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Abstract

Implementing novel instructions is a complex and uniquely human cognitive ability, which requires the rapid
and flexible conversion of symbolic content into a format that enables the execution of the instructed behav-
ior. Preparing to implement novel instructions, as opposed to their mere maintenance, involves the activation
of the instructed motor plans, and the binding of the action information to the specific context in which this
should be executed. Recent evidence and prominent computational models suggest that this efficient con-
figuration of the system might involve a central role of frontal theta oscillations in establishing top-down
long-range synchronization between distant and task-relevant brain areas. In the present EEG study (human
subjects, 30 females, 4 males), we demonstrate that proactively preparing for the implementation of novels
instructions, as opposed to their maintenance, involves a strengthened degree of connectivity in the theta
frequency range between medial prefrontal and motor/visual areas. Moreover, we replicated previous results
showing oscillatory features associated specifically with implementation demands, and extended on them
demonstrating the role of theta oscillations in mediating the effect of task demands on behavioral perform-
ance. Taken together, these findings support our hypothesis that the modulation of connectivity patterns be-
tween frontal and task-relevant posterior brain areas is a core factor in the emergence of a behavior-guiding
format from novel instructions.
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Significance Statement

Everyday life requires the use and manipulation of currently available information to guide behavior and
reach specific goals. In the present study we investigate how the same instructed content elicits different
neural activity depending on the task being performed. Crucially, connectivity between medial prefrontal
cortex (mPFC) and posterior brain areas is strengthened when novel instructions have to be implemented,
rather than simply maintained. This finding suggests that theta oscillations play a role in setting up a dynam-
ic and flexible network of task-relevant regions optimized for the execution of the instructed behavior.

Introduction
The ability to rapidly adapt to changing external contin-

gencies is a crucial hallmark of human cognition. This

flexibility finds one of its most advanced and astonishing
forms of expression in instructions following. Humans can
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implement novel behaviors based on symbolic instruc-
tions, even in the absence of prior practice (Cole et al.,
2013). For instance, the driver reaching unexpected road-
works might be presented with different options on how
to proceed. They will have to encode and understand
their content and execute one of them at the appropriate
moment (e.g., “To reach the train station, take the second
exit at the roundabout”). This apparently simple operation
involves many complex cognitive processes, ultimately
resulting in the execution of the correct behavior.
It is established that maintaining task information is not

sufficient to successfully perform the instructed behavior
(Milner, 1963; Duncan et al., 1996; Bhandari and Duncan,
2014). Rather, the abstract content of the instruction
needs to be reformatted into an action-oriented code
capable of driving behavior (Brass et al., 2017). At the
hemodynamic level, several fMRI studies revealed a
set of frontoparietal regions recruited to support novel
stimulus-response mappings (SRs) implementation
(Ruge and Wolfensteller, 2010; Demanet et al., 2016)
and showing representational patterns specific to exe-
cution task demands (González-García et al., 2017;
Muhle-Karbe et al., 2017; Bourguignon et al., 2018;
Palenciano et al., 2019a). However, although evidence
is accumulating concerning the neural substrate de-
ployed for these reformatting purposes, the mecha-
nisms binding stimulus and response information in an
action-oriented format, and its exact nature, remain
elusive.
In a recent EEG study, we investigated the differences

in oscillatory activity associated with maintenance and
implementation of novel instructions (Formica et al.,
2021). The two tasks showed analogous attentional pri-
oritization mechanisms, reflected in suppression of alpha
power contralateral to the attended location (Jensen and
Mazaheri, 2010; Gould et al., 2011; Bonnefond and
Jensen, 2012; Myers et al., 2015; Mok et al., 2016). On
the contrary, proactively transforming the content of the
mapping into an action-oriented representation (i.e., the
implementation task) elicited task-specific cognitive
processes. Namely, preparing a defined motor plan was
associated with stronger engagement of motor areas,

indexed by beta suppression over motor and premotor
cortices (Cheyne, 2013; Schneider et al., 2017). Furthermore,
increased theta power over midfrontal scalp electrodes dur-
ing implementation was interpreted as a marker of work-
ing memory (WM) manipulation (Onton et al., 2005;
Itthipuripat et al., 2013) and top-down control over alter-
native task sets (Miller and Cohen, 2001; Sauseng et al.,
2010). Altogether, these findings represent crucial first
insights into oscillatory mechanisms that are in place
during the handling of novel task sets and nicely comple-
ment the existing fMRI literature. However, the funda-
mental question remains how binding between stimulus
and response-related areas is achieved through oscilla-
tory mechanisms.
Notably, midfrontal theta oscillations received in-

creased attention in recent years because of their oc-
currence across a variety of tasks characterized by the
need for cognitive control (Cohen and Donner, 2013;
Cavanagh and Frank, 2014). Theories and evidence
emerged regarding slow oscillations as prime mecha-
nism for establishing top-down neural communication
and for efficiently setting up functional networks opti-
mized to meet task demands (Sauseng and Klimesch,
2008; McLelland and VanRullen, 2016; Voloh and
Womelsdorf, 2016; Bonnefond et al., 2017; Riddle et
al., 2020a,b). In line with this framework, recent com-
putational models have attributed to theta oscillations
a crucial role in flexibly binding posterior task-relevant
areas (Verguts, 2017; Verbeke et al., 2020; Senoussi et
al., 2022). Burst of theta-locked activity originating in
the medial prefrontal cortex (mPFC) are directed toward
the appropriate processing units (i.e., areas encoding
task-relevant information), inducing the synchronization
of their firing patterns and thus enabling efficient interar-
eal communication (Fries, 2005, 2015). Crucially, the
specific role of theta oscillations in instructions imple-
mentation remains untested.
Here, we set out to investigate the hypothesis that dif-

ferences in medial prefrontal theta oscillations across task
demands (i.e., maintaining vs implementing novel SRs) re-
flect the need to orchestrate the synchronization between
posterior areas encoding stimulus and response informa-
tion. We propose that the formation of a flexible network
of task-relevant brain regions by means of long-range
connectivity underlies the emergence of action-oriented
representations, specifically involved in the implementa-
tion of novel instructions.

