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ABSTRACT

Recent advances in graph-based imputation methods for addressing missing data
have received considerable attention, primarily for their ability to effectively aggre-
gate and propagate information through graph structures. However, the applicability
of these methods to the biomedical tabular domain remains constrained by two
main factors: the lack of task-relevant graph structure and a lack of consideration
of feature-wise relationships. To address these challenges, we introduce GRASS1,
a novel approach that effectively bridges the gap between existing graph-based im-
putation methods and the unique needs of biomedical tabular domains with initially
missing data. To derive feature gradient, GRASS initiates with training a Multi-
Layer Perceptron layer on tabular data. This gradient then facilitates the creation
of graph structures from a feature (column) perspective, enabling column-wise
feature propagation for imputing missing values, followed by uncertainty-aware
categorical clamping. Finally, to effectively utilize existing graph-based imputation
methods in an agnostic manner, we input a so-called warmed-up matrix along with
an associated sample (row) graph. We validate GRASS on real-world biomedical
tabular datasets, demonstrating its ability to unleash the potential of graph-based
imputation methods across a variety of missing scenarios.

1 INTRODUCTION
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Figure 1: Distant from existing works
that are tailored to each specific do-
main, this work focuses on the gener-
alizability and enhancement of current
graph-based and tabular-based impu-
tation methods, with a special focus
on the biomedical tabular domain.

Graph-based imputation (GBI) has significantly advanced
the handling of the missing data imputation (MDI) problem
and its impact on downstream tasks like classification in both
graph Taguchi et al. (2021); Jiang & Zhang (2020); Rossi
et al. (2021) and tabular You et al. (2020); Zhong et al. (2023)
domains. Its key advantage lies in the ability to aggregate
information from neighboring samples, offering a substantial
improvement over traditional methods that predominantly
utilize statistical techniques to exploit the distribution of non-
missing data Efron (1994); Little & Rubin (2019). Despite
these advancements, their generalizability in varied domains,
especially those with frequent real-world missing data sce-
narios like the tabular-based biomedical domain, remains
underexplored mainly due to the following two challenges:

Lack of task-relevant graph structure. The challenge in the tabular domain, in contrast to the
well-researched graph domain, stems from a lack of task-relevant graph structures. This lack hinders
the application of graph-based methods effectively used in domains where such structures are readily
available and well-understood. To corroborate our argument, we compared representatitve methods
from graph and tabular domain. As graph structure is absent in the tabular domain, we created a
widely-used, sample-wise, similarity-based kNN graph from a zero-imputed feature matrix to adapt
GBI methods on the graph domain. Figure 2 (a) illustrates, in citation networks, where natural graph
structures exist, advanced GBI methods like GCNMF Taguchi et al. (2021) that is based on a Gaussian

1It stands for general terms, Graph and Missing. Source code is provided at the Supplemetary Material.
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Figure 2: Classification performance comparison between graph and tabular biomedical do-
main. Blue and Orange represents graph- and tabular-based methods, respectively. In the
Graph domain, GCNMF outperforms Mean, leveraging graph structure. In the Bio domain,
GCNMF lags behind the Mean baseline until it meets our proposed method, GRASS. In the Medi-
cal domain, a recent tabular method, IGRM, underperforms compared to GCNMF but achieves
similar results with GRASS. For GCNMF, a cosine-similarity-based kNN graph is utilized for the
graph structure. Notably, graph datasets typically involve a manually set missing ratio (MR), as they
are fully observed initially. In contrast, the biomedical domain naturally encounters an initial missing
ratio (IMR), reflecting more practical settings.

Mixture Model significantly outperform traditional tabular imputation techniques. However, in the
tabular such as biomedical domain, the situation is quite different. Factors like high dimensionality
coupled with small sample sizes, technical limitations such as dropout Wiens (2003), and patient data
confidentiality issues Cismondi et al. (2013b) intensify the difficulties of handling missing data. These
unique factors make deriving a relevant graph structure particularly challenging in scenarios with high
rates of missing data. As depicted in Figure 2 (b), utilizing a kNN graph generated from an initial
feature matrix proves inadequate for methods like GCNMF underperforming even basic approaches
like Mean. The limitation arises because the graph depends on an incomplete feature matrix that lacks
crucial task-relevant information, impacting both effective imputation and subsequent downstream
tasks. This motivates us to develop a more sophisticated graph structure enriched with task-relevant
information.

Lack of consideration of column-wise relationships. Specifically, in the biomedical tabular domain,
characterized by complex interactions between various features like gene-gene and disease-related
interactions and high dimensionality, neglecting feature relationships can be a critical oversight. For
instance, the relationship between ‘Age’ and ‘Ventricles’ (VT), indicating potential brain volume loss
with age, is crucial in biomedical analysis, as referenced in studies Nestor et al. (2008); Bjork et al.
(2003). Overlooking such feature (i.e., column-wise) relationships in data can cause advanced graph-
structure generating methods like IGRM, which uses a bipartite graph with a row-wise approach,
to be less effective than simpler, row-wise methods like GCNMF. This is evident in Figure 2 (c),
highlighting the importance of integrating relevant feature relationships in the development of graph
structure, especially in the tabular domain.

Given these considerations, the central question arises:

(Q) Is it feasible to craft a more insightful feature matrix and associated graph structure,
thereby leveraging the potential of graph-based imputation in the biomedical domain?

