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Abstract

Accurate tubulitis scoring is essential for managing kidney transplant rejection, yet manual
assessment is subjective and suffers from severe inter-rater variability (k,,=0.17), leading
to inconsistent treatment decisions. While recent works have attempted binary tubulitis
detection, fine-grained scoring (T0-T3) required for clinical decision-making remains unad-
dressed. We present the first automated approach for granular tubulitis scoring using only
slide-level supervision. Our approach aggregates spatially correlated features from tubule-
centric image patches using a transformer-based attention pooling mechanism. To ensure
diagnostic focus, patches are pre-filtered using a segmentation model trained to detect re-
nal tubules, restricting the input space to regions most relevant for scoring. Evaluated on
93 routine PAS-stained slides (75 for training/validation, 18 held-out test), our method
achieves a weighted kappa of k,, = 0.75 (4.4x improvement over expert agreement), 83.3%
within-one-grade accuracy, and strong correlation with expert scores (r = 0.81). Top-
attended regions demonstrate clinical plausibility, showing progressively greater inflamma-
tory burden and tissue damage features with increasing T-scores. Our work demonstrates
that weakly supervised learning can transform subjective pathology assessments into reli-
able, interpretable predictions, offering a practical path towards standardising transplant
rejection diagnosis. The code is available on github.
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1 Introduction

Kidney transplant rejection affects 10-15% of recipients within the first year NHS Blood and
Transplant (2025) and is diagnosed through Banff lesion scores Roufosse et al. (2018), with
tubulitis (T-score) being the primary indicator of acute T-cell mediated rejection Tsamandas
et al. (1997). The Banff T-score captures the severity of inflammation within renal tubules,
defined as the number of mononuclear leukocytes infiltrating across the tubular basement
membrane in the most inflamed tubule. It is graded on a 4-point scale: TO (none), T1 (1-4),
T2 (5-10), and T3 (>10). Such Tubulitis scoring directly determines treatment decisions:
TO-T1 cases receive conservative management while T>2 cases require variants of aggressive
immunosuppressive therapy to prevent graft loss. Current manual scoring by expert pathol-
ogists achieves extremely poor inter-rater reliability (k,=0.17) Furness and Taub (2001),
1.e., pathologists agree barely better than chance when grading the same biopsy. This vari-
ability leads to inconsistent treatment decisions, unreliable clinical trial endpoints, and po-
tentially inappropriate therapy, either under-treating rejection or over-immunosuppressing
stable patients. This analysis is typically performed on Periodic Acid-Schiff (PAS)-stained
sections, a histological stain that highlights carbohydrates such as glycogen, glycoproteins,
and basement membranes by producing magenta colouration where these structures are
present Aterman and Norkin (1963). In kidney biopsies, PAS staining sharply delineates
tubular basement membranes and epithelial structures, enabling pathologists to accurately
identify inflammatory cells crossing tubule boundaries.

Tubulitis scoring requires identifying the single most inflamed tubule among hundreds
in a gigapixel whole slide image (WSI) (~ 64000 x 64000 pixels), where inflammatory cells
must be counted within tubule boundaries. Prior automation attempts have been limited
to binary classification (tubulitis present/absent) Cooper et al., missing the granular T0-
T3 distinctions, which are decisive for treatment stratification. Modular pipelines that
sequentially segment tubules, detect cells, and compute scores Hermsen et al. (2022) are
computationally expensive (> 1 hours per slide), making clinical deployment impractical.

Related Works. Previous works have explored kidney allograft histopathology automation,
from rejection classification Kers et al. (2022); Ye et al. (2024) to quantitative tissue analysis
Hermsen et al. (2022). While these achieve impressive performance for their respective
tasks, they do not address the clinical need for granular T-scoring Roufosse et al. (2018).
Hermsen et al. (2022) developed a modular pipeline computing tissue metrics that correlate
with pathologist scores (Spearman p=0.838) but stopped short of predicting actual Banff
grades. Most recently, Cooper et al. achieved AUC 0.831 for binary tubulitis classification
(To/T1 vs. T2/T3), but this coarse grouping loses the critical distinction between T1 and
T2 that determines treatment escalation. To the best of our knowledge, no prior work
has attempted fine-grained TO0-T3 scoring that preserves clinical decision boundaries while
providing explainable predictions.