Materials and Methods
Participants
Thirty-five participants were recruited from the experi-

mental pool of Ghent University and gave their informed
consent at the beginning of the experiment, in accord-
ance with the ethical protocols of Ghent University.
Eligibility criteria included age between 18 and 35 years
and no history of psychological or neurologic conditions.
Sample size was not computed a-priori, but chosen to
replicate the results of a previous study with a similar par-
adigm (Formica et al., 2021) and in line with the literature
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on similar constructs (Schneider et al., 2017; de Vries et
al., 2018; van Ede et al., 2019). The experiment consisted
of two separate sessions, 1 to 3 days apart from each other.
In the initial behavioral screening session (;30min) partici-
pants practiced the two tasks, starting always with the
Implementation task followed by the Memorization task.
Initially, they could familiarize with the task requirements
by performing without time pressure (i.e., no response
deadline). After responding correctly to five consecutive
trials, the normal 2000 ms response deadline was intro-
duced. Participants then completed four mini blocks of
15 trials each, receiving feedback after each response
and at the end of the block as percentage of accurate re-
sponses. If overall performance in the 60 trials reached
an accuracy threshold of 70% in both tasks, the partici-
pant was invited to take part in the EEG session, other-
wise they would be compensated for the behavioral
screening (5 e). Participants could repeat the practice
blocks once if they did not reach the threshold at their
first attempt. Two participants repeated the practice
for the Memorization task, and one participant for the
Implementation task. Eventually, all participants
reached the required threshold in both tasks. One par-
ticipant dropped out after completing the behavioral
screening, leaving a sample of 34 participants in the
main EEG session (MAge = 21.73, SDAge = 3.29, 30 fe-
males, four males). All participants had normal or cor-
rected-to-normal vision and 29 reported to be right-
handed. Data from three participants were discarded
because of low task performance (their individual ac-
curacy exceeded by 2.5 SD the mean group accuracy
and/or their accuracy was below 60% in response to
catch trials in at least one of the two tasks). One addi-
tional participant was discarded because of noisy EEG
recordings. Therefore, our final sample consisted of 30
participants.

Materials
The set of stimuli consists of three macrocategories:

animate (nonhuman animals), inanimate 1 (vehicles and
musical instruments), inanimate 2 (household tools and

clothes), each with approximately 700 items (Griffin et al.,
2007; Konkle et al., 2010; Brady et al., 2013; Brodeur et
al., 2014; González-García et al., 2020). All pictures were
centered in a 200� 200 pixels canvas, were converted to
grayscale, and had their background removed.

Procedure
Stimuli presentation and response collection were per-

formed using the Psychopy toolbox (Peirce, 2007). In the
EEG session, participants performed both tasks (i.e.,
Implementation task and Memorization task), in a blocked
design, with task order counter-balanced across par-
ticipants. Trial structure was identical in the two tasks,
except for the probe screen (Fig. 1). Each trial started
with a red fixation cross presented in the middle of the
screen for 2000ms (6100ms), indicating the intertrial
interval. Next, four SRs were presented simultaneously
for 5000ms, one for each quadrant of the screen. Each
mapping consisted of one image and one digit from 1
to 4, corresponding to the four response options (1:
left middle finger, key “e”; 2: left index finger, key “r”;
3: right index finger, key “i”; 4: right middle finger, key
“o”). Importantly, responses could be organized ac-
cording to two response schemes. Namely, mappings
involving a response with the left(right) hand could
be presented on the left(right) side of the encoding
screen; or they could be presented on the right(left)
side of the encoding screen, the latter case resulting in
an incongruency between location on the screen and
response hand. This was done to orthogonalize the
presentation side on the encoding screen and the re-
quired response hand. To simplify the encoding of the
four mappings, index fingers responses were always
associated with the two upper images, and middle fin-
gers responses with the lower images. Each encoding
screen contained two images from two different catego-
ries, grouped on the left and right side of the screen.
Each image was presented only once throughout the
whole experiment to ensure the novelty of all mappings.
After the presentation of the mappings, a fixation interval
of 750ms was presented, considered sufficiently long to

Figure 1. Task paradigm. ITI: inter-trial interval, CTI: cue-target interval.
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prevent iconic memory traces (Souza and Oberauer,
2016), followed by a retro-cue presented centrally for
250ms. The retro-cue consisted of four colored corners,
pointing to the four quadrants previously occupied by
the mappings. Each side of the retro-cue was colored in
either blue (RGB = [0, 155, 255]) or orange (RGB = [255,
100, 0]). These colors were chosen to equate luminance
and saliency, thereby preventing low-level confounds
imputable to exogenous attention. Participants were in-
structed at the beginning of the experiment that one
color indicated the two mappings relevant for the task,
and the other color pointed to the location of mappings
that could be discarded. Color assignment was counter-
balanced across participants and remained the same for
the whole duration of the experiment. The information
provided by this retro-cue allowed participants to select
two out of the four initially encoded mappings. The se-
lected mappings always contained images belonging to
the same category and involved responses with the
index and middle fingers of the same hand. In the exam-
ple trial presented in Figure 1, assuming the relevant
color was blue, the participant would have had to retain
the two mappings presented on the right side of the
screen and containing the two inanimate images, namely
bicycle and guitar. The unselected animate images (i.e.,
bird and lion) could be dropped from WM. The retro-cue
was followed by a cue-target interval (CTI) with a jittered
duration of 1750ms (6100ms). Next, the probe ap-
peared and remained on screen for a maximum duration
of 2000ms or until button press. If no response was
provided within the response deadline, a message ap-
peared encouraging the participant to take a short
break if needed, and to press the spacebar to resume
the task. In the Implementation task, the target consisted
of a choice-reaction task, with one of the selected im-
ages presented centrally. In the example, either the bi-
cycle or the guitar could appear. Participants were asked
to press the key with the finger associated to the corre-
sponding mapping. The Memorization task was a de-
layed match-to-sample task, in which participants were
presented centrally with one of the selected images and
a response digit. This target mapping had to be com-
pared with the encoded ones, to verify whether the
image-response association was correct. Participants
provided their response by pressing with the finger cor-
responding to the tick sign (�) or � sign (x) displayed at
the bottom of the probe screen, to indicate matching or
mismatching mappings, respectively. Notably, the as-
signment of � and x locations with respect to the four
fingers was randomized on each trial. This task design
ensured that the two tasks differed only to the extent a
specific response could be proactively prepared during
the CTI. In the Implementation task, participants were
encouraged to prepare the SRs for execution as soon as
the retro-cue indicated the relevant two. On the contrary,
the Memorization task only allowed for a declarative
maintenance of the two selected mappings, because no
action-oriented representation could be built and thus
no action plan prepared.

In both tasks, 10% of trials featured a completely new
image as target, instead of one of the encoded (i.e., catch
trials). Participants were instructed to press the spacebar
in such events. This was done to ensure all four mappings
were initially encoded, discouraging strategies such as fo-
cusing only on a subset of mappings. Since we were inter-
ested in the brain activity during the CTI, catch trials were
included in our analyses.
During the EEG session, 240 trials for each task were

completed, divided in six blocks. Trials were equally dis-
tributed between the four conditions resulting from the
characteristics of the selected mapping, namely the side
they appeared on in the encoding screen (Cued Side, left
or right) and the response hand they involved (Response
Side, left or right). Therefore, the task used in the current
study differed from our previous design (Formica et al.,
2021) insofar it capitalized on lateralized stimuli presenta-
tion and response preparation.

