
Published as a conference paper at ICLR 2025

Oscar OSCAR: OPERATING SYSTEM CONTROL VIA
STATE-AWARE REASONING AND RE-PLANNING

Xiaoqiang Wang1,2 Bang Liu1,2,3†
1DIRO & Institut Courtois, Université de Montréal
2Mila - Quebec AI Institute 3Canada CIFAR AI Chair
{xiaoqiang.wang, bang.liu}@umontreal.ca

ABSTRACT

Large language models (LLMs) and large multimodal models (LMMs) have
shown great potential in automating complex tasks like web browsing and gaming.
However, their ability to generalize across diverse applications remains limited,
hindering broader utility. To address this challenge, we present OSCAR: Operating
System Control via state-Aware reasoning and Re-planning. OSCAR is a gener-
alist agent designed to autonomously navigate and interact with various desktop
and mobile applications through standardized controls, such as mouse and key-
board inputs, while processing screen images to fulfill user commands. OSCAR
translates human instructions into executable Python code, enabling precise con-
trol over graphical user interfaces (GUIs). To enhance stability and adaptability,
OSCAR operates as a state machine, equipped with error-handling mechanisms
and task-driven re-planning, allowing it to efficiently adjust to real-time feedback
and exceptions. We demonstrate OSCAR’s effectiveness through extensive experi-
ments on diverse benchmarks across desktop and mobile platforms, where it trans-
forms complex workflows into simple natural language commands, significantly
boosting user productivity.

1 INTRODUCTION

Large Language Models (LLMs) (Ouyang et al., 2022; Achiam et al., 2023; Dubey et al., 2024) and
Large Multimodal Models (LMMs) (Li et al., 2023; Team et al., 2023; Liu et al., 2024a; Reid et al.,
2024) have demonstrated exceptional performance on tasks requiring complex reasoning (Liang
et al., 2022; Srivastava et al., 2023; Wang et al., 2024c), particularly when combined with advanced
planning techniques (Wei et al., 2022; Wang et al., 2023b;c) and external tools (Yang et al., 2023c;
Liu et al., 2023a). These model-centric agents show revolutionary potential for automating real-
world tasks such as web browsing (Gur et al., 2023; Deng et al., 2023; Zheng et al., 2024a), embod-
ied simulation (Zhao et al., 2024; Shi et al., 2024), and software development (Huang et al., 2023;
Hong et al., 2024a; Qian et al., 2024). However, despite impressive results, these agents struggle
to generalize across different applications due to variations in observation and action spaces. In
real-world scenarios, workflows often involve switching between applications and interacting with
diverse graphical interfaces. This raises an intriguing and practical question: can we build a gen-
eralist agent capable of following user instructions across various applications using standardized
operating system (OS) controls like mouse and keyboard inputs, while processing screen outputs?

Recent work has explored graphical user interface (GUI) control on mobile devices, with a focus
on smartphone GUI understanding (You et al., 2024; Fan et al., 2024; Wu et al., 2024a) and task
automation (Yang et al., 2023d; Guan et al., 2024; Zhang & Zhang, 2024; Wang et al., 2024a). For
desktop computers, existing approaches simulate tasks in black-box systems like AAA games (Tan
et al., 2024) and office workflows (Wang et al., 2024d). Some methods extend this to general OS
control via visual question answering and human action trajectories (Hong et al., 2024b; Chen et al.,
2024b; Cheng et al., 2024). However, these systems often lack real-time feedback from the OS and
struggle to adapt dynamically when task execution fails. Without a grounded executable environ-

†Corresponding author.

1

Published as a conference paper at ICLR 2025

User Instruction: “Please open the ‘Report.docx’ file and print it.”

Reference Action Trajectory

Action 1: Click on the Start Menu

Action 2: Search for ‘Report.docx’

Action 3: Open the file

Action 4: Print using the ‘Print’ option in Word

Action 1: Navigate to ‘C:\Documents\Report.docx’

Action 2: Open the file

Action 3: Print using the ‘Ctrl+P’ keyboard shortcut.

Alternative Action Trajectory

Agent that only works

in static environment

Agent that works in

dynamic environment

Compare Fixed

and Dynamic

Environments

Figure 1: Comparison of agent action sequences in static and dynamic OS environments for the
task of opening and printing “Report.docx”. The static environment (left) requires a fixed action
trajectory and fails if the agent deviates. The dynamic environment (right) allows for alternative
action trajectories, enabling the agent to adapt and complete the task using different valid methods.

ment, these methods fall short in real-world scenarios, where real-time feedback and adaptive action
adjustment are crucial for navigating new GUI environments, similar to human behavior. Recently,
new executable environments (Zheng et al., 2024b; Xu et al., 2024; Xie et al., 2024b) have emerged,
offering dynamic feedback and enabling agents to modify their actions on the fly, paving the way
for more autonomous, adaptive agents in OS control tasks.

As depicted in Figure 1, consider an agent tasked with opening “Report.docx” and printing it. In
a static environment, the agent must follow a predetermined sequence of actions—clicking the Start
Menu, searching for “Report.docx”, opening the file, and printing using the “Print” option
in Word. Any deviation from this sequence, such as navigating directly to “C:\Documents\”
directory, opening the file, and printing using the Ctrl+P shortcut, results in failure because the
static environment cannot accept multiple valid solutions. In contrast, a dynamic environment allows
the agent to adapt its actions based on real-time feedback, successfully completing the task using
various valid methods. This example highlights the importance of adaptability in real-world settings,
where agents must handle unforeseen changes or errors. To address this limitation, we propose
leveraging a LMM to develop a generalist agent capable of interpreting user commands, interacting
with graphical user interfaces (GUIs), and adjusting its strategy in response to real-time feedback.

To achieve this, we identify three key challenges in building such a generalist agent for dynamic ex-
ecutable environments: 1) Unified Control Interfaces: The agent must seamlessly operate standard
input methods like mouse and keyboard across various applications. This involves executing precise
actions such as mouse movements, clicks, scrolling, and using keyboard shortcuts (e.g., Ctrl+C for
copying content), all based on visual inputs; 2) GUI Grounding: The agent needs to interpret the
screen and accurately identify relevant elements, such as buttons, menus, or text fields. For example,
when instructed to perform a web search, it must locate and interact with the search box by correctly
grounding the user instructions to the on-screen components; 3) Exploration-Based Simulation
and Re-planning: Similar to how humans navigate unfamiliar software interfaces, the agent must
have the ability to explore and adjust its plan dynamically. This includes retrying actions, handling
exceptions like software crashes, and adapting its strategy based on real-time feedback from the
system. By addressing these challenges, we aim to develop a robust agent capable of navigating
a wide range of computer applications in a flexible and reliable manner. This dynamic interaction
between the agent and the operating system—driven by real-time feedback—forms the foundation
of our approach, moving beyond the limitations of static, pre-scripted workflows.

In this paper, we introduce OSCAR, a general-purpose agent designed to autonomously interact
with dynamic OS environments through code-centric control. OSCAR generates executable Python
code to directly interface with the OS, enabling semantically clear and precise actions, ensuring
broad applicability across diverse tasks. To enhance GUI understanding, OSCAR augment screen

2

Published as a conference paper at ICLR 2025

observation with visual grounding and semantic grounding inputs by leveraging the OS window
API to extract interactable elements and their spatial layout. OSCAR operates as a state machine,
continuously looping through planning, action, and re-planning to handle execution failures and
system exceptions. To optimize efficiency, we incorporate task-driven re-planning, allowing the
agent to adjust specific tasks rather than entire workflows, minimizing overhead and enhancing
adaptability in dynamic environments.