Contributions. We present KidneyGrader, a weakly supervised approach that provides
fine-grained T-scores. By incorporating domain knowledge into the learning process, our
approach transforms subjective manual scoring into objective, reproducible predictions while
maintaining clinical explainability. Our key contributions are:

1. We provide the first automated approach for granular Banff tubulitis scoring (T0-T3)
preserving clinical treatment thresholds.
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2. By using a novel tubule-guided attention mechanism we achieve 4.4 inter-rater reli-
ability improvement over expert pathologists.

3. Our pilot evaluation on 93 PAS-stained slides (75 train/validation, 18 held-out test)
demonstrates k,,=0.75, 83.3% within-one-grade accuracy, and strong correlation (r=0.81)
with expert labels.

4. We attempt clinical validation through explainable attention visualisations showing
appropriate focus on relevant tubuli.

2 Method

We formulate tubulitis scoring as a weakly supervised regression task, given that our dataset
contains slide-level labels for tubulitis score. Given a gigapixel slide x € X and its slide-
level Banff tubulitis grade y € Y = {0, 1,2, 3}, the goal is to learn a mapping f : X — )
that (i) respects the ordinal structure of ), (ii) is explainable by highlighting inflammatory
tubules, and (iii) requires no patch-level supervision. Each WSI x; is decomposed into a
bag of patches B; = {pi,j};il where p;; € R2%512X3 pepresents the j-th patch and n;
is the number of patches in slide . The challenge lies in learning from weak supervision:
while we observe slide-level labels y;, the model must identify which patches contain the
diagnostically relevant tubular inflammation without explicit patch-level annotations.
Preprocessing: We identify tissue regions in each WSI using HSV colour space filtering
where pixels satisfy S(p) > 0AV(p) < 245, where S and V represent the saturation and value
channels respectively. From tissue regions, we extract 512 x 512 patches using contiguous
grid sampling with 25% overlap. Each patch must contain >15% tissue content. We apply
tubule-content filtering using a 5-class pre-trained attention-gated U-Net with EfficientNet-
B0 Cechnicka et al. (2023) Classes represent background (0), tubules (1), glomeruli (2),
vessels (3), and interstitium (4). We retain only patches with >30% tubule content:

BivPule — fp € B; . TubuleRatio(Maskse,(p)) > 0.3}

Then, each patch p;; is encoded using the UNI foundation model Chen et al. (2024),
¢ RO12X512x3 y RI02 45 produce feature embeddings h; j = ¢(pij). UNI is a vision
transformer pretrained on over 100,000 histopathology images.

Scaffold: We base on the TransMIL architecture Shao et al. (2021) with extensions for tubu-
litis scoring. TransMIL was designed for multi-class classification tasks, but we reformulate
it as a regression model, based on (i) better correlation with ground truth compared to clas-
sification from empirical observation, and (ii) expert preference for continuous scores that
better reflect ambiguous or borderline cases. We process tubule-filtered patches through: (1)
feature projection from 1024 to 256 dimensions, (2) 2D positional encoding incorporating
spatial coordinates, (3) bidirectional transformer blocks with learnable gating, and (4) class
token aggregation for bag-level prediction.

Bidirectional processing: We extend standard transformer attention with bidirectional
sequence processing. For input features H = [hy,...,h,] and coordinates C = [c1, ..., Cy)
for n patches, we compute forward and backward attention independently as done in Shao
et al. (2021), then combine using learnable gating parameter . This captures both local and
distant spatial dependencies, which supports identifying clustered inflammatory patterns.
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T-score regression: The classification head in Shao et al. (2021) is replaced with a re-
gression module: § = clamp(w’ GELU(WcF) +b) +b, 0, 3), where c(7) is the final class
token representation, W and b are the weights and bias of the projection layer, and w
and b are the weights and bias of the output layer. For instance-level learning, we develop
pseudo-labeling where high tubulitis scores (>2) generate positive labels for the top-k most
attended patches, enabling weak supervision at the patch level.

