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Abstract

This paper investigates Reinforcement Learning (RL) on data without explicit
labels for reasoning tasks in Large Language Models (LLMs). The core challenge
of the problem is reward estimation during inference while not having access to
ground-truth information. While this setting appears elusive, we find that common
practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly
effective rewards suitable for driving RL training. In this work, we introduce Test-
Time Reinforcement Learning (TTRL), a novel method for training LLMs using
RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors
in the pre-trained models. Our experiments demonstrate that TTRL consistently
improves performance across a variety of tasks and models. Notably, TTRL
boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211%
on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL
is only supervised by the maj@n metric, TTRL has demonstrated performance to
consistently surpass the upper limit of the initial model maj@n, and approach the
performance of models trained directly on test data with ground-truth labels. Our
experimental findings validate the general effectiveness of TTRL across various
tasks and highlight TTRL’s potential for broader tasks and domains.
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1 Introduction

Recent advances in Large Reasoning Models (LRMs), such as DeepSeek-R1 [11] and OpenAI’s
o1 [18], have demonstrated that Reinforcement Learning (RL) is essential for enhancing long chain-
of-thought (CoT) reasoning [49] through training on expensive human-annotated data. These models
achieve remarkable performance on a range of highly challenging tasks. For example, OpenAI’s o3
attains a 75.7% success rate on ARC-AGI-1. However, complex and unlabeled questions continuously
emerge, posing significant challenges. For instance, o3 solves only 4% of problems on the recently
released ARC-AGI-2 benchmark (2025). Addressing such tasks typically involves scaling up training
with more data and computational resources, and it may still fail to yield strong performance on
these tasks. Silver & Sutton [39] has recently advocated for a transition to the “era of experience,”
emphasizing the limitations of existing AI systems that rely heavily on human supervision, as well as
the importance of enabling models to self-evolve through experience.

Further building upon the substantial progress of LRMs, it naturally motivates a promising direction
in which AI systems autonomously improve via RL on unlabeled data by directly engaging in self-
experience and learning, thereby pushing the boundaries of RL and further advancing the frontier
of AI capabilities. Such self-evolvement can be broadly categorized into two modes: adaptation
to test-time data, which enables models to tackle harder benchmarks such as ARC-AGI-2, and
training on external unlabeled data, which unlocks more training data beyond labeled corpora. This
work focuses on the adaptation to test-time data, which has been extensively studied under the
paradigm of Test-Time Training (TTT) [1, 2, 42, 43]. TTT has received increasing attention recently.
These approaches adapt model parameters at test time by exploiting the structure and distributional
properties of incoming test data.

Therefore, we aim to fully advance AI evolution by updating models at test time using RL, thereby
enhancing their generalization to previously unseen data. However, this introduces a critical challenge:
How to obtain rewards for RL at test-time? This also highlights a broader limitation of current RL
approaches. Despite their promise, most existing methods still rely heavily on labeled data, which
significantly limits their scalability. As real-world tasks continue to increase in both complexity and
volume, large-scale annotation for RL becomes increasingly impractical, posing a substantial barrier
to the continual improvement of state-of-the-art models.

We introduce Test-Time Reinforcement Learning (TTRL), which performs test-time training through
RL. TTRL employs repeated sampling strategies in the rollout phase to accurately estimate the label
and compute rule-based rewards, thereby enabling RL on unlabeled data. By incorporating effective
majority voting rewards, TTRL facilitates efficient and stable RL in the absence of ground truth
labels. As previously highlighted, the emergence of more challenging tasks will inevitably lead to
larger proportions of unlabeled data. TTRL directly addresses the problem of training models via RL
without explicit supervision, investigating a model’s ability to explore and learn in this challenging
yet critical setting. Essentially, TTRL enables the model to generate its own experiences, estimate
rewards, and improve its performance over time.

In experiments, applying TTRL to Qwen2.5-Math-7B results in an improvement on AIME 2024
of 211% (12.9 to 40.2), with an average gain of 76% across AIME 2024, AMC, MATH-500, and
GPQA. These improvements are achieved through self-evolution without any labeled training data and
further generalize to other tasks. TTRL not only enhances performance on pass@1 but also improves
TTS through majority voting. Moreover, our preliminary experiments suggest that TTRL is effective
across models of different scales and types and that it can be integrated with existing RL algorithms.
We also found that TTRL exhibits favorable characteristics such as a high-performance ceiling.
These observations highlight its potential to substantially reduce reliance on human annotations,
enabling continual learning and scaling RL to large-scale unsupervised training. Below are several
key takeaways:

Takeaways

1. Majority voting provides effective reward estimation for TTRL (§ 3).
2. TTRL can exceed its training signal and upper limit maj@n, and closely mirrors the

performance of direct training on the test data with ground-truth (§ 4.1).
3. It is possible to achieve efficient and stable RL in an unsupervised manner (§ 4.2).
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2 Test-Time Reinforcement Learning (TTRL)

Unlike traditional RL, where the agent learns from known reward signals, TTRL operates on
unlabeled test data. In other words, the model must learn and adapt without access to explicit
supervision. Our task is defined as follows:

We study the problem of training a pre-trained model during test time using RL without
ground-truth labels. We call this setting Test-Time Reinforcement Learning.