Here, we introduce GRASS, an innovative approach that offers an orthogonal way to leverage and
generalize existing graph-based imputation methods to real-world missing scenarios—such as those
in the biomedical tabular domain—where both initially missing features and graph structure are
prevalent. Instead of directly constructing a graph structure based on the current incomplete features,
which would be suboptimal, we commence with training on the tabular data using the Multi-Layer
Perceptron (MLP) layer. During this training process, a valuable task-relevant byproduct that naturally
emerges is gradient information with respect to the features. We utilize this feature gradient by
concatenating it to the original feature matrix, thereby creating a feature perspective graph. Following
this, we implement column-wise feature propagation to impute the initial feature matrix and apply
uncertainty-aware categorical clamping, preserving the uncertain status for later imputation by graph-
based imputation techniques. Now, equipped with this so-called warmed-up feature matrix and the
new graph structure, we stand ready to harness the potential of cutting-edge graph-based imputation
techniques, extending our reach to real-world missing data scenarios. Figure 1 visually summarizes
the core contributions of our work.
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In summary, our contributions are three-fold:

• We, for the first time, explore the generalizability of recent graph-based imputation models in the
context of real-world biomedical tabular data with missing values.

• We propose a novel approach for constructing a graph structure that incorporates feature gradient
information.

• We demonstrate that GRASS can serve as an effective initial starting point in a model-agnostic
fashion, thereby enhancing performance in downstream tasks across multiple biomedical datasets.

2 RELATED WORK

Tabular-based Data Imputation. The challenge of missing data imputation has a long history and
many early approaches for tabular data are rooted in statistical methods Efron (1994); Little & Rubin
(2019). These methods often leverage the distribution of non-missing values to impute missing ones.
Recent machine learning-based imputation techniques include kNN-based approaches Troyanskaya
et al. (2001); Keerin et al. (2012), GAIN Yoon et al. (2018), which employs Generative Adversarial
Networks Goodfellow et al. (2020), and MIWAE Mattei & Frellsen (2019), which utilizes a Deep
Latent Variable model Kingma & Welling (2013). There have also been efforts to adapt graph
structures to tabular data for imputation; for example, GRAPE You et al. (2020) introduces a bipartite
graph connecting samples and features, while the more recent IGRM Zhong et al. (2023) extends
GRAPE by adding a friend network to capture relationships between samples. However, as these
methods heavily rely on the input feature matrix as a main resource, in cases where a significant
proportion of data is missing, the imputation quality tends to degrade, negatively affecting downstream
tasks’ performance. Notably, compared to the graph domain, most of these studies emphasize either
imputation or regression. This is because the task of imputing continuous values closely aligns with
regression, simplifying both training and evaluation. However, another pivotal downstream task, i.e.,
classification, remains underexplored in the realm of tabular data with missing features.

Graph-based Data Imputation. From the viewpoint of graph-based imputation, GCNMF Taguchi
et al. (2021) tackles missing features by assuming a Gaussian distribution for each feature channel
while aligning it with Graph Convolutional Networks (GCN) Kipf & Welling (2016a). PaGNN Jiang
& Zhang (2020) proposes a partial aggregation scheme derived from neighborhood reconstruction.
FP Rossi et al. (2021) iteratively diffuses known features to unknown features, followed by GNN
layers. Recently, PCFI Um et al. (2023) builds upon FP to introduce channel-wise diffusion confidence
to handle scenarios with higher missing feature rates. However, channel-wise diffusion operates on
fully connected graphs, potentially incorporating irrelevant or noisy information between channels.
Additionally, they carry a strong inductive bias toward readily available graph structures, limiting
their generalizability. As mentioned above, the application domain of these works primarily focuses
on Citation Sen et al. (2008) and Co-Purchase networks Shchur et al. (2018) where features are
text-based, a situation less reflective of realistic cases where features are initially missing.

Biomedical Data Imputation. In the medical domain, several research efforts have been made
to address missing data. Multiple imputation techniques are suggested by Janssen et al. (2010),
while Cismondi et al. (2013a) employs statistical approaches for imputation. The MICE algo-
rithm Van Buuren & Groothuis-Oudshoorn (2011) is also widely applied in this context. On the
biology side, a prominent issue related to missing data is the occurrence of dropout events in single-
cell RNA-sequencing datasets, where zero values are often falsely recorded as missing. Among the
various methods proposed van Dijk et al. (2018); Wang et al. (2021); Yun et al. (2023), scGNN Wang
et al. (2021) and scFP Yun et al. (2023) employ Graph Auto-Encoders (GAE) Kipf & Welling (2016b)
and FP Rossi et al. (2021) to impute these false zeros. Despite these efforts, the use of graph-based
data imputation techniques remains underexplored. This is largely due to the absence of a network
structure and a reliance on input feature matrices. Such limitations widen the gap between recent
advances in graph-based imputation and real-world applications where data is often missing.

3 METHOD

In this section, we introduce GRASS, a novel algorithm designed to bridge the gap between recent
graph-based imputation methods and biomedical missing data. Initially, we employ a Multi-Layer

3
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Figure 3: Overall framework of GRASS. Given an initially missing feature matrix, we first train
a simple MLP to obtain the feature gradient. By concatenating these gradients with the initial
matrix, we create a graph from a feature-wise perspective. After employing Column-wise Feature
Propagation, followed by Uncertainty-aware Categorical Clamping, we obtain a warmed-up feature
matrix and an adjacency matrix. These serve as the foundational feature and adjacency matrices for
existing graph-based imputation methods.

