
The Benefits of Model-Based Generalization
in Reinforcement Learning

Kenny Young 1 Aditya Ramesh 2 Louis Kirsch 2 Jürgen Schmidhuber 2 3

Abstract

Model-Based Reinforcement Learning (RL) is
widely believed to have the potential to improve
sample efficiency by allowing an agent to synthe-
size large amounts of imagined experience. Ex-
perience Replay (ER) can be considered a simple
kind of model, which has proved effective at im-
proving the stability and efficiency of deep RL. In
principle, a learned parametric model could im-
prove on ER by generalizing from real experience
to augment the dataset with additional plausible
experience. However, given that learned value
functions can also generalize, it is not immedi-
ately obvious why model generalization should
be better. Here, we provide theoretical and em-
pirical insight into when, and how, we can expect
data generated by a learned model to be useful.
First, we provide a simple theorem motivating
how learning a model as an intermediate step can
narrow down the set of possible value functions
more than learning a value function directly from
data using the Bellman equation. Second, we pro-
vide an illustrative example showing empirically
how a similar effect occurs in a more concrete
setting with neural network function approxima-
tion. Finally, we provide extensive experiments
showing the benefit of model-based learning for
online RL in environments with combinatorial
complexity, but factored structure that allows a
learned model to generalize. In these experiments,
we take care to control for other factors in order
to isolate, insofar as possible, the benefit of using
experience generated by a learned model relative
to ER alone.

1University of Alberta and the Alberta Machine Intelligence
Institute 2The Swiss AI Lab IDSIA/USI/SUPSI 3AI Initiative,
KAUST, Thuwal, Saudi Arabia. Correspondence to: Kenny Young
<kjyoung@ualberta.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Model-based reinforcement learning (RL) refers to the class
of RL algorithms which learn a model of the world as an
intermediate step to policy optimization. One important
way such models can be used, which will be the focus of
this work, is to generate imagined experience for training an
agent’s policy (Werbos, 1987; Munro, 1987; Jordan, 1988;
Sutton, 1990; Schmidhuber, 1990). Experience Replay (ER)
can be seen as a simple, nonparametric, model (Lin, 1992;
van Hasselt et al., 2019) where experienced interactions are
directly stored, and later replayed for learning.

ER already captures many of the benefits associated with
a learned model as compared to model-free incremental
online algorithms (i.e. model-free algorithms which per-
form a learning update using each transition only at the
time it is experienced). In particular, ER allows value to be
rapidly propagated from states to their predecessors along
previously observed transitions, without the need to actually
revisit a particular transition for each step of value propa-
gation. Propagating value only at the time a transition is
visited can make model-free incremental online algorithms
extremely wasteful of data, particularly in environments
where the reward signal is sparse.

As Lin (1992) and van Hasselt et al. (2019) have discussed,
it is often not obvious why we’d expect experience generated
by a learned model to improve upon ER, as an ER buffer
is essentially a perfect model of the world insofar as the
agent has observed it. This is especially true in the tabular
case, where a model does not generalize from the observed
transitions. It is also true for policy evaluation in the case
where the value function and model are linear (Parr et al.,
2008; Sutton et al., 2012). In this case, learning the least-
squares linear model from the data, and then finding the
TD(0) solution (Sutton, 1988) in the resulting linear MDP
is identical to finding the TD(0) solution for the empirical
MDP induced by the observed data. Hence, if we expect to
obtain a sample efficiency benefit by using data generated
by a learned model compared to ER, we should look beyond
these cases.

One may argue that a parametric model that generalizes
can generate a large amount of imagined experience that
does not appear explicitly in the dataset. However, para-
metric value functions also generalize. Why should model

1

The Benefits of Model-Based Generalization

generalization be inherently better than value function gen-
eralization? This question was already raised in the work
of Lin (1992), which first introduced ER for RL. The next
section gives a partial answer as a theorem which shows
how learning a model as an intermediate step can narrow the
space of possible value functions more than learning a value
function directly from the data using the Bellman equation.

After motivating the benefit of model-based generalization
theoretically, we will present an intuitive case where learn-
ing a parametric model is empirically beneficial with NN
function approximation. Subsequently, we will present ex-
tensive experiments, which highlight the sample efficiency
benefits of model-based learning for online RL in cases
where the environment has some underlying factored struc-
ture1 that can allow a learned model to generalize.2 We will
also analyze an interesting instance we came across during
these experiments where an agent using a learned model
outperforms one using the perfect model due to smoothed
reward and transition dynamics.

We use the MDP formalism throughout this paper. We
refer the unfamiliar reader to (Sutton & Barto, 2020) for an
accessible discussion of MDPs and their usage in RL.

1 Theoretical Motivation for the Benefit of
Model-Based Generalization

Theoretical comparison of model-based and model-free
methods is challenging in that it is difficult to precisely
define what makes an algorithm model-free. Given a
known model-class M, Sun et al. (2019) define a model-
free algorithm as one which accesses the state s only
through its set of possible optimal action-value functions
{Q∗

m(s, a)}(m∈M,a∈A), where A is the action set. Any
states which have the same action-values under all consid-
ered models are deemed indistinguishable to a model-free al-
gorithm. Under this definition, they show there exist model-
classes where a model-based approach can be exponentially
more sample efficient than any model-free approach.

One key insight of Sun et al. (2019) may be summarized as
follows: even states which are indistinguishable in terms of
their action-values, for all MDPs in the model-class, may
contain distinct information about the environment dynam-
ics. Perhaps counter-intuitively, this dynamics information
which is unavailable to model-free methods can contain
information that is relevant to predicting values.

Here, we present a simple theorem based on a setup similar
to that of Sun et al. (2019). Relative to their general result

1Where the state consists of a set of state-variables such that
the distribution of each variable at the next time-steps depends on
only a subset of the variables in the current state.

2Code to reproduce the main experiments is avail-
able at: https://github.com/kenjyoung/Model_
Generalization_Code_supplement.

about model-free algorithms as defined above, our result
presents similar intuition in a simpler setting, while being
more targeted to motivate our subsequent empirical compari-
son of model-free learning with ER to using a learned model.
In combination with our empirical results, this theorem can
help practitioners to gain more concrete intuition for how
utilizing a learned parametric model can improve general-
ization, and thus sample efficiency. We state the theorem
informally here, and formally with proof in Appendix A.

Theorem 1.1. Consider a class of deterministic, episodic,
MDPs M with fixed reward function, and transition function
belonging to some known hypothesis class. Let HQ be the
associated class of optimal action-value functions for MDPs
in M. Now consider a dataset D of transitions. Let HB(D)
be the subclass of action-value functions in HQ which obey
the Bellman optimality equation for the transitions in D
and let HM (D) be the subclass of optimal action-value
functions of MDPs in M which are consistent with D. Then
the following are true:

1. HM (D) ⊆ HB(D).
2. For some choices of M and D, HM (D) ⊂ HB(D).
3. For a tabular transition function class, that is one

that includes every possible mapping from state-action
pairs to next states, HM (D)=HB(D).

Intuitively, Theorem 1.1 states that, if we want to narrow
down the possible optimal action-value functions from data,
we can in general prune more if we narrow down the possi-
ble models first than if we only demand that the value func-
tions obey the Bellman optimality equation with respect to
the observed data. The latter approach is closely analogous
to running Q-learning to convergence on a fixed dataset D.3

Part 3 of Theorem 1.1 states that the model-based approach
offers no benefit for a tabular model class, but rather only for
models which have some additional structure. In such cases,
even if a model-based and model-free approach begin with
the same hypothesis class, the model-free approach can fail
to leverage this structure and ultimately lose value-relevant
information from the data in the process.

Theorem 1.1 provides useful intuition for how utilizing a
learned parametric model can improve sample efficiency.
However, there are important gaps between the assump-
tions of the theory and the practice of using neural network
(NN) function approximation for value functions and mod-
els. With NN function approximation, we have no guar-
antee of realizability (that the true model is actually in the
class) though, with a sufficiently high capacity NN, this
can perhaps be assumed. Theorem 1.1 also assumes the

3Note that the latter approach meets the definition of model-
free suggested by Sun et al. (2019) since if two states have the
same action-values in every MDP in M we can enforce Bellman
optimality without knowing which of them was visited.

2

https://github.com/kenjyoung/Model_Generalization_Code_supplement
https://github.com/kenjyoung/Model_Generalization_Code_supplement

The Benefits of Model-Based Generalization

model-based and model-free approaches have access to the
same prior knowledge of the problem class. This is not true
in practice where prior knowledge is encoded somewhat
nebulously in the choice of NN architecture. Theorem 1.1
says nothing about the performance of an arbitrary model
or value function parameterization on a single problem in-
stance. For example, in the limiting case where the true
value function is known a priori, no learning is necessary
and any value function learned by a model-based approach
may well be worse. Instead, Theorem 1.1 suggests that if we
design a model architecture with favourable generalization
properties for a problem class of interest, a model-based ap-
proach with this architecture will provide a sample efficiency
benefit which cannot be replicated simply by encoding anal-
ogous generalization properties into a value function.

The remainder of this paper focuses on demonstrating empir-
ically how the intuition underlying Theorem 1.1 is relevant
to standard RL algorithms with simple NN function approx-
imation. In the next section, we will highlight a simple and
intuitive case where similar intuition leads a learned model
to have a clear empirical benefit despite the fact that we do
not encode any problem-specific structure into the model.