2.1 Methodology
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Figure 2: TTRL combines both Test-Time Scaling (TTS) and Test-Time Training (TTT).
Figure 2 illustrates how our approach, TTRL, tackles this challenge. Given a state represented by the
prompt x, the model acts by producing an output y sampled from a policy πθ(y | x) parameterized by
θ. To construct a reward signal without ground-truth labels, we generate multiple candidate outputs
{y1, y2, . . . , yN} from the model through repeated sampling. A consensus output y∗ is derived, for
instance, by majority voting or another aggregation method, serving as a proxy for the optimal action.
The environment then provides a reward r(y, y∗) based on the alignment between the sampled action
y and the consensus action y∗. The RL objective is thus to maximize the expected reward:

max
θ

Ey∼πθ(·|x)[r(y, y
∗)], (1)

and parameters θ are updated through gradient ascent:

θ ← θ + η∇θEy∼πθ(·|x)[r(y, y
∗)], (2)

where η denotes the learning rate. This approach enables the model to adapt during inference,
effectively improving its performance on distribution-shifted inputs without the need for labeled data.

2.2 Majority Voting Reward Function

The majority voting reward is determined by first estimating a label through majority voting. This
estimated label is then used to calculate rule-based rewards, which serve as the final rewards. Given
a question x, we first input x into the LLM to generate a set of outputs. An answer extractor then
processes these outputs to obtain the corresponding predicted answers, denoted as P = {ŷi}Ni=1. We
first follow Equation 4 over P to estimate a label, with majority voting as the scoring function s(y, x)
to get y, the most frequently occurring prediction in P . The majority-voted prediction y is then used
as the estimated label to compute rule-based rewards [11]. The reward function is:

R(ŷi, y) =

{
1, if ŷi = y,

0, otherwise.
(3)

Appendix C presents the pseudo-code of the reward function.

3



Table 1: Main results of TTRL on each task. ∗ indicates that Qwen3-8B is evaluated in non-thinking
mode within a 3k context. Figure 3 provides results within a 32k context.

Name AIME 2024 AMC MATH-500 GPQA Avg
Math Base Models

Qwen2.5-Math-1.5B 7.7 28.6 32.7 24.9 23.5
w/ TTRL 15.8 48.9 73.0 26.1 41.0
∆ +8.1 +20.3 +40.3 +1.2 +17.5

↑ 105.2% ↑ 71.0% ↑ 123.2% ↑ 4.8% ↑ 74.4%
Qwen2.5-Math-7B 12.9 35.6 46.7 29.1 31.1
w/ TTRL 40.2 68.1 83.4 27.7 54.9
∆ +27.3 +32.5 +36.7 −1.4 +23.8

↑ 211.6% ↑ 91.3% ↑ 78.6% ↓ 4.8% ↑ 76.5%
Vanilla Base Models

Qwen2.5-7B 7.9 34.8 60.5 31.8 33.8
w/ TTRL 23.3 56.6 80.5 33.6 48.5
∆ +15.4 +21.8 +20.0 +1.8 +14.7

↑ 194.9% ↑ 62.6% ↑ 33.1% ↑ 5.7% ↑ 43.7%
Qwen2.5-32B 7.9 32.6 55.8 33.2 32.4
w/ TTRL 24.0 59.3 83.2 37.7 51.1
∆ +16.1 +26.7 +27.4 +4.5 +18.7

↑ 203.8% ↑ 81.9% ↑ 49.1% ↑ 13.6% ↑ 57.7%
Instruct Models

LLaMA3.1-8B 4.6 23.3 48.6 30.8 26.8
w/ TTRL 10.0 32.3 63.7 34.1 35.0
∆ +5.4 +9.0 +15.1 +3.3 +8.2

↑ 117.4% ↑ 38.6% ↑ 31.1% ↑ 10.7% ↑ 30.6%
Qwen3-8B∗ 26.9 57.8 82.3 48.1 53.8
w/ TTRL 46.7 69.1 89.3 53.0 64.5
∆ +19.8 +11.3 +7.0 +4.9 +10.8

↑ 73.6% ↑ 19.6% ↑ 8.5% ↑ 10.2% ↑ 20.0%

3 Experiments

3.1 Experimental Setup

Models To evaluate the generalizability of TTRL across different backbone models, we conduct
experiments using both base and instruct models of various scales. In addition, we carry out
experiments on leading LRMs to demonstrate that TTRL can improve model performance even after
costly post-training. The models we experiment with are as follows:

• Qwen Family: Qwen2.5-Math-1.5B [54], Qwen2.5-Math-7B [54], Qwen2.5-7B [55], Qwen2.5-
32B [55], Qwen3-8B (thinking mode & non-thinking mode) [55];

• LLaMA Family: LLaMA-3.1-8B-Instruct [10], LLaMA-3.2-3B-Instruct [10], LLaMA-3.2-3B-
Oat-Zero [26];

• Mistral Family: Mistral-Nemo-Instruct-2407 [29], Ministral-8B-Instruct-2410 [28];
• DeepSeek Family: DeepSeek-Math-7B-Instruct [38], DeepSeek-R1-LLaMA-8B [11];
• Others: Skywork-OR1-Math-7B [13];

Benchmarks We evaluate TTRL on GPQA-Diamond [35], a challenging and high-quality subset of
the Graduate-Level Google-Proof Question Answering benchmark, and 3 mathematical reasoning
benchmarks: AIME 2024 [21], AMC [21], and MATH-500 [14].