We validated OSCAR’s effectiveness and generalizability across diverse benchmarks involving both
desktop and smartphone OS environments. On the GAIA (Mialon et al., 2023) benchmark, OSCAR
outperformed previous methods, achieving a 28.7% average success rate, with a notable 13.5% suc-
cess rate on the most complex Level 3 tasks, nearly doubling the prior state-of-the-art performance.
On the OSWorld (Xie et al., 2024b) and AndroidWorld (Rawles et al., 2024) benchmarks, OSCAR
consistently surpassed other agents, achieving a 24.5% success rate on OSWorld, and 61.6% on An-
droidWorld, demonstrating superior adaptability across real-time dynamic OS tasks. These results
highlight OSCAR’s advancement in transforming tedious tasks into natural language commands,
showcasing its adaptability and strong general-purpose capability.

2 METHODOLOGY

In this section, we introduce OSCAR, an intelligent agent designed for general-purpose control and
navigation within operating systems. As illustrated in Figure 2, OSCAR operates as a state ma-
chine (Girault et al., 1999; Yannakakis, 2000), enabling it to handle dynamic OS environments
through systematic state transitions. This framework allows OSCAR to efficiently process user in-
structions, observe the environment, plan and execute actions, and verify outcomes, while managing
potential OS exceptions. We now detail the state transition process, highlighting how OSCAR inte-
grates GUI grounding, task-driven re-planning, and code-centric control in each operational state.

2.1 FORMULATION OF STATE TRANSITIONS

[Init → Observe]. In the [Init] state, OSCAR awaits user instructions. Upon receiving a
command, the system transitions to the [Observe] state to begin processing the input. This is the
starting point for each task, and the agent returns to this state after completing or terminating a task.

[Observe → Plan]. After receiving the user’s request, OSCAR captures a screenshot of the
current environment and interprets it by performing GUI grounding detailed in Section 2.2. This in-
volves identifying screen elements, such as buttons and input fields, to understand the user interface
context. The system then transitions to the [Plan] state.

[Plan → Execute, Plan → Verify]. In the [Plan] state, OSCAR generates an action
plan based on the current screenshot, user instructions, context memory, and any previous verifica-
tion feedback from the OS (if available). As detailed in Section 2.3, it utilizes task-driven re-planning
to invoke the model backend and determine the next action.

• If more actions are needed to complete the task, OSCAR stores the planning results and gener-
ated actions in the context memory and transitions to the [Execute] state to interact with the
operating system via executable Python code.

• If no further actions are necessary (the whole task completion is indicated), OSCAR transitions
directly to the [Verify] state.

[Execute → Plan, Execute → Observe → Plan]. In the [Execute] state, the
Python code is executed to interact with the operating system. There are two possible outcomes:

• If execution fails due to invalid code (e.g. , attempts to access non-existent GUI elements), OSCAR
transitions back to the [Plan] state, incorporating the interpreter’s error message for re-planning.

• If execution succeeds, OSCAR first transitions to the [Observe] state to capture a new screen-
shot, reflecting the updated state of the environment. Subsequently, OSCAR moves to the [Plan]
state to plan the next action based on the new context.

[Verify → Success, Verify → Plan, Verify → Fail]. In the [Verify]
state, OSCAR runs evaluation scripts to validate the outcomes of the executed actions. These scripts

3

Published as a conference paper at ICLR 2025

[Init] [Observe]

[Reset]

[Plan] [Execute]

Invalid action

[Verify]

N
o

 m
o

re

a
ct

io
n

 n
ee

d
ed

More action needed

[Success]

[Fail]

Verification fails

AND attempts > max

V
erifica

tio
n

 fa
ils

A
N

D
 attem

p
ts <=

 m
ax

[Error]

[User Request] [Context Memory]

State Transition

Data Input / Output

System Error Handling

Figure 2: Illustration of the state machine model used in OSCAR. The model consists of multi-
ple states—[Init], [Observe], [Plan], [Execute], [Verify], [Success], [Fail],
[Reset], and [Error]—and handles transitions between them. Transitions are triggered by user
request, planning completion, verification results, or OS errors.

check system or application settings and analyze file content to confirm that the intended tasks were
successfully completed. Based on the results, OSCAR either transitions to the [Success] state
if verification passes or returns to the [Plan] state if it fails. If the failure exceeds the allowed
maximum number of attempts, OSCAR transitions to the [Fail] state.

[Success → Init]. If the task verification passes, OSCAR enters the [Success] state, sig-
naling successful task completion and notifying the user. The system then transitions to the [Init]
state, ready to process the next user query.

[Fail → Reset]. If the task cannot be completed after the maximum number of allowed at-
tempts, OSCAR transitions to the [Fail] state, notifying the user of the failure and then transition-
ing to the [Reset] state.

[Plan → Error, Execute → Error, Verify → Error, Error → Reset].
OSCAR transitions to the [Error] state when a critical system exception or crash occurs, such as
a local model backend failure or when too many files or processes are open in the OS. In this state,
the task is terminated, and the user is notified of the error. User intervention may be required to
resolve the issue before OSCAR transitions to the [Reset] state.

[Reset → Init]. In the [Reset] state, OSCAR restores the operating system to its pre-query
configuration by terminating processes and closing file handlers. Once the reset is complete, OSCAR
returns to the [Init] state, ready to process the next user query.

In a nutshell, the state machine architecture of OSCAR introduces continuous feedback loops, en-
abling dynamic interaction and error recovery, which enhances its robustness in dynamic OS en-
vironments. Additionally, unlike previous methods that relied on linear action sequences and re-
planning from scratch (Yang et al., 2023d; Zhang et al., 2024a; Wu et al., 2024c), OSCAR’s state
machine integrates real-time verification feedback for fine-grained, task-driven re-planning, signif-
icantly improving efficiency and adaptability. Most importantly, its modular state transitions allow
for flexible generalization across diverse OS environments, such as desktop and smartphone OS.

2.2 GUI-GROUNDED OBSERVATION

While LLMs exhibit strong capabilities in understanding general visual information and grounding
in broad domains, feeding a screenshot into the model to facilitate planning and output control
over the screen remains insufficient. This insufficiency stems from the fact that GUI images differ
significantly from natural images (Cheng et al., 2024), as they are densely packed with text and

4

Published as a conference paper at ICLR 2025

User Instruction: “Open Notepad, create a new file named ‘draft.txt’,

type ‘This is a draft.’, and save it to the Documents folder.”

[Init] [Observe]

GUI-grounded observation

Semantic Grounding Input Screenshot Visual Grounding Input

We map the numerical

coordinates of UI elements

into bounding boxes to get

SoM visual prompt.

The original screenshot

contains no bounding

boxes of UI elements.

27

Figure 3: Illustration of GUI-grounded observation in OSCAR, which includes original screenshot,
semantic grounding input, and set-of-mark (SoM)-based visual grounding input.

diverse interaction elements, such as icons and widgets, often rendered at a small scale relative to
high-resolution screens. As a result, it is difficult for models to accurately locate all interaction
elements and understand GUI semantics. For instance, both and could represent a settings
icon, depending on the application.

To address this, we introduce a dual-grounding observation approach to enhance GUI understanding,
i.e. incorporating both visual grounding and explicit semantic grounding. Firstly, we leverage a
Set-of-Mark (SoM) prompting (Yang et al., 2023a) technique to enhance GUI visual grounding.
SoM prompting, a visual prompting technique that adds marks to image regions to significantly
improve LMM performance on fine-grained vision tasks. Specifically, we utilize native window API
to extract the Accessibility (A11Y) tree, a kind of structural representation providing the location,
properties, and states of UI components (Consortium, 2018). Based on the A11Y tree, we extract
precise numerical coordinates of UI elements and map them into bounding boxes to generate SoM
visual prompts (Figure 3). The A11Y tree offers greater precision and robustness than the commonly
adopted detection+OCR pipeline (Gao et al., 2023; Wang et al., 2024a), particularly in complex
screens with numerous UI elements where OCR often fails (see Section 3.1 for ablation analysis).