2 A Simple Case where Model-Based
Generalization is Useful

There have been many examples of empirically successful
model-based approaches recently (e.g. Hafner et al. (2021);
Schrittwieser et al. (2020)). However, owing to the many
design choices involved in such algorithms, it can be hard
to establish where the benefits are actually coming from.
In this section, we present an illustrative example where
learning a parametric model from data, and then learning an
action-value function within that model, has a clear advan-
tage over learning an action-value function directly from the
data. This example will also explore another gap between
Theorem 1.1 and model-based RL practice. Namely, in prac-
tice, we don’t compute the exact value function under the
learned model. Instead, one common strategy is to train a
value function on model-generated rollouts initialized from
states in the ER buffer. The example presented here shows
straightforwardly how, while even single-step rollouts can
be useful, using multi-step model rollouts can provide an
additional advantage. To keep this example simple and intu-
itive, we consider an offline RL setting with hand-selected
datasets with varying coverage of the dynamics.

The environment in this section consists of a 3x3 grid world
with a goal in the top left corner and with arbitrary walls (the
location of which is fixed within an episode). Reward is -1 at
each step until the goal is reached, at which point the episode
terminates. Actions consist of standing still or moving in
a cardinal direction. Observations are flat binary vectors
consisting of one-hot-encodings of the agent’s position and
the goal position (though goal position is fixed here), and

EXIT EXIT EXIT EXIT

EXIT EXIT EXIT EXIT

EXIT

EXIT

Basic
configurations

Evaluation
configurations

Figure 1: Maze layouts included in the basic and evaluation
sets. All datasets include every transition in each of the
basic configurations, but different sets of transitions in the
evaluation configurations.

All-Evaluation Path-to-Goal Single-Cell No-Evaluation

DQN

1 Step
Model

10 Step
Model

Correct Action
Frequency

Figure 2: Frequency (over 30 random seeds) of trained
agents’ greedy policy selecting the correct action in cells of
the displayed maze with different evaluation set coverage
during training. Length of green arrows indicate the fre-
quency of greedy policies picking the corresponding action.

two binary vectors indicating, respectively, the presence and
absence of walls in each cell.

For explanatory purposes, we break the data in the training
datasets provided to the agents into a basic set and an evalu-
ation set. The basic set consists of all possible transitions
with wall layouts having a single wall within one of the 8
non-goal cells. Every training dataset contains this entire
basic set, in addition to some limited data from the evalua-
tion set. The evaluation set consists of transitions with wall
layouts of 2 walls in one of the configurations illustrated
in Figure 1. We consider training datasets with 4 different
levels of evaluation set data coverage:

• All-Evaluation: All possible transitions within the
evaluation wall layouts.

• Path-to-Goal: Only evaluation layout transitions
which follow the path to the goal.

• Single-Cell: Only the transitions starting from the cell
furthest from the goal (with respect to the only open
path).

• No-Evaluation: No transitions from the evaluation set.

3

The Benefits of Model-Based Generalization

We compare model-based and model-free algorithms in this
setting. Both approaches use a Deep Q-Network (DQN;
Mnih et al. (2015)) for behaviour learning. The model-free
approach trains DQN with examples from the dataset. For
the model-based approach, we use a simple feedforward
NN model, and train DQN on model-generated transitions.
The model takes an observation as input and outputs a pre-
dicted reward, Bernoulli termination probability and vector
of Bernoulli probabilities that each feature is active in the
next state. This model is sufficient to represent the true dy-
namics since the environment has deterministic transitions.
We train the model on transitions from the dataset and train
the action-value function on model rollouts initialized from
states in the dataset. We trained one model-based agent with
single-step rollouts and another with 10-step rollouts. We
trained each agent for 1 million training steps and controlled
the total number of (real or imagined) transitions used in
each DQN update across all agents. See Appendix E for
further detail on the experiment setup.

Each agent is evaluated by checking the frequency out of
30 independent runs with which the greedy action under
the learned value function is optimal in each cell of an
evaluation layout. We say the agent has failed if there exists
any cell in which the majority of runs select the wrong
greedy action. We next discuss how we expect each agent
to perform with each level of evaluation set coverage.

All-Evaluation: We expect that all agents will succeed
in the case where data is given for all transitions in the
evaluation layouts. Here, a model-free agent has access
to all the data needed to backup value from the goal and
determine the value of each state-action pair, and a model-
based agent has no opportunity to generate useful novel
transitions which do not already appear in the dataset.

Path-to-Goal: We expect model-free DQN to fail in the
Path-to-Goal case. Consider the lower evaluation wall lay-
out in Figure 1. For the bottom middle cell, there is no
data in the Path-to-Goal dataset for actions besides moving
right. For every basic-set layout, moving right is worse than
moving up. We predict the model-free agent will incorrectly
generalize from the basic set to conclude that the right action
is also worse in this new configuration.

We expect both model-based agents to succeed with Path-to-
Goal data. All missing transitions are one step away from
the available data, but require a different action selection.
We predict that the outcome of these missing actions can be
learned by generalization from the basic set. To determine
the effect of an action, it suffices to look at the agent’s
current location and whether there is a wall in the cell it
is attempting to enter. We predict the agent will be able
to learn this basic structure from the training data, even in
the absence of specific data about the case where there are
two walls. Note that this hypothesis implies a nontrivial

prediction about how this simple model will generalize.
Factored structure is not hard-coded in the model, thus it is
also plausible that the model predictions will be arbitrarily
bad for the unobserved evaluation transitions.

Single-cell: We expect the single-step model to fail when
only transitions from a single evaluation cell are included in
the dataset. In this case, the model rollouts have no chance
to reconstruct anything not already available explicitly in
the dataset given all single-step transitions from the far cell
are included and this is likely to be insufficient for reasons
already explained. However, the 10-step model has the
potential to succeed. If the model generalizes as expected,
it can start in the far cell available in the dataset and roll out
a trajectory which discovers the full path to the goal.

No-Evaluation: Finally, all agents should fail in the case
where there is no evaluation data available at all. The mod-
els will have no opportunity to provide the learned value
function with example transitions from the evaluation lay-
out given model rollouts are initialized with states from
the dataset. Note that the situation may be different if we
had used a generative start-state model to produce plausible
states for the start of rollouts which need not explicitly ap-
pear in the dataset.4 Using the model to plan for immediate
action selection at evaluation time, as in model predictive
control, would also help here as the agent could directly
plan a response for the previously unseen state.

In Figure 2, we observe that all the above predictions are
confirmed. We reiterate that this is a nontrivial empirical
result. It relies on the simple model, a feedforward NN,
with no explicit bias toward factored solutions, generalizing
in a particular way to state-action pairs that do not explic-
itly appear in the dataset. At least in this case, the model
indeed seems to generalize in a way that provides a sig-
nificant advantage over ER alone.5 This experiment also
straightforwardly illustrates how even a model with 1-step
rollouts can be helpful, by sampling counterfactual actions
or, in the case of stochastic environments, counterfactual
chance outcomes. However, multi-step rollouts can succeed
in situations where there is insufficient data for one-step
rollouts to be helpful.

3 Favorable Environments for Online
Model-Based Learning

We next describe three environments which exemplify prop-
erties that should make online learning with a parametric
model particularly useful. We aim for the following envi-

4This raises the question of how the start-state model should
generalize. If trained to maximize data likelihood, it could overfit
and only generate states from the training set.

5We also verified that the model predictions are near perfect
with respect to predicting the agent position after each state-action
pair across all transitions in the evaluation configurations.

4

The Benefits of Model-Based Generalization

ronment characteristics:

1. Simple factored structure in the state-space that we
expect should be easy to learn for a model with reason-
able generalization properties.

2. Return which depends sharply on the policy, such that
a randomly behaving agent won’t have much of a learn-
ing signal for policy improvement. This should make
model-generated experience more useful, as Bellman
backups alone will tend to be mostly uninformative.

3. Occasional random transitions to rewarding states (or
terminal states when termination is desirable). This
allow the model-based agent to learn about the reward
function even while behaving highly suboptimally.

The third characteristic does not contradict the second as an
agent can occasionally obtain some reward while behaving
suboptimally but have difficulty obtaining more. This char-
acteristic may seem contrived, but we argue that it is quite
natural. For example, one can imagine an agent gathering
edible plants for a long time before working out how to grow
their own. It is often much harder to discover reward, with-
out ever observing it, than to work out how to reconstruct
rewarding circumstances using general knowledge of the
transition dynamics. On a practical note, there is significant
work on exploration with sparse (or no) reward (Schmidhu-
ber, 1991a;b; Thrun, 1992; Schmidhuber, 2010; Amin et al.,
2021) which is orthogonal to our focus. Hence, we mitigate
the issue by making it easier to learn the reward function.
We ablate these spontaneous transitions to rewarding states
in Appendix I to test the impact of this choice.

In addition to the above, the environments we investigate
allow scaling of problem complexity to test the limitations
of different approaches. The environments are also Markov,
use binary features, and are largely deterministic, so simple
models can work well, though we also investigate more
sophisticated latent-space models. Next, we describe the
environments (see Appendix B for details).

ProcMaze (Figure 3, left): Procedurally generated grid
world mazes. The maze itself, along with the start state and
goal state, is randomized in each episode. Negative reward
is given for each step until the goal is reached. Complexity
is scaled by increasing the grid size.

ButtonGrid (Figure 3, middle): A 5 by 5 grid with ran-
domly placed buttons. An agent can move around and, if
it hits a button, will toggle it on or off. If all buttons are
on, a reward is given and button locations are randomized.
Random behavior will tend to randomly perturb the buttons,
a precise policy is required to set them all to on. Complexity
is scaled by increasing the number of buttons.

