pr
ox

y
Ac

tio
n

M
at

ch
in

g

Figure 6: Planning efficiency analysis
of successful cases.

Table 4: Failure case statistics for False
Completion (FC), Reach Step Limit
(RSL), and Invalid Action (IA). The
subclass of RSL, Redundant Re-plan
(RR), is also reported as a ratio relative
to the total number of failure cases.

Model FC RSL (RR) IA
FRIDAY 9.1% 70.4% (52.8%) 20.5%
OSCAR – 100% (15.2%) –

(the maximum allowed re-planning attempts in our ex-
periments is 4, after which the case is deemed a fail-
ure). This distribution highlights OSCAR’s efficiency ad-
vantages, as it leverages task-driven re-planning to focus
on high-level task lists and perform fine-grained adjust-
ments, rather than re-planning the entire workflow. These
findings align with our goal of adapting to dynamic OS
feedback while improving efficiency.

OSCAR’s re-planning includes smaller, more efficient
steps. The proxy action matching score indicates that
OSCAR consistently takes smaller, more efficient steps
during re-planning, while FRIDAY’s score worsens as the
number of re-planning attempts increases. This efficiency
is due to OSCAR’s ability to learn from previous trials,
using the stored task list and action history in its context
memory to optimize subsequent task lists and action tra-
jectories upon receiving verification failure feedback.

OSCAR’s failure cases involve less redundant re-
planning. As shown in the failure case statistics in Ta-
ble 4, although OSCAR may not always complete the
user request within the allowed attempts, its re-planning
typically avoids repeating previously explored steps. In
contrast, FRIDAY’s tendency to re-plan the entire work-
flow frequently (52.8%) results in generating an action
trajectory that has already been verified as unsuccessful.
This finding complements the success case results, where
most of OSCAR’s successful cases required only 1-2 re-
planning attempts.

Qualitative examples. As illustrated in Figure 7, OSCAR
effectively handles complex requests involving multiple
applications, i.e. OS→Office→OS→Daily, showcasing its flexible and effective planning capabili-
ties. Please refer to Appendix F for more qualitative examples.

4 RELATED WORKS

GUI agents. LLM and LMM-based agents (Wang et al., 2024b; Xie et al., 2024a; Madaan et al.,
2023), equipped with advanced planning module (Xu et al., 2023; Shinn et al., 2023), have been
developed across various environments, including robotics (Driess et al., 2023; Zitkovich et al.,
2023), web browsing (Yao et al., 2022a; Gur et al., 2023), gaming (Fan et al., 2022), software
development (Yang et al., 2023b), automating benchmark construction (Liu et al., 2024b), data
analysis (Zhang et al.), and AI for science (Xiao et al., 2024). Although recent all-in-one agent
development platforms (Wu et al., 2023; Xie et al., 2023; Hong et al.) have been released, most of
these agents operate within specific domains, limiting their broader applicability. Among them, GUI
agents—capable of interacting with various desktop and smartphone GUIs like human users—offer
broader applicability in automating real-world workflows (Mialon et al., 2023). Some agents are
continually pre-trained (Cheng et al., 2024) or fine-tuned (Chen et al., 2024b) on GUI-specific data.
Others simulate GUI control in sandbox environments, such as AAA games (Tan et al., 2024) or
office workflows (Wang et al., 2024c), which require internal application-specific APIs to interact
with the environment. In a broader context, some agents interact with basic OS APIs but are often
designed for static, pre-defined environments (Reed et al., 2022; Hong et al., 2024) without ground-
ing in real-time executable environments. Other agents follow linear action sequences and perform
re-planning from scratch (Yang et al., 2023d; Zhang et al., 2024a; Wu et al., 2024c) when verification
fails, lacking fine-grained re-planning strategies, which makes them less efficient in real-world sce-
narios. Motivated by these limitations, we design OSCAR to handle real-time dynamic OS feedback
using an efficient, state-aware, task-driven re-planning strategy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Qualitative results when processing user request “Could you please convert ‘Pre.pptx’
to video and play it with VLC?” on the OSWorld benchmark. Some intermediate steps and other
regions of the screenshot have been omitted for clarity.