In addition to visual grounding, we further enhance GUI understanding through explicit semantic
grounding by adding descriptive labels to key elements, such as: (ID: 14, Label: Start, X1:
0.35, Y1: 0.95, X2: 0.38, Y2: 1.00). These labels not only offer semantic descriptions of
UI components but also facilitate code-centric control by allowing precise references to elements
(e.g. by element ID).

By combining the screenshot with dual-grounding observations, OSCAR can not only grasp the over-
all layout and context of the GUI, but also focus on relevant areas of the screen, while flexibly re-
ferring to specific elements when needed. This approach significantly enhances GUI understanding,
ensuring robust and efficient task execution in dynamic OS environments.

2.3 TASK-DRIVEN RE-PLANNING

Interacting with dynamic environments for open-ended tasks has been well-studied in domain-
specific agents, such as those agents in Minecraft (Wang et al., 2023a;d) and data analysis (Guo
et al., 2024; Zhang et al., 2024c). Iterative planning with exploration in self-instructed task cur-
ricula has proven effective, as agents adjust their plans based on environmental feedback. These
methods typically involve two stages: exploration and deployment. During the exploration phase,
agents comprehensively interact with the environment to gather knowledge and experience. In the
deployment phase, agents apply the learned strategies from exploration to operate and navigate new
environments.

However, while navigating dynamic operating systems shares the goal of determining feasible action
sequences for complex tasks, it introduces significant efficiency challenges, as agents must respond

5

Published as a conference paper at ICLR 2025

[Self-Reflection on Next Actions]
Additional actions are required.

[Current Task] 1/3 Open Notepad
1. Click on the Start Menu button on the taskbar.
2. Type "Notepad" into the search bar.
3. Press Enter or click on the Notepad application from

the search results to open it.

[Observe] [Plan] [Execute]
[Plan]

[Self-Reflection on Task Re-planning]
1. This is the initial planning phase with no feedback

received, Task re-planning is not necessary at this time.
2. No task list exists in context memory; creating a new

task list based on the user's instruction.

[New Task List]
1. Open Notepad.
2. Type "This is a draft." into Notepad.
3. Save file as "draft.txt" in the Documents folder.

[Current Action] Click on the Start Menu
```python
mouse.move(id=14)    # Move to “Start”

mouse.single_click() # Click on "Start”

```

[Execute]

[Instruction] & [Demonstrations]

[Context Memory]:
Task List: []
History Actions: []

[Observation Input]:
User Request
GUI-grounded Observation

[Feedback Input]:
Execution Feedback on Action
Verification Feedback on Task

[Input]

Task-driven Re-planning

Code-Centric Action

Figure 4: Illustration of task-driven re-planning and code-centric control in OSCAR. Based on the
current observation, context memory, and real-time OS feedback from execution or verification,
OSCAR generates a refined task list and determines the next action. The action refers to GUI ele-
ments using semantic grounding input and includes executable Python code to control the OS, such
as clicking the “Start” button (id=14 in Figure 3) and launching applications.

promptly to user requests. The plan-after-fully-exploration approach is inefficient for OSCAR in
these contexts. To balance efficiency and effectiveness, we introduce task-driven re-planning,
while storing action trajectories and planning results in context memory to summarize and leverage
past experiences. Specifically, we draw inspiration from plan-and-solve prompting (Wang et al.,
2023b; Zhang et al., 2024b), a planning-based chain-of-thought (Wei et al., 2022) approach that
simplifies complex tasks by breaking them into a hierarchy of sub-tasks and mapping them into
executable actions. As shown in Figure 4, we instantiate this concept as two-level planning. Level
1: Decompose user instructions into tasks using standardized operating procedures (SOPs) (Hong
et al., 2024a), improving clarity in task decomposition. Level 2: For each task, generate actions
step-by-step, interleaving planning and execution within OSCAR’s state machine.

A significant advantage of task-driven re-planning is fine-grained self-refinement (Shinn et al., 2023;
Tao et al., 2024), i.e. when negative feedback is received from dynamic evaluation in the state tran-
sition of [Verify] → [Plan], OSCAR can re-plan only specific tasks, rather than re-planning
the entire workflow or just the current action. This approach improves planning efficiency by en-
abling fine-grained re-planning of tasks. It also helps avoid error propagation (Zhang & Zhang,
2024), where incorrect actions early on prevent successful completion of user requests, regardless
of how well subsequent actions are planned. For example, in a workflow involving multiple applica-
tions—extracting information from a Word document, observing a figure in Photos, and summariz-
ing content in PowerPoint—each task requires several interactions. Errors in earlier tasks, such as
copying text or capturing an image, will propagate and result in incorrect summaries in PowerPoint.

Formally, the complete prompt input for invoking the model is summarized in Figure 4, which in-
cludes user request, context memory, GUI-grounded observation and feedback from both execution
and verification phases. The full version of system prompt can be found in the Appendix B.

2.4 CODE-BASED ACTION

As portrayed in Figure 4, leveraging the textualized SoM from observed screenshots, OSCAR can
easily refer interaction elements on the screen using element ID or numerical coordinates. This
allows OSCAR to generate code to control these elements with logically clear semantics. To op-
erationalize OSCAR’s action space, we employ the widely-used PyAutoGUI library 1 for mouse
and keyboard control. This library enables various mouse behaviors (movement, click, scroll) and
keyboard interactions (single key presses, key shortcuts). Further details are summarized in Table 5.

1https://pyautogui.readthedocs.io/

6

Published as a conference paper at ICLR 2025

3 EXPERIMENTS

Benchmarks. We evaluate OSCAR on real-world workflow automation benchmarks involving com-
plex user requests. The first benchmark is GAIA (Mialon et al., 2023), which consists of 466
question-answering (QA) structured into three levels: Level 1 includes simple tasks requiring no
more than five steps; Level 2 involves more complex tasks with 5-10 steps and multiple tools; and
Level 3 presents advanced tasks requiring over 10 actions and tool usage. The second benchmark is
OSWorld (Xie et al., 2024b), an interactive dynamic environment with real-time OS feedback. It in-
cludes 369 tasks covering OS settings, office software, daily applications (e.g. Chrome), professional
tools (e.g. VSCode), and multi-application tasks. Without a gold-standard reference action sequence,
the environment allows for multiple valid solutions, which are evaluated through dynamic execution
testing—verifying modified files or displayed text content in windows. Additionally, similar to OS-
World, AndroidWorld (Rawles et al., 2024) provides a dynamic smartphone OS environment with
116 tasks spread across 20 diverse applications, and human annotated difficulty level: easy, medium,
hard. Please refer to Appendix D and Appendix E for more experiments on the GUI understanding
and static navigation benchmark.

Table 1: Real-world workflow results on the
GAIA benchmark using the exact match metric.
Since MMAC does not publicly release their code,
we report MMAC’s results as stated in their paper
and use the same base model (i.e. GPT-4-turbo) in
all of the baseline models, for a fair comparison.

Model Level 1 Level 2 Level 3 Average

GPT-4-turbo 9.7 6.9 0.0 5.5
GPT-4 plugins 30.3 9.7 0.0 13.3

UFO 36.9 16.1 5.4 19.4
FRIDAY 40.9 20.1 6.1 22.4
MMAC 45.2 20.8 6.1 24.0

OSCAR 47.0 25.6 13.5 28.7

Table 2: Quantitative results on the OSWorld
benchmark, measured by success rate (SR). All
baselines incorporate the SoM visual prompt as
auxiliary GUI-grounded input and use GPT-4o as
the base model to ensure a fair comparison.