PanFlute (Figure 3, right): A minimal example of an en-
vironment with combinatorial complexity of optimal be-
haviour, but simple factored transition structure. PanFlute

EXIT EXIT

EXIT

EXIT

a b c d e

R

ProcMaze ButtonGrid PanFlute

Figure 3: Left: Examples of states in the ProcMaze envi-
ronment of size 4 with the agent shown in orange. Middle:
An example state of the ButtonGrid environment with 3
buttons. The agent is shown in orange and the buttons in
black (off) and white (on). Right: An instance of the Pan-
Flute environment with 5 pipes. The agent directly activates
cells (a,b,c,d,e) through its actions after which the activation
propagates up the associated pipe, one step at a time, and
dissipates at the end.

consists of n pipes of cells where each pipe evolves indepen-
dently. Each action directly activates the cell at the bottom
of one pipe, after which the activation will propagate up the
pipe, one step at a time, and dissipate after reaching the end
cell of the pipe. A reward is received if the cells at the end
of all pipes are simultaneously active, which can only be
achieved by choosing each of the n actions in a certain order,
a probability of 1/nn under random behaviour. Complexity
is scaled by increasing the number of pipes n.

We expect ER alone to be of limited utility in each of these
environments as each of them requires precise control to
obtain significantly more reward than random behaviour, es-
pecially as the problem complexity is scaled up in each case.
Since we always include random transitions to rewarding
states, an agent can easily learn that these states are good,
but until it reaches the rewarding state by its own actions, it
won’t be able to learn much from the states which precede
rewarding states.

On the other hand, each environment has factored structure
that a model-based agent can learn, and subsequently use
to imagine many novel, plausible, states in its rollouts. In
ProcMaze, an agent moving into a specific empty space
will have the same effect regardless of the rest of the maze
layout, and attempting to move into a wall will always block
it. In ButtonGrid, the connectivity of the grid is independent
of the button layout, and stepping on a button in a specific
cell will have the same effect regardless of the layout of the
rest of the buttons. In PanFlute, each action always has the
same effect, and each pipe evolves according to dynamics
which are unaffected by the other pipes.

To better contextualize our results for environments with
factored structure, we will also present results in an open
grid-world with a goal in one corner which we refer to as

5

The Benefits of Model-Based Generalization

OpenGrid. The agent location is simply represented by
a one-hot vector (effectively tabular) so there is really no
structure to exploit in OpenGrid. The learned model must
essentially memorize every individual transition to learn the
dynamics. Further details of this unstructured environment
are available in Appendix C.

4 Beneficial Model-Based Generalization for
Online RL

We now empirically evaluate the performance of model-
based and model-free learning algorithms on the environ-
ments described in Section 3. We experiment with variants
of each environment with a range of complexities to test how
different approaches scale to more complex environments.

All tested approaches use DQN for behaviour learning but
vary in the source of training examples for DQN. Our model-
free approach draws transitions randomly from an ER buffer
for training. We test several types of learned model. The
first is the simple feedforward NN model introduced in Sec-
tion 2. The second is a latent-space model (Schmidhuber,
1997; Watter et al., 2015; Ha & Schmidhuber, 2018) in-
spired by Dreamer (Hafner et al., 2019; 2021), but with
two major differences to simplify the approach and reduce
confounding factors in our experiments. In particular, we
use DQN instead of actor-critic and, since our environments
are Markov, we forgo the recurrent network of Dreamer and
model single-step stochastic transitions with no memory.
We experiment with Gaussian and Categorical latent vari-
ables. See Appendix D for further details of these models.
Finally, as a strong baseline, we include a perfect model,
which uses the ground truth environment dynamics, but is
otherwise the same as the simple-model agent.

As in Section 2, we control for the total number of updates,
and the total number of (real or imagined) transitions used
in each update. In particular, model-free DQN is updated
on a batch of 320 transitions from the ER buffer while all
model-based approaches use 32 model rollouts of length
10, beginning in a state from the ER buffer. In Appendix I,
we perform an ablation in which 1-step rollouts are used
instead and find that longer rollouts are generally helpful.
In each update, the model is trained using the same batch
of transitions which initialize the rollouts. All agents use a
softmax behaviour policy and are evaluated under the greedy
policy. Action-value learning uses 1-step TD-error, with
real or imagined transitions, using a discount factor of 0.9.

We experiment with 2 different data regimes to get a more
complete picture of how each approach scales with available
data. In the high data regime, we use one update per real
environment step and train for a total of 1 million steps. In
the low data regime, we use 10 updates per step and train for
100 thousand steps. Note that the total number of updates is
the same in each case.

Experience Replay Perfect ModelSimple Model

Categorical Latent Gaussian Latent

P
ro

cM
az

e
B

ut
to

nG
rid

P
an

Fl
ut

e

Size of Grid Size of Grid

Number of Buttons Number of Buttons

Number of Pipes Number of Pipes

Av
er

ag
e

R
et

ur
n

R
ew

ar
d

R
at

e
R

ew
ar

d
R

at
e

High Data Low Data

Figure 4: Final performance of greedy policy for the three
structured environments in two different data regimes. Here,
and in all other figures, error bars show 95% confidence
intervals.

Experiment Design: For each combination of agent, envi-
ronment, and data regime we performed an extensive grid
search over the Q-network step-size and softmax explo-
ration temperature. We judged these hyperparameters to
be the most likely to impact the relative performance of
different methods. This grid search was performed for an
intermediately complex version of each environment (size 4
ProcMaze, 4 button ButtonGrid, and 7 pipe PanFlute) and
the same hyperparameters were used for the other complex-
ity levels. We evaluated each hyperparameter setting based
on mean final performance of the greedy policy over 30
random seeds. We were able to run 30 seeds efficiently
in parallel on a single GPU using automatic batching in
JAX (Bradbury et al., 2018). Other hyperparameters, in-
cluding model step-size, were fixed to reasonable defaults
(see Appendix F), not tuned for any specific approach. In
Appendix G, we report hyperparameter sensitivity results
from this grid search.

Results: We present results for the three structured envi-
ronments in Figure 4 (see Appendix H for learning curves).
As the results for PanFlute differ substantially from the re-
sults for ButtonGrid and ProcMaze, we will discuss them
separately. For ButtonGrid and ProcMaze in the high data
regime, the simple model and categorical latent model both
significantly outperform ER for sufficiently complex envi-

6

The Benefits of Model-Based Generalization

ronment instances. The Gaussian latent model generally per-
forms quite poorly, which corroborates the results of Hafner
et al. (2021) that categorical latents tend to work better in
the discrete control setting. Oddly, the simple model also
performs much worse for 1 and 3 buttons in ButtonGrid in
the high data regime. This may be because fewer buttons
mean fewer examples where a button occupies each particu-
lar cell, which makes it harder for the simple model to learn
the underlying dynamics.

In the low data regime, the simple model outperforms ER
to a greater extent, while the performance of the categorical
latent model degrades significantly. This can perhaps be
understood by noting that the hypothesis class of the simple
model is simpler (the latent-space model can model corre-
lated features, while the simple model cannot) and thus is
able to generalize well from less data when the simple class
is sufficient. Performance of the simple model for 1 and
3 buttons improves when moving to the low data regime.
Likely, this indicates underfitting in the high data regime
which is helped by training more on each example. Overall,
the results for the simple model and categorical latent model
in the high data regime, and the simple model in the low
data regime, show a clear indication of the sample efficiency
benefit that can be obtained by using a learned model in
these environments.

Results for PanFlute are qualitatively different. Most sur-
prisingly, the Gaussian-latent model and the simple model
outperform the perfect model in some of the harder problem
instances. This is intuitively strange and seems to indicate
that model errors somehow improve performance.

Why do Some Learned Models Outperform the Perfect
Model on PanFlute? We hypothesize that the smoother re-
ward and dynamics learned by the model serve as a powerful
exploration heuristic. The true reward function is nonzero,
and thus the agent receives a learning signal, only in the
rare event that every pipe-end is active. The model might
instead learn a smoothed reward function, proportional to
the number of pipe-ends activated. The agent could then
learn incrementally to activate more pipe-ends, gradually
improving toward the correct sequence.

To test this hypothesis, we looked at the models learned
at 10,000 time-steps, in 9-pipe PanFlute (high data). We
generated a large amount of random trajectory data with a
policy that selects actions in alphabetical order with 80%
probability and uniformly randomly otherwise to get a good
mix of different numbers of active pipe-ends. We bin this
data by the number of active pipe-ends and then look at the
average model-predicted reward for each bin. Note that the
ground truth reward is zero for all except the 9 active pipe-
end bin. To test for favourable smoothing in the transition
dynamics, we used the same data. This time, we bin the
data by the number of pipe-ends active at the next step and

Gaussian LatentSimple Model

Predicted Reward

Predicted Probability
Of Rewarding
Next State

P
re

di
ct

io
n

Number of Active Pipe
Ends (current/next)

Number of Active Pipe
Ends (current/next)

Predicted Reward

Predicted Probability of
Rewarding Next State

Figure 5: Model prediction of reward and probability that
all pipe-ends are active at the next time step as a function
of the true number of current and next pipe-ends active
respectively on 9-pipe PanFlute.