Perceptron (MLP) to extract the feature gradient, a crucial supplement for graph structure used for
imputation (Sec 3.1). Subsequently, we implement a Column-wise Feature Propagation grounded
on the gradient-informed graph (Sec 3.2). Next, we apply uncertainty-aware categorical clamping
(Sec 3.3), leading to the creation of a warmed-up matrix and an adjacency matrix. These matrices
then become the inputs for existing graph-based imputation methods. The comprehensive framework
of GRASS is illustrated in Figure 3, while the detailed algorithm of the entire process GRASS can be
found in Appendix A.2.

Task: Classification with Tabular Data Containing Initial Missing Features. Given an initially
missing feature matrix X ∈ RN×F , where N denotes the total samples and F the feature dimensions,
the goal of GRASS is to produce a warmed-up feature matrix accompanied by a sample-wise graph
structure. These enhanced matrices enable existing graph-based imputation methods to seamlessly
utilize them as an initial reference point.

3.1 FEATURE GRADIENT AS A SUPPLEMENT

Given initially missing feature matrix, the direct utilization of this matrix for downstream tasks
can lead to suboptimal results where prior imputation is imperative. Naturally, one might consider
the latest graph-based imputation techniques Taguchi et al. (2021); Jiang & Zhang (2020); Rossi
et al. (2021); Um et al. (2023) given their prowess in receiving messages from neighboring samples.
However, as shown in Figure 2 (b), constructing a graph structure directly from a partially observed
feature matrix and then proceeding with imputation is extremely challenging, often yielding inferior
results than simple tabular-based methods. In this context, given our primary goal is the downstream
task, i.e., classification, we choose not to rely on the initial partially observed feature matrix. Instead,
we leverage the additional resource, supervision signal, incorporating this information into graph
construction. To achieve this, we employ a simple Multi-Layer Perceptron (MLP) to capture and
utilize the feature gradient, acquired during backpropagation, as a crucial, task-aligned resource.
These gradients indicate how subtle shifts in features impact the model’s predictions, highlighting the
salience of individual features in loss minimization. By supplementing this gradient, we can devise a
graph structure that encapsulates not just observed feature information from an initial state but also
the feature saliency in relation to our targeted downstream task. We start with a formal definition of a
feature gradient.
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Definition 3.1. The feature gradient, denoted as ∇X, represents the partial derivatives of the loss
function concerning each feature in the input matrix and is mathematically defined as ∇X = ∂L

∂X .

Building upon Definition 3.1, we derive feature gradient through the training of a straightforward
MLP 2. During this training process, the ensuing proposition emerges:
Proposition 3.2. Consider a 2-layer Multi-Layer Perceptron (MLP). The output for each layer is
formulated as: Z

′
= σ(XW

′
+ b

′
),Z

′′
= Z

′
W

′′
+ b

′′
where the trainable weight matrices are

denoted as W
′ ∈ RF×D and W

′′ ∈ RD×C , and bias vectors are represented by b
′ ∈ RD and

b2 ∈ RC . The activation function, σ, is chosen as the ReLU function, F is the feature dimension,
and D specifies the dimension. Upon applying the softmax function, we derive the prediction
probability matrix Ŷ ∈ RN×C , with C indicating the number of classes. Y ∈ RN×C is a label
matrix. Using cross-entropy as the loss function, the feature gradient, represented as ∇X ∈ RN×F ,
can be computed as:

∇X = ((Ŷ −Y) ·W
′′⊤)⊙ (XW

′
+ b

′
> 0) ·W

′⊤

Please refer to Appendix A.1 for the detailed proof.

A central observation from Proposition 3.2 is the dynamic nature of the feature gradient matrix across
MLP training epochs, despite the static nature of the initially provided missing feature matrix X. This
dynamic is attributed to task-favorable adjustments in trainable weight parameters (e.g., W

′
,W

′′
),

which in turn influence feature gradient variations. Here, considering feature gradients undergo a
change at every epoch, persistently storing these gradients across epochs incurs substantial memory
overhead, O(NF ). Moreover, there’s no guarantee of consistent gradient quality improvement with
each epoch. To address this, we selectively store feature gradient3 only when the MLP’s performance
on predicting the validation set improves, leveraging them as pivotal cues to enhance downstream task
efficacy. In essence, after training MLP, we consolidate the stacked feature gradient, averaging them
to yield ∇X ∈ RN×F , a matrix accordant in shape with the original feature matrix. It is important to
note that while the calculation of the feature gradient may appear complex, in practice, the gradient
can be easily obtained by activating the gradient-saving switch, as shown in Appendix A.3.