Evaluation Setup We apply TTRL to each benchmark individually and then evaluate. We set the
maximum generation length to 3072 tokens, unless otherwise specified. For the main experiments,
following DeepSeek-R1 [11], we adopt the pass@k evaluation protocol [3] and calculate pass@1
using non-zero temperature sampling. Specifically, we generate 16 responses (4 for 32k context)
per question using a temperature of 0.6 and a top-p value of 0.95. For the analysis and additional
experiments on Qwen2.5-MATH, we evaluate using greedy decoding to report pass@1, to ensure a
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fair comparison with previous works. Appendix E presents a set of training-time metrics we used to
monitor the performance of TTRL and analyze its training dynamics in the absence of ground-truth.

Baselines Since the use of TTT for reasoning has not been previously explored, we primarily
compare it with the backbone model to validate whether TTRL can achieve effective improvements
through self-evolution. Appendix D presents additional experimental results comparing TTRL with
previous state-of-the-art RL approaches for reasoning.

Implementation Details We independently apply GRPO [38] on each benchmark to implement
TTRL. For hyperparameters, we use a cosine learning rate schedule with a peak value of 5× 10−7

and adopt the AdamW optimizer for the policy model. For rollout, we sample 64 responses using
a temperature of 0.6 (1.0 for Qwen2.5-Math and LRMs) for voting-based label estimation and
downsample 32 responses per prompt for training. Evidence shows that our vote-then-sample strategy
effectively reduces computational costs while still achieving strong performance. The maximum
generation length is set to 32,768 tokens for LRMs and 3,072 tokens for all other models. We set the
number of episodes to 10, 30, and 80 for MATH-500, AMC, and AIME 2024, respectively, based on
the dataset size. All experiments were conducted on 8 * NVIDIA A100 80GB GPUs.

3.2 Main Results

Table 2: Performance of TTRL on various models.

Name AIME AMC MATH-500
LLaMA Family

LLaMA-3.2-3B-Oat-Zero 0.8 15.1 41.9
w/ TTRL 3.3 25.3 55.7
∆ +2.5 +10.2 +13.8

LLaMA-3.2-3B-Instruct 6.0 19.4 43.9
w/ TTRL 13.3 31.3 61.6
∆ +7.3 +11.9 +17.7

Mistral Family
Mistral-Nemo-Instruct 0.8 15.4 40.8
w/ TTRL 0 24.8 51.0
∆ −0.8 +9.4 +10.2

Ministral-8B-Instruct 1.3 19.7 52.4
w/ TTRL 3.3 28.9 57.8
∆ +2.0 +9.2 +5.4

DeepSeek Family
DeepSeek-Math-7B-Instruct 1.9 16.3 42.3
w/ TTRL 2.5 22.9 52.4
∆ +0.6 +6.6 +10.1

DeepSeek-R1-LLaMA-8B 51.7 81.6 89.6
w/ TTRL 69.2 88.9 90.9
∆ +17.5 +7.3 +1.3

TTRL performs well on most tasks and
models. Table 1 presents the main results.
We apply TTRL to 6 models spanning 4
model families, 2 model types, and 3 model
sizes, consistently demonstrating substan-
tial improvements across 4 highly challeng-
ing benchmarks. On the demanding mathe-
matical reasoning benchmark AIME 2024,
TTRL achieves a minimum improvement
of 105% across all 6 models. Moreover,
applying TTRL to a 1.5B model leads to
a significant gain of up to 40.3 points on
the MATH-500. Recently, Shao et al. [37]
demonstrated the importance of evaluat-
ing different models for RL-based meth-
ods to validate experimental conclusions.
Therefore, we additionally report results
on a broader range of models from var-
ious model families, such as DeepSeek-
R1-LLaMA-8B, an LRM from DeepSeek
trained on the LLaMA model. Table 2
presents the results. As shown, TTRL con-
tinues to exhibit consistent effectiveness.
Furthermore, as shown in Appendix D, de-
spite relying solely on self-evolution using unlabeled test data, TTRL achieves performance compa-
rable to existing RL-based models that are trained on large-scale labeled datasets.
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Figure 3: TTRL on LRMs.

TTRL performs well on LRMs. With the rapid
progress in RL and TTS, LRMs are becoming in-
creasingly central. To further examine whether
TTRL remains effective on LRMs that have un-
dergone expensive post-training, especially on
highly challenging tasks, we evaluate two other
powerful LRMs. Figure 3 presents the results
of applying TTRL to additional reasoning mod-
els. Qwen3-8B is evaluated in thinking mode.
Despite the extensive post-training these models
have undergone, TTRL still achieves substan-
tial performance gains, yielding improvements
of approximately 10 points on both backbones.
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TTRL naturally scales. Another noteworthy observation is that as the model size increases (1.5B→
7B and 7B→ 32B), performance consistently improves, highlighting the natural scaling behavior of
TTRL: larger models can produce more accurate majority voting rewards during self-improvement,
which leads to more effective learning on new data.

TTRL generalizes well beyond the target task. We perform TTRL on each benchmark and
further evaluate pass@1 using greedy decoding on others, with Qwen2.5-Math-7B as the backbone.
Figure 4 shows the results. Despite the out-of-distribution nature of this setting, TTRL achieves
substantial improvements across all benchmarks. This suggests that TTRL does not rely on overfitting,
which would lead to trade-offs on other tasks, but instead acquires generalizable gains during self-
improvement.
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Figure 4: Out-of-distribution performance before and after TTRL.