Log (base 10) Model Training Steps

Predicted Reward
at 6 Active Pipe

Ends
Log Steps to
Near Optimality

Figure 6: In orange, the number of steps to reach near-
optimal performance (95% of maximum possible reward
rate) on 9-pipe PanFlute when using a frozen simple model
trained for a variable number of steps. Numbered arrows
indicate the number of seeds out of 30 which failed to reach
near-optimal performance within 1 million steps. In green,
the predicted reward for 6 active pipe-ends, displayed as a
surrogate for the amount of model smoothing.

look at the probability under the model that all pipe-ends
are active at the next time-step.

The results, for both predicted reward and predicted proba-
bility that all pipe-ends will be active at the next time-step
(“predicted probability of rewarding next state” in the fig-
ure) are displayed in Figure 5. We observe that the models
indeed tend to learn smoother rewards than the ground truth
in a way that might provide a useful exploration heuristic.
The Gaussian latent model additionally learns smoothed
transition dynamics, predicting all pipe-ends will activate
with appreciable probability when in reality only most will,
this may provide additional benefit in this problem.

As an additional test of the benefit of model errors, we used
simple models frozen at various points in training to train a
value function from scratch for 1,000,000 time-steps. We
plot when near-optimal performance of the greedy policy is
first reached. The results, shown in Figure 6 clearly show
that a model trained for an intermediate amount of time is
most useful for reaching good performance quickly. We

7

The Benefits of Model-Based Generalization

Size of Grid

Average
Return Experience Replay

Perfect Model

Simple Model

Figure 7: Final performance of greedy policy for OpenGrid
in low data regime.

also plot the mean predicted reward for states with 6 active
pipe-ends for each model as an indication of smoothing, as
expected, this decreases with more model training.

The smoothing effect highlighted in these results is interest-
ing for two reasons. First, it may lead model-based algo-
rithms to perform better than expected, acting as a confound-
ing variable when interpreting results. Second, it may be
genuinely useful. One could even design algorithms which
learn policies within relaxed versions of a model, as a way
to drive exploration. However, as there are surely other
situations where model smoothing is harmful, this would
need to be done with care.

What Happens when there is no Structure for the
Learned Model to Exploit? We can compare the above,
largely positive, results for the benefit of model-based gen-
eralization with the results for OpenGrid shown in Figure 7.
In contrast to the more favourable environments, here we
see that the simple model becomes worse relative to ER as
the environment complexity increases. This is reasonable
as OpenGrid is essentially tabular and thus the model has
no ability to extrapolate beyond the data. The best it can do
is memorize the transitions that are already in the ER buffer
and the limitations of finite model capacity and imperfect
optimization prevent it from doing so perfectly. See Ap-
pendix C for further details and parameter sensitivity curves
for OpenGrid.

5 Related Work
There is a large body of empirical research showing
the potential of learned models to improve sample effi-
ciency (Deisenroth & Rasmussen, 2011; Buckman et al.,
2018; Kaiser et al., 2019; Janner et al., 2019; Curi et al.,
2020; Hafner et al., 2021). A relatively small body of work
directly compares ER with learned models. Van Seijen &
Sutton (2015) show an exact functional equivalence between
a variant of replay with linear TD(0), and linear Dyna (Sut-
ton, 1990). Pan et al. (2018) provide an empirical study
comparing ER with learned models under a variety of search
control strategies, i.e. different methods for choosing which
state-action pairs to update. Holland et al. (2018) empiri-
cally compare ER with a parametric model in the arcade

learning environment (ALE; Bellemare et al. (2013)) and
highlight the benefits of the model in particular when multi-
step rollouts are used. Relative to these works, we focus
on understanding how a learned model can provide a bene-
fit, and highlighting properties of environments where this
benefit is most prominent.

Van Hasselt et al. (2019) make a strong case that ER pro-
vides many of the benefits of a learned model, and argue
that if a model is used only to generate experience starting
from observed states it is unlikely to provide additional ben-
efit. We investigate the comparison between ER and learned
models further, and argue that there is good reason to believe
a learned model can improve sample efficiency in environ-
ments with structure, such as factored dynamics. This is
true even if the model is used only to augment training data
with rollouts starting from observed states.

Dong et al. (2020) share our focus on highlighting situations
where model-based RL provides a significant benefit. While
we focus on the generalization benefits, they motivate the
expressivity benefit of model-based RL by showing there
exist MDPs where the optimal policy is exponentially more
complex to represent than the dynamics.

The benefit of model smoothing, observed in PanFlute, may
shed light on some observations in the literature. Hafner
et al. (2021) suggest model smoothing as an explanation for
why DreamerV2 can achieve good performance on Mon-
tezuma’s Revenge without any sophisticated exploration
mechanism. Holland et al. (2018) observe that their learned
model sometimes outperforms the ground-truth model in
Seaquest, though they do not suggest a specific explanation.

Our work has implications for implicit model-based algo-
rithms (as defined in the survey paper of Moerland et al.
(2020)) such as MuZero (Schrittwieser et al., 2020). In such
algorithms, the model is not trained to predict future obser-
vations, but only task-relevant aspects of the future such as
policy, value and reward. In light of Theorem 1.1, and the
example in Section 2, it is unclear whether such techniques
fully exploit the benefits of model-based learning due to the
limited training signal used to constrain the model.6 Indeed,
there is empirical evidence suggesting that MuZero’s sam-
ple efficiency can be improved by using additional training
signals (Ye et al., 2021; Anand et al., 2022).

Our work is loosely inspired by the literature on exploit-
ing factored structure in MDPs (Sallans & Hinton, 2004;
Strehl et al., 2007; Diuk et al., 2009; Osband & Van Roy,
2014; Sun et al., 2019; Xu & Tewari, 2020). As highlighted
in Section 1, Theorem 1.1 is closely related to Theorem 2
of Sun et al. (2019), which shows that there exists a family

6Though Gehring et al. (2021) suggest that the implicit model-
based parameterization itself may yield favourable gradient dy-
namics.

8

The Benefits of Model-Based Generalization

of MDPs where a model-based approach can be exponen-
tially more efficient than any model-free approach. We
focus on factored structure to motivate the benefit of model
generalization but do not use algorithms explicitly designed
to exploit this factored structure.

The benefit of model-based generalization can be seen
as an example of the benefit of semi-supervised learn-
ing (Chapelle et al., 2006) in general. As another example
of the latter, Ng & Jordan (2001) demonstrate that learning
a generative model to predict p(y, x) by naive Bayes and
marginalizing to produce a classifier tends to outperform
directly predicting p(y|x) by logistic regression in the limit
of low data. Model-based RL is similar in that we solve a
larger problem, that is learning a world model, as an interme-
diate step to the more specific objective of learning a good
policy. Ng & Jordan (2001) also find that logistic regression
tends to outperform naive Bayes given sufficient data, at
least when the true model is not realizable by the function
class. Both Theorem 1.1 of the present paper, and Theorem
2 of Sun et al. (2019) consider the realizable case. A more
nuanced theory could highlight the trade-off between model-
based and model-free learning when realizability fails or
optimization is imperfect.

AIXI (Hutter, 2004) provides a particularly general
approach to model-based RL. An AIXI agent maxi-
mizes expected return over all computable world mod-
els with prior probability given by Solomonoff’s universal
prior (Solomonoff, 1978), which assigns higher probabil-
ity to models with lower Kolmogorov complexity. While
AIXI is itself not computable, computable approximations
exist (Veness et al., 2011). Here, we take a step back from
considering all computable models and highlight the benefit
of model learning in general. We focus on understanding
how model-based learning can facilitate generalization, and
thus improve sample efficiency, in a way that model-free
learning does not. Our empirical results suggest this ap-
plies even for the practical subset of computable models
representable by a simple NN architecture.

In this work, we focus on the advantages of using models to
generate experience for policy improvement. Learned mod-
els can also be useful in other ways, for example, local plan-
ning for immediate action selection (Richalet et al., 1978;
Chua et al., 2018; Byravan et al., 2021), improving credit as-
signment (Schmidhuber, 1990; Heess et al., 2015; Buesing
et al., 2018), exploration (Schmidhuber, 1990; 1997; Pathak
et al., 2017), representation learning (Lin & Mitchell, 1992;
Gregor et al., 2019; Hessel et al., 2021), and in answering
learned queries (Schmidhuber, 2015).

6 Conclusion
In Theorem 1.1 we highlighted how, for a model class with
some known structure, we can narrow down the possible

value functions more with a model-based approach than a
model-free approach. We provided empirical evidence that
the intuition behind this theorem holds in practice when we
use NN function approximation in domains with factored
structure. In such cases, we have verified through extensive
experiments that a model-based method can maintain strong
performance as the complexity of the environment increases
beyond the point where an analogous model-free approach
fails. As an aside we demonstrated how, by smoothing the
reward and/or transition dynamics, experience generated
by a learned model can provide a useful signal for explo-
ration that can sometimes lead to better performance than
even a perfect model. Overall, we believe that our work can
help to ground future work in model-based RL in a better
understanding of how learned models can improve sample
efficiency. An interesting direction for future work lies in
better understanding the inductive biases that allow simple
NN models to generalize in a way that allows them to effi-
ciently learn factored structure, and how more sophisticated
architectures could improve on this.

ACKNOWLEDGMENTS

We thank Richard Sutton, Michael Bowling, Yi Wan, Ar-
salan Sharifnassab, and Tian Tian for useful conversations.
Funding for this work was provided by NSERC, Alberta
Innovates, DeepMind, CIFAR, Amii, ERC Advanced Grant
(742870), and the Swiss National Science Foundation grant
(200021 192356). Computational resources for this work
were provided by the Digital Research Alliance of Canada as
well as the Swiss National Supercomputing Centre (CSCS
project s1127).