We also evaluate a regression-adapted variant of the CLAM framework Lu et al. (2020),
which uses a gated attention mechanism to aggregate patch features into a slide-level repre-
sentation z. We replace the original classification head with a regression layer trained using
mean squared error loss: § = w 'z + b.

Training Objectives: Both models use a weighted loss: £ = a Lyag + 3 Linst + ¥ Lattn-
Bag-level loss: CLAM uses mean squared error, while TransMIL uses the Huber loss Hy(7,y),
where g is the predicted slide score, y the ground truth, and ¢ the transition point between
quadratic and linear regimes. Instance loss: Both assign binary pseudo-labels g; to selected
patches j € S (top-k for CLAM, top-attended for TransMIL), and apply cross-entropy:

Einst = Z CE(Sja g])?

jeS

where s; is the patch-level score. Attention regularisation: Used only in TransMIL to
promote sparsity:

Latn = Y | D aijlog(ai; +e€) + [lalls | ,

¢ J

where a; ; is the attention weight for patch j in slide ¢, and a; = [a; 1, ..., Gin,)-

Modular baseline: Since no existing method directly supports fine-grained T-scoring, we
automate a manual pathologist workflow step-by-step and construct a modular pipeline:
(1) inflammation localisation, (2) tubule instance segmentation, and (3) leukocyte detection
with heuristic T-score assignment.

Stage 1a: The U-Net mentioned in the preprocessing section segments input patches using a
combined Dice and cross-entropy loss. Stage 1b: Tubules are isolated via two-pass watershed
on the Euclidean distance transform of the tubule mask Myypue = I[S = 1], where S is the
predicted class mask (1 = tubule), with h-maxima filtering. Stage 2: Leukocytes are detected
via InstanSeg Goldsborough et al. (2024) at 0.5 um/pixel, followed by ensemble classification
using three EfficientNet-B0O models. Stage 3: The final score is determined by the maximum
inflammatory cell count ¢; in any tubule ¢, following Banff grading rules:

|7;nﬂamed’ <2
max; ¢; < 4
5 <maxsc; < 10

max; ¢; > 10,

w N = O

with Tinflameda = {t € T | ¢ > 0} denoting the set of tubules containing inflammatory cells.
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3 Evaluation & Results

Dataset: We evaluate on 93 PAS-stained whole slide images from renal transplant biopsies
at Charing Cross Hospital, each annotated with Banff T-scores (T0-T3) by an expert renal
pathologist. The dataset contains 20 TO (21.5%), 24 T1 (25.8%), 23 T2 (24.7%), and 26
T3 (28.0%) cases, providing balance across severity levels. Images were scanned at 40x
magnification using a Leica Aperio scanner at 0.263 microns per pixel resolution.
Training and Evaluation Protocol: We employ a held-out evaluation protocol with 93
total slides: 18 test slides stratified by class distribution (5 T0, 6 T1, 4 T2, 3 T3) and
75 development slides. For model development, we use 5-fold cross-validation to create an
ensemble, with each fold maintaining 60 training and 15 validation slides per stratified split.
All five models are evaluated independently on the same 18 held-out test slides, with final
prediction for a given method obtained by averaging over the ensemble.

Data augmentation is identical for all models: random 90° rotations, horizontal /vertical
flips, colour jitter (brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), and Gaussian
noise (o = 0.1) with probability 0.5 each.

TransMIL: We use our model with two transformer layers, 8 attention heads, embedding
dimension 1024, and hidden dimension 256. Dropout is set to 0.3. Training uses the AdamW
optimiser (lr=0.001, weight decay=0.01) with cosine annealing scheduler, warmup for 10
epochs, and early stopping (patience=>50). Models train for 500 epochs with gradient clipping
(value=1.0). Data is processed in MIL-style batches Shao et al. (2021) (batch size=1). The
loss function (see Sec. 2) uses o = 0.8, f = 0.15 and y=0.05.