TTRL is compatible with different RL algorithms. We further apply TTRL using two RL
algorithms on MATH-500 with Qwen2.5-Math-1.5B to assess its compatibility, which are PPO [36],
a value mode based method, and PRIME [7], a process-level RL algorithm. Figure 5 presents the
results. The performance trajectories of GRPO, PPO, and PRIME are closely aligned.
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Figure 5: Comparison over steps of different RL algorithms, GRPO, PPO, and PRIME on MATH-500.

TTRL achieves sustainable self-evolution through “online” and “RL”. To gain a deeper under-
standing of the underlying mechanisms of TTRL, we conduct an analysis of the model’s training
dynamics by tracking the average (pass@1/avg@16) and majority (maj@16) scores throughout
the training process. Given that majority voting serves as the basis for generating training signals,
examining its performance trajectory is essential for understanding how it functions. Furthermore,
we investigate whether TTRL improves pass@1 at the cost of a reduction in maj@16 performance.
Figure 6 illustrates the TTRL training dynamics on AMC with Qwen2.5-Math-1.5B as the base
model. It is notable that, as training progresses, both metrics demonstrate a consistent upward
trend. This indicates that TTRL is not simply approaching the initial model’s majority voting
performance. Due to its dynamic nature, TTRL can generate higher-quality supervision signals as its
capabilities improve. Moreover, through TTRL’s use of RL for TTT, by converting voting-based
pseudo-labels into reward signals, it enhances the effective supervision quality (e.g., accuracy; see
Q2 4.2), while decoupling learning from the limitations imposed by maj@n.

6



0 80 160 240
Steps

0.30

0.35

0.40

0.45

Av
g@

16

0 80 160 240
Steps

0.44

0.48

0.52

0.56

M
aj

@
16

Figure 6: Training dynamics of TTRL on AMC using Qwen2.5-Math-1.5B as the base model.

4 Analysis and Discussions

4.1 Q1: How Well Can TTRL Perform?

Takeaways

1. TTRL surpasses the traditional self-training upper bound, the majority accuracy of the
initial model.

2. The empirical upper bound of TTRL is direct RL on labeled test data (i.e., training on
the test data). TTRL can approach the performance of this upper bound, highlighting its
potential advantages in efficacy over standard training-evaluation protocols.

3. For challenging tasks, TTRL can reach the empirical upper bound using only a 1.5B model.
This demonstrates that LLMs can now efficiently self-evolve through TTRL, enabling
unbounded lifelong learning on large-scale datasets.

We analyze the potential performance of TTRL using two upper bounds. The first upper bound is the
maj@n of the initial model. The second upper bound is direct training on benchmark data, which
assumes access to ground-truth labels and thus leaks label information to the policy model.
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Figure 7: Majority voting performance comparison between the backbone and after TTRL.
TTRL is Supervised by maj@n Yet Surpasses It. Since TTRL utilizes the model’s own majority-
voted outputs for RL, this voting-based performance of the initial model can intuitively be regarded as
an upper bound of the final performance. This upper bound is also the performance limit of traditional
self-training methods [17], which select self-generated CoT through majority voting for supervised
fine-tuning (SFT). However, we observe a surprising phenomenon: after training, the model not only
matches but also surpasses the expected upper bound, suggesting that it exceeds the performance
limit of the original model, which also serves as its initial supervision signal. Figure 6 illustrates
this remarkable result, where it can be observed that the final avg@16 score exceeds the initial
maj@16 score by more than 20 points. Furthermore, we perform additional evaluations of TTRL
on Qwen2.5-Math-7B across various benchmarks, using more samples per question to enable more

7



reliable assessment. Figure 7 shows results. It can be observed that TTRL avg@64 consistently
outperforms Qwen2.5-Math-7B maj@64 across all benchmarks, with a considerable margin.
Through a self-reinforcing loop, the model “lifts itself up by its own bootstraps”, evolving beyond
the performance ceiling. Moreover, the performance of TTRL further improves with majority voting.
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TTRL’s Performance Gains Approach Train-
ing on the Benchmark. The motivation of
TTRL is to estimate labels using majority vot-
ing to obtain more accurate rewards, facilitating
effective self-improvement through RL on the
data without ground-truth labels. Therefore, a
natural upper bound of TTRL is performing RL
directly on the test data, denoted as RL (leakage).
Although this setting is rarely adopted or studied
due to the issue of information leakage, it repre-
sents the most efficient way to improve perfor-
mance on the particular dataset, with efficiency
that far exceeds traditional training-evaluation
paradigms. We use Qwen2.5-Math-7B to per-
form both TTRL and RL (leakage) on MATH-
500 and conduct evaluations. Figure 8 shows results. Surprisingly, we find that the performance
curve of TTRL closely approaches that of RL (leakage). This suggests that:

1. TTRL can achieve a level of self-improvement comparable to that of supervised learning (even in
the information leakage scenario) through RL in an unsupervised setting.

2. TTRL provides evidence that even small LLMs can now effectively self-improve on input-only
challenging tasks through RL, enabling continual learning. Results on Qwen2.5-Math-1.5B further
support this observation: starting from a subpar performance of 32.7 on MATH-500, the model
improved by 123.2% to reach 73.0, demonstrating clear self-improvement through TTRL.

4.2 Q2: Why Does TTRL Work?

This section presents an analysis of the factors enabling TTRL to achieve stable and effective RL
under unsupervised conditions. Our analysis identifies three key factors: reward calculation, label
estimation, and online learning.