Experimental design and behavioral analysis
The study consisted of three within-subject factors or-

thogonally manipulated. Namely, Task (Implementation vs
Memorization), Cued Side (left vs right) referring to the
location on the screen of the selected mappings, and
Response Side (left vs right), indicating the response
hand involved in the selected mappings. Based on previ-
ous studies comparing implementation and maintenance
of novel SRs, we expected to find shorter reaction times
(RTs) and lower error rates for the former with respect to
the latter (Demanet et al., 2016; Formica et al., 2020,
2021; González-García et al., 2020). Therefore, we used
JASP (JASP Team, 2019) to compare RTs and error rates
across Tasks, separately for regular and catch trials.
RTs were analyzed by means of paired-samples t tests.
Error rates distributions for both regular and catch trials
violated the normality assumption (Shapiro–Wilk test
p, 0.05), and thus the results of Wilcoxon signed-rank
tests are reported.

EEG recordings and preprocessing
Electrophysiological data were collected using a

BioSemi ActiveTwo system (BioSemi) with 64 Ag-AgCl
electrodes arranged in the standard international 10–
20 electrode mapping (Klem et al., 1999), with a CMS-
DRL electrode pair. Two external electrodes were
placed on the left and right mastoid for online refer-
encing. Four additional external electrodes (two to the
outer canthi of both eyes, one above and one below
the left eye) were used to monitor horizontal and verti-
cal eye movements. Data were recorded at a sampling
rate of 1024 Hz.
All preprocessing and analyses steps were conducted

with the Python MNE toolbox version 0.22.0 (Gramfort,
2013). First, a 1- to 40-Hz bandpass FIR filter was applied
to the continuous data (Hamming window with 0.0194
passband ripple and 53-dB stopband attenuation, with
lower and upper transition bandwidth of 1 and 10 Hz,
respectively). Next, data were epoched time-locked to
the onset of the retro-cue (from �1000 to 2500ms),
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demeaned to the average of the whole time window to im-
prove independent component analysis (ICA; Groppe et
al., 2009), and downsampled to 512Hz. Trials containing
excessive muscle activity or other clear artifacts were re-
jected based on visual inspection, and electrodes show-
ing noise for a large portion of epochs were removed and
interpolated using the spherical spline method (Perrin et
al., 1989). Data were then re-referenced to the average of
all channels. Finally, eye movements were removed by
means of ICA: an average of 2.23 (SD=0.716) ICA com-
ponents were removed for each participant.
Only trials with a correct response were retained for the

analyses. This resulted in an average of 218.23 trials for
Implementation (SD=18.89) and 212.70 for Memorization
(SD=12.02). For each individual condition (e.g., SRs pre-
sented on the left side of the screen and requiring a left-
hand response), an average of 53.86 trials (SD= 4.55)
were retained (range 36–60 across participants).

Source reconstruction
To project brain activity from the sensors to the

source space, we employed the default anatomic tem-
plate included in the MNE-Python toolbox (‘fsaverage’
from FreeSurfer) and decimated the dipole grid on the
white matter surface to 4098 sources per hemisphere
(sixth grade subdivisions of an octahedron). A realistic
Boundary Element Model (BEM) was created assuming
specific conductivity for each of the three shells (skin,
outer and inner skull). Noise in the recordings was esti-
mated by computing a noise covariance matrix from the
baseline period (�500 to �200ms) and the inverse
problem was then solved with the dynamic statistical
parametric mapping (dSPM) method (Dale et al., 2000).

Regions of interest (ROIs) definition
We focused our analyses on an a-priori set of ROIs.

From the Desikan–Killiany atlas (Desikan et al., 2006), we

obtained left and right lateral occipital parcels (LatOcc
ROIs), and left and right caudal anterior cingulate parcels
(mPFC ROIs), an area that showed to be consistently acti-
vated across a variety of processes for cognitive and
adaptive control (Cavanagh and Shackman, 2015; De La
Vega et al., 2016). Additionally, we created Hand ROIs by
grouping sources within a radius of 30 mm on the inflated
surface from the MNI coordinates for the left and right
hands ([644, �17, 49]; Zhao et al., 2019). The resulting
set of ROIs is depicted in Figure 2.

Statistical approach
To evaluate the statistical significance of the differences

between time courses in our contrasts of interest, we
adopted a cluster-based permutation approach (Maris
and Oostenveld, 2007). Importantly, this method is effec-
tive in evaluating the reliability of neural data patterns over
contiguous timepoints, while successfully controlling for
the multiple comparisons problem. First, the time courses
are compared with an F test (or t test, depending on the
specific contrast) between all timepoints of the observed
conditions, with an a level of 0.05. Next, neighboring time
points with above threshold same sign significance are
grouped together, and the resulting segment of data are
considered a cluster with a size corresponding to the sum
of the F values (or t values) of all time points belonging to
it. The statistical significance of these observed clusters is
computed by comparing them to a distribution of clusters
obtained under the null hypothesis. Specifically, surrogate
data are generated for 10,000 permutations by randomly
flipping the sign of the difference between conditions. A
distribution of cluster sizes under the null hypothesis of no
differences between conditions is obtained by taking the
size of the largest cluster (computed as for the observed
data) for each of the permutations. The P-value for each
observed cluster corresponds to the proportion of permu-
tations in which a cluster larger than the observed one
was found. Again, we used an a level of 0.05, therefore

Figure 2. ROIs locations. mPFC and LatOcc ROIs were obtained from the Desikan–Killiany atlas (caudal anterior cingulate and lat-
eral occipital parcels, respectively). Hand ROIs were drawn with a 30-mm radius around the MNI motor areas hand coordinates
([644, �17, 49]).
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retaining as significant only clusters larger in size than at
least 95% of clusters in the surrogate data. It is important
to point out that because of the nature of the second-level
inference between observed and surrogate distributions,
the exact boundaries of each cluster (i.e., first and last
time points) have to be interpreted cautiously and do not
reflect the significance of each individual time point
(Sassenhagen and Draschkow, 2019).
For each observed cluster, an average effect size is

computed as Cohen’s d. To obtain it, the difference be-
tween the two conditions in the mean values over the time
window of significance of the cluster is derived, and then
divided by its SD.
All statistical analyses are performed in the time window

0–1800ms from retro-cue onset. The CTI was jittered,
with a duration between retro-cue onset and probe onset
ranging between 1900 and 2100ms. Therefore, the time
window for analyses was cut 100ms before the earliest
probe onset, to reduce the influence of the smearing in
time resulting from the time-frequency analysis linked to
the processing of the probe.