References
Amin, S., Gomrokchi, M., Satija, H., van Hoof, H., and Pre-

cup, D. A survey of exploration methods in reinforcement
learning. arXiv preprint arXiv:2109.00157, 2021.

Anand, A., Walker, J. C., Li, Y., Vértes, E., Schrittwieser, J.,
Ozair, S., Weber, T., and Hamrick, J. B. Procedural gener-
alization by planning with self-supervised world models.
In International Conference on Learning Representations,
2022.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, jun 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H.

9

http://github.com/google/jax

The Benefits of Model-Based Generalization

Sample-efficient reinforcement learning with stochastic
ensemble value expansion. Advances in Neural Informa-
tion Processing Systems, 31:8224–8234, 2018.

Buesing, L., Weber, T., Zwols, Y., Racaniere, S., Guez, A.,
Lespiau, J.-B., and Heess, N. Woulda, coulda, shoulda:
Counterfactually-guided policy search. arXiv preprint
arXiv:1811.06272, 2018.

Byravan, A., Hasenclever, L., Trochim, P., Mirza, M., Ia-
longo, A. D., Tassa, Y., Springenberg, J. T., Abdolmaleki,
A., Heess, N., Merel, J., et al. Evaluating model-based
planning and planner amortization for continuous control.
arXiv preprint arXiv:2110.03363, 2021.

Chapelle, O., Schölkopf, B., and Zien, A. Semi-Supervised
Learning. The MIT Press, 2006.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. Advances in Neural Informa-
tion Processing Systems, 31:4754–4765, 2018.

Curi, S., Berkenkamp, F., and Krause, A. Efficient model-
based reinforcement learning through optimistic policy
search and planning. Advances in Neural Information
Processing Systems, 33:14156–14170, 2020.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-
based and data-efficient approach to policy search. In
International Conference on Machine Learning, pp. 465–
472. Citeseer, 2011.

Diuk, C., Li, L., and Leffler, B. R. The adaptive k-
meteorologists problem and its application to structure
learning and feature selection in reinforcement learning.
In International Conference on Machine Learning, pp.
249–256, 2009.

Dong, K., Luo, Y., Yu, T., Finn, C., and Ma, T. On the
expressivity of neural networks for deep reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 2627–2637. PMLR, 2020.

Gehring, C., Kawaguchi, K., Huang, J., and Kaelbling, L.
Understanding end-to-end model-based reinforcement
learning methods as implicit parameterization. Advances
in Neural Information Processing Systems, 34:703–714,
2021.

Gregor, K., Jimenez Rezende, D., Besse, F., Wu, Y., Merzic,
H., and van den Oord, A. Shaping belief states with
generative environment models for rl. Advances in Neural
Information Processing Systems, 32:13475–13487, 2019.

Ha, D. and Schmidhuber, J. World models. Advances in
Neural Information Processing Systems, 31:2450–2462,
2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. In International
Conference on Learning Representations, 2021.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T.,
and Tassa, Y. Learning continuous control policies by
stochastic value gradients. Advances in Neural Informa-
tion Processing Systems, 28:2944–2952, 2015.

Hessel, M., Danihelka, I., Viola, F., Guez, A., Schmitt,
S., Sifre, L., Weber, T., Silver, D., and van Hasselt, H.
Muesli: Combining improvements in policy optimization.
In International Conference on Machine Learning, pp.
4214–4226. PMLR, 2021.

Holland, G. Z., Talvitie, E. J., and Bowling, M.
The effect of planning shape on dyna-style planning
in high-dimensional state spaces. arXiv preprint
arXiv:1806.01825, 2018.

Hutter, M. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer,
Berlin, 2004. (On J. Schmidhuber’s SNF grant 20-61847).

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32:12519–
12530, 2019.

Jordan, M. I. Supervised learning and systems with excess
degrees of freedom. Technical Report COINS TR 88-27,
Massachusetts Institute of Technology, 1988.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine Learning,
8(3):293–321, 1992.

Lin, L.-J. and Mitchell, T. M. Memory approaches to rein-
forcement learning in non-markovian domains. Technical
report, Carnegie-Mellon University, 1992.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

10

The Benefits of Model-Based Generalization

Moerland, T. M., Broekens, J., and Jonker, C. M. Model-
based reinforcement learning: A survey. arXiv preprint
arXiv:2006.16712, 2020.

Munro, P. W. A dual back-propagation scheme for scalar
reinforcement learning. Ninth Annual Conference of
the Cognitive Science Society, Seattle, WA, pp. 165–176,
1987.

Ng, A. and Jordan, M. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive
bayes. Advances in Neural Information Processing Sys-
tems, 14:841–848, 2001.

Osband, I. and Van Roy, B. Near-optimal reinforcement
learning in factored mdps. Advances in Neural Informa-
tion Processing Systems, 27:604–612, 2014.

Pan, Y., Zaheer, M., White, A., Patterson, A., and White,
M. Organizing experience: a deeper look at replay mech-
anisms for sample-based planning in continuous state
domains. arXiv preprint arXiv:1806.04624, 2018.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and
Littman, M. L. An analysis of linear models, linear
value-function approximation, and feature selection for
reinforcement learning. In International Conference on
Machine Learning, pp. 752–759, 2008.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 16–17, 2017.

Richalet, J., Rault, A., Testud, J., and Papon, J. Model
predictive heuristic control: Applications to industrial
processes. Automatica, 14(5):413–428, 1978.

Sallans, B. and Hinton, G. E. Reinforcement learning with
factored states and actions. The Journal of Machine
Learning Research, 5:1063–1088, 2004.

Schmidhuber, J. Making the world differentiable: On
using fully recurrent self-supervised neural networks
for dynamic reinforcement learning and planning in
non-stationary environments. Technical Report FKI-
126-90, http://people.idsia.ch/˜juergen/
FKI-126-90_(revised)bw_ocr.pdf, Institut
für Informatik, Technische Universität München, 1990.

Schmidhuber, J. A possibility for implementing curios-
ity and boredom in model-building neural controllers.
In Meyer, J. A. and Wilson, S. W. (eds.), Proc. of the
International Conference on Simulation of Adaptive Be-
havior: From Animals to Animats, pp. 222–227. MIT
Press/Bradford Books, 1991a.

Schmidhuber, J. Curious model-building control systems.
In International Joint Conference on Neural Networks,
Singapore, volume 2, pp. 1458–1463. IEEE press, 1991b.

Schmidhuber, J. What’s interesting? Tech-
nical Report IDSIA-35-97, IDSIA, 1997.
ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz; extended
abstract in Proc. Snowbird’98, Utah, 1998; see also
(Schmidhuber, 1999; 2002).

Schmidhuber, J. Artificial curiosity based on discovering
novel algorithmic predictability through coevolution. In
Angeline, P., Michalewicz, Z., Schoenauer, M., Yao, X.,
and Zalzala, Z. (eds.), Congress on Evolutionary Compu-
tation, pp. 1612–1618. IEEE Press, 1999.

Schmidhuber, J. Exploring the predictable. In Ghosh, A. and
Tsuitsui, S. (eds.), Advances in Evolutionary Computing,
pp. 579–612. Springer, 2002.

Schmidhuber, J. Formal theory of creativity, fun, and in-
trinsic motivation (1990-2010). IEEE Transactions on
Autonomous Mental Development, 2(3):230–247, 2010.
ISSN 1943-0604. doi: 10.1109/TAMD.2010.2056368.

Schmidhuber, J. On learning to think: Algorithmic infor-
mation theory for novel combinations of reinforcement
learning controllers and recurrent neural world models.
Preprint arXiv:1511.09249, 2015.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Solomonoff, R. Complexity-based induction systems: com-
parisons and convergence theorems. IEEE transactions
on Information Theory, 24(4):422–432, 1978.

Strehl, A. L., Diuk, C., and Littman, M. L. Efficient structure
learning in factored-state mdps. In AAAI Conference, pp.
645–650, 2007.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., and
Langford, J. Model-based rl in contextual decision pro-
cesses: Pac bounds and exponential improvements over
model-free approaches. In Conference on Learning The-
ory, pp. 2898–2933. PMLR, 2019.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 3(1):9–44, 1988.

Sutton, R. S. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming. In Machine Learning Proceedings 1990, pp.
216–224. Elsevier, 1990.

11

http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf

The Benefits of Model-Based Generalization

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, second edition, 2020.

Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowl-
ing, M. P. Dyna-style planning with linear function ap-
proximation and prioritized sweeping. arXiv preprint
arXiv:1206.3285, 2012.

Thrun, S. Efficient exploration in reinforcement learning.
Technical Report CMU-CS-92-102, Carnegie-Mellon
University, January 1992.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use
parametric models in reinforcement learning? Advances
in Neural Information Processing Systems, 32:14322–
14333, 2019.

van Seijen, H. and Sutton, R. A deeper look at planning
as learning from replay. In International Conference on
Machine Learning, pp. 2314–2322. PMLR, 2015.

Veness, J., Ng, K. S., Hutter, M., Uther, W., and Silver, D.
A monte-carlo aixi approximation. Journal of Artificial
Intelligence Research, 40:95–142, 2011.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller,
M. Embed to control: A locally linear latent dynamics
model for control from raw images. Advances in Neural
Information Processing Systems, 28:2746–2754, 2015.