True	Label:	3
True	Rewards:
0	0	0	0	0	0	0	0

Sampled	Predictions:	1	1	2	2	2	4	5	6

Estimated	Label:	2
Estimated	Rewards:	

0	0	1	1	1	0	0	0

Reward	Hit	Rate:	62.5%

Figure 9: A toy case of “Lucky Hit”. We
illustrate a basic numerical prediction sce-
nario to compare reward computation under
two conditions: when the model incorrectly
estimates the label versus when the ground-
truth label is used. As shown on the left, al-
though the estimated label is incorrect, some
of the incorrect predictions still differ from
the wrong label and therefore receive the cor-
rect reward (denoted as 0).

Reward Calculations. When the model is capable
of estimating accurate labels via majority voting, the
reward and subsequently training are generally reli-
able. However, a natural question arises: Why does
TTRL remain effective even when the model fails to
estimate accurate labels via majority voting on chal-
lenging benchmarks such as AIME 2024? The most
fundamental reason lies in the mechanism by which
the verifier computes rewards in RL. For tasks such
as mathematics, the verifier works based on “compari-
son” to obtain rule-based rewards by checking whether
the predicted answer matches the given “label.” This
mechanism can lead to the phenomenon of “Lucky
Hit”: for an incorrectly predicted answer, even if the
estimated label does not match the ground truth label,
as long as it differs from the predicted answer, the
verifier will still output a negative reward, and this is
exactly the correct reward that we expect, as illustrated
in Figure 9. In other words, it is sufficient that the es-
timated label differs from the predicted answer for the
verifier to assign the correct negative reward. To provide a more detailed case study, we examine the
performance of TTRL on the AIME 2024 using Qwen2.5-Math-7B. Figure 10 presents the variation
curves of the three metrics, as described in Appendix E. We identify two main reasons why TTRL
remains effective on AIME 2024:

8



0 15 30 45
Steps

0.2

0.3

0.4

0.5

M
aj

or
ity

 R
at

io

0 15 30 45
Steps

0.3

0.4

0.5

0.6

La
be

l A
cc

ur
ac

y

0 15 30 45
Steps

0.75

0.80

0.85

0.90

R
ew

ar
d 

Ac
cu

ra
cy

Figure 10: Comparison of Majority Ratio, Label Accuracy, and Reward Accuracy on AIME 2024
over steps. Even with low label accuracy, reward accuracy remains high due to “Lucky Hit”, allowing
TTRL to provide reliable training signals.

1. Reward robustness enabled by multiple outputs within a rollout. First, rewards are denser
than labels, allowing for more opportunities to recover useful reward signals even when the
estimated label is inaccurate. For example, even when the predicted label is incorrect, alternative
outputs within the same rollout can still yield correct or high-quality rewards, as shown in
Figure 9, whereas a rollout containing only a single output would not provide such flexibility.
This makes the overall reward signal more robust to errors in pseudo-label estimation.

2. High reward accuracy due to scattered incorrect predictions. Second, counterintuitively,
when the model has weaker capability, the majority voting rewards of TTRL may be more
accurate. As shown in Figure 10, although the initial label estimation through majority voting
achieves an accuracy of only 37%, the reward accuracy reaches an impressive 92%. By examin-
ing the model outputs, we find that this is because the model’s responses are highly scattered
and consistently incorrect, as shown in Figure 9. A result consistent with this observation is
that, for the base model, the most frequently predicted answer accounts for only 16.6% of all
predictions, indicating that the outputs are highly scattered. Therefore, even when the labels
are not accurately estimated, due to “Lucky Hit”, most outputs can still receive correct rewards.
Moreover, the poorer the model’s performance, the more mistakes it tends to make, which para-
doxically leads to more accurate reward estimation. An empirical observation supporting this
view is the comparison between the label accuracy and reward accuracy, as shown in Figure 10.
Although the label accuracy rarely exceeds 50%, the reward accuracy remains consistently high,
staying above 75%. This high reward accuracy provides a reliable foundation for effective
self-improvement on test data.

Label Estimations. A direct difference between TTRL and standard RL algorithms is that TTRL
involves label estimation, which introduces reward inaccuracies. We believe that TTRL works despite
these inaccuracies due to the following two reasons. (i) Existing studies have shown that RL can
tolerate a certain degree of reward inaccuracy. Moreover, RL tends to generalize better than SFT,
which often relies on memorizing training data [6]. In RL, rewards are typically vague and serve
primarily as directional signals for exploration, leading to RL’s robustness to reward noise [34]. (ii)
Prior work has also examined what constitutes a good reward model from an optimization perspective,
revealing that more accurate reward models are not necessarily better teachers [45]. Therefore, reward
signals estimated by the policy model itself may offer more suitable guidance for learning.

Online Learning. TTRL is designed based on an online RL approach, whereas traditional self-
training and test-time training methods operate in an offline manner. The online nature of TTRL
enables the model to improve its capabilities during the application, which in turn leads to more
accurate labels generated through voting. As a result, the quality of the supervision signal improves,
allowing for truly sustainable self-evolution. As shown in Figure 6, this dynamic learning process
leads to a complementary improvement of performance in both pass@1 and maj@n.