Spectral analysis
For each condition, the induced power was computed

in the source space for three frequency ranges (theta: 3–
7Hz, alpha: 8–14Hz, beta: 15–30Hz). Time-frequency de-
composition was performed by means of complex Morlet
wavelets, in steps of 1Hz and with the number of cycles
adapted to the frequency range (three cycles for theta,
four cycles for alpha, and five cycles for beta), to achieve
a good trade-off between temporal and frequency preci-
sion (Cohen, 2014). The resulting decomposed data were
then averaged within each frequency range and further
downsampled to 128Hz.

Attentional contralateral alpha suppression
When orienting attention to the external or internal

space, a suppression of alpha power has been traditional-
ly observed over posterior areas contralateral to the at-
tended hemispace (Jensen and Mazaheri, 2010; Gould et
al., 2011; Bonnefond and Jensen, 2012; Myers et al.,
2015; Mok et al., 2016). For each condition, time courses
of alpha (8–14Hz) power for the left and right LatOcc ROIs
were obtained by taking the first right-singular vector of
the single value decomposition of all sources within the
ROI, scaled to their average power and adjusted in sign
for the orientation of each single dipole (‘pca_flip’
method). In other words, this procedure results in a time
course explaining the largest possible amount of var-
iance in the whole ROI. The time courses were then col-
lapsed across conditions to obtain an ipsilateral and a
contralateral time course with respect to the Cued Side,
separately for each of the two tasks. According to our
hypotheses and previous findings (Formica et al.,
2021), we expected to observe significant alpha sup-
pression in the contralateral hemisphere, and no differ-
ences between Tasks. To test for this hypothesis, we
performed a repeated-measures ANOVA (rmANOVA)
with factors Tasks (Implementation vs Memorization)

and Laterality (ipsilateral vs contralateral with respect
to the selected hemispace), adopting a cluster-based
permutation approach as described below (Statistical
analysis).

Motor contralateral beta suppression
Similarly, beta power is suppressed over the motor

cortex contralateral to the limb being prepared for move-
ment (Cheyne, 2013). Time courses of beta (15–30Hz)
power activity were extracted from the Hand ROIs ipsi-
lateral and contralateral to the response hand required
by the selected mappings, with a procedure analogous
to the one used for alpha. Here, we predicted a larger
contralateral suppression in Implementation compared
with Memorization, because of the proactive preparation
of the specific motor plan instructed by the mapping.
Therefore, we performed an rmANOVA with factors Tasks
(Implementation vs Memorization) and Response Side
(contralateral vs ipsilateral to the instructed response
hand).

Task-specific theta increase
Previous studies showed larger theta power during

tasks requiring the exertion of cognitive control and the
extensive manipulation of WM content (Onton et al.,
2005; Cavanagh and Frank, 2014; Formica et al., 2021).
According to prominent computational models, this
phenomenon can be interpreted as reflecting the activ-
ity of the mPFC in coordinating the neural communica-
tion between distant task-relevant areas (Voloh and
Womelsdorf, 2016; Verguts, 2017). Therefore, we ex-
tracted a time course of theta (3–7Hz) power activity
from the bilateral mPFC ROIs for each of the two Tasks,
and we compared them, predicting larger values for
Implementation.

Mediating effect of theta power on RTs
We further hypothesized mPFC theta oscillations to play a

role in determining behavioral performance. Namely, we
tested whether theta power mediates the effect of Task on
RTs.
Trial-by-trial theta power was defined as the average

theta (3–7Hz) power in a time window of length 633ms
centered on the cluster of significant difference between
Tasks (Materials and Methods, Task-specific theta in-
crease). This resulted in an interval spanning from 355 to
985 after retro-cue onset. The choice of this duration is
motivated by the need to encompass at least two oscilla-
tory cycles at the lowest frequency of interest (3Hz).
Given that single-trial power estimation led to some out-
liers because of noisy trials, for each participant we re-
moved trials in which the computed mean theta power
exceeded 3 SDs from the individual mean. Analogously,
RTs were trimmed, separately for each Task and partici-
pant, removing trials with latencies exceeding 3 SDs from
the mean (importantly, similar results were obtained with-
out applying any filtering procedure to the data). This trim-
ming approach resulted in an average of 6.47 (62.11,
1.68%) trials being removed because of outlier values of
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theta power, 3.1 (61.3, 1.58%) and 1.47 (61.63, 0.75%)
trials being removed with respect to RTs in the implemen-
tation and memorization task, respectively.
To empirically test the prediction that theta power medi-

ates the effect of Task on RTs, we started by verifying the
necessary criteria put forward by Baron and Kenny
(1986). Namely, it had to be confirmed that Tasks influen-
ces both RTs and theta power, and that theta power pre-
dicts RTs. We fitted linear mixed effects models (LMMs)
using the lme4 package in R (Bates et al., 2014), adopting
a backward selection approach to define the random ef-
fect structure of the model (Matuschek et al., 2017). The
reported P-values were calculated using Satterthwaite
approximations (Luke, 2017). Finally, to formally and di-
rectly test the mediation effect, a causal mediation analy-
sis was performed with the mediation package in R
(Tingley et al., 2014).

Functional connectivity: phase locking value (PLV)
According to the computational model proposed by

Verguts (2017) and updated by his colleagues (Verbeke
and Verguts, 2019; Verbeke et al., 2020; Senoussi et al.,
2022), theta oscillations from the mPFC control unit serve
the purpose of synchronizing posterior task-relevant
processing units. Therefore, we were primarily interested
in investigating whether task demands (i.e., preparing for
Implementation vs Maintenance) affect connectivity be-
tween frontal and posterior areas.
To estimate phase synchronization between pairs of