3.2 COLUMN-WISE FEATURE PROPAGATION

In classification scenarios, the resulting imputed matrices usually experience sample-wise (row-wise)
message-passing, particularly when using GNNs as classifiers. However, this row-wise adjacency
matrix approach might not capture crucial relationships because it inherently assumes feature channel
independence. This aspect holds particular importance in biomedical domains, e.g., Alzheimer’s
disease, exemplified by the relationship between ‘Age’ and ‘Ventricles’ in the Introduction. Hence,
before establishing a row-wise graph, we prioritize the creation of a column-wise graph structure,
which provides an opportunity to encapsulate intra-feature relationships. Considering that the initial
columns (i.e., features) have missing values, we address this challenge by a supplement, the feature
gradient we derived earlier, as follows:

Afeat = kcol-nearest-neighbor(∇⊤
X∥X⊤) (1)

where kcol-nearest-neighbor(·) denotes the connection of kcol neighbors for each feature channel,
established using cosine similarity, with kcol as a hyperparameter. Given the feature-wise graph, we
employ FP Rossi et al. (2021) to estimate missing features across iterations by capturing inter-feature
relationships in a column-wise fashion while preserving known values, which is depicted as follows:

X(i+1)⊤ = ÃfeatX(i)⊤,

X(i+1)⊤
v,d = X(0)⊤

v,d ,∀v ∈ Vknown,d,∀d ≤ F
(2)

2During MLP training, we employed zero imputation for initially missing values to leverage its computational
efficiency and flexibility. This approach avoids the assumption that missing data occurs completely at random
(MCAR), a condition often not met in the biomedical domain.

3L2-normalization was applied during feature gradient storage to maintain consistent feature scales and retain
the original vector’s directionality.
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where Ãfeat = D−1/2AfeatD−1/2 ∈ RF×F is symmetrically normalized adjacency, having cosine
similarity as a weight, with a self-loop with added degree matrix D. At iteration i, the matrix
is represented as X(i)⊤ ∈ RF×N . The set Vknown,d contains nodes with known feature values
for the d-th channel. After K iterations and another transposition, we obtain the imputed output
X̂ = X(K) ∈ RN×F , which we term the warmed-up matrix. Considering that our approach utilizes
a custom kNN graph, as opposed to the pre-defined adjacency matrix used in FP, detailed discussions
on convergence can be found in Appendix A.4.

3.3 UNCERTAINTY-AWARE CATEGORICAL CLAMPING

In real-world tabular datasets, which often include both numerical (e.g., Age, Blood Pressure)
and categorical features (e.g., Gender, Blood Type), we introduce a clamping method specifically
designed for categorical features. Previous column-wise FP, involving iterative multiplications with a
normalized adjacency matrix, can yield continuous imputed values for one-hot encoded categorical
columns. In the biomedical field, particularly in Alzheimer’s Disease (AD) research, the treatment
of categorical features, such as the status of Microglia (MG) cells, is of great importance Hansen
et al. (2018). The presence or absence of MG cell changes (denoted as 1 for ‘MG_Change’ and 0
for ‘MG_Stable’) can be a significant indicator of the disease’s progression, requiring meticulous
consideration. Practitioners might classify an MG status as ‘change’ only if the imputed value
surpasses a predefined threshold, set at 0.7 in this context. Naturally, imputed values below this
threshold will be categorized as ‘MG_Stable’.

However, recall that our imputation has, until now, solely considered column-wise relationships.
Therefore, we choose to leave room for uncertain values by retaining their original missing status
(‘?’). This approach opens up the possibility for subsequent row-wise propagation using existing
graph-based imputation methods, thereby allowing for potentially higher-value imputation later
on. Formally, for a categorical index c, which we obtain during the preprocessing of numerical
and categorical mixed type tabular data, with corresponding bin count cb for the original column,
the predicted probability vector for a sample j from the continuous imputed matrix is given by:
x̃c = softmax(X̂j,c:c+cb) ∈ Rcb Subsequently, the clamping process is as below:

X̂j,c:c+cb =


OneHot(argmax(x̃c)), if max(x̃c) ≥ θ

[?, . . . , ?︸ ︷︷ ︸
cb times

], otherwise (3)

where OneHot(·) function represents one-hot encoding based on a threshold, θ. The symbol ?
indicates retained initial missing values, emphasizing our aim to preserve inherent uncertainties.

GRASS as an Initializer. Given warmed-up feature matrix X̂, we proceed to construct a row-
wise (sample-wise) graph structure defined as Â = krow-nearest-neighbor(X̂). Here, krow-nearest-
neighbor(·) establishes connections among krow neighbors for each sample, utilizing cosine similarity,
with krow serving as a hyperparameter. Equipped with these matrices, namely X̂ and Â, we are now
ready to enjoy the potentials of any existing GBI methods through a model-agnostic fashion.

4 EXPERIMENTS

Datasets. We evaluate GRASS on nine datasets, each initially containing missing data. Four of
these datasets are from the bio single-cell RNA-seq domain: Mouse ES Klein et al. (2015), Pan-
creas Luecken et al. (2022), Baron Human Baron et al. (2016), and Mouse Bladder Han et al. (2018).
The remaining five datasets are from the medical domain: Breast Cancer Zwitter & Soklic (1988),
Hepatitis hep (1988), Duke Breast Saha et al. (2018), ADNI Petersen et al. (2010), and ABIDE Di Mar-
tino et al. (2014). Dataset splits were randomly generated with five different train/val/test divisions,
with a ratio of 10%, 10%, 80%. Comprehensive details and statistics for each dataset are available
in Appendix A.5. In terms of evaluation metrics, we use Macro-F1 scores for the bio domain while
employing AUROC scores for the medical domain.
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Table 1: Pancreas.
Pancreas (IMR: 56.65%)

OG + GRASS init. Impr. (%)