5 Related Works

5.1 Test-Time Scaling

Test-Time Scaling (TTS) is designed to enhance the capabilities of Large Language Models (LLMs)
in handling complex tasks by increasing computational resources at test time. Prior research [25, 40]
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indicates that TTS is more efficient than scaling during pre-training [19]. Therefore, reallocating the
same computational resources from pre-training to test-time could yield greater improvements in
model performance. Current studies on TTS fall into two categories [51]: parallel generation and
sequential generation. Parallel generation involves LLMs producing multiple candidate responses
(self-consistency [4, 48], best-of-N [30, 41]), decision steps (Monte Carlo Tree Search [52, 63]), or
tokens (Reward-guided Search [9, 20]) during inference. Subsequently, an aggregation strategy is
applied to integrate these candidates, commonly using process reward models [24, 46, 60]. Concur-
rently, sequential generation focuses on extending the LLMs’ output to include longer responses with
reflective and chain-of-thought (CoT) processes [27, 49]. Although prompting techniques are widely
adopted, they are often constrained by the capabilities of the underlying models. Notably, DeepSeek-
R1 [11] is a representative advancement in this area, achieving extended reasoning capabilities in
pre-trained language models through outcome-based reinforcement learning (RL), more specifically
group relative policy optimization [38]. Compared to the first approach, which requires intensive
process-level supervision [57], the second approach is more scalable due to its reliance on rule-based
rewards.

Beyond the aforementioned methods that focus on scaling test-time inference computation, another
approach to increasing test-time computing is Test-Time Training (TTT). We introduce the re-
lationship between these terminologies in Appendix F. While prior work has primarily focused
on applications such as video generation and understanding [8, 12], and to some extent on large
language models [1, 47], the integration of test-time scaling with reinforcement learning remains
largely underexplored.

5.2 RL for Reasoning

Reinforcement Learning (RL) [44] plays a critical role in enhancing the instruction-following ca-
pabilities of Large Language Models (LLMs), particularly through approaches like Reinforcement
Learning from Human Feedback (RLHF) [31]. RLHF aligns base models with human preferences
using algorithms such as Proximal Policy Optimization (PPO) [36], where preference modeling is
essential. Recently, Large Reasoning Models (LRMs), such as DeepSeek-R1 [11], have demonstrated
the significance of RL in improving reasoning abilities using rule-based rewards, as exemplified
by GRPO [38]. Unlike RLHF, which is tailored to open-domain instructions, GRPO is specifically
designed to elicit long CoT [49] reasoning in mathematical problem-solving. Recent studies have
focused primarily on improving the training stability of rule-based RL methods like GRPO and
PPO [7, 26, 56]. However, these methods typically train LLMs only on supervised training data,
while inference involves generating extended CoT reasoning on unseen test problems. Moreover,
current RL approaches [15, 50] depend on verifiable outputs, such as solutions in mathematics or
code, that can provide reliable reward signals.

Previous studies have explored self-rewarding [32, 58] and self-play training [5] for unlabeled data.
However, these works primarily focus on open-domain instruction following [5, 58] rather than
mathematical reasoning or employ preference-based optimization strategies [32] such as DPO [33]
instead of online reinforcement learning algorithms. In addition to these studies, we identified several
concurrent works [53, 61, 62], that explore self-supervised and semi-supervised reasoning using
reinforcement-like methods. The key distinction lies in reward estimation: we employ majority
voting, which is derived from the model itself and mitigates reward hacking. We acknowledge that
future research integrating the insights and strengths of these approaches could lead to more robust
reasoning models at the era of experience [39]. TTRL offers a preliminary attempt at RL with
self-labeled rewards, advancing toward learning from streams of experience.

6 Conclusion

In this paper, we propose Test-Time Reinforcement Learning (TTRL), a novel framework for training
large language models with Reinforcement Learning (RL) on test data without access to ground-truth
labels. A key component of TTRL is its majority voting reward function, which generates rule-based
rewards based on consensus among model predictions. Our experiments demonstrate the strong
potential of TTRL, achieving consistent improvements across a variety of models and tasks. We view
TTRL as a preliminary step toward RL with self-labeled rewards, marking an important direction of
learning from continuous streams of experience.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: Section 3
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Section 3
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Conduct multiple experiments to calculate the pass@1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper conforms to all aspects of the NeurIPS
Code of Ethics. Specifically, we ensured compliance regarding transparency, reproducibility,
potential societal impacts, respect for privacy, and fairness. No ethical concerns arose from
our methods, datasets, or experiments throughout the research process.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents foundational research and is not tied to any particular
application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section 3

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and Future Works

Limitations This work represents an initial exploration of test-time reinforcement learning using
self-labeled rewards. While our experimental results are promising, several aspects require further
investigation. In particular, we plan to conduct a more in-depth analysis of the impact of prior
knowledge and hyperparameter configurations, both of which play critical roles in reinforcement
learning dynamics. We will provide comprehensive discussions and ablation studies in future revisions
of this paper.

Future Works Building on our findings, we identify several directions for future research:

• Theoretical Analysis: Developing a formal convergence analysis of TTRL, particularly focusing
on its ability to optimize toward the two upper bounds in § 4.1.

• Online Learning with Streaming Data: Extending TTRL to real-time learning scenarios, where
models interact with continuously arriving data and adapt dynamically, that is Test-Time Adapta-
tion [23].

• Large-Scale Self-Supervised RL Training: Scaling up TTRL to massive datasets and models to
explore its potential in self-supervised regimes without human-labeled data.

• Agentic Tasks and Scientific Discovery: Applying TTRL to more complex, open-ended domains
such as agentic tasks and multi-step scientific reasoning.

B When Might TTRL Fail?