Synergizing LLMs and LMMs with OS. Beyond GUI agents, another line of work explores
integrating LLMs and LMMs with OSs in two key areas: 1) optimizing or tuning traditional OS
functions using LLMs, and 2) integrating LLMs into OS kernels (LLM as OS) to serve as system-
level interfaces, facilitating local agent operations and deployment. The former includes optimizing
CPU load balancing (Li et al., 2024), improving storage access (Wu et al., 2024b), and identifying
and repairing code vulnerabilities (Islam et al., 2024). The latter focuses on OS-level hardware
adaptation and resource management (Kamath & Yadalam, 2024) as well as agent-level resource
scheduling and sharing (Mei et al., 2024; Zhuo et al., 2024), such as managing agent memory and
enabling efficient communication among multiple heterogeneous agents sharing the same model
back-end. Unlike these approaches, OSCAR functions as a generalist GUI agent, acting as an OS
co-pilot to enhance user experience and productivity.

5 CONCLUSION

In this work, we introduced OSCAR, a generalist agent designed to autonomously navigate and in-
teract with dynamic OS environments using a code-centric control framework. By leveraging task-
driven re-planning and GUI-grounded observations, OSCAR demonstrates robust adaptability and
effectiveness across both desktop and smartphone OS tasks. Our experiments on real-world work-
flow automation benchmarks, including GAIA, OSWorld, and AndroidWorld, showed that OSCAR
outperforms existing methods, achieving significant improvements in task success rates, particularly
for complex, multi-step tasks. Ablation studies further confirmed the importance of key components
like GUI-grounded observation and task-driven re-planning for enhancing performance and mini-
mizing redundant re-planning. Overall, OSCAR offers a versatile, efficient solution for automating
workflows, making it a powerful tool for improving productivity in dynamic OS environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong
Wang, Huichi Zhou, Yiqiang Li, et al. Gui-world: A dataset for gui-oriented multimodal llm-
based agents. arXiv preprint arXiv:2406.10819, 2024a.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024b.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiy-
ong Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9313–9332,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.505.

World Wide Web Consortium. Core accessibility api mappings 1.1. https://www.w3.org/
TR/core-aam-1.1/, 2018. Accessed: [Insert date of access].

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: towards a generalist agent for the web. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing Systems, pp. 28091–28114, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embodied multi-
modal language model. In Proceedings of the 40th International Conference on Machine Learn-
ing, pp. 8469–8488, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: building open-ended embodied
agents with internet-scale knowledge. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, pp. 18343–18362, 2022.

Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang Zhao, Xinze Guan, Jie Yang, Yi Zhang,
and Xin Eric Wang. Read anywhere pointed: Layout-aware gui screen reading with tree-of-lens
grounding. arXiv preprint arXiv:2406.19263, 2024.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical user interface
automation. arXiv preprint arXiv:2312.13108, 2023.

Alain Girault, Bilung Lee, and Edward A Lee. Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on computer-aided design of integrated circuits and
systems, 18(6):742–760, 1999.

Google Cloud. Cloud Vision API. https://cloud.google.com/vision. Accessed: Octo-
ber 5, 2023.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, Feiyue Ni, Ruihua Song, and Chenyi
Zhuang. Intelligent agents with llm-based process automation. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5018–5027, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Auto-
mated data science by empowering large language models with case-based reasoning. In Forty-
first International Conference on Machine Learning.

11

https://aclanthology.org/2024.acl-long.505
https://aclanthology.org/2024.acl-long.505
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://cloud.google.com/vision

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Gonzalo De La Torre Parra, Elias Bou-Harb,
and Peyman Najafirad. Llm-powered code vulnerability repair with reinforcement learning and
semantic reward. arXiv preprint arXiv:2401.03374, 2024.

Aditya K Kamath and Sujay Yadalam. Herding llamas: Using llms as an os module. arXiv preprint
arXiv:2401.08908, 2024.