Werbos, P. J. Building and understanding adaptive systems:
A statistical/numerical approach to factory automation
and brain research. IEEE Transactions on Systems, Man,
and Cybernetics, 17, 1987.

Xu, Z. and Tewari, A. Reinforcement learning in fac-
tored mdps: Oracle-efficient algorithms and tighter regret
bounds for the non-episodic setting. Advances in Neural
Information Processing Systems, 33:18226–18236, 2020.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering atari games with limited data. Advances in Neural
Information Processing Systems, 34:25476–25488, 2021.

12

The Benefits of Model-Based Generalization

A Theorem Motivating the Benefit of Model Generalization
Here, we present and prove a simple theorem motivating the benefit of learning a parametric model over learning a value
function directly from ER. Intuitively speaking, the theorem states that, when narrowing down the set of possible value
functions based on observed data, we can rule out more if we first rule out models directly, and demand the value function be
consistent with the reduced model class, than if we only demand the value function obeys the Bellman optimality equation
with respect to observed transitions.

We state the theorem within the formalism of finite MDPs. An MDP consists of a state-space S, action-space A, reward
function r : S ×A → R and transition function p. In general, p maps state-actions pairs to probability distributions over
possible next states. However, in Theorem 1.1, we consider deterministic MDPs, meaning each state-action pair maps to
a distribution with probability one on a particular next state s′ and zero for all other next states. In this case, it will be
convenient to write p : S ×A → S as a mapping from state-action pairs to the only possible next state. We assume S and A
are finite sets for simplicity.

An agent interacts with an MDP in a series of time-steps, beginning in some state S0 ∈ S. At each time-step, the agent
observes the current state St ∈ S and selects an action At ∈ A in response. The environment then transitions to the next
state St+1 = p(St, At) and the agent receives a reward Rt+1 = r(St, At). Interaction continues until some designated
terminal state ST = ⊥ is reached at which point the episode is over. The goal of an agent is to find a policy, a mapping
from states to actions7, π : s → a which maximizes the expected return Eπ[Gt|St = s], where Gt =

∑T
k=t+1 Rk, from any

given state until the terminal state ST = ⊥ is reached when actions are selected according to π. We assume that all policies
eventually reach ⊥ with probability one, such that the return is well defined. The action-value function of a policy is defined
as qπ(s, a) = Eπ[Gt|St = s,At = a], the expected return if action a is selected in state s and policy π is followed from that
point forward.

The optimal action-value function q⋆(s, a) = maxπ qπ(s, a) is defined as the maximum action-value over all poli-
cies π. q⋆(s, a) is known to be the unique solution to the Bellman optimality equation q⋆(s, a) = r(s, a) +
E[maxa′ q⋆(St+1, a

′)|St = s,At = a] where the value of all actions in the terminal state ⊥ are defined to be zero.
In the case of a deterministic transition function, this reduces to simply q⋆(s, a) = r(s, a) + maxa′ q⋆(p(s, a), a′).

We state Theorem 1.1 for deterministic MDPs, but analogous results likely hold for general MDPs, albeit significantly
complicated by the fact that in the general case, models and value functions can only be ruled out with high probability
based on observed data, as opposed to with certainty.

Theorem 1.1. Consider a class of episodic MDPs, M, with fixed reward function r : S × A → R , and deterministic
transition function belonging to a hypothesis class H ⊆ {p : S × A → S}. Assume, for all p ∈ H , all policies lead to
eventual termination.

Since each MDP in the class is deterministic, following a deterministic policy π, beginning in s, a will give rise to a specific
state-action trajectory τp(π, s, a) =̇(s0, a0, s1, a1, ...sT−1, aT−1,⊥) where s0 = s, a0 = a, ⊥ is the terminal state, and
p ∈ H . Define also G(τp(π, s, a)) =̇

∑T−1
t=0 r(st, at), the return associated with the trajectory.

Next, define the class of optimal action-value functions associated with H:

HQ =̇{q : s, a → R |∃p ∈ H : ∀s, a q(s, a) = max
π

G(τp(π, s, a))},

or equivalently:
HQ = {q : s, a → R |∃p ∈ H : ∀s, a q(s, a) = r(s, a) + max

a′
q(p(s, a), a′)}.

Consider a dataset D = {(sn, an, s′n)|n ∈ {0, 1, .., N}} of transitions such that p(sn, an) = s′n for some p ∈ H . We now
define two different notions of hypothesis classes over action-value functions which are consistent with D:

HB(D) = {q ∈ HQ|∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′)}

HM (D) = {q ∈ HQ|∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))}

7Again, policies can more generally map states to distributions over actions, but we focus here on the deterministic case, and note that
there is always a deterministic optimal policy.

13

The Benefits of Model-Based Generalization

Where B stands for Bellman consistency and M stands for model consistency. In words, these are the hypothesis classes
consisting of value functions which obey the Bellman optimality equation with respect to the observed transitions, and the
hypothesis class consisting of true optimal value functions for transition dynamics which are consistent with the observed
transitions respectively. Then the following are true:

1. HM (D) ⊆ HB(D).
2. For some choices of M and D, HM (D) ⊂ HB(D).
3. For a tabular transition function class, that is one that includes every possible mapping from state-action pairs to next

states, HM (D)=HB(D).

Proof. We begin by proving part 1. Towards this, assume q ∈ HM (D). Then by definition we have the following:

∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))

=⇒ ∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀n q(sn, an) = r(sn, an) + max
a′

q(p(sn, an), a
′))

=⇒ ∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′)

=⇒ q ∈ HB(D),

which proves part 1.

To prove part 2, it suffices to construct a specific M and D for which HM (D) ⊂ HB(D). Towards this, consider a class of
deterministic MDPs M with state-space S ⊂ N3 ∪⊥ where the dynamics of each component of (nonterminal) St ∈ S are
factored such that St[i] does not influence St+1[j] for i ̸= j. Furthermore St[0] ∈ {0, 1, 2}, St[1] ∈ {0, 1}, St[2] ∈ {0, 1}.
The reward function is defined as follows:

r(s, a) =

{
1 if s[1] = s[2] = 1 and s[0] = 0

0 otherwise.

The transition dynamics for St[0] are fixed within the class such that

St+1[0] = St[0]− 1 if St[0] > 0

St+1 = ⊥ otherwise.

Thus St[0] acts as a counter for the number of steps until termination, and the agent gets a positive reward only if both bits
ST−1[1] and ST−1[2] are set to 1 at the step prior to termination. The action space is A = {0, 1, 2}. This model class is
illustrated in Figure 8.

Now let the dataset D consist of the following transitions:

(s : (2, 0, 0), a : 0, s′ : (1, 1, 0))

(s : (2, 1, 1), a : 0, s′ : (1, 0, 1))

(s : (2, 0, 0), a : 1, s′ : (1, 0, 1))

(s : (2, 1, 1), a : 1, s′ : (1, 1, 0))

(s : (2, 0, 0), a : 2, s′ : (1, 0, 0))

(s : (2, 1, 1), a : 2, s′ : (1, 1, 1)). (1)

Given the factored dynamics and that the dynamics of St[0] are fixed within the model class, this data suffices to uniquely
determine p ∈ H to be the transition function identified by the following equations (when St+1 is nonterminal), in addition
to the known dynamics for St[0]:

St+1[1] =

{
not(St[1]) if At = 0

St[1] otherwise

St+1[2] =

{
not(St[2]) if At = 1

St[2] otherwise.

14

The Benefits of Model-Based Generalization

2

1

0 1

0

1

0

A

R

? ?

Figure 8: Illustration of the model class used as an example where selecting hypothesis based on model consistency is more
selective than Bellman consistency. The state consists of three components from left to right. The left most component is
fixed within the class and simply acts as a countdown to termination. The other two components have unknown internal
transition dynamics but are known to not be influenced by other state components. The reward function is known to be zero
except for when the two rightmost components are set to one at termination.

That is At = 0 toggles component 1 of the state and At = 1 toggles component 2, while At = 2 leaves both components
unchanged. In particular, the data is such that it contains an example of the effect of each action on each possible bit value
of St[1] and St[2], meaning the above transition function is the only possibility. Thus HM (D) consists of the singleton of
the true optimal value function q∗(s, a) for this MDP, which is 1 if and only if the agent has sufficient steps remaining after
taking action a before termination to toggle bits ST−1[1] and ST−1[2] both to 1.

On the other hand, we can show that HB(D) is a larger set. In particular, consider the following action-value function:

q̂(s, a) =

{
1 if s[1] = s[2] = 1 and s[0] = 0

0 otherwise.
(2)

Note that q̂(s, a) ∈ HB(D), as it satisfies the Bellman equation,

q̂(sn, an) = r(sn, an) + max
a′

q̂(s′n, a
′),

for all transitions in D, although it is not the true optimal value function and thus is not in HM (D). The value function
q̂(s, a) is also in HQ, since it is the value function of the MDP with alternative factored transition dynamics where (for
example) St+1[1] = St+1[2] = 0 regardless of their previous value or the action choice. This suffices to prove part 2 of the
Theorem.

Finally, we prove part 3. Since we have already shown in part 1 that q ∈ HM (D) =⇒ q ∈ HB(D) in the general case, it
suffices to show that, with the additional restriction of a tabular class H of transition matrices, we have q ∈ HB(D) =⇒
q ∈ HM (D). Recall that by a tabular H we mean one which includes every possible mapping from state-action pairs to
next states. Thus, in this case we are free to choose p(s, a) to be an independently selected s′ for every (s, a) pair, and know
that the resulting p ∈ H . Assume q ∈ HB(D), then by definition we know q ∈ HQ, meaning

∃p ∈ H : ∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′), (3)

15

The Benefits of Model-Based Generalization

and, by the definition of q ∈ HB(D), we know

∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′). (4)

Now, given tabular H we can set, for all n, p(sn, an) = s′n, which we know from Equation 4 gives us:

q(sn, an) = r(sn, an) + max
a′

q(p(sn, an), a
′).