ROIs, we first bandpass filtered our epoched data in the
theta frequency range (3–7Hz; Hamming window with
0.0194 passband ripple and 53-dB stopband attenuation,
with lower and upper transition bandwidth of 2Hz). After
projection to the source space, data were Hilbert trans-
formed to obtain the analytic signal from which to extract
the phase information. Then, we computed the PLV, a
measure reflecting the instantaneous phase difference
between two signals, with the assumption that two brain
areas that are configured to communicate efficiently
should have a constant phase difference (Lachaux et al.,
1999; Mormann et al., 2000). Instead of extracting a rep-
resentative time course for each ROI, resulting in loss of
information, we adopted a recently proposed multivariate
approach, that allows to efficiently estimate the PLV
across all pairwise sources of the two ROIs (Bruña et al.,
2018; Bruña and Pereda, 2021). Therefore, the connectiv-
ity estimate for each pair of ROIs was obtained by taking
the root mean square value of the M � N matrix contain-
ing the pairwise PLV between all sources, where M is the
number of sources in ROI 1 and N the number of sources
in ROI 2.
PLV between pairs of ROIs was computed for each trial

in the time window from 355 to 985ms, resulting in a
value of synchronization for each trial, participant, and
ROIs pair of interest. It is worth pointing out that PLV is
sensitive to volume conduction and source leakage, thus
prone to identify spurious connectivity between two
neighboring sensors or brain regions reflecting activity
from the same source. This concern is moderated in the
present study by the selection of ROIs relatively distant

from each other, and, most importantly, by comparing
connectivity of pairs of ROIs between conditions (see
below - section Functional connectivity between mPFC
and motor and visual areas). Although the magnitude of
PLV might theoretically be inflated by source leakage, our
hypotheses are focused on how PLV between pairs of
ROIs is influenced by different task demands, and there-
fore are unaffected by this potential issue.

Functional connectivity betweenmPFC andmotor and
visual areas
We expected the synchronization between frontal and

motor areas to be stronger when preparing to implement
the SRs, because of the activation and binding of the in-
structed motor plan. Additionally, we had a further corol-
lary hypothesis, namely that differences between tasks
were expected to be driven predominantly by an in-
crease of synchronization between mPFC and the Hand
ROI contralateral to the currently relevant response
hand in Implementation, but not so in Memorization. In
other words, we expected an interaction between the
factors Task and Response Side (collapsed for contra-
lateral vs ipsilateral), with a specific directionality. To
this aim, we fitted an LMM estimating the trial-by-trial PLV
value using Task and Laterality (contralateral vs ipsilateral)
as predictors. The model fitting procedure was analogous
to the one described above and was conducted using
only correct regular trials. The selected model structure
included Task, Laterality and their interaction as fixed ef-
fects, a random intercept for each participant and a ran-
dom slope for Task [in lmer notation: PLV(mPFC-Hand) ;
Task * Laterality1 (11Task | Subject)].
Similar hypotheses and analyses were proposed with

respect to connectivity between mPFC and visual areas.
The trial-by-trial PLV between mPFC and LatOcc ROIs
was fitted with an LMM, predicting an interaction of the
factors Task and Laterality (defined as ROI contralateral
or ipsilateral to the Cued Side). Model structure was anal-
ogous to the one reported for the connectivity between
mPFC and Hand ROIs [PLV(mPFC-LatOcc) ; Task *
Laterality 1 (11Task | Subject)].

Results
Behavioral results
Based on previous studies reporting performance on

implementation and maintenance of novel SRs (Demanet
et al., 2016; Formica et al., 2020, 2021; González-García
et al., 2021), we expected faster and more accurate re-
sponses in the Implementation compared with Memorization
task. Indeed, a paired-samples t test on RTs of regular trials
yielded a large effect of Task (t(29,1) = 29.101, p, 0.001,
Cohen’s d=5.313), with average RTs in the Implementation
task (mean = 7086 129 ms) being shorter than in the
Memorization task (mean = 1217 6 123 ms). Similarly, a
Wilcoxon signed-rank test on error rates showed signif-
icantly less errors (W(29,1) = 65.5, p = 0.003, Effect size =
0.653) in Implementation (mean = 0.0606 0.047) com-
pared with Memorization (mean = 0.0896 0.029).
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RTs and accuracy were compared across Tasks also
with respect to catch trials. A paired samples t test
showed support (t(29,1) = 6.508, p, 0.001, Cohen’s
d=1.188) for faster RTs in response to catch trials in
Implementation (mean=8176 119ms) compared with
Memorization (mean=943 6 105 ms). On the contrary, no
reliable difference (W(29,1) = 95.5, p=1, Effect size = 0.005)
in their accuracy (Implementation: mean=0.0356 0.070;
Memorization: mean=0.0366 0.061; Fig. 3).

Attentional contralateral alpha suppression
To test our hypothesis that posterior alpha power tracks

the orienting of attention toward the selected hemifield
analogously in the two tasks, we performed a rmANOVA
on the power time courses we extracted from the LatOcc
ROIs, with factors Tasks (Implementation vs Memorization)
and Laterality (contralateral vs ipsilateral to the attended
hemispace). As predicted, we observed a strong reduction
in alpha power contralateral to the attended hemispace
(main effect of Laterality, p, 0.001, cluster corrected,
d=1.37). Importantly, no cluster of differences emerged
when contrasting the two Tasks, nor when testing for the
interaction of the two factors (Fig. 4).

Motor contralateral beta suppression
Activation of a specific motor plan is a crucial compo-

nent of the preparation to implement novel SRs. This will
then be reactivated in a reflex-like manner upon stimulus
presentation (Liefooghe et al., 2012). In line with this as-
sumption, we expected beta suppression over motor cor-
tices to clearly track the response hand involved in the
selected mappings, and particularly in the Implementation
task. In other words, we predicted the time courses of
beta power from the Hand ROIs to show a significant inter-
action in a rmANOVA with factors Tasks (Implementation
vs Memorization) and Laterality (contralateral vs ipsilateral
to the instructed response hand). We found a large signifi-
cant cluster for the main effect of Laterality (p=0.002,
cluster corrected, d=0.69). Additionally, we tested for

the directional effect of the interaction with a one-sided t
test (i.e., Implementation , Memorization), and obtain a
cluster with p=0.077 (d=0.49). No cluster was found
when testing for the main effect of Task (Fig. 5).