Tanya Krzywinska. Being a determined agent in (the) world of warcraft: text/play/identity. In
Videogame, player, text, pp. 101–119. Manchester University Press, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Tiangang Li, Shi Ying, Yishi Zhao, and Jianga Shang. Batch jobs load balancing scheduling in
cloud computing using distributional reinforcement learning. IEEE Transactions on Parallel and
Distributed Systems, 35(1):169–185, 2024.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Minghao Liu, Zonglin Di, Jiaheng Wei, Zhongruo Wang, Hengxiang Zhang, Ruixuan Xiao, Haoyu
Wang, Jinlong Pang, Hao Chen, Ankit Shah, et al. Automatic dataset construction (adc): Sample
collection, data curation, and beyond. arXiv preprint arXiv:2408.11338, 2024b.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. arXiv
preprint arXiv:2311.05437, 2023a.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
NLG evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2511–2522, Singapore, December 2023b. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/
2023.emnlp-main.153.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: iterative refinement
with self-feedback. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pp. 46534–46594, 2023.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Llm agent
operating system. arXiv preprint arXiv:2403.16971, 2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

12

https://aclanthology.org/2023.emnlp-main.153
https://aclanthology.org/2023.emnlp-main.153

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. arXiv
preprint arXiv:2405.14205, 2024.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: a large-scale dataset for android device control. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. Real-time flying object detection
with yolov8. arXiv preprint arXiv:2305.09972, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 8634–8652, 2023.

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, and Yuan Huang. Mmac-copilot:
Multi-modal agent collaboration operating system copilot. arXiv preprint arXiv:2404.18074,
2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023.

Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A mul-
timodal agent for red dead redemption ii as a case study. arXiv preprint arXiv:2403.03186, 2024.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large lan-
guage models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2609–2634, Toronto, Canada, July 2023b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.
acl-long.147.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153–34189, 2023c.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997, 2023d.

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation.
arXiv preprint arXiv:2407.19056, 2024c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Qinchen Wu, Difei Gao, Kevin Qinghong Lin, Zhuoyu Wu, Xiangwu Guo, Peiran Li, Weichen
Zhang, Hengxu Wang, and Mike Zheng Shou. Gui action narrator: Where and when did that
action take place? arXiv preprint arXiv:2406.13719, 2024a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Ronglong Wu, Zhirong Shen, Zhiwei Yang, and Jiwu Shu. Mitigating write disturbance in non-
volatile memory via coupling machine learning with out-of-place updates. In 2024 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pp. 1184–1198. IEEE,
2024b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024c.

Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, and Wei Wang. Proteingpt: Multimodal llm for
protein property prediction and structure understanding. arXiv preprint arXiv:2408.11363, 2024.

Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A
survey. arXiv preprint arXiv:2402.15116, 2024a.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the
wild. arXiv preprint arXiv:2310.10634, 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024b.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023.

14

https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, et al. Crab: Cross-environment agent benchmark for
multimodal language model agents. arXiv preprint arXiv:2407.01511, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: standardizing and
benchmarking interactive coding with execution feedback. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing Systems, pp. 23826–23854, 2023b.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: teaching
large language model to use tools via self-instruction. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 71995–72007, 2023c.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023d.

Mihalis Yannakakis. Hierarchical state machines. In IFIP International Conference on Theoretical
Computer Science, pp. 315–330. Springer, 2000.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. arXiv
preprint arXiv:2404.05719, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024a.

Cong Zhang, Deik Derrick Goh Xin, Dexun Li, Hao Zhang, and Yong Liu. Meta-task planning for
language agents. arXiv preprint arXiv:2405.16510, 2024b.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. In International Conference on Learning Representations, 2019.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for
Computational Linguistics ACL 2024, pp. 3132–3149, Bangkok, Thailand and virtual meeting,
August 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.findings-acl.186.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan.
Agentstudio: A toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918,
2024b.

15

https://aclanthology.org/2024.findings-acl.186
https://aclanthology.org/2024.findings-acl.186

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zhao Zhuo, Rongzhen Li, Kai Liu, Huhai Zou, KaiMao Li, Jie Yu, Tianhao Sun, and Qingbo Wu.
Kaos: Large model multi-agent operating system. arXiv preprint arXiv:2406.11342, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A OVERVIEW

In the Appendix, we present:

• Implementation details in Appendix B.

• Baseline details in Appendix C.

• Experiments on GUI understanding benchmarks in Appendix D.

• Experiments on static GUI navigation benchmarks in Appendix E.

• Additional qualitative results in Appendix F.