LP 0.656±0.039 0.798±0.068 21.66
GCNMF 0.527±0.210 0.708±0.087 34.27
PaGNN 0.701±0.044 0.768±0.040 9.58
Zero 0.687±0.066 0.783±0.062 14.02
NM 0.679±0.047 0.788±0.068 16.09
FP 0.716±0.046 0.788±0.068 10.08
PCFI 0.673±0.055 0.686±0.040 1.95
Mean 0.616±0.044 0.619±0.032 0.44
kNN 0.652±0.047 0.706±0.048 8.34
GAIN 0.638±0.075 0.738±0.024 15.66
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.743±0.044 0.788±0.085 6.05

Table 2: Baron Human.
Baron Human (IMR: 57.25%)

OG + GRASS init. Impr. (%)

LP 0.736±0.022 0.828±0.055 12.46
GCNMF 0.350±0.130 0.817±0.066 133.30
PaGNN 0.777±0.043 0.820±0.057 5.53
Zero 0.812±0.030 0.842±0.049 3.71
NM 0.758±0.045 0.801±0.084 5.71
FP 0.789±0.039 0.802±0.084 1.61
PCFI 0.769±0.036 0.792±0.038 2.96
Mean 0.672±0.010 0.694±0.023 3.41
kNN 0.746±0.048 0.760±0.053 1.82
GAIN 0.728±0.041 0.745±0.033 2.39
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.809±0.067 0.853±0.0.031 5.43

Table 3: Mouse Bladder.
Mouse Bladder (IMR: 69.05%)

OG + GRASS init. Impr. (%)

LP 0.556±0.030 0.643±0.053 15.57
GCNMF 0.300±0.182 0.701±0.042 133.90
PaGNN 0.713±0.056 0.775±0.028 8.78
Zero 0.712±0.015 0.768±0.031 7.83
NM 0.721±0.050 0.775±0.030 7.38
FP 0.686±0.048 0.772±0.036 12.48
PCFI 0.710±0.046 0.727±0.028 2.41
Mean 0.555±0.074 0.569±0.062 2.39
kNN 0.587±0.038 0.674±0.059 14.82
GAIN 0.585±0.030 0.649±0.038 10.84
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.653±0.024 0.759±0.022 16.23

Table 4: Breast Cancer.
Breast Cancer (IMR: 0.35%)

OG + GRASS init. Impr. (%)

LP 0.561±0.038 0.562±0.041 0.14
GCNMF 0.551±0.033 0.579±0.049 5.02
PaGNN 0.540±0.037 0.562±0.032 3.98
Zero 0.542±0.048 0.557±0.039 2.71
NM 0.538±0.049 0.566±0.052 5.07
FP 0.543±0.047 0.565±0.052 4.05
PCFI 0.545±0.039 0.547±0.040 0.44
Mean 0.562±0.045 0.562±0.045 0.00
kNN 0.552±0.041 0.556±0.041 0.67
GAIN 0.566±0.044 0.567±0.043 0.21
MIWAE 0.558±0.033 0.563±0.035 0.93
GRAPE 0.572±0.029 0.573±0.017 0.26
IGRM 0.548±0.039 0.552±0.037 0.66
scFP 0.554±0.047 0.563±0.055 1.62

Table 5: Hepatitis.
Hepatitis (IMR: 5.67%)

OG + GRASS init. Impr. (%)

LP 0.573±0.078 0.608±0.053 6.06
GCNMF 0.685±0.097 0.707±0.088 3.22
PaGNN 0.729±0.074 0.741±0.058 1.74
Zero 0.713±0.090 0.714±0.088 0.14
NM 0.702±0.071 0.702±0.071 0.00
FP 0.705±0.085 0.707±0.092 0.20
PCFI 0.728±0.108 0.728±0.108 0.00
Mean 0.691±0.072 0.711±0.081 2.86
kNN 0.612±0.097 0.626±0.105 2.15
GAIN 0.578±0.093 0.646±0.080 11.63
MIWAE 0.573±0.080 0.608±0.077 6.25
GRAPE 0.701±0.033 0.706±0.032 0.63
IGRM 0.668±0.087 0.703±0.109 5.26
scFP 0.691±0.077 0.691±0.077 0.00

Table 6: ABIDE.
ABIDE (IMR: 69.74%)

OG + GRASS init. Impr. (%)

LP 0.894±0.009 0.895±0.011 0.13
GCNMF 0.819±0.042 0.913±0.010 11.49
PaGNN 0.907±0.009 0.914±0.008 0.82
Zero 0.902±0.008 0.915±0.008 1.38
NM 0.905±0.011 0.918±0.007 1.48
FP 0.908±0.014 0.915±0.005 0.86
PCFI 0.915±0.008 0.917±0.010 0.26
Mean 0.607±0.027 0.905±0.007 49.09
kNN 0.896±0.009 0.907±0.010 1.16
GAIN 0.793±0.010 0.910±0.009 14.70
MIWAE 0.623±0.015 0.898±0.008 44.10
GRAPE 0.889±0.010 0.906±0.006 1.90
IGRM 0.747±0.019 0.908±0.004 21.54
scFP 0.894±0.010 0.903±0.007 1.00

Compared Methods. To verify whether our algorithm enhances current graph-based imputation
methods, we compare it with established baselines such as Label Propagation (LP) Zhu (2005),
GCNMF Taguchi et al. (2021), PaGNN Jiang & Zhang (2020), Neighborhood Mean (NM) Rossi
et al. (2021), Zero Imputation with GCN layers (Zero) Rossi et al. (2021), FP Rossi et al. (2021),
and PCFI Um et al. (2023). Given our focus on tabular data, we also include common methods
like Mean Little & Rubin (2019), kNN Troyanskaya et al. (2001), GAIN Yoon et al. (2018), MI-
WAE Mattei & Frellsen (2019), and recent graph-based approaches like GRAPE You et al. (2020) and
IGRM Zhong et al. (2023). Detailed explanations for each method are provided in Appendix A.6. To
benchmark against a domain-specific baseline, we included scFP Yun et al. (2023). Since scFP also
employs the FP method, a thorough comparison between scFP and GRASS is provided in Appendix
A.7. The detailed hyperparameter setting is provided in Appendix A.8.