Task-specific theta increase
We predicted Implementation and Memorization to

differ with respect to theta oscillations in the mPFC.
Specifically, we used cluster-based permutation to test
for larger mPFC theta power amplitude in Implementation
compared with Memorization. We observed a significant
cluster (p=0.035, cluster corrected, d=0.57; Fig. 6).
Additionally, we confirmed the spatial specificity of this ef-
fect by showing no differences in theta oscillations in
Hand and LatOcc ROIs.
Activity in the medial wall of the PFC and oscillations

in the theta frequency range have been both associ-
ated with handling conflict (Cavanagh and Frank,
2014; Cavanagh and Shackman, 2015). To rule out the
possibility that mPFC activity reflects the conflict eli-
cited by incongruent conditions (i.e., trials in which the
retro-cue instructed participants to orient attention to-
ward SRs on one side of the screen and to prepare re-
sponding with the opposite hand; as compared with
trials with same Cued and Response Side), that could
be larger specifically in the Implementation task, we
performed additional control analyses. Namely, we
compared differences in theta in congruent and incongruent
trials, separately for Implementation (no clusters observed),
Memorization (p=0.168, cluster-corrected, d=0.46), and
across tasks (no clusters observed). Moreover, the effect of
Congruency did not differ between the two Tasks (no clus-
ters observed). Additionally, we tested for the effect of Task
separately for congruent and incongruent trials. While there
was a significant difference between Tasks in congruent
trials (p=0.033, cluster-corrected, d=0.54), this was not
the case for incongruent trials (p=0.124, cluster-corrected,
d=0.43). Although these results cannot be taken as evi-
dence for an interaction between the factors Task and

Figure 3. Behavioral results. Left panel, RTs (milliseconds). Right panel, Error rates. In each boxplot, the thick line inside box plots
depicts the second quartile (median) of the distribution (n=30). The bounds of the boxes depict the first and third quartiles of the
distribution. Whiskers denote the 1.5 interquartile range of the lower and upper quartile. Dots represent individual subjects’ scores.
Results for the 2 (Task) � 2 (Cued Side) � 2 (Response Side) rmANOVAs on RTs and error rates of regular trials are reported in
Extended Data Figure 3-1.
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Congruency (Nieuwenhuis et al., 2011), they are hinting at
a larger difference in theta oscillations between Tasks in
congruent trials (i.e., trials eliciting less conflict). Taken
together, these exploratory analyses support our inter-
pretation that the observed mPFC activity is indicative of
differences between Tasks rather than the by-product of
conflict resolution.

mPFC theta power mediates the effect of task on RTs
We hypothesized that trial-by-trial theta power in the

mPFC mediated the effect of Task on behavioral per-
formance. First, we tested for an effect of Task on RTs,
by fitting an LMM with a fixed effect of Task, a random
slope for Task, and a random intercept for each partici-
pant [RT ; Task 1 (11Task | Subject)]. As expected,
Implementation was associated with significantly faster
RTs (t(28.83) = �28.75, b = �257.50, CI 95% = [�275.05,

�239.94], p, 0.001). Moreover, by fitting an LMM with
identical structure to predict theta power [Mean_Theta ;
Task 1 (11Task | Subject)], we showed that single-trial
variations in mPFC theta power were significantly
dependent on task demands (t(28.83) = 2.72, b = 0.10,
CI 95% = [0.03, 0.18], p = 0.011), such that larger
theta values were associated with the Implementation
task.
Finally, we also tested for the fixed effects of both Task

and theta power (while assuming random slope for Task
and random intercept for each participant) by fitting the
LMM RT ; Mean_theta 1 Task 1 (11Task | Subject). We
found a significant effect of theta power t(11200,23) =
�3.54, b = �3.29, CI 95% = [�5.11, �1.47], p, 0.001,
suggesting faster RTs for larger theta values. The effect of
Task was significant, t(28.83)= �28.70, b = �257.16, CI
95% = [�274.72, �239.60], p, 0.001. Note that adding
an interaction term as fixed effect to this model (i.e.,

Figure 4. Attentional contralateral alpha suppression. a, Time courses of the difference waves (contralateral vs ipsilateral) of a
power from the LatOcc ROIs, time-locked to the onset of the retro-cue. Shading indicates the SEM, gray area refers to the extent of
the significant cluster for the effect of Laterality (p, 0.001, cluster corrected). b, Source-reconstructed activity of the alpha power
for the difference between contralateral and ipsilateral Cued Side, at 700ms, for visualization purposes.

Research Article: New Research 9 of 17

July/August 2022, 9(4) ENEURO.0225-22.2022 eNeuro.org



Mean_Theta * Task) did not result in a significant interac-
tion effect (p=0.66; Fig. 7a).
This pattern of results suggests that theta partially

mediated the effect of task, and this was directly tested
by a causal mediation analysis revealing not only a signifi-
cant direct effect of Task on RTs, b = 514, CI 95% = [477,
549.73], p, 0.001, but also a significant indirect effect via
theta power, b = 0.66, CI 95% = [0.11, 1.42], p=0.013, in-
dicative of a partial mediation (Fig. 7b).

Functional connectivity betweenmPFC andmotor/
visual areas
To test our hypothesis that preparing to implement SRs

is characterized by increased connectivity in theta band
between frontal and motor areas, we used LMM to esti-
mate whether different task demands resulted in different
PLV values between mPFC and Hand ROIs. We fitted a
model with a fixed effect for Task, Laterality and their

interaction, a random effect for Task and a random inter-
cept for each participant [PLV(mPFC-Hand) ; Task *
Laterality 1 (11Task | Subject)]. We found a significant
effect of Task (t(0.29) = 3.04, b = 0.008, CI 95% = [0.0003,
0.001], p=0.005), thus proving stronger connectivity dur-
ing Implementation compared with Memorization (Fig. 8).
Contrary to our hypothesis, the effect of Laterality and its
interaction with Task were not significant (p=0.16 and
p=0.71, respectively).
Analogously, we tested whether task demands affected

the degree of connectivity between frontal and visual
areas. We fitted a model with the structure PLV(mPFC-
LatOcc) ; Task * Laterality 1 (11Task | Subject). We
found a significant effect of Task (t(0.29) = 2.96, b = 0.008,
CI 95% = [0.0002, 0.001], p=0.006), supporting our hy-
pothesis of stronger connectivity during Implementation
compared with Memorization (Fig. 8). Again, the effect of
Laterality and the interaction of Laterality and Task were
not significant (p=0.38 and p=0.85, respectively).

Figure 5. Motor contralateral beta suppression. a, Time courses of the difference waves (contralateral vs ipsilateral) of beta power
from the Hand ROIs, time-locked to the onset of the retro-cue. Shading indicates the SEM, light gray area refers to the extent of the
significant cluster for the effect of Laterality (p=0.002, cluster corrected), dark gray area refers to the cluster for the interaction of
Laterality and Task (p=0.077, cluster corrected). b, Source-reconstructed activity of the beta power for the difference between con-
tralateral and ipsilateral Response Side, at 1000ms, for visualization purposes. au: arbitrary units.
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To confirm the spatial specificity of our main connec-
tivity results and to test whether the observed PLV dif-
ferences across Tasks could be because of field spread
rather than genuine functional connectivity, we repeated the
same analyses with control regions, namely left and right
Parahippocampal ROIs from the Desikan–Killiany atlas.
These areas were chosen because roughly equidistant from
all three sets of ROIs used in our main analyses, and be-
cause we assumed they are not involved in performing the
two tasks. We computed the PLV between mPFC and
Parahippocampal ROIs using the same pipeline adopted for
the main analyses. We found no main effect of Task
(F=1.99, p=0.17). These results support our hypothesis
that synchronization increases as a consequence of task
demands specifically between mPFC and task-relevant
areas, rather than as a widespread phenomenon.