B IMPLEMENTATIONS

Observation space. In dynamic OS environments, we extract Set-of-Mark (SoM) using native sys-
tem APIs to obtain the Accessibility (A11Y) tree, as described in Section 2.2. For ablation study in
Section 3.1 and other benchmarks without a dynamic OS environment, as described in Appendix D
and Appendix E, i.e. only providing a screenshot, we employ an Detection+OCR pipeline to ex-
tract SoM. Specifically, we follow Gao et al. (2023); Wang et al. (2024a) and use YOLO-v8 (Reis
et al., 2023) and Google OCR (Google Cloud) to parse the GUI into SoM visual prompts, serving
as auxiliary inputs for screen observation.

Action space. The action space of OSCAR in desktop OS and smartphone OS is summarized in
Table 5. This action space is used in the dynamic OS environments, i.e. OSWorld (Xie et al., 2024b)
and AndroidWorld (Rawles et al., 2024). For the GUI understanding benchmark described in Ap-
pendix D and the static GUI navigation benchmark in Appendix E, we adapt the action space to
meet the benchmark requirements, i.e. free-form answering text format in the GUI understanding
benchmark, and structural output including predefined action types and selected elements or loca-
tion coordinates.

Base model. To ensure a fair comparison, we set the base model of OSCAR and all baseline models
to GPT-4o, i.e.gpt-4o-2024-05-13, except for the results on GAIA in Table 1, which are based
on GPT-4-turbo, i.e.gpt-4-turbo-2024-04-09, since the baseline MMAC (Song et al., 2024)
does not publicly release their code and their results are based on GPT-4-turbo. The temperature of
response generation is set to 0.1 to reduce the variance in text generation. We provide 8 in-context
demonstration examples to help the model better understand the instruction. These examples do not
include a screenshot but provide a description of the current screen. All baselines are also provided
with 8 in-context demonstrations to ensure a fair comparison. The full version of system prompt are
provided in Figure 10 and Figure 11.

Experiment setup. We conduct evaluation experiments on 2 A100 GPUs. Since fine-tuning the
base model is not involved and it is accessed via API, the GPU is mainly required for the Detec-
tion+OCR pipeline. As this pipeline is efficient on CPU machines, all experiments can also run
on regular Windows 11 machines with WSL virtualization support, which is used for encapsulating
the development and test environments in Docker containers. The maximum number of allowed
attempts per run is set to 4. We report the average results across 4 runs for each model on each
benchmark.

C BASELINE DETAILS

We employ four types of baselines for a comprehensive and fair comparison with OSCAR, cate-
gorized along two orthogonal dimensions: 1) whether the baseline is based on general-purpose
out-of-the-box LMMs, or specialized LMMs that have been continually pre-trained (without hu-
man annotations) or fine-tuned (with curated human annotations) on GUI-specialized data, and 2)
the target GUI scenario, whether the agent is developed for desktop OS or smartphone OS. These
baselines are summarized in Table 6. To the best of our knowledge, OSCAR is the first agent capa-
ble of navigating both desktop and smartphone OS environments while responding to real-time OS
feedback.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: The formulation of action space of OSCAR to navigate in desktop OS (top part) and smart-
phone OS (bottom part).

Action Parameter Description

move
id: int Move the mouse cursor to the GUI element labeled with id

(x: float, y: float) Move the mouse cursor to given coordinate (x, y)
single click – Click the left button of mouse at current position
double click – Click the left button twice of mouse at current position
right click – Click the right button of mouse at current position
scroll dist: int Scroll the mouse wheel with distance dist
drag (x1: int, y1: int, x2: int, y2: int) Hold and drag the mouse cursor from (x1, y1) to (x2, y2)
press key: str Press given key or keyboard shortcuts in current window
write text: str Write down the given text in current window

tap
id: int Tap on the GUI element labeled with id

(x: float, y: float) Tap the screen on given coordinate (x, y)

long tap
id: int Press and hold the GUI element labeled with id

(x: float, y: float) Press and hold screen on given coordinate (x, y)

swipe (id: int, dir: str, dist: float) Swipe on an element labeled with id in a given
direction dir (up, down, left, right) and distance dist.

swipe (x: int, y: int, dir: str, dist: float) Swipe from the coordinate (x, y) on the screen in a given
direction dir (up, down, left, right) and distance dist.

write text: str Write down the given text in current text field

Table 6: Baselines for comparison with OSCAR, categorized by general-purpose out-of-the-box
(OOTB) vs. specialized fine-tuned (FT) base LMMs and their target GUI environment (desktop
or smartphone OS). OSCAR uniquely navigates both environments with real-time OS feedback.