Model OS Office Daily Prof. Multi Avg.

Cradle 16.7 3.5 6.6 20.4 5.5 10.5
UFO 37.5 6.8 12.8 14.3 10.9 16.5

FRIDAY 45.8 8.5 14.1 18.4 6.9 18.8

OSCAR 58.3 12.0 16.7 22.4 12.9 24.5

Table 3: Quantitative results on the AndroidWorld
benchmark using the same model and input set-
tings as OSWorld.

Model Easy Medium Hard Average

M3A 41.0 33.3 26.3 33.5
Mobile Agent 49.2 41.7 31.6 40.8

AppAgent 82.0 55.6 42.1 59.9

OSCAR 65.6 66.7 52.6 61.6

Baselines. We compare OSCAR with seven
agents designed to handle dynamic OS feed-
back. For the desktop OS environment, we
include Cradle (Tan et al., 2024), UFO(Zhang
et al., 2024a), FRIDAY (Wu et al., 2024c), and
MMAC (Song et al., 2024). For the smart-
phone OS environment, we evaluate against
M3A (Rawles et al., 2024), AppAgent (Yang
et al., 2023d), and Mobile Agent (Wang et al.,
2024a). Implementation details of OSCAR and
these baselines are provided in Appendix B.

Results. Table 1 summarizes the results on
the GAIA benchmark, where OSCAR achieves
the best performance across all three levels of
workflow complexity. In particular, for Level
3 tasks, OSCAR significantly outperforms pre-
vious methods, achieving 13.5% compared to
MMAC’s 6.1%, demonstrating the effective-
ness of OSCAR’s task-based planning. Addi-
tionally, as shown in Table 2, OSCAR consis-
tently surpasses other methods across various
applications in dynamic desktop OS environ-
ments. In challenging tasks involving multiple
applications, OSCAR achieves a 12.9% success
rate, outperforming the multi-agent baseline,
UFO, which leverages dual agents to coordinate
workflow decomposition and execution. When
adapting OSCAR’s action space to a mobile en-
vironment, as shown in Table 3, it achieves
better average performance than the two-phase
approach (comprehensive exploration followed
by execution) of AppAgent, particularly in the
medium and hard subsets, highlighting the ef-
fectiveness and efficiency of OSCAR’s task-
driven re-planning.

3.1 ABLATION ANALYSIS

We conduct ablation analysis on the individ-
ual components of OSCAR, including GUI-grounded observation and various planning techniques.
Specifically, we first compare our GUI-grounded observation against baseline that omits the dual-

7

Published as a conference paper at ICLR 2025

grounding input, i.e. feeding raw screenshots as input. Additionally, we replace A11Y tree-based
extraction with a Detection+OCR pipeline.

 OS

Office

Daily

Professional

Multi

 OS
0.7 0.8 0.9 1.0

Raw Screenshot
Detection+OCR
Direct Prompt
ReAct
Chain-of-Action
OSCAR

Figure 5: Decomposed performance of various
baselines, with scores normalized using max-min
scaling for each capability to enhance clarity.

For the baselines in planning techniques, we
replace our task-driven re-planning with state-
of-the-art methods used in multi-step decision-
making tasks, particularly for long action se-
quences. These include ReAct (Yao et al.,
2022b), plan-and-solve (Wang et al., 2023b),
and chain-of-action (Zhang & Zhang, 2024).

The results of different baselines on the OS-
World benchmark are illustrated in Figure 5.
We have the following observation: 1) Both
GUI-grounding and task-driven re-planning
significantly enhance performance. Specifi-
cally, raw screen input without GUI grounding
and direct prompts without fine-grained plan-
ning achieve only 70% and 80% of OSCAR’s
full performance, respectively. 2) The Detec-
tion+OCR pipeline is less effective than the original A11Y tree-based method, particularly on the
subset of professional tools with numerous UI elements, where it only marginally outperforms raw
screenshot input. Furthermore, the Detection+OCR method introduces additional processing time,
reinforcing the A11Y tree as the superior choice for dynamic OS environments. 3) Advanced plan-
ning strategies can significantly enhance workflow performance. For instance, ReAct and Chain-of-
Action achieve results that are comparable to OSCAR in daily application and office software sce-
narios. 4) Without considering real-time OS feedback and efficient re-planning, ReAct and Chain-
of-Action struggle in professional software and multi-application scenarios, highlighting OSCAR’s
advantage in adapting to dynamic OS environments.

3.2 IN-DEPTH ANALYSIS

Instance-level analysis on planning efficiency. To better understand why OSCAR achieves superior
performance, particularly in dynamic OS environments, we take a closer look at the final success
rate results and conduct an instance-level analysis for both successful and failed user requests on the
OSWorld benchmark. Specifically, for the successful cases with OSCAR, we track the number of re-
planning occurrences before verification failures exceed the allowed maximum number of attempts
i.e. the upper bound for re-planning is the maximum number of allowed attempts. We also track the
total action steps taken and the ratio of the successful action path length to the total steps, serving
as a proxy for the action matching score in dynamic environments, where no reference action path
exists as it does in static environments (Rawles et al., 2023). It is used to quantify the planning
and execution efficiency in the fail-and-re-planning setting, is also referred as process score (PS) by
Wang et al. (2024a), or as completion rate (CR) by Zhang et al. (2024a).

For failed cases, following Xu et al. (2024), we categorize failures into three classes: False Com-
pletion (FC), where the agent incorrectly believes the task is completed; Reach Step Limit (RSL),
where the agent reaches the maximum step limit without completing the task; and Invalid Action
(IA), where the agent produces outputs that do not follow instructions, including invalid formats,
nonexistent actions, or incorrect action parameters. Since OSCAR can handle invalid actions and
false completions through execution and verification feedback, i.e.[Execute] → [Plan] and
[Verify] → [Plan] state transitions, FC and IA errors do not occur in OSCAR. We further
analyze a subclass of RSL, where re-planning generates the same task list or action trajectory that
has already been marked as a verification failure in previous attempts. We refer to this subclass
as Redundant Re-plan (RR). For comparison, we also analyze these metrics for FRIDAY, the most
competitive baseline in dynamic OS environments, as shown in Table 2.

OSCAR requires fewer re-planning attempts. As shown in Figure 6, in the successful re-
quests, over 80% of the samples using OSCAR required fewer than 3 re-planning attempts,
whereas in FRIDAY, more than 50% of the successful samples needed 3 to 4 re-planning attempts

8

Published as a conference paper at ICLR 2025

0

10

20

30

Di
st

rib
ut

io
n

OSCAR
FRIDAY

0 1 2 3 4
Number of re-planning attempts

0

20

40

60

80

100

Pr
ox

y
Ac

tio
n

M
at

ch
in

g

Figure 6: Planning efficiency analysis
of successful cases.

Table 4: Failure case statistics for False
Completion (FC), Reach Step Limit
(RSL), and Invalid Action (IA). The
subclass of RSL, Redundant Re-plan
(RR), is also reported as a ratio relative
to the total number of failure cases.

Model FC RSL (RR) IA
FRIDAY 9.1% 70.4% (52.8%) 20.5%
OSCAR – 100% (15.2%) –

(the maximum allowed re-planning attempts in our ex-
periments is 4, after which the case is deemed a fail-
ure). This distribution highlights OSCAR’s efficiency ad-
vantages, as it leverages task-driven re-planning to focus
on high-level task lists and perform fine-grained adjust-
ments, rather than re-planning the entire workflow. These
findings align with our goal of adapting to dynamic OS
feedback while improving efficiency.