A second potential confound is related to the character-
istics of the connectivity measure used. It has been ob-
served that volume conduction of source activity can
affect phase consistency between signals, leading to spu-
riously increased connectivity estimates (Nolte et al.,
2004; Vinck et al., 2011). PLV is notoriously subject to vol-
ume conduction artifacts. Therefore, we repeated our
analyses using the weighted Phase-Lag Index (wPLI), a
measure of phase consistency that disregards connectiv-
ity between two signals occurring with a phase lag of 0°,
as volume-conducted electric activity is assumed to be
recorded by different sensors with negligible time delay.
However, the downside of this approach is an increase in
the probability of Type II errors, namely reporting no syn-
chronization when true connectivity between signals has
close-to-zero phase difference (Vinck et al., 2011).

Figure 6. Task-specific theta increase. a, Time courses of theta power from the mPFC ROIs, time-locked to the onset of the retro-
cue. Shading indicates the SEM, gray area refers to the extent of the significant cluster for the effect of Task (p=0.035, cluster cor-
rected). Time courses of theta power time-locked to the retro-cue from Hand and LatOcc ROIs are reported in Extended Data
Figure 6-1. b, Source-reconstructed activity of theta power for the difference between Implementation and Memorization, at
700ms, for visualization purposes. au: arbitrary units.
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Overall, wPLI results were consistent with the PLV, albeit
less strong for the pair mPFC-Hand ROIs compared with
mPFC-LatOcc ROIs (t(0.29) = 3.04, b = 0.0007, CI 95% =
[�0.0001, 0.0015], p=0.099; t(0.29) = 3.63, b = 0.0014, CI
95% = [0.0006, 0.001], p=0.002, respectively). We inter-
preted these findings as confirmatory of the pattern ob-
served with PLV, suggesting larger connectivity estimates
for Implementation compared with Memorization.

Discussion
Carrying out novel behaviors on the basis of abstract in-

structions is a fascinating yet still not fully understood human
ability. Despite recent advances in the identification of brain
areas involved in this process, and in how these areas

differently encode relevant information (Demanet et al., 2016;
González-García et al., 2017; Palenciano et al., 2019a), how
instructed stimuli and responses get flexibly and rapidly com-
bined remains an open question.
A growing body of evidence supports the assumption

that the intention to implement the instructed actions
triggers a cascade of cognitive processes, ultimately
leading to the emergence of a representational state in-
trinsically different from the initially encoded symbolic
content (Muhle-Karbe et al., 2017; González-García et
al., 2021). Such reformatting of prioritized items into a
behavior-optimized format has been recently proposed
as core mechanism to efficiently deal with multiple mem-
oranda and circumvent capacity limitations (Myers et al.,
2017). In the context of instructions implementation, we

Figure 7. Effect of mean theta power on RTs. a, Effect of theta power on RTs, for both Implementation and Memorization. High val-
ues of theta power are associated with faster RTs in both tasks. The interaction between theta power and Task was not significant.
The dotted lines show the 95% confidence intervals. b, Mediation model with beta values. Task significantly influenced mPFC theta
power, which in turns affected RTs. Therefore, theta power mediates the effect of tasks demands on behavioral performance.
However, the direct effect of Task on RTs remained significant also when accounting for the mediating influence of theta power,
suggesting a partial mediation. au: arbitrary units, asterisks denote the significance level (*p , 0.05, ***p , 0.001).
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hypothesized that this optimized format consists of
strengthened connections between sensory and motor
areas representing task-relevant information, coordinated
by medial prefrontal structures through long-range phase
synchronization. This operationalization is grounded in a
body of computational work addressing the role of mPFC
theta oscillations in flexibly binding task-relevant areas for
upcoming task demands (Verguts, 2017; Verbeke and
Verguts, 2019; Verbeke et al., 2020; Senoussi et al., 2022).
In the present study, after replicating at the source level

our previous major findings (Formica et al., 2021), we shed
light on the interareal dynamics supporting instructions fol-
lowing. We observed strengthened connectivity in the theta
frequency range between medial prefrontal and motor/vis-
ual areas when novel instructions had to be implemented,
as opposed to their simple maintenance. These network

dynamics indicate that proactive proceduralization results
in the emergence of a behavior-optimized format relying on
flexible patterns of synchronized activity across distant
task-relevant brain areas.
Concerning prioritization mechanisms, during both

Implementation and Memorization we found a sharp
suppression of alpha oscillations in the lateral occipital
area contralateral to the attended hemispace. This fea-
ture, analogous across task demands, is a hallmark of
attentional resources deployment, with the putative func-
tion of gating information inflow and contributing to the
creation of a functional network (Sauseng et al., 2005;
Jensen and Mazaheri, 2010; Mazaheri et al., 2014; Poch
et al., 2017; van Ede, 2018; Van Diepen et al., 2019; Keefe
and Störmer, 2021). This finding suggests that the two
tasks do not differ with respect to resource allocation.

Figure 8. Connectivity between mPFC and posterior ROIs. LMMs revealed that Implementation task demands are associated with
stronger connectivity in the theta frequency range between mPFC and motor regions (left panel) and visual regions (right panel). For
visualization purposes, the plots depict subject-level averages. Blue and red curves represent the density distributions of subject-
level averages of PLV of Implementation and Memorization, respectively. Light gray lines connect the average in the two Tasks for
each individual participant, whereas the dark gray line connect the group-level averages (whiskers denote 95% confidence inter-
vals). The same analysis performed on Parahippocampal ROIs as control regions and showing no difference across task demands
is reported in Extended Data Figure 8-1. The same analyses performed computing the wPLI and confirming the pattern of results
observed with PLV are reported in Extended Data Figure 8-2.
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On the contrary, neural signatures of motor preparation
were expected to be more prominent during Implementation,
given the possibility to activate a specific action plan. We fo-
cused on beta dynamics in the motor cortex (Pfurtscheller
and Neuper, 1997; Cheyne, 2013; Schneider et al., 2017) and
found in both tasks a sustained suppression of beta oscilla-
tions contralateral to the instructed response hand, indicating
the lateralization of motor preparation. Notably, and contrary
to our hypothesis, this suppression was not task-specific,
and only marginally larger in Implementation. Although unex-
pected, this finding might be highlighting the recruitment of
motor areas also for the declarative maintenance of SRs that
will never have to be overtly executed, supporting the idea of
distributed and content-specific maintenance substrates in
WM (Christophel et al., 2017).
A second crucial oscillatory feature associated with the