Now for s, a where ∄n : (s, a) = (sn, an), given Equation 3, we know that for some choice of p(s, a) it holds that:

q(s, a) = r(s, a) + max
a′

q(p(s, a), a′).

Thus, given the choice of tabular H , we can choose p to simultaneously satisfy p(sn, an) = s′n for all n and the Bellman
optimality equation for all (s, a), and indeed:

q ∈ HB(D)

=⇒ ∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))

=⇒ q ∈ HM (D),

which completes the proof of part 3.

Note that, for simplicity, the dataset D in the example for part 2 does not consist of full episodic trajectories. However, it is
straightforward to come up with a dataset of episodic trajectories for which the same outcome still holds, for example by
appending each transition in Equation 1 with any sequence of transitions leading to termination with 0 reward.

Avoiding inclusion of the rewarding transition in the dataset is also not necessary to obtain an analogous result. For example,
consider adding another action a = 3 to the above example with known dynamics that always switch St+1[1] and St+1[2]
to 1, but always gives an immediate reward of −1. Now consider adding the following episodic sequence (here including
rewards for clarity) to the dataset of Equation 1:

(s : (2, 0, 0), a : 2, r : 0, s′ : (1, 0, 0))

(s : (1, 0, 0), a : 3, r : −1, s′ : (0, 1, 1))

(s : (0, 1, 1), a : 2, r : 1, s′ : ⊥).

Though the data still uniquely specifies the model, HB(D) will contain the incorrect action-value function

q̂(s, a) =


−1 if a = 3 and s[0] ̸= 1

1 if s[1] = s[2] = 1 and s[0] = 0 and a ̸= 3

0 otherwise,

which is a minor modification of Equation 2 to include the case where a = 3.

It is also straightforward to come up with similar examples where the data uniquely specifies a model, but HB(D) includes
value functions for which the associated greedy policy is unique and suboptimal in the true model.

Practical learning algorithms like stochastic gradient descent applied with NN function approximation don’t work by directly
ruling out hypotheses based on the data. Rather than considering models within an explicitly defined class, a NN would have
some inductive bias towards particular models and away from others depending on the architecture and hyperparameters.
Nonetheless, the idea behind Theorem 1.1 helps to give insight into why we should expect learning a parametric model to
provide a sample efficiency benefit.

Intuitively, we can think of the process of performing many updates to a sufficiently high capacity NN, with data from a
dataset, as incrementally constraining the possible functions represented by the network. The specific function converged to
will depend on the initialization and random batches selected for updates. Theorem 1.1 suggests that learning a model as an
intermediate step can impose more constraints on the possible value functions. This in turn should increase the chance of
converging to a value function that generalizes well from limited data.

16

The Benefits of Model-Based Generalization

B Further Environment Details
The environments we investigate are all Markov and use flat binary observation vectors. To allow the model-based agent to
learn about the reward or termination function, we include occasional random transitions to rewarding or terminal states. The
probability of these transitions is chosen to result in much lower return than is achievable with optimal performance in each
environment. Except for these random transitions, all environments are deterministic (with the exception of rare random
transitions to rewarding or terminal states) so simple models can be expected to work well, though we also investigate more
sophisticated latent-space models. Here, we will describe each of the environments in some detail.

The first environment, ProcMaze, is illustrated in Figure 3(left). ProcMaze is an episodic environment. ProcMaze consists
of procedurally generated gridworld mazes, where an agent has to navigate from a start state to a goal state. The maze itself,
along with the start state and goal state are randomized at the start of each episode. A reward of -1 is given for each step
until the goal is reached, at which point the episode terminates. Also the agent is rarely randomly teleported to the goal
(probability 0.1/T where T is the time required to complete the worst case problem instance for the grid size under the
optimal policy) such that it can obtain knowledge of the reward function even with a poor behavior policy. Difficulty could
be scaled by increasing the grid size. The observations consist of a flat binary vector including: one hot vectors for the goal
location and agent location, a vector which is one if and only if a cell contains a wall, and a vector which is one if and
only if a cell does not contain a wall. The action space includes attempting to move in each cardinal direction, and no-op.
An attempted move will fail if it would lead the agent into a wall or the edge of the grid. In each episode a new maze is
generated using randomized depth first search, which produces reasonable mazes and guarantees the goal is reachable.

The second environment, ButtonGrid, is illustrated in Figure 3(middle). ButtonGrid is a continuing environment, with no
termination. ButtonGrid consists of a grid world with a set of randomly placed buttons. An agent (orange in the figure)
can move around on the grid and if it hits a button it will toggle it either on (black in the figure) or off (white in the
figure). Reward is given whenever all the buttons are set to on, at which point and the button locations are randomized,
but the number of buttons held fixed, and all buttons set to off. Occasionally all the buttons will spontaneously switch
to on (probability 0.1/(grid size)2), meaning the agent can receive examples of the reward function even while behaving
suboptimally. Importantly, it does not suffice to touch each button once to solve this environment, as they are toggled on and
off by repeated contact, an agent must also carefully avoid hitting them again after the first time they are pressed. Difficulty
can be scaled by increasing the number of buttons on the grid, as well as the grid size, but we focus on the former. The
observations consist of a flat binary vector including: one hot vectors for the agent location, a vector which is one if and
only if a cell contains a button which is turned on, and a vector which is one if and only if a cell contains a button which is
turned off. The action space includes attempting to move in each cardinal direction, and no-op. An attempted move will fail
only if it would lead the agent into the edge of the grid.

The third environment, PanFlute is illustrated in Figure 3(right). PanFlute is a continuing environment with no termination.
PanFlute is intended as a minimal instantiation of an environment with combinatorial complexity in terms of optimal
behavior, but a simple factored transition structure. The observations consists of a binary value for each square in the
figure. An agent has n actions available to it, (a,b,c,d,e) in the figure. Each action will activate the associated cell at the
bottom of a specific pipe. The pipe associated with the last action (alphabetically) has a length of one cell, every other
pipe is one cell longer than its (alphabetical) successor. If a cell is activated at a given time-step, it will deactivate and
activate the cell above it in the same pipe at the next time-step. A reward of 1 is received if the cells at the end of each
pipe are simultaneously active, otherwise the reward is always zero. An active pipe-end will always deactivate at the next
step regardless of whether reward is obtained. Occasionally, the cells at the end of all pipes will activate spontaneously
(probability 1/n2), thus allowing the agent to observe a rewarding situation without having to create it through its own
actions. Otherwise, due to the arrangement of pipe lengths, the only way for the agent to obtain reward is to choose each
of the n actions in sequence. We can scale the difficulty of the environment by changing the number of actions n. The
probability of a random sequence of n actions reaching the rewarding state (aside from spontaneous activation) is 1/nn.
Observations consist of a flat binary vector which includes the active/inactive state of each cell in each pipe.

C Experiments in an Environment Without Structured Transitions
This work primarily focuses on highlighting environments in which model-based learning is expected to be beneficial.
Nevertheless, it is worthwhile to contrast this with what happens in environments which do not have such favorable
characteristics. To that end, we ran an additional experiment on an environment without factored structure, which we will
now present.

17

The Benefits of Model-Based Generalization

Log (Base 2) of Step-Size Log (Base 2) of Temperature

Experience Replay

Perfect Model

Simple Model

Grid Size

Final
Return

Return v.s. Grid Size Grid Size 12 Hyperparameter Sensitivity

Figure 9: Left: Final performance of greedy policy v.s grid size for OpenGrid in the low data regimes, that is 100 thousand
interactions with 10 updates per step. Right: Softmax temperature and step-size sensitivity curves for each approach
resulting from the grid-search on an size 12 OpenGrid. In these plots, the other hyperparameter is fixed to its best value
from the grid-search while varying the temperature or step-size.

The environment for this experiment, which we refer to as OpenGrid, was simply an open grid with a goal in the bottom
right corner and a reward of −1 for every step until the goal is reached at which point termination occurs. The agent starts
in a random location in each episode. As in our other experiments, we include occasional spontaneous transitions to the
goal (probability 0.1/(grid size)). The agent location is simply represented by a one-hot vector (effectively tabular) so
there is really no structure to exploit. The learned model must essentially memorize every individual transition to learn the
dynamics.

Our experimental design was the same as in Section 4. We tune the Q-network step size and softmax exploration temperature
from the same set of values on a grid size of size 12 and then used the best hyperparameters for each agent on the other grid
sizes. In this experiment, we focused on the low-data regime where the simple model tended to have the biggest advantage
over ER in our other experiments.

The results are shown in Figure 9, with performance v.s. grid-size on the left and hyperparameter sensitivity curves from the
initial tuning on the right. In contrast to our other experiments, here we see that the simple model becomes worse relative to
ER as the environment complexity increases. This is reasonable as the model has no ability to extrapolate beyond the data.
The best it can do is memorize what is already in the ER buffer and the limitations of finite model capacity and imperfect
optimization prevent it from doing so perfectly. This result helps to contextualize our main results for environments with
factored structure by showing how the performance of the model-based approach suffers in a simple environment without
such structure.