OSCAR’s re-planning includes smaller, more efficient
steps. The proxy action matching score indicates that
OSCAR consistently takes smaller, more efficient steps
during re-planning, while FRIDAY’s score worsens as the
number of re-planning attempts increases. This efficiency
is due to OSCAR’s ability to learn from previous trials,
using the stored task list and action history in its context
memory to optimize subsequent task lists and action tra-
jectories upon receiving verification failure feedback.

OSCAR’s failure cases involve less redundant re-
planning. As shown in Table 4, while OSCAR may not
always complete the user request within the allowed at-
tempts, its re-planning effectively avoids repeating pre-
vious steps. In contrast, FRIDAY’s tendency to re-plan
the entire workflow frequently (52.8%) results in gener-
ating an action trajectory that has already been verified as
unsuccessful. This finding complements the success case
results, where most of OSCAR’s successful cases required
only 1-2 re-planning attempts.

Qualitative examples. As illustrated in Figure 7, OSCAR
effectively handles complex requests involving multi-
ple applications, i.e. OS→Office→OS→Daily, showcas-
ing its flexible and effective planning. Please refer to Appendix F for more qualitative examples.

4 RELATED WORKS

GUI agents. LLM and LMM-based agents (Wang et al., 2024b; Xie et al., 2024a; Madaan et al.,
2023) have been developed across various environments, including robotics (Driess et al., 2023;
Zitkovich et al., 2023), web browsing (Yao et al., 2022a; Gur et al., 2023), gaming (Fan et al.,
2022), software development (Yang et al., 2023b), automating benchmark construction (Liu et al.,
2024b), data analysis (Zhang et al., 2024c), and AI for science (Xiao et al., 2024). Among them,
GUI agents—capable of interacting with various desktop and smartphone GUIs—offer broader ap-
plicability in automating real-world workflows (Mialon et al., 2023). Some agents are continually
pre-trained (Cheng et al., 2024) or fine-tuned (Chen et al., 2024b) on GUI-specific data. Others
simulate GUI control in sandbox environments, such as AAA games (Tan et al., 2024) or office
workflows (Wang et al., 2024d), which require internal application-specific APIs to interact with the
environment. In a broader context, some agents interact with basic OS APIs but are often designed
for static, pre-defined environments (Reed et al., 2022; Hong et al., 2024b) without grounding in
real-time executable environments. Other agents follow linear action sequences and perform re-
planning from scratch (Yang et al., 2023d; Zhang et al., 2024a; Wu et al., 2024c) when verification
fails, lacking fine-grained re-planning strategies, which makes them less efficient in real-world sce-
narios. Motivated by these limitations, we design OSCAR to handle real-time dynamic OS feedback
using an efficient, state-aware, task-driven re-planning strategy.

Synergizing LLMs and LMMs with OS. Beyond GUI agents, another line of work explores
integrating LLMs and LMMs with OSs in two key areas: 1) optimizing or tuning traditional OS
functions using LLMs, and 2) integrating LLMs into OS kernels (LLM as OS) to serve as system-
level interfaces, facilitating local agent operations and deployment. The former includes optimizing
CPU load balancing (Li et al., 2024), improving storage access (Wu et al., 2024b), and identifying

9

Published as a conference paper at ICLR 2025

Figure 7: Qualitative results when processing user request “Could you please convert ‘Pre.pptx’
to video and play it with VLC?” on the OSWorld benchmark. Some intermediate steps and other
regions of the screenshot have been omitted for clarity.

and repairing code vulnerabilities (Islam et al., 2024). The latter focuses on OS-level hardware
adaptation and resource management (Kamath & Yadalam, 2024) as well as agent-level resource
scheduling and sharing (Mei et al., 2024; Zhuo et al., 2024; Yang et al., 2024), such as managing
agent memory and enabling efficient communication among multiple heterogeneous agents sharing
the same model back-end. Unlike these approaches, OSCAR functions as a generalist GUI agent,
acting as an OS co-pilot to enhance user experience and productivity.

5 CONCLUSION

In this work, we introduced OSCAR, a generalist agent that autonomously navigates and interacts
with dynamic OS environments using a code-centric control framework. By leveraging task-driven
re-planning and GUI-grounded observations, OSCAR achieves robust adaptability and effectiveness
across both desktop and smartphone OS tasks. Our experiments on real-world workflow automation
benchmarks, including GAIA, OSWorld, and AndroidWorld, demonstrate significant improvements
in task success rates, particularly for complex, multi-step workflows.

Despite its strengths, OSCAR faces challenges in safety and lifelong self-improvement. Reli-
able metrics for assessing agent safety and detecting latent side effects are lacking, and the
[Verification] state focuses on task accuracy without fully addressing harmful actions. Ad-
ditionally, while task-level adaptation is effective, cross-task learning remains constrained by scala-
bility challenges and risks of overfitting.

To address these issues, we plan to integrate action and tool filters for critical operations and intro-
duce safeguards such as requiring human confirmation for actions with real-world consequences.
For self-improvement, we aim to explore structured state representations beyond pre-defined tran-
sitions, investigate a dual-agent framework for adaptive state management, and enhance memory
summarization and retrieval for large-scale task deployments. These advancements will further im-
prove OSCAR’s safety and adaptability in complex environments.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work is supported by the Canada CIFAR AI Chair Program and the Canada NSERC Discovery
Grant (RGPIN-2021-03115).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong
Wang, Huichi Zhou, Yiqiang Li, et al. Gui-world: A dataset for gui-oriented multimodal llm-
based agents. arXiv preprint arXiv:2406.10819, 2024a.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024b.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 9313–9332, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.505.
URL https://aclanthology.org/2024.acl-long.505/.

World Wide Web Consortium. Core accessibility api mappings 1.1. https://www.w3.org/
TR/core-aam-1.1/, 2018. Accessed: [Insert date of access].

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: towards a generalist agent for the web. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing Systems, pp. 28091–28114, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embodied multi-
modal language model. In Proceedings of the 40th International Conference on Machine Learn-
ing, pp. 8469–8488, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: building open-ended embodied
agents with internet-scale knowledge. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, pp. 18343–18362, 2022.

Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang Zhao, Xinze Guan, Jie Yang, Yi Zhang,
and Xin Eric Wang. Read anywhere pointed: Layout-aware gui screen reading with tree-of-lens
grounding. arXiv preprint arXiv:2406.19263, 2024.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical user interface
automation. arXiv preprint arXiv:2312.13108, 2023.

Alain Girault, Bilung Lee, and Edward A Lee. Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on computer-aided design of integrated circuits and
systems, 18(6):742–760, 1999.

Google Cloud. Cloud Vision API. https://cloud.google.com/vision, 2024. Accessed:
October 5, 2023.

11

https://aclanthology.org/2024.acl-long.505/
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://cloud.google.com/vision

Published as a conference paper at ICLR 2025

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, Feiyue Ni, Ruihua Song, and Chenyi
Zhuang. Intelligent agents with llm-based process automation. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5018–5027, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Auto-
mated data science by empowering large language models with case-based reasoning. In Forty-
first International Conference on Machine Learning, 2024.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2024a.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024b.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Gonzalo De La Torre Parra, Elias Bou-Harb,
and Peyman Najafirad. Llm-powered code vulnerability repair with reinforcement learning and
semantic reward. arXiv preprint arXiv:2401.03374, 2024.