proactive preparation for SRs implementation is an in-
crease in midfrontal theta power (Formica et al., 2021). This
has been identified as a spectral signature shared across
a plethora of mechanisms involved in adaptive control
(Cavanagh and Frank, 2014; Cavanagh and Shackman,
2015). Accordingly, in the current study we identified a
neural generator for theta oscillations in the mPFC (De La
Vega et al., 2016), showing significantly larger activation
during Implementation compared with Memorization.
Importantly, with our current results we also highlighted the
specific functional relevance of this neural activity. Linear
models revealed how theta power mediates the effect of dif-
ferent task demands on behavioral performance (Bridwell et
al., 2018), providing evidence for the direct implication of
mPFC in the implementation of novel instructions.
Stemming from this literature, mPFC has been attributed

a central role in determining and instantiating control poli-
cies in several computational models of proactive and re-
active cognitive control (Dosenbach et al., 2008; Botvinick
and Cohen, 2014; Shenhav et al., 2017; Verguts, 2017;
Holroyd and Verguts, 2021). In particular, in the work of
Verguts and colleagues, mPFC theta oscillations signal the
need for adjustments to reach the current goal (Verguts,
2017; Verbeke and Verguts, 2019; Verbeke et al., 2020;
Senoussi et al., 2022), and achieve them by synchronizing
the activity of task-relevant pairs of sensory and action
units, thereby allowing them to communicate more effi-
ciently (Fries, 2005, 2015). Therefore, these models identify
in the mPFC the structure responsible to coordinate and
operationalize the flexible binding of lower-level modules
to meet task demands.
Our theta phase connectivity hypotheses are embedded

within this framework, insofar implementation task de-
mands are thought to require the coordination of sensory
and motor information in a coherent action-oriented repre-
sentation. In line with our predictions, we found that theta
oscillations between mPFC and motor/visual areas were
significantly more synchronized in the Implementation
task. Crucially, these findings show that proceduralization
triggers the formation of a functional network encompass-
ing frontal and posterior areas through synchronization,
compatibly with a view of mPFC exerting top-down control
toward posterior areas in response to the specific task
demands.

Notably, contrary to our hypotheses, motor/visual areas
contralateral and ipsilateral to the hand and hemispace cur-
rently relevant showed no difference in their degree of con-
nectivity to the mPFC. This finding is open to alternative
explanations. First, it might suggest that top-down synchro-
nization is exerted similarly toward both hemispheres inde-
pendently of lateralization of stimuli and responses. This
interpretation is consistent with a previous study testing the
model prediction in a reversal rule learning task involving lat-
eralized responses and reporting bilateral clusters of con-
nectivity between FCz and posterior electrodes (Verbeke et
al., 2020). Information on which networks are task-relevant
and which should be inhibited could be coded in other as-
pects of the interactive dynamics between mPFC and pos-
terior areas, such as phase coding or cross-frequency
coupling (Helfrich and Knight, 2016), or by means of activ-
ity-silent and less resource consuming neurophysiolog-
ical mechanisms (Stokes, 2015; Masse et al., 2019).
Alternatively, the lack of a significant lateralization effect

might be attributed to the selected spatial and temporal
features. It cannot be ruled out, for instance, that a short-
lasting lateralization in the connectivity patterns emerges
only late during the CTI. However, this explanation ap-
pears unlikely given the early-onset suppression of beta
oscillations in the motor cortex contralateral to the selected
response hand, indicating that information on the specific
effector is already present shortly after the retro-cue.
Moreover, although the selected ROIs were suited to
detect the hypothesized lateralized local changes in os-
cillatory activity, it is possible that lateralization in con-
nectivity with the mPFC is implemented at different
stages of the processing hierarchy. Connectivity be-
tween mPFC and premotor, rather than motor, cortices
might carry information on the currently relevant re-
sponse hand, and, in a similar fashion, areas at later
stages of the visual stream might be more synchronized
depending on the stimulus material. In this regard, re-
cent fMRI evidence showed connectivity between the
anterior cingulate cortex and visual areas specific for
the processing of faces and houses, scaling with task
difficulty (Aben et al., 2020). This finding hints at the
need for a more fine-grained ROIs definition, and further
research should investigate this issue for instance by
using independent functional localizers (Baldauf and
Desimone, 2014; Kok et al., 2017; Senoussi et al., 2020;
González-García et al., 2021).
In the model of flexible binding, the end point is the syn-

chronization of the posterior brain areas coding for the
currently relevant stimulus and response. This would be
implemented in the gamma frequency range, with the
bursts aligning the phase of gamma oscillations (Verguts,
2017). Such synchronization between processing units is
difficult to test in the present dataset, as high frequencies
(.30Hz) are significantly more difficult to investigate with
EEG (Nottage and Horder, 2015). Although not directly test-
ing for the synchronization between motor and visual areas,
we provide evidence that implementation task demands
elicit the emergence of a strengthened network of task-rele-
vant brain areas coordinated by the mPFC and instantiated
by means of theta-phase synchronization.
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Importantly, while theta oscillations from the mPFC pro-
vide an explanation on how posterior areas achieve syn-
chronization, the information on which regions should
become synchronized is thought to be coded in the lateral
PFC (Verguts, 2017). This is consistent with fMRI litera-
ture, showing lateral PFC to be a pivotal region in task-set
coding (Duncan, 2001; Woolgar et al., 2011; Shahnazian
et al., 2022) and dissociating between maintenance and
execution task demands (Demanet et al., 2016; González-
García et al., 2017, 2021; Palenciano et al., 2019a,b).
Previous electrophysiological findings on primates sug-
gest that lateral PFC, and a broader fronto-parietal net-
work, might be encoding task-relevant rule information
in the beta range (Buschman et al., 2012; Antzoulatos
and Miller, 2016). However, here we put forward and
tested hypotheses on theta activity in the mPFC, as
these were clearly derivable from the literature and the
described model, while remaining agnostic to the role of
the lateral PFC. Further research should clarify the oscil-
latory phenomena associated with instructions following
in the lateral PFC with more tailored designs, contribut-
ing to integrate the results from the two techniques.
In summary, we focused on the role of mPFC theta

oscillations as core mechanism to coordinate the com-
munication between brain areas relevant to execute the
instructed behavior. We showed that proactively pre-
paring to implement novel SRs elicits larger theta oscil-
lations in the mPFC, which mediate the effect of task
demands on behavioral performance. Crucially, theta-
phase synchronization increases between frontal control
areas and motor/visual areas, indicating that a procedural,
action-oriented format relies on the interplay of distant
brain regions.
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