4.1 CLASSIFICATION PERFORMANCE

Tables 1, 2, and 3 show classification performance in the bio domain, while Tables 4, 5, and 6 do
so for the medical domain. Key observations include: 1) GBI methods like FP and PCFI excel
tabular-based methods, largely due to their message-passing mechanisms. 2) Despite this, as shown
in Tables 2 and 4, GBI methods such as GCNMF and PaGNN occasionally fall short of basic tabular
data methods, a trend also observed in Figure 1. However, their integration with GRASS’s warmed-up
matrix and adjacency matrix notably enhances their performance. It is also important to note that the
performance gain in the bio domain is more pronounced. This is attributed to a higher initial missing
ratio and the domain’s relative simplicity, as it consists only of numerical features. In contrast, the
medical domain, which includes a mix of numerical and categorical features, presents more complex
challenges. 3) While FP and PCFI generally outperform GCNMF in citation networks with high
missing rates, as demonstrated in each paper, GCNMF shows significant potential in the biomedical
domain, especially when paired with the right graph structure and Gaussian Mixture Model, as
evidenced by a 133.90% improvement in the Mouse Bladder dataset (Table 3). 4) Although primarily
designed for a more well-defined adjacency matrix, tabular-based methods like Mean and GAIN also
benefit from using the warmed-up matrix, suggesting its utility as an effective starting point across
models. More performance on other datasets can be found in Appendix A.9. In summary, while the
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Figure 4: Exploring the influence of feature gradient in Pancreas dataset. (a) Confusion matrix
comparison between original GCNMF and its GRASS initialized version, illustrating the latter
capturing more rare cell-type. (b) t-SNE representation of X, ∇X, X̂. ‘activated stellate’ cell type is
represented as pink color. (c) Pairwise marker gene cosine similarity comparison between original
feature matrix (X and feature gradient(∇X), resource for the column-wise graph. (d) Resulting
Afeat via utilizing feature gradient as a supplement. (e) Expression of four marker genes being
amplified after column-wise Feature Propagation. All experiments were conducted on the Pancreas
dataset. Marker genes, which are key factors for classifying ‘activated stellate’ cell type, were
identified based on existing research linking these genes to the activated hepatic stellate cell (HSC).

generalizability of current GBI models has not been thoroughly explored in the biomedical domain,
incorporating GRASS initially can maximize their capabilities.

4.2 WHY FEATURE GRADIENT MATTERS?

In Figure 4, we delve into the contribution of our key component, ‘feature gradient’ on addressing the
issue of missing features. Figure 4 (a) presents a comparative analysis between the GCNMF model
and its GRASS-initialized counterpart, particularly highlighting their performance in the Pancreas
dataset. A notable aspect of this comparison is the enhanced accuracy in classifying rare cell types
such as ‘activated stellate’. From Figure 4 (b), we observe that this improvement is largely due to the
feature gradient, which provides more distinct class representations compared to the original input
matrix, as indicated by the t-SNE representation of the warmed-up matrix obtained through column-
wise FP. The final warmed-up matrix, enriched with feature gradients, shows an enhanced intra-class
distribution, especially for the ‘activated stellate’ cell type. This suggests that feature gradient plays a
crucial supplement role in learning more distinct class representations. To confirm our observations,
we analyzed marker genes for ‘activated stellate’ as depicted in Figure 4 (c). This investigation
revealed that marker genes such as COL1A1, TIMP1, TGFBI, and PDGFRB demonstrate higher
cosine similarity in the feature gradient compared to their expressions in the original matrix. This
was achievable owing to its ability to incorporate task-relevant information, i.e., ‘activated stellate’
cell-type information, which is brought from the label supervision. By leveraging this task-relevant
gradient information, in Figure 4 (d), direct connections (i.e., 1-hop neighbors) have been formed
among three marker genes, while one displays 2-hop relationships. Following column-wise feature
propagation, an increase in the expression levels of marker genes due to neighborhood aggregation
is observed, as shown in Figure 4 (e). The observed increase in gene expression is significant as
it exceeds the average expression of all genes, marked by the gray line. This indicates that the
increase occurs in a cell-type-specific manner, highlighting the targeted and precise nature of the gene
expression changes. Consequently, the enhanced expression of the marker gene for the ‘activated
stellate’ cell type plays a significant role in identifying rare cell types, a task that was previously
unachievable without the integration of feature gradients.
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Figure 5: Sensitivity analysis on hyperparameters for GRASS. AUROC is measured in both datasets.