Aditya K Kamath and Sujay Yadalam. Herding llamas: Using llms as an os module. arXiv preprint
arXiv:2401.08908, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Tiangang Li, Shi Ying, Yishi Zhao, and Jianga Shang. Batch jobs load balancing scheduling in
cloud computing using distributional reinforcement learning. IEEE Transactions on Parallel and
Distributed Systems, 35(1):169–185, 2024.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Minghao Liu, Zonglin Di, Jiaheng Wei, Zhongruo Wang, Hengxiang Zhang, Ruixuan Xiao, Haoyu
Wang, Jinlong Pang, Hao Chen, Ankit Shah, et al. Automatic dataset construction (adc): Sample
collection, data curation, and beyond. arXiv preprint arXiv:2408.11338, 2024b.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. arXiv
preprint arXiv:2311.05437, 2023a.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
NLG evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2511–2522, Singapore, December 2023b. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/
2023.emnlp-main.153/.

12

https://aclanthology.org/2023.emnlp-main.153/
https://aclanthology.org/2023.emnlp-main.153/

Published as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: iterative refinement
with self-feedback. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pp. 46534–46594, 2023.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Llm agent
operating system. arXiv preprint arXiv:2403.16971, 2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15174–15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-long.810/.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. arXiv
preprint arXiv:2405.14205, 2024.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: a large-scale dataset for android device control. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. Real-time flying object detection
with yolov8. arXiv preprint arXiv:2305.09972, 2023.

Haochen Shi, Zhiyuan Sun, Xingdi Yuan, Marc-Alexandre Côté, and Bang Liu. OPEx: A
component-wise analysis of LLM-centric agents in embodied instruction following. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp. 622–636, Bangkok, Thai-
land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
37. URL https://aclanthology.org/2024.acl-long.37/.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 8634–8652, 2023.

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, and Yuan Huang. Mmac-copilot:
Multi-modal agent collaboration operating system copilot. arXiv preprint arXiv:2404.18074,
2024.

13

https://aclanthology.org/2024.acl-long.810/
https://aclanthology.org/2024.acl-long.37/

Published as a conference paper at ICLR 2025

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A mul-
timodal agent for red dead redemption ii as a case study. arXiv preprint arXiv:2403.03186, 2024.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large lan-
guage models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2609–2634, Toronto, Canada, July 2023b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.
acl-long.147/.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Xiaoqiang Wang, Lingfei Wu, Tengfei Ma, and Bang Liu. FAC2E: Better understanding large lan-
guage model capabilities by dissociating language and cognition. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 13228–13243, Miami, Florida, USA, November 2024c.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.734. URL
https://aclanthology.org/2024.emnlp-main.734/.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153–34189, 2023c.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997, 2023d.

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation.
arXiv preprint arXiv:2407.19056, 2024d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Qinchen Wu, Difei Gao, Kevin Qinghong Lin, Zhuoyu Wu, Xiangwu Guo, Peiran Li, Weichen
Zhang, Hengxu Wang, and Mike Zheng Shou. Gui action narrator: Where and when did that
action take place? arXiv preprint arXiv:2406.13719, 2024a.

14

https://aclanthology.org/2023.acl-long.147/
https://aclanthology.org/2023.acl-long.147/
https://aclanthology.org/2024.emnlp-main.734/

Published as a conference paper at ICLR 2025

Ronglong Wu, Zhirong Shen, Zhiwei Yang, and Jiwu Shu. Mitigating write disturbance in non-
volatile memory via coupling machine learning with out-of-place updates. In 2024 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pp. 1184–1198. IEEE,
2024b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024c.

Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, and Wei Wang. Proteingpt: Multimodal llm for
protein property prediction and structure understanding. arXiv preprint arXiv:2408.11363, 2024.

Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A
survey. arXiv preprint arXiv:2402.15116, 2024a.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024b.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, et al. Crab: Cross-environment agent benchmark for
multimodal language model agents. arXiv preprint arXiv:2407.01511, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: standardizing and
benchmarking interactive coding with execution feedback. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing Systems, pp. 23826–23854, 2023b.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: teaching
large language model to use tools via self-instruction. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 71995–72007, 2023c.

Yuan Yang, Siheng Xiong, Ehsan Shareghi, and Faramarz Fekri. The compressor-retriever architec-
ture for language model os. arXiv preprint arXiv:2409.01495, 2024.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023d.

Mihalis Yannakakis. Hierarchical state machines. In IFIP International Conference on Theoretical
Computer Science, pp. 315–330. Springer, 2000.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. arXiv
preprint arXiv:2404.05719, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024a.

Cong Zhang, Deik Derrick Goh Xin, Dexun Li, Hao Zhang, and Yong Liu. Meta-task planning for
language agents. arXiv preprint arXiv:2405.16510, 2024b.

15

Published as a conference paper at ICLR 2025

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. In International Conference on Learning Representations, 2019.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents, 2024c.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action
agents. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associ-
ation for Computational Linguistics: ACL 2024, pp. 3132–3149, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.186. URL
https://aclanthology.org/2024.findings-acl.186/.

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Boyi Li, Shengyu Hao, Shidong Cao, Tian Ye, and
Gaoang Wang. See and think: Embodied agent in virtual environment. In European Conference
on Computer Vision, pp. 187–204. Springer, 2024.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. In International Conference on Machine Learning, pp. 61349–61385. PMLR,
2024a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan.
Agentstudio: A toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918,
2024b.

Zhao Zhuo, Rongzhen Li, Kai Liu, Huhai Zou, KaiMao Li, Jie Yu, Tianhao Sun, and Qingbo Wu.
Kaos: Large model multi-agent operating system. arXiv preprint arXiv:2406.11342, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

16

https://aclanthology.org/2024.findings-acl.186/

Published as a conference paper at ICLR 2025

A OVERVIEW

In the Appendix, we present:

• Implementation details in Appendix B.

• Baseline details in Appendix C.

• Experiments on GUI understanding benchmarks in Appendix D.

• Experiments on static GUI navigation benchmarks in Appendix E.

• Additional qualitative results in Appendix F.

B IMPLEMENTATIONS

Observation space. In dynamic OS environments, we extract Set-of-Mark (SoM) using native sys-
tem APIs to obtain the Accessibility (A11Y) tree, as described in Section 2.2. For ablation study in
Section 3.1 and other benchmarks without a dynamic OS environment, as described in Appendix D
and Appendix E, i.e. only providing a screenshot, we employ an Detection+OCR pipeline to extract
SoM. Specifically, we follow Gao et al. (2023); Wang et al. (2024a) and use YOLO-v8 (Reis et al.,
2023) and Google OCR (Google Cloud, 2024) to parse the GUI into SoM visual prompts, serving
as auxiliary inputs for screen observation.

Action space. The action space of OSCAR in desktop OS and smartphone OS is summarized in
Table 5. This action space is used in the dynamic OS environments, i.e. OSWorld (Xie et al., 2024b)
and AndroidWorld (Rawles et al., 2024). For the GUI understanding benchmark described in Ap-
pendix D and the static GUI navigation benchmark in Appendix E, we adapt the action space to
meet the benchmark requirements, i.e. free-form answering text format in the GUI understanding
benchmark, and structural output including predefined action types and selected elements or loca-
tion coordinates.

Base model. To ensure a fair comparison, we set the base model of OSCAR and all baseline models
to GPT-4o, i.e.gpt-4o-2024-05-13, except for the results on GAIA in Table 1, which are based
on GPT-4-turbo, i.e.gpt-4-turbo-2024-04-09, since the baseline MMAC (Song et al., 2024)
does not publicly release their code and their results are based on GPT-4-turbo. The temperature of
response generation is set to 0.1 to reduce the variance in text generation. We provide 8 in-context
demonstration examples to help the model better understand the instruction. These examples do not
include a screenshot but provide a description of the current screen. All baselines are also provided
with 8 in-context demonstrations to ensure a fair comparison. The full version of system prompt are
provided in Figure 10 and Figure 11.