At the algorithmic level, TTRL is not fundamentally different from existing RL algorithms and
therefore inherits several of their characteristics, such as sensitivity to data difficulty, strong reliance
on priors, and risk of collapse under certain conditions. At the implementation level, these issues
are further amplified by the constraints of TTRL, which estimates labels via majority voting and
operates exclusively on test data that is both sparse and previously unseen, potentially resulting in
failures in certain scenarios. In our preliminary experiments, we identified two potential issues:

0 4 8 12 16 20 24 28
Steps

0.05

0.10

0.15

0.20

0.25

0.30

Te
st

 A
cc

.

Successful Attempt
Temperature@0.6
Train_Batch@256

Figure 11: Failed attempts. We compare the curves
under settings with appropriate parameters versus
those with suboptimal ones.

Inappropriate RL Hyperparameters. Hy-
perparameter settings play a crucial role in RL
training, varying across projects and often lead-
ing to training failures. The influence of hyper-
parameters is further amplified in TTRL due to
potential noise in reward estimation and the char-
acteristics of the test data. Figure 11 presents
a comparison of several unsuccessful attempts
on AIME 2024. Both of these failed attempts
exhibit persistently high entropy that does not
diminish throughout training, consistent with
findings of prior work [13]. In our preliminary
experiments, we identified two key hyperparam-
eters that can critically affect training stability
and success:

• Temperature: Setting the temperature to 1.0, as opposed to 0.6, increases the model’s output
entropy. This promotes more extensive exploration and allows the model to make better use
of its prior knowledge for self-improvement, which is particularly important when addressing
challenging benchmarks.

• Episodes: Given the substantial variation in size and difficulty across datasets, smaller and more
difficult datasets need more episodes to achieve sufficient exploration.

Lack of Prior Knowledge on Target Task. Prior knowledge plays a crucial role in RL, often
determining the success or failure of the TTRL learning process. This is mainly because the test
data generally exhibits higher difficulty and introduces new features, but TTRL does not incorporate
mechanisms such as data filtering to support curriculum learning.
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Table 3: Performance of TTRL across the five difficulty levels of MATH-500.
Metric Name MATH-500-L1 MATH-500-L2 MATH-500-L3 MATH-500-L4 MATH-500-L5

Accuracy Backbone 25.9 33.0 36.3 32.5 22.3
w/ TTRL 71.2 76.2 76.3 58.7 39.2

∆ +45.4 +43.2 +40.0 +26.2 +16.8
↑ 175.3% ↑ 130.8% ↑ 110.2% ↑ 80.4% ↑ 75.3%

Response Len. Backbone 2,339.2 2,125.1 2,120.6 1,775.1 1,751.3
w/ TTRL 624.3 614.4 672.3 783.5 985.3

∆ −1,715.0 −1,510.6 −1,448.3 −991.6 −766.0
↓ 73.3% ↓ 71.1% ↓ 68.3% ↓ 55.9% ↓ 43.7%

Therefore, for the same backbone, TTRL fails if the model’s prior knowledge is insufficient to handle
the complexity of the data. To further validate this hypothesis, we conduct an ablation study on
MATH-500. We divide MATH-500 into five subsets according to its annotated difficulty levels,
ranging from 1 to 5, and apply TTRL to each subset independently, using Qwen2.5-Math-1.5B.
We then compare the results to those of the backbone, as shown in Table 3. We observe that as the
question difficulty increases, both the performance improvement and length reduction ratios tend to
decrease. This suggests that the available prior knowledge of the backbone is insufficient to
support learning on more challenging questions.

C Reward Function Pseudo-Code

Listing 1: The pseudo-code of the majority voting reward function.

1 from collections import Counter
2

3 def majority_voting_reward_fn(outputs):
4 """
5 Assigns a reward of 1 to each output whose extracted answer

matches the majority answer , otherwise 0.
6 """
7 # Extract answers from each output
8 answers = [extract_answer(output) for output in outputs]
9

10 # Find the majority answer
11 counts = Counter(answers)
12 majority_answer , _ = counts.most_common (1) [0]
13

14 # Assign rewards: 1 if matches majority , else 0
15 rewards = [1 if ans == majority_answer else 0 for ans in answers]
16 return rewards
17

18 outputs = llm.generate(problem , n=N)
19 rewards = majority_voting_reward_fn(outputs)

D Additional Results

Table 4 shows pass@1 results using greedy decoding. For the two base models, we further include
comparisons with their instruct versions that have undergone large-scale post-training. In addition,
we include for reference current leading “R1-Zero-Like” models with similar backbones, which
are extensively trained using RL: DeepSeek-R1-Distill-1.5B&7B [11], SimpleRL-Zero-7B [59],
PRIME-Zero-7B [7], OpenReasoner-Zero-7B [16], Oat-Zero-1.5B&7B [26], and LIMR [22]. Note
that TTRL has a different setup from the previous models, which makes the comparison seem
unfair.

On the highly challenging mathematical reasoning benchmark AIME 2024, TTRL achieves a sub-
stantial improvement of 159.3%, surpassing all models trained on large-scale datasets. Furthermore,
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when applied to Qwen2.5-Math-7B, TTRL yields an average improvement of 84.1% across three
benchmarks. Figure 12 shows two curves of TTRL on AIME 2024 with Qwen2.5-Math-7B as an
example.

Table 4: Additional results of TTRL on each task. ∗ indicates results from Dr. GRPO [26]. Our
training data size matches the corresponding benchmark dataset size.