4.3 ABLATION & SENSITIVITY STUDIES Table 7: Ablation study of GRASS. Here, two best-
performing models, GCNMF and PaGNN, are used
for the backbone model. UaCC stands for Uncertainty-
aware Categorical Clamping. (w/o room) implies that
uncertain values are not left as missing but are instead
imputed. The last row corresponds to GRASS.
Model Variants Breast Cancer Hepatitis

Row only 0.500±0.00 0.667±0.10
Col only 0.524±0.08 0.603±0.20
Col+∇X 0.540±0.10 0.627±0.11
Col+∇X+UaCC (w/o room) 0.577±0.05 0.736±0.07

Col+∇X+UaCC (w room) 0.579±0.08 0.742±0.06

Table 8: Edge homophily ratio comparison between
original adjacency matrix with refined adjacency
matrix obtained via GRASS. Edge homophily ratio:
number of edges connecting two nodes with same labels

number of total edges

A Â Impr. (%)

Mouse ES 0.8591 0.9900 15.24
Pancreas 0.9319 0.9819 5.37
Baron Human 0.9557 0.9788 2.42
Mouse Bladder 0.5672 0.8046 41.86
Breast Cancer 0.6698 0.6701 0.05
Hepatitis 0.7902 0.8035 1.68
Duke Breast 0.6887 0.7074 2.72
ADNI 0.7130 0.7336 2.89
ABIDE 0.9142 0.9166 0.26

Table 7 presents an ablation study
of GRASS components, revealing three
key insights: 1) Combining both row-
and column-wise feature propagation,
as GRASS does by first executing column-
wise FP then row-wise propagation, shows
clear benefits. 2) In column-wise FP,
incorporating feature gradients enhances
performance, underscoring their importance
in constructing column-wise graphs. 3) In
medical domains with mixed data types, the
clamping technique effectively maintains
the original scale of data, with its strategy
of retaining original missing values due
to uncertainties proving most effective.
Additionally, Table 8 supports the improved
structure of the GRASS warmed-up adja-
cency matrix, Â, over the initial matrix,
A. This finding aligns with our initial
goal of crafting a more insightful graph
structure for biomedical data, demonstrating
the advantages of GRASS in graph-based
imputation methods. Figure 5 (a) shows the
sensitivity of hyperparameters kcol and krow,
responsible for edge generation in column-
and row-wise graphs. GRASS demonstrates
robustness within the recommended range
{1, 3, 5, 10}. However, in datasets with high
missing rates like ABIDE (69.74%), using a
larger k in column-wise graphs could lead to over-smoothing issues. The impact of higher k values
is further discussed in Appendix A.4. Figure 5 (b) underlines the importance of an appropriate
clamping threshold. A larger θ preserves more uncertainties, while a smaller θ may lead to early
imputation, impacting further refinement by subsequent imputation methods. Details on complexity
and further extensions are in Appendices A.10 and A.11.

5 CONCLUSION

Graph-based imputation methods, increasingly popular for filling missing features by leveraging
neighborhood information, face challenges in the biomedical tabular domain due to the absence of
task-relevant graph structures and intra-feature relationship considerations. We introduce GRASS, an
innovative algorithm designed to generalize and enhance graph-based imputation to the biomedical
domain. GRASS starts with obtaining feature gradients to construct a column-wise graph, followed by
feature propagation and uncertainty-aware categorical clamping. Our extensive research validates the
effectiveness of GRASS, positioning it as a promising foundation for future graph-based imputation
research in biomedical domains.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition 1. Consider a 2-layer Multi-Layer Perceptron (MLP). The output for each layer is
formulated as: Z

′
= σ(XW

′
+ b

′
),Z

′′
= Z

′
W

′′
+ b

′′
where the trainable weight matrices are

denoted as W
′ ∈ RF×D and W

′′ ∈ RD×C , and bias vectors are represented by b
′ ∈ RD and

b2 ∈ RC . The activation function, σ, is chosen as the ReLU function, F is the feature dimension,
and D specifies the dimension. Upon applying the softmax function, we derive the prediction
probability matrix Ŷ ∈ RN×C , with C indicating the number of classes. Y ∈ RN×C is a label
matrix. Using cross-entropy as the loss function, the feature gradient, represented as ∇X ∈ RN×F ,
can be computed as:

∇X = ((Ŷ −Y) ·W
′′⊤)⊙ (XW

′
+ b

′
> 0) ·W

′⊤

Proof. Given a row-vector, x ∈ R1×F , consider the following application of the chain rule:

∂L
∂x

=
∂L
∂z′′ ·

∂z
′′

∂z′ · ∂z
′

∂x

To compute ∂L
∂z′′ , let’s begin by considering a specific class index n, when n ranges from 1 to C, the

total number of classes.