Experiment setup. We conduct evaluation experiments on 2 A100 GPUs. Since fine-tuning the
base model is not involved and it is accessed via API, the GPU is mainly required for the Detec-
tion+OCR pipeline. As this pipeline is efficient on CPU machines, all experiments can also run
on regular Windows 11 machines with WSL virtualization support, which is used for encapsulating
the development and test environments in Docker containers. The maximum number of allowed
attempts per run is set to 4. We report the average results across 4 runs for each model on each
benchmark.

C BASELINE DETAILS

We employ four types of baselines for a comprehensive and fair comparison with OSCAR, cate-
gorized along two orthogonal dimensions: 1) whether the baseline is based on general-purpose
out-of-the-box LMMs, or specialized LMMs that have been continually pre-trained (without hu-
man annotations) or fine-tuned (with curated human annotations) on GUI-specialized data, and 2)
the target GUI scenario, whether the agent is developed for desktop OS or smartphone OS. These
baselines are summarized in Table 6. To the best of our knowledge, OSCAR is the first agent capa-
ble of navigating both desktop and smartphone OS environments while responding to real-time OS
feedback.

17

Published as a conference paper at ICLR 2025

Table 5: The formulation of action space of OSCAR to navigate in desktop OS (top part) and smart-
phone OS (bottom part).

Action Parameter Description

move
id: int Move the mouse cursor to the GUI element labeled with id

(x: float, y: float) Move the mouse cursor to given coordinate (x, y)
single click – Click the left button of mouse at current position
double click – Click the left button twice of mouse at current position
right click – Click the right button of mouse at current position
scroll dist: int Scroll the mouse wheel with distance dist
drag (x1: int, y1: int, x2: int, y2: int) Hold and drag the mouse cursor from (x1, y1) to (x2, y2)
press key: str Press given key or keyboard shortcuts in current window
write text: str Write down the given text in current window

tap
id: int Tap on the GUI element labeled with id

(x: float, y: float) Tap the screen on given coordinate (x, y)

long tap
id: int Press and hold the GUI element labeled with id

(x: float, y: float) Press and hold screen on given coordinate (x, y)

swipe (id: int, dir: str, dist: float) Swipe on an element labeled with id in a given
direction dir (up, down, left, right) and distance dist.

swipe (x: int, y: int, dir: str, dist: float) Swipe from the coordinate (x, y) on the screen in a given
direction dir (up, down, left, right) and distance dist.

write text: str Write down the given text in current text field

Table 6: Baselines for comparison with OSCAR, categorized by general-purpose out-of-the-box
(OOTB) vs. specialized fine-tuned (FT) base LMMs and their target GUI environment (desktop
or smartphone OS). OSCAR uniquely navigates both environments with real-time OS feedback.

Agent Base Model Desktop OS Smartphone OS Dynamic Feedback

Auto-GUI (Zhang & Zhang, 2024) OOTB ✗ ✓ ✗
SeeAct (Zheng et al., 2024a) OOTB ✓ ✗ ✗

CogAgent (Hong et al., 2024b) FT ✓ ✓ ✗
SeeClick (Cheng et al., 2024) FT ✓ ✓ ✗

GUICourse (Chen et al., 2024b) FT ✓ ✓ ✗

AppAgent (Yang et al., 2023d) OOTB ✗ ✓ ✓
Mobile Agent (Wang et al., 2024a) OOTB ✗ ✓ ✓

M3A (Rawles et al., 2024) OOTB ✗ ✓ ✓
WebAgent (Gur et al., 2023) FT ✓ ✗ ✓
FRIDAY (Wu et al., 2024c) OOTB ✓ ✗ ✓
UFO (Zhang et al., 2024a) OOTB ✓ ✗ ✓

MMAC-Copilot (Song et al., 2024) OOTB ✓ ✗ ✓
Cradle (Tan et al., 2024) OOTB ✓ ✗ ✓

OSCAR OOTB ✓ ✓ ✓

D GUI UNDERSTANDING BENCHMARK

Benchmarks and Evaluation. To testify OSCARwhether possess a robust understanding of various
GUI scenarios, including different OS platform and multi-window interactions, we firstly evaluation
OSCAR on a comprehensive GUI understanding benchmark - GUI-World(Chen et al., 2024a). GUI-
World covering six GUI scenarios across Desktop OS and Smartphone OS and formulated as a
visual question-answering task. Specifically, Given one or multiple screenshots, the agent outputs a
summarized caption, layout description, and GUI elements, or infers relations between screenshots.
Following Chen et al. (2024a), we evaluate performance using automatic metrics for natural lan-
guage generation, such as BERTScore(Zhang et al., 2019) and LLM-as-a-Judge methodology (Liu
et al., 2023b; Zheng et al., 2023), or accuracy metric for multiple-choice questions.

Results. As shown in Table 7, we observe that: 1) OSCAR achieves the best GUI understanding
performance across five types of GUI domains, except for websites, where the state-of-the-art agent
uses an advanced parser to extract HTML as input. When HTML text is provided to OSCAR as
additional input, it also demonstrates state-of-the-art performance in website GUI understanding.
This success can be attributed to OSCAR’s GUI-grounded observation, which we further analyze
in Section 3.2. 2) Fine-tuning on domain-specific data slightly compromises performance in more
general domains. For example, the Web Agent achieves 83 on iOS GUI, significantly lower than its

18

Published as a conference paper at ICLR 2025

Table 7: Quantitative results on the GUI-World benchmark covering six types of GUI domains.

Model Software Website XR Multi iOS Android
MC Free MC Free MC Free MC Free MC Free MC Free

SeeAct 93.9 4.328 91.1 4.167 90.6 4.031 90.1 4.172 84.8 3.750 92.3 3.865
Auto-GUI 94.8 4.422 90.5 4.131 89.0 3.904 88.0 4.073 84.0 3.666 91.4 3.742
CogAgent 94.4 4.322 87.5 3.976 90.1 4.031 88.3 4.086 88.7 4.193 93.6 4.056
SeeClick 91.0 4.083 88.5 4.038 89.5 3.893 89.7 4.176 88.2 4.078 94.3 4.124

GUICourse 92.4 4.156 88.9 4.038 90.3 4.057 88.6 4.111 88.4 4.168 92.9 4.058
AppAgent 86.5 3.644 84.3 3.805 90.8 4.159 89.5 4.176 90.6 4.398 95.0 4.326

Mobile Agent 88.6 3.822 86.0 3.877 90.6 4.047 89.7 4.199 91.1 4.482 94.9 4.230
M3A 88.1 3.799 84.1 3.803 92.1 4.270 94.1 4.456 89.6 4.278 93.5 4.127

WebAgent - - - - - - - - - - - -
FRIDAY 95.1 4.406 89.4 4.090 87.7 3.662 86.5 3.991 85.2 3.768 92.0 3.845

UFO 94.4 4.352 91.0 4.182 91.4 4.159 89.8 4.179 84.8 3.778 90.6 3.649
MMAC - - - - - - - - - - - -

OSCAR 96.4 4.509 89.2 4.035 94.4 4.551 95.5 4.527 92.7 4.585 96.4 4.524
OSCAR+HTML - - 92.2 4.235 - - - - - - - -

state-of-the-art performance of 93 on website GUI. 3) The average performance difference among
the agents is marginal, highlighting the strong single-step GUI understanding capability of the base
model, GPT-4o, used in our experiments.