Agent Base Model Desktop OS Smartphone OS Dynamic Feedback

Auto-GUI (Zhang & Zhang, 2024) OOTB ✗ ✓ ✗
SeeAct (Zheng et al., 2024a) OOTB ✓ ✗ ✗
CogAgent (Hong et al., 2024) FT ✓ ✓ ✗
SeeClick (Cheng et al., 2024) FT ✓ ✓ ✗

GUICourse (Chen et al., 2024b) FT ✓ ✓ ✗

AppAgent (Yang et al., 2023d) OOTB ✗ ✓ ✓
Mobile Agent (Wang et al., 2024a) OOTB ✗ ✓ ✓

M3A (Rawles et al., 2024) OOTB ✗ ✓ ✓
WebAgent (Gur et al., 2023) FT ✓ ✗ ✓
FRIDAY (Wu et al., 2024c) OOTB ✓ ✗ ✓
UFO (Zhang et al., 2024a) OOTB ✓ ✗ ✓

MMAC-Copilot (Song et al., 2024) OOTB ✓ ✗ ✓
Cradle (Tan et al., 2024) OOTB ✓ ✗ ✓

OSCAR OOTB ✓ ✓ ✓

D GUI UNDERSTANDING BENCHMARK

Benchmarks and Evaluation. To testify OSCARwhether possess a robust understanding of various
GUI scenarios, including different OS platform and multi-window interactions, we firstly evaluation
OSCAR on a comprehensive GUI understanding benchmark - GUI-World(Chen et al., 2024a). GUI-
World covering six GUI scenarios across Desktop OS and Smartphone OS and formulated as a
visual question-answering task. Specifically, Given one or multiple screenshots, the agent outputs a
summarized caption, layout description, and GUI elements, or infers relations between screenshots.
Following Chen et al. (2024a), we evaluate performance using automatic metrics for natural lan-
guage generation, such as BERTScore(Zhang et al., 2019) and LLM-as-a-Judge methodology (Liu
et al., 2023b; Zheng et al., 2023), or accuracy metric for multiple-choice questions.

Results. As shown in Table 7, we observe that: 1) OSCAR achieves the best GUI understanding
performance across five types of GUI domains, except for websites, where the state-of-the-art agent
uses an advanced parser to extract HTML as input. When HTML text is provided to OSCAR as
additional input, it also demonstrates state-of-the-art performance in website GUI understanding.
This success can be attributed to OSCAR’s GUI-grounded observation, which we further analyze
in Section 3.2. 2) Fine-tuning on domain-specific data slightly compromises performance in more
general domains. For example, the Web Agent achieves 83 on iOS GUI, significantly lower than its

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Quantitative results on the GUI-World benchmark covering six types of GUI domains.

Model Software Website XR Multi iOS Android
MC Free MC Free MC Free MC Free MC Free MC Free

SeeAct 93.9 4.328 91.1 4.167 90.6 4.031 90.1 4.172 84.8 3.750 92.3 3.865
Auto-GUI 94.8 4.422 90.5 4.131 89.0 3.904 88.0 4.073 84.0 3.666 91.4 3.742
CogAgent 94.4 4.322 87.5 3.976 90.1 4.031 88.3 4.086 88.7 4.193 93.6 4.056
SeeClick 91.0 4.083 88.5 4.038 89.5 3.893 89.7 4.176 88.2 4.078 94.3 4.124

GUICourse 92.4 4.156 88.9 4.038 90.3 4.057 88.6 4.111 88.4 4.168 92.9 4.058
AppAgent 86.5 3.644 84.3 3.805 90.8 4.159 89.5 4.176 90.6 4.398 95.0 4.326

Mobile Agent 88.6 3.822 86.0 3.877 90.6 4.047 89.7 4.199 91.1 4.482 94.9 4.230
M3A 88.1 3.799 84.1 3.803 92.1 4.270 94.1 4.456 89.6 4.278 93.5 4.127

WebAgent - - - - - - - - - - - -
FRIDAY 95.1 4.406 89.4 4.090 87.7 3.662 86.5 3.991 85.2 3.768 92.0 3.845

UFO 94.4 4.352 91.0 4.182 91.4 4.159 89.8 4.179 84.8 3.778 90.6 3.649
MMAC - - - - - - - - - - - -

OSCAR 96.4 4.509 89.2 4.035 94.4 4.551 95.5 4.527 92.7 4.585 96.4 4.524
OSCAR+HTML - - 92.2 4.235 - - - - - - - -

state-of-the-art performance of 93 on website GUI. 3) The average performance difference among
the agents is marginal, highlighting the strong single-step GUI understanding capability of the base
model, GPT-4o, used in our experiments.