D Model Details
Our latent-space model consists of the following components:

• Representation Model: ϕt ∼ qθ(ϕt|ot)
• Observation Reconstructor: ôt ∼ pθ(ôt|ϕt)

• Transition Predictor: ϕ̂t ∼ pθ(ϕ̂t|ϕt−1, at−1)
• Reward Predictor: r̂t ∼ pθ(r̂t|ϕt−1, at−1)
• Termination Predictor: γ̂t ∼ pθ(γ̂t|ϕt−1, at−1).

All components are implemented as NNs with θ representing the combined parameter vector. ot is the observation from the
environment at time t, at is the action, rt is the reward, γt is the continuation probability.8 ϕt is the latent-state constructed
by the model from the observation from which transitions, rewards and terminations are all predicted. The associated
versions of each variable with hats are predictions made by the model. The Q-network associated with the latent-space
models are always trained to predict action-values directly from ϕt as opposed to first reconstructing the observation.

8Two out of three of the environments we experiment with are continuing, thus termination will never occur and this prediction could
be omitted, however, γt = 1 should be learned easily and thus it should make little difference whether it is included or not.

18

The Benefits of Model-Based Generalization

For training the model, we use a loss very similar to that employed by Hafner et al. (2021):

Lt(θ) = − log(pθ(ot|ϕt))− log(pθ(rt|ϕt−1, at−1))− log(pθ(γt|ϕt−1, at−1))

+KL(qθ(ϕt|ot)|pθ(ϕt|ϕt−1, at−1)),

where ϕt ∼ qθ(ϕt|ot). We also employ KL-balancing, as described by Hafner et al. (2021), with α = 0.8. We experiment
with both Gaussian and Categorical latent variables for ϕt. For the categorical case we use the straight-through estimator
to propagate gradients through the discrete latent variables where necessary. In all cases, we train the model on randomly
sampled transition from a replay-buffer. Note that it is not necessary to train on sequences in our case, as the lack of
recurrence means that the loss at each time-step can be independently evaluated. The observation reconstructor pθ(ôt|ϕt)
uses a sigmoid activation to output the means of a vector of Bernoulli distributions since all tested environments use binary
observations. The reward predictor pθ(r̂t|ϕt−1, at−1) uses a linear activation and outputs the mean of a univariate Gaussian,
in which case the above loss is effectively mean-squared error. The termination predictor pθ(γ̂t|ϕt−1, at−1) uses a sigmoid
activation to output a single Bernoulli termination probability.

For the simple model, the reward and termination predictors are the same except that they take raw observations as input
instead of latent variables. Likewise the transition predictor pθ(ôt|ot−1, at−1) works directly in observation space, and is
trained with a negative log-likelihood loss relative to the true observations.

E Illustrative Experiment Details
Here we give some additional detail on the setup of the illustrative experiment in Section 2. For the most part, we used
the same hyperparameters as our main experiments, as detailed in Appendix F. The only exception is that for this simple
experiment we did not tune any hyperparameters, but rather fixed the Q-learning step-size to 2e− 4 and softmax exploration
temperature to 0.1. The softmax exploration temperature only applies to the model in this case, since the model-free agent
was trained on fixed data and thus never selects actions during learning.

We train all agents for 1,000,000 training steps, to insure convergence, which was excessive given the small fixed dataset
used for training. To control for the total number of value function updates, and the total number of (real or imagined)
transitions used in each update, we made the following choices: for model-free DQN and the 1-step model-based agent the
value function is update on a batches of 320 transitions, from the dataset or the learned model; the 10-step model-based
agent uses a batch of 32 sequences of length 10 generated by the model to equate the number of transitions per update. The
models are always trained on 32 transitions from the dataset in each update.

19

The Benefits of Model-Based Generalization

F Hyperparameters

Shared Hyperparameters Value
Number of Hidden Layers 3
Number of Hidden Units 200
Hidden Activation ELU
Optimizer AdamW
Adam β1 0.9
Adam β2 0.99
Adam ϵ 1e-5
Adam weight decay 1e-6
Q-learning Step-Size Tuned (See Appendix G)
Discount Factor 0.9
Batch Size 32 for model-based, 320 for model-free
Exploration Strategy Softmax
Softmax Temperature Tuned (See Appendix G)
Target Network Update Frequency 100
Buffer Size 100,000
Training Start Time 1000
Model Hyperparameters
Model Learning Step-Size 2e-4
Rollout Length 10
Categorical Latent Hyperparameters
Number of Features 32
Width of Features 32
KL Balancing 0.8
KL Loss Scale 1.0
Gaussian Latent Hyperparameters
Number of Features 32
KL Balancing 0.8
KL Loss Scale 1.0
Minimum std 0.1
std activation 2 · σ(x/2)

Table 1: Table of hyperparameters used in experiments in Section 4.

G Hyperparameter Tuning and Sensitivity Experiments
Here, we present hyperparameter sensitivity plots for step-size and softmax exploration temperature which resulted from
our initial grid-search to select hyperparameters for the main experiments in Section 4. The initial grid-search tried the set
{0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2} for the softmax temperature and the set {1.25e− 05, 2.50e− 05, 5.00e−
05, 1.00e− 04, 2.00e− 04, 4.00e− 04, 8.00e− 04, 1.60e− 03, 3.20e− 03} for the step-size. This range was extended in
some cases where there was a significant positive trend at the boundary of the range for either parameter, this only effected
results for ER and the Gaussian latent model and the impact was negligible compared to using the best parameters in the
initial range. In each case, the mean performance of 30 random seeds was used to evaluate each hyperparameter setting in
terms of final performances of the greedy policy. The hyperparameters with the best final performance were selected in each
case for use in our main experiments. Sensitivity curves for step-size and temperature are shown in Figure 10 and Figure 11
respectively.

20

The Benefits of Model-Based Generalization

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Log (Base 2) of Step-Size

Experience Replay
Perfect Model
Simple Model
Categorical Latent
Gaussian Latent

Log (Base 2) of Step-Size Log (Base 2) of Step-Size

Figure 10: Step-size sensitivity curves for each approach resulting from the grid-search on an intermediate level of difficulty
for each environment (size 4 ProcMaze, 4 button ButtonGrid, 7 pipe PanFlute). In these plots, the softmax temperature is
fixed to its best value from the grid-search while varying step-size. The search was extended in a few cases when there was
a significant positive trend at the boundary of the initial search grid.

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Log (Base 2) of Temperature

Experience Replay
Perfect Model
Simple Model
Categorical Latent
Gaussian Latent

Log (Base 2) of Temperature Log (Base 2) of Temperature

Figure 11: Softmax temperature sensitivity curves for each approach resulting from the grid-search on an intermediate level
of difficulty for each environment (size 4 ProcMaze, 4 button ButtonGrid, 7 pipe PanFlute). In these plots, the step-size is
fixed to its best value from the grid-search while varying softmax termperature. The search was extended in a few cases
when there was a significant positive trend at the boundary of the search grid.

21

The Benefits of Model-Based Generalization

H Learning Curves

High Data

Low Data

ButtonGrid
1 Button 2 Buttons

PanFlute

3 Buttons 4 Buttons 5 Buttons 6 Buttons 7 Buttons 8 Buttons

ProcMaze
Grid Size 3 Grid Size 4 Grid Size 5

4 Pipes 5 Pipes 6 Pipes 7 Pipes 8 Pipes 9 Pipes 10 Pipes

ButtonGrid
1 Button 2 Buttons

PanFlute

3 Buttons 4 Buttons 5 Buttons 6 Buttons 7 Buttons 8 Buttons

ProcMaze
Grid Size 3 Grid Size 4 Grid Size 5

4 Pipes 5 Pipes 6 Pipes 7 Pipes 8 Pipes 9 Pipes 10 Pipes

Experience Replay

Perfect Model

Simple Model

Categorical Latent

Gaussian Latent

Figure 12: Full learning curves for experiments in Section 4. Performance of the greedy policy is plotted every 5000 updates
and smoothed with a moving average over the last 10 values.

I Ablation Experiments
In this section, we present some additional ablation studies to better understand the impact of some of our experimental
design decisions made in the main paper. Figure 13 highlights the impact of removing spontaneous transitions to rewarding
states in each of the environments. Figure 14 compares the performance of the simple model with 1-step and 10-step model
rollouts, where the total number of simulated transitions used in each batch used for DQN updates is controlled.

22

The Benefits of Model-Based Generalization

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Grid Size Number of Buttons Number of Pipes

Experience Replay
Simple Model

Figure 13: Comparing the performance of ER and the simple model in variants of each environment class with spontaneous
rewards disabled to the original environment. Dotted lines show the curve with spontaneous rewards disabled. The effect of
this is highly variable, but is generally detrimental to the model-based approach. Perhaps surprisingly, ER appears to perform
better without the random transitions to rewarding states in ButtonGrid, perhaps due to elimination of the resulting noise
from the learning signal. The impact was largest in PanFlute, where the absence of spontaneous rewards negatively effected
both model-free and model-based approaches, but in the high-data regime lead model-free to outperform model-based.

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Grid Size Number of Buttons Number of Pipes

Simple Model
Perfect Model

Figure 14: Comparing simple model performance with 1-step and 10-step rollouts, with perfect model included for reference.
Dotted line is 1-step rollouts, solid line is 10-step. In ProcMaze and PanFlute, 10-step rollouts consistently perform much
better. However, in ButtonGrid 1-step rollouts perform better for lower button counts in the high data regime, while 10-step
rollouts generally perform better in the low data regime.

23