E STATIC GUI NAVIGATION BENCHMARK

Benchmarks and Evaluation. We evaluate OSCAR on GUI navigation benchmarks involving
multi-step decision-making in pre-defined interaction episodes, which includes widely adopted
datasets such as Mind2Web(Deng et al., 2023) (Desktop OS) and AITW(Rawles et al., 2023) (Smart-
phone OS). These benchmarks consist of high-level task descriptions, gold reference sequences of
actions, and corresponding observations in HTML and screenshots. Given the task description, his-
torical actions, and screen states, the model predicts the next action. Borrowing setting from Cheng
et al. (2024); Rawles et al. (2023), we evaluate performance using the Step Success Rate (both the
selected element and predicted operation are correct), Task Success Rate (all steps are correct), and
a screen-wise action matching score (the number of correct steps divided by the total number of
steps). Notably a click action is correct if its touch and lift points are within 14% of the screen
distance from the gold action or occur within the same bounding box. A scroll action is considered
correct if it follows the same scroll axis as the gold action.

Results. Tables 8 and Table 9 quantitatively summarize the GUI navigation results on desktop
OS and smartphone OS, respectively. We observe that: 1) OSCAR without re-planning consistently
achieves the best performance on multi-step navigation tasks, outperforming competitive baselines
such as UFO and AUTO-GUI, particularly on cross-website and cross-domain data, demonstrat-
ing its general applicability. 2) Fine-tuning on specific GUI data for single-step predictions makes
limited contributions to multi-step decision-making, as seen with CogAgent, which achieves com-
petitive results in GUI understanding (Table 7) but performs poorly in multi-step GUI navigation
tasks. A possible explanation is that domain-specific fine-tuning increases the probability of hallu-
cinated actions when intermediate feedback is not available from static environments (Qiao et al.,
2024).

F QUALITATIVE RESULTS

Figure 8 and Figure 9 present qualitative results of OSCAR’s on the daily application and professional
tool, respectively.

19

Published as a conference paper at ICLR 2025

Table 8: Desktop OS GUI navigation results on the Mind2Web benchmark in terms of element
accuracy (Ele.Acc), Operation F1 (Op.F1) and step success rate (Step SR).

Model Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

SeeAct 31.8 89.3 29.6 25.5 85.0 20.4 26.6 87.3 23.6
CogAgent 31.1 88.6 28.8 25.6 84.8 20.4 27.1 87.7 24.2
SeeClick 28.3 86.9 25.5 21.4 80.5 16.4 23.3 85.1 20.9

GUICourse 31.8 89.6 29.6 26.4 85.7 21.2 27.8 88.4 25.0
WebAgent - - - - - - - - -
FRIDAY 31.3 89.4 28.8 27.2 86.0 22.2 28.4 89.0 25.5

UFO 33.5 90.1 31.3 27.2 86.2 22.1 27.9 88.4 24.8
MMAC - - - - - - - - -

OSCAR w/o Re-plan 35.5 92.4 33.9 29.6 88.3 24.5 29.8 90.0 26.5

Table 9: Smartphone OS GUI navigation results on the AITW benchmark in terms of action match-
ing score.

Model General Install GoogleApps Single step Webshopping

Auto-GUI 67.9 76.7 71.2 84.5 70.5
CogAgent 61.0 72.0 64.7 73.8 65.0
SeeClick 54.2 66.7 54.6 63.5 57.6

GUICourse 64.1 73.5 66.3 78.0 66.2
AppAgent 58.1 70.7 59.9 71.7 61.5

Mobile Agent 59.5 71.4 61.4 73.9 63.8
M3A 65.4 75.7 68.0 82.9 68.0

OSCAR w/o Re-plan 71.4 78.7 74.8 88.6 73.0

20

Published as a conference paper at ICLR 2025

Figure 8: Qualitative results when processing user request “Please open Notepad, create a new file
named “draft.txt”, type “This is a draft.”, and save it to the Documents folder.”.

Figure 9: Qualitative results when processing user request “Install the pylance extension in VS
Code.”.

21

Published as a conference paper at ICLR 2025

OSCAR System Prompt (Part 1/2)

You are a Task Planner with advanced task-driven re-planning capabilities, designed to efficiently
complete user objectives by dynamically adapting based on feedback and context. Your core respon-
sibilities involve breaking down complex tasks, executing actions step-by-step, and adjusting plans
when necessary. You will store task lists and action histories in context memory to ensure tasks are
completed effectively and utilize textual memory to update and improve your future decisions.
You follow a detailed two-level planning approach inspired by Standard Operating Procedures
(SOPs) and real-time feedback to ensure tasks are completed smoothly. Your actions are guided
by both current observations and stored memory.
Task-Driven Re-Planning:

• Level 1: Task Decomposition Using SOPs: Decompose user instructions into high-level tasks
using Standard Operating Procedures (SOPs) for clarity and structure. SOPs help break down
complex goals into manageable tasks and avoid missed steps or misinterpretations.

• Level 2: Action Execution and Feedback Integration: For each task, generate actions and ex-
ecute them step-by-step. After each action, verify if it’s on track by comparing the actual results
with the expected ones. Adjust plans dynamically if deviations occur or based on user feedback.
Store the results and trajectory for future steps.

Inputs:
• User Objective: The overall goal the user wishes to accomplish.
• Context Memory:

– Old Task List: Previous tasks generated and stored.
– History Actions: Sequence of executed actions.

• Observation Input:
– Raw current screen image.
– Annotated current screen with red bounding boxes, tagged with their respective IDs.

• Feedback Input: Feedback related to prior actions or user input.
• Window Title: The name of the currently active window.
• All Open Windows: List of all open applications and windows.
• Candidate Screen Elements:

– ID: Unique identifier for the element.
– Content: Description or text associated with the element.
– Location: Normalized location on the screen.

Figure 10: Part 1/2 of system prompt of OSCAR.

22

Published as a conference paper at ICLR 2025

OSCAR System Prompt (Part 2/2)

Outputs:
• Screen Annotation: Summarize what is visible on the screen and explain how it relates to the task

objective.
• Task-Driven Re-Planning: Re-check the Old Task List and History Actions, decide whether re-

planning is needed based on new observations or feedback, and adjust the task list if necessary.
• New Task List: Create or update the task list using SOPs and user feedback.
• Multi-Step Planning: Break down the user’s objective into smaller, actionable steps. For each step,

decide which screen elements to interact with and provide rationale. Adjust the plan as needed.
• Decision Generation: Choose a high-level decision:

– COMMAND, DONE, or WAIT.
• Action Execution: Output a Python code block to execute the next action:

computer.mouse.move(id=14) # Move to the Start Menu button.
computer.mouse.single_click() # Click to open the Start Menu.

• Textual Memory: Update Context Memory with the new task list and actions.

Important Reminders:
• Ensure clarity in task decomposition by using SOPs.
• Re-plan based on feedback or unexpected outcomes.
• Store both tasks and actions in memory to track progress and avoid repetition.
• Verify progress at each stage, executing actions step-by-step.

Task List Example:

[New Task List]
1. Open Notepad.
2. Type "This is a draft."
3. Save the document as "draft.txt."
[Current Task] 1/3 Open Notepad.

High-level Decision Example:

COMMAND # or DONE, WAIT

Action Example:

computer.mouse.move(id=14) # Move to the Start Menu button.
computer.mouse.single_click() # Click to open the Start Menu.

Memory Example:

[New Task List]
1. Navigate to Amazon.
2. Search for "laptop."
3. Add the first item to the cart.

[Current Task] 1/3 Navigate to Amazon.

Figure 11: Part 2/2 of system prompt of OSCAR.

23

	Introduction
	Methodology
	Formulation of State Transitions
	GUI-grounded Observation
	Task-driven Re-planning
	Code-based Action

	Experiments
	Ablation analysis
	In-depth Analysis

	Related Works
	Conclusion
	Overview
	Implementations
	Baseline Details
	GUI Understanding Benchmark
	Static GUI Navigation Benchmark
	Qualitative Results