CLAM: The gated attention network has hidden dimension 128, dropout 0.5, and top-
k sampling (k=32). Training uses the Adam optimiser (Ir=5x107°, weight decay=0.01)
with cosine scheduler, 300 epochs, early stopping (patience = 30), and gradient clipping
(value=1.0). The loss (see Sec. 2) uses a=0.8, $=0.2, v=0. Label smoothing of 0.1 is
applied during training.

Modular baseline: (i) The attention-gated U-Net is trained for 60 epochs with AdamW
(Ir=3 x 10~%); (ii) instance labelling uses a two-pass watershed algorithm with h-maxima
transform (h=20); (iii) cell detection is done via the frozen InstanSeg model monkey at
0.5um/pixel with a classifier ensemble; and (iv) Banff to regularise the model for our small
dataset rule-based grading with confidence threshold p = 0.7 for inflammatory cells. All
methods use PyTorch v2.5 on a single Nvidia RTX A6000 GPU with mixed precision enabled.
Evaluation Metrics: Quadratic weighted kappa (k) enables direct comparison with
pathologist inter-rater reliability. Within-1-grade accuracy captures predictions within +1
grade of expert labels, reflecting acceptable clinical variance. We additionally report Mean
Absolute Error (MAE) and Pearson correlation. For explainability assessment, we show
clinical plausibility of highly-attended patches across different T-scores.

Ablation: We compare two different regression endpoints, adapted TransMIL (ours) vs
CLAM to the modular step-by-step baseline in Table 1.

Results: We quantify how accurately KidneyGrader predicts Banff T-scores and illustrate
where the model looks when it makes its prediction. Table 1 benchmarks our full Trans-
MIL variant backbone against the CLAM ablation, the automated modular pipeline, and
published pathologist agreement. Across all metrics, with the exception of within-one-grade
accuracy, KidneyGrader outperforms the baselines while reducing the inference time from
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Table 1: Comparison of tubulitis scoring methods. Best results in bold. Kaw:
quadratic-weighted kappa - measures model agreement with expert labels.
Within-1: percentage of slides whose predicted grade is within +1 of the ex-
pert label. MAE: mean absolute error in Banff grade (lower = better). Pearson:
linear correlation (r) with expert scores. Exact: percentage of slides scored iden-
tically to the expert. Runtime: end-to-end inference time per whole-slide image
on a single GPU in minutes. Standard deviation as subscript.

Method kw T Within-1 1+ MAE | Pearson? Exact %1 Runtime |
KidneyGrader (Ours) 0.75 83.346.1 0.554020 0.81.4¢15 55.6191 <541
KidneyGrader (CLAI\’I) 0.66 100 0.6610413 0.75:&[].13 38-9%116,0 <5 +1
Modular Baseline 0.29 82.1 0.92 0.31 28.6 ~120160

Pathologists Furness and Taub (2001) 0.17 - - - - -

hours to minutes. To enable comparison with existing work and assess performance on the
clinically critical treatment threshold, we evaluated binary classification for T>2 vs. T<2.
Table 2 shows that our model achieves an AUC of 0.95, surpassing Cooper et al. despite us-
ing a dataset ten times smaller. Table 3 breaks the error down by true class: mis-estimation
is largest for subtle TO cases (MAE 0.70) and smallest for severe T3 (MAE 0.27), reflecting
the intuitive difficulty of detecting low-grade inflammation. Figure 1 visualises the most-
attended patches for representative slides at each ground-truth grade. For TO-T1 slides the
model focuses on intact tubules with little or no inflammatory infiltrate, whereas for T2-T3
slides attention concentrates on tubules densely packed with lymphocytes (highlighted in
red). Alignment between saliency and pathology criteria provides visual evidence that the
network has learned meaningful morphological cues rather than spurious correlates.
Discussion: Our results demonstrate that our method achieves superior tubulitis scoring
performance with k,, = 0.75, exceeding pathologist inter-rater reliability by 4.7x. This
improvement is clinically relevant as quadratic weighted kappa accounts for the ordinal
nature of Banff scores and penalises larger disagreements more heavily than adjacent-grade
errors. While CLAM achieves perfect within-1-grade accuracy, its lower x,, (0.66) indicates
more severe misclassifications when errors occur. TransMIL’s balanced performance across
both metrics makes it more suitable given the clinical context.