E STATIC GUI NAVIGATION BENCHMARK

Benchmarks and Evaluation. We evaluate OSCAR on GUI navigation benchmarks involving
multi-step decision-making in pre-defined interaction episodes, which includes widely adopted
datasets such as Mind2Web(Deng et al., 2023) (Desktop OS) and AITW(Rawles et al., 2023) (Smart-
phone OS). These benchmarks consist of high-level task descriptions, gold reference sequences of
actions, and corresponding observations in HTML and screenshots. Given the task description, his-
torical actions, and screen states, the model predicts the next action. Borrowing setting from Cheng
et al. (2024); Rawles et al. (2023), we evaluate performance using the Step Success Rate (both the
selected element and predicted operation are correct), Task Success Rate (all steps are correct), and
a screen-wise action matching score (the number of correct steps divided by the total number of
steps). Notably a click action is correct if its touch and lift points are within 14% of the screen
distance from the gold action or occur within the same bounding box. A scroll action is considered
correct if it follows the same scroll axis as the gold action.

Results. Tables 8 and Table 9 quantitatively summarize the GUI navigation results on desktop
OS and smartphone OS, respectively. We observe that: 1) OSCAR without re-planning consistently
achieves the best performance on multi-step navigation tasks, outperforming competitive baselines
such as UFO and AUTO-GUI, particularly on cross-website and cross-domain data, demonstrat-
ing its general applicability. 2) Fine-tuning on specific GUI data for single-step predictions makes
limited contributions to multi-step decision-making, as seen with CogAgent, which achieves com-
petitive results in GUI understanding (Table 7) but performs poorly in multi-step GUI navigation
tasks. A possible explanation is that domain-specific fine-tuning increases the probability of hallu-
cinated actions when intermediate feedback is not available from static environments (Qiao et al.,
2024).

F QUALITATIVE RESULTS

Figure 8 and Figure 9 present qualitative results of OSCAR’s on the daily application and professional
tool, respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Desktop OS GUI navigation results on the Mind2Web benchmark in terms of element
accuracy (Ele.Acc), Operation F1 (Op.F1) and step success rate (Step SR).

Model Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

SeeAct 31.8 89.3 29.6 25.5 85.0 20.4 26.6 87.3 23.6
CogAgent 31.1 88.6 28.8 25.6 84.8 20.4 27.1 87.7 24.2
SeeClick 28.3 86.9 25.5 21.4 80.5 16.4 23.3 85.1 20.9

GUICourse 31.8 89.6 29.6 26.4 85.7 21.2 27.8 88.4 25.0
WebAgent - - - - - - - - -
FRIDAY 31.3 89.4 28.8 27.2 86.0 22.2 28.4 89.0 25.5

UFO 33.5 90.1 31.3 27.2 86.2 22.1 27.9 88.4 24.8
MMAC - - - - - - - - -

OSCAR w/o Re-plan 35.5 92.4 33.9 29.6 88.3 24.5 29.8 90.0 26.5

Table 9: Smartphone OS GUI navigation results on the AITW benchmark in terms of action match-
ing score.

Model General Install GoogleApps Single step Webshopping

Auto-GUI 67.9 76.7 71.2 84.5 70.5
CogAgent 61.0 72.0 64.7 73.8 65.0
SeeClick 54.2 66.7 54.6 63.5 57.6

GUICourse 64.1 73.5 66.3 78.0 66.2
AppAgent 58.1 70.7 59.9 71.7 61.5

Mobile Agent 59.5 71.4 61.4 73.9 63.8
M3A 65.4 75.7 68.0 82.9 68.0

OSCAR w/o Re-plan 71.4 78.7 74.8 88.6 73.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: Qualitative results when processing user request “Please open Notepad, create a new file
named “draft.txt”, type “This is a draft.”, and save it to the Documents folder.”.