Name AIME 2024 AMC MATH-500 Avg Labeled Data
Qwen2.5-Math-1.5B∗ 20.0 32.5 33.0 28.5 -

w/ TTRL 20.0 53.0 80.0 51.0 ✗
∆ 0 +20.5 +47.0 +22.5 ✗

0 ↑ 63.1% ↑ 142.4% ↑ 79.0% ✗

Qwen2.5-Math-1.5B-Instruct∗ 10.0 48.2 74.2 44.1 3.1M
DeepSeek-R1-Distill-1.5B@3k∗ 2.5 21.7 52.2 25.5 800K
DeepSeek-R1-Distill-1.5B@8k∗ 20.0 49.4 77.4 48.9 800K
Oat-Zero-1.5B∗ 20.0 53.0 74.2 49.1 8.9K
Qwen2.5-Math-7B∗ 16.7 38.6 50.6 35.3 -

w/ TTRL 43.3 67.5 84.2 65.0 ✗
∆ +26.6 +28.9 +33.6 +29.7 ✗

↑ 159.3% ↑ 74.9% ↑ 66.4% ↑ 84.1% ✗

Qwen2.5-Math-7B-Instruct∗ 16.7 53.0 83.6 51.1 3.1M
DeepSeek-R1-Distill-7B@3k∗ 10.0 26.2 60.1 32.1 800K
SimpleRL-Zero-7B∗ 26.7 60.2 78.2 55.0 8.9K
PRIME-Zero-7B∗ 16.7 62.7 83.8 54.4 230K
OpenReasoner-Zero-7B@3k∗ 13.3 47.0 79.2 46.5 129K
Oat-Zero-7B∗ 43.3 62.7 80.0 62.0 8.9K
LIMR-7B 32.5 63.8 78.0 58.1 1.4K
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Figure 12: The entropy and accuracy curves of TTRL on AIME 2024 with Qwen2.5-Math-7B.

E Training Metrics

Given the absence of ground-truth labels in the test data, evaluating the performance of TTRL
throughout the training process presents a challenge. To mitigate this limitation, we introduce a
set of training-time metrics specifically designed to monitor and assess the effectiveness of TTRL.
These metrics inform the selection of the optimal checkpoint and provide valuable insights regarding
training dynamics.

• Entropy: Measures the uncertainty of the model’s generation.

• Majority Voting Reward: Rule-based rewards computed from the majority-voted label.

• Majority Ratio: The frequency of the most common answer within a rollout.

24



Furthermore, we define several metrics that rely on access to ground-truth labels, which allow for a
deeper analysis of the model’s behavior during training:

• Label Accuracy (maj@n): Indicates whether the estimated label matches ground-truth.
• Reward Accuracy: Indicates the proportion of majority voting rewards (computed from the

estimated label) that match rewards computed from the ground-truth label.
• Ground-Truth Ratio: The frequency of the ground-truth answer within a rollout.

F Terminology

Test-time scaling refers to increasing computational resources during test time, which can be catego-
rized into test-time training and test-time inference. These two approaches are complementary. We
will provide an introduction below.

Table 5: Terminology relationship.
Name Category Methods

Test-Time Scaling (TTS) Test-Time Training (TTT) Test-Time Reinforcement Learning (TTRL)
Test-Time Inference (TTI) Majority Voting, Best-of-N

F.1 Test-Time Training (TTT)

Test-Time Training (TTT) is a technique for adapting a pre-trained model at inference time to
improve generalization under distribution shifts. Let fθ denote a model trained on a source domain
Ds = {(xi, yi)}i = 1N , where xi ∈ X , yi ∈ Y , and θ represents the learned parameters. During
standard inference, the model is evaluated on test samples xt ∼ Dt with fixed parameters θ, where
Dt ̸= Ds.

In contrast, TTT allows the model to adapt to each test sample xt by minimizing an auxiliary self-
supervised loss Laux, without access to labels yt. The model parameters are updated online with the
auxiliary task, which is typically designed to be label-free and consistent with the main task.

F.2 Test-Time Inference (TTI)

Test-Time Inference (TTI) refers to the strategy of enhancing the performance of a large language
model during inference by allocating additional computational resources. Formally, let fθ denote a
language model with parameters θ, and let x be an input prompt. The model generates an output y by
sampling from the conditional distribution pθ(y | x). TTI techniques aim to improve the quality of
y by employing methods such as generating multiple candidate outputs and selecting the best one
based on a scoring function, or by refining the output through iterative processes [51].

One common approach involves generating N candidate outputs {y1, y2, . . . , yN} and selecting the
optimal output y∗ using a scoring function s(y, x):

y∗ = argmax
yi

s(yi, x) (4)

The scoring function s(y, x) can be instantiated in various ways, such as:

1. Majority Voting (MV): Selecting the most frequent output among the candidates.
2. Best-of-N (BoN): Using reward models to score each candidate, then selecting the highest-

scoring one.
3. Weighted BoN: Integrating MV and BoN strategies to leverage their respective strengths.

25


	Introduction
	Test-Time Reinforcement Learning (TTRL)
	Methodology
	Majority Voting Reward Function

	Experiments
	Experimental Setup
	Main Results

	Analysis and Discussions
	Q1: How Well Can TTRL Perform?
	Q2: Why Does TTRL Work?

	Related Works
	Test-Time Scaling
	RL for Reasoning

	Conclusion
	Limitations and Future Works
	When Might TTRL Fail?
	Reward Function Pseudo-Code
	Additional Results
	Training Metrics
	Terminology
	Test-Time Training (TTT)
	Test-Time Inference (TTI)