The modular pipeline, despite achieving expert-level reliability (k, = 0.29), is limited
by cascading errors from its multi-stage design. The inflammatory cell detector, trained on

Table 2: Binary classification performance (T>2  Table 3: Class-wise mean absolute er-

vs. T<2). Cooper et al. was trained on ror (MAE) for the best
a dataset 10x larger than ours. KidneyGrader fold.
Method AUCYT Sens.t Spec.t  Metric TO T1 T2 T3
KidneyGrader 0.951907 0.704015 1.004019 MAE] 0.696 0.387 0.457 0.266
Cooper et al. 0.83 0.51 0.84
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Figure 1: Examples of top attended KidneyGrader patches in our test data. Three example
patches shown per score category TO-T3, selected from one or more cases. Top-
attended patches demonstrate increasing inflammatory burden correlating with
T-score: minimal to no inflammation in T0-T1, moderate infiltration in T2, and
dense infiltration in T3. One T3 case additionally shows basement membrane
dissolution (purple dashed line). Inflammatory cells shown with red markers.

the external MONKEY dataset monkey, suffers from domain shift when applied to inhouse
renal biopsies of the same PAS staining, leading to inconsistent cell detection. Addition-
ally, classical instance labelling algorithms struggle with densely packed tubules, creating
noisy instance masks that compound downstream errors. Nevertheless, achieving reliability
comparable to pathologists demonstrates the viability of two stage method.

Renal tubules frequently span multiple adjacent patches and tubulitis exhibits spatial
clustering, requiring contextual information from neighbouring regions. The TransMIL back-
bone provides better performance than CLAM, likely due to its transformer self-attention en-
abling explicit patch-to-patch relationships through query-key interactions, whereas CLAM
processes patches independently through linear layers. This allows TransMIL to better
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capture spatially distributed inflammatory patterns analogous to pathologist workflow of
examining clustered inflamed tubules.

Our attention visualisations reveal that the model attends to regions containing features
consistent with standard Banff criteria, with high attention on areas showing inflammatory
cells and basement membrane dissolution. Notably, detecting basement membrane dissolu-
tion in our modular approach would have required additional labelled data, yet here it was
implicitly learnt as part of the end-to-end training - demonstrating the advantage of weakly
supervised learning. Beyond these Banff-aligned features, we observed the model attending
to regions that deviate from standard criteria, including atrophic tubules and integrating
inflammatory burden across multiple tubules. Since our model learnt from one pathologist’s
annotations, these deviations may reflect documented inter-pathologist variability in Banff
interpretation Loupy et al. (2022); Mengel et al. (2007).

4 Conclusion

We presented the first automated approach for granular Banff tubulitis scoring (T0-T3),
addressing a critical need for reproducible assessment in kidney transplant pathology. Our
TransMIL-based method with tubule-guided attention achieved k,,=0.75 on held-out test
data, substantially exceeding reported inter-rater reliability among pathologists (£,=0.17).
The approach demonstrated 83.3 % within-one-grade accuracy and strong correlation with
expert annotations (r = 0.81), while maintaining clinical efficiency with <5 minute process-
ing time per slide. Our attention analysis demonstrated increasing inflammatory burden
correlating with T-score, with the model attending to both Banff-consistent features and re-
gions that deviate from strict criteria. This may reflect the known gap between standardised
criteria and clinical interpretation. However, these findings remain preliminary given our
limited single-institution, single-pathologist dataset of 93 slides. Future work should validate
these results on larger multi-institutional cohorts with consensus annotations from multiple
pathologists. Despite current limitations, this work demonstrates the potential for weakly
supervised learning to transform subjective pathology assessments into more objective pre-
dictions, offering a practical step towards standardising transplant rejection diagnosis.
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