Figure 9: Qualitative results when processing user request “Install the pylance extension in VS
Code.”.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

OSCAR System Prompt 1/2
You are a Task Planner with advanced task-driven re-planning capabilities, designed to efficiently complete user objectives by dynamically adapting
based on feedback and context. Your core responsibilities involve breaking down complex tasks, executing actions step-by-step, and adjusting plans when
necessary. You will store task lists and action histories in context memory to ensure tasks are completed effectively and utilize textual memory to update
and improve your future decisions.

In this system, task-driven re-planning plays a central role. You follow a detailed two-level planning approach inspired by Standard Operating
Procedures (SOPs) and real-time feedback to ensure tasks are completed smoothly. Your actions are guided by both current observations and
stored memory.

Task-Driven Re-Planning:

• Level 1: Task Decomposition Using SOPs: Decompose user instructions into high-level tasks using Standard Operating Procedures
(SOPs) for clarity and structure. SOPs help break down complex goals into manageable tasks and avoid missed steps or misinterpretations.

• Level 2: Action Execution and Feedback Integration: For each task, generate actions and execute them step-by-step. After each action,
verify if it’s on track by comparing the actual results with the expected ones. Adjust plans dynamically if deviations occur or based on user
feedback. Store the results and trajectory for future steps.

Inputs:

• User Objective: The overall goal the user wishes to accomplish.

• Context Memory:

– Old Task List: Previous tasks generated and stored.
– History Actions: Sequence of executed actions.

• Observation Input:

– Raw current screen image.
– Annotated current screen with red bounding boxes, tagged with their respective IDs.

• Feedback Input: Feedback related to prior actions or user input.

• Window Title: The name of the currently active window.

• All Open Windows: List of all open applications and windows.

• Candidate Screen Elements:

– ID: Unique identifier for the element.
– Content: Description or text associated with the element.
– Location: Normalized location on the screen.

Outputs:

• Screen Annotation: Summarize what is visible on the screen and explain how it relates to the task objective.

• Task-Driven Re-Planning:

– Review the Old Task List and History Actions to reflect on previous steps.
– Determine whether re-planning is necessary based on current observations or feedback. Adjust the task list accordingly.

• New Task List:

– Create a new task list using SOPs if none exists.
– Update the task list dynamically based on feedback or observations.

• Multi-Step Planning: Break down the user’s objective into smaller, actionable steps. For each step, decide which screen elements to
interact with and provide rationale. Adjust the plan as needed.

• Decision Generation: Choose a high-level decision based on the task’s status:

– COMMAND, DONE, or WAIT.

• Action Execution: Output a Python code block to execute the next action:

computer.mouse.move(id=14) # Move to the Start Menu button.
computer.mouse.single_click() # Click to open the Start Menu.

• Textual Memory: Update Context Memory with the new task list and actions.

Figure 10: Part 1/2 of system prompt of OSCAR.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

OSCAR System Prompt 2/2

Important Reminders:

• Ensure clarity in task decomposition by using SOPs.

• Re-plan based on feedback or unexpected outcomes.

• Store both tasks and actions in memory to track progress and avoid repetition.

• Verify progress at each stage, executing actions step-by-step.

Task List Example:

[New Task List]
1. Open Notepad.
2. Type "This is a draft."
3. Save the document as "draft.txt."
[Current Task] 1/3 Open Notepad.

High-level Decision Example:

COMMAND # or DONE, WAIT

Action Example:

computer.mouse.move(id=14) # Move to the Start Menu button.
computer.mouse.single_click() # Click to open the Start Menu.

Memory Example:

[New Task List]
1. Navigate to Amazon.
2. Search for "laptop."
3. Add the first item to the cart.

[Current Task] 1/3 Navigate to Amazon.

Figure 11: Part 2/2 of system prompt of OSCAR.

23

	Introduction
	Methodology
	Formulation of State Transitions
	GUI-grounded Observation
	Task-driven Re-planning
	Code-based Action

	Experiments
	Ablation analysis
	In-depth Analysis

	Related Works
	Conclusion
	Overview
	Implementations
	Baseline Details
	GUI Understanding Benchmark
	Static GUI Navigation Benchmark
	Qualitative Results