∂L
∂z′′

n

=
∂L
∂ŷn

· ŷn
∂z′′

n

= −
C∑
i=1

yi ∗
∂ log (ŷi)

∂ŷi
∗ ∂ŷi
∂z′′

n

= −
C∑
i=1

yi
ŷi

∗ ∂ŷi
∂z′′

n

To determine ∂ŷi

∂z′′
n

, the gradient with respect to the softmax function for each class i in total C classes
can be computed:

I. When i = n,

∂ŷi
∂z

′′
i

=
∂

∂z
′′
i

(
ez

′′
i∑C

j=1 e
z
′′
j

)

=
ez

′′
i ∗

∑C
j=1 e

z
′′
j −

(
ez

′′
i

)2

(∑C
j=1 e

z
′′
j

)2

=
ez

′′
i∑C

j=1 e
z
′′
j

∗
∑C

j=1 e
z
′′
j − ez

′′
i∑C

j=1 e
z
′′
j

= ŷi ∗ (1− ŷi)

II. When i ̸= n,
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∂ŷi
∂z′′

n

=
0 ∗

∑C
j=1 e

z
′′
j − ez

′′
i ∗ ez

′′
n(∑C

j=1 e
z
′′
j

)2

= − ez
′′
i ∗ ez

′′
n(∑C

j=1 e
z
′′
j

)2

= − ez
′′
i∑C

j=1 e
z
′′
j

∗ ez
′′
n∑C

j=1 e
z
′′
j

= −ŷi ∗ ŷn

We can subsequently consolidate two separate cases as follows:

∂L

∂z′′
n

= −
C∑
i=1

yi
ŷi

∗ ∂ŷi
∂z′′

n

= −yn
ŷn

∗ ŷn ∗ (1− ŷn) +

c∑
i ̸=n

yi
ŷi

∗ ŷi ∗ ŷn

= −yn + yn ∗ ŷn +

c∑
i ̸=n

yi ∗ ŷn

= −yn +

C∑
i=1

yi ∗ ŷn

= ŷn − yn

The vector form for the same is:

∂ŷ

∂z′′ = ŷ − y

Now, the gradient with respect to the output of the hidden layer, ∂z
′′

∂z′ is directly given by:

∂z
′′

∂z′ = W
′′⊤

Lastly, to obtain ∂z
′

∂x , we need to consider the ReLU activation in the hidden layer:

∂z
′

∂x
=

∂z
′

∂σ(xW′ + b′)
· ∂σ(xW

′
+ b

′
)

∂x
= (xW

′
+ b

′
> 0) · W

′⊤

Combining these results yields the feature gradient in row-vector (R1×F ) format:

∂L
∂x

=
∂L
∂z′′ ·

∂z
′′

∂z′ · ∂z
′

∂x

= ((ŷ − y) ·W
′′⊤)⊙ (xW

′
+ b

′
> 0) ·W

′⊤

where ⊙ represents the element-wise multiplication (Hadamard product).

When generalized for the entire dataset, the matrix (RN×F ) format becomes:

∇X =
∂L
∂X

=
∂L
∂Z′′ ·

∂Z
′′

∂Z′ · ∂Z
′

∂X

= ((Ŷ −Y) ·W
′′⊤)⊙ (XW

′
+ b

′
> 0) ·W

′⊤
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A.2 PSEUDOCODE OF GRASS

Algorithm 1 presents the pseudocode for our proposed algorithm, GRASS. By training the MLP,
we derive the feature gradient, which is utilized to generate a column-wise graph (see line 3). We
then execute Column-wise Feature Propagation (line 5) and clamp the categorical columns (line
6). Consequently, we produce the warmed-up feature matrix and the adjacency matrix, which will
seamlessly align with existing graph-based imputation methods.

A.3 OBTAINING FEATURE GRADIENT IN PRACTICE

Here, we provide a PyTorch-style pseudocode in Listing 1, detailing the function for obtaining the
feature gradient (corresponds to line 15 in Algorithm 1). In training the 2-layer MLP, as shown in
Line 22, we activate the ‘requires_grad’ attribute by setting it to True. This enables AutoGrad in
PyTorch to automatically calculate the feature gradient following backpropagation, a value that is
then accessible in Line 28. It is crucial to note that there is no update to the original feature matrix;
it remains static, with only the classifier’s weights being updated. This process dynamically alters
the value of the feature gradient through these modified weights, as demonstrated in Proposition 3.2.
Additionally, as indicated in Line 37, we save the feature gradient only when there is an improvement
in validation performance, which is an efficient approach to memory usage. After training the MLP,
which typically involves early stopping, we compute the average of the gradients to obtain the final
feature gradient.
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Algorithm 1 Pseudocode of the proposed algorithm
1: Input: Initial missing feature matrix X, train label matrix Y

2: Output: Warmed-up feature matrix X̂, adjacency matrix Â
3: ∇X ← TrainMLP(X, V alidationSet)

4: Afeat ← kcol-nearest-neighbor(∇⊤
X∥X⊤)

5: X(K)⊤ ← Propagation(Afeat,X
(0)⊤,Vknown,K)

6: X̂← ClamperX(K)⊤

7: Â← krow-nearest-neighbor(X̂)
8: function TrainMLP(X, V alidationSet)
9: Initialize highest validation performance as Vhighest = 0

10: Initialize empty list G = []
11: while not converged do
12: Train MLP for one epoch using training data
13: Compute validation performance Vcurrent
14: if Vcurrent > Vhighest then
15: ∇X ← ((Ŷ −Y) ·W

′′⊤)⊙ (XW
′
+ b

′
> 0) ·W

′⊤

16: Append the ∇X to list G
17: Update Vhighest ← Vcurrent
18: end if
19: end while
20: ∇X ← 1

length(G)

∑
g∈G g

21: return ∇X

22: end function
23: function Propagation(A,W,Known,K)
24: M←W
25: for k ← 1 to K do
26: W← AW
27: WKnown ←MKnown

28: end for
29: return W
30: end function
31: function Clamper(X̂)
32: for i← 1 to N do
33: for j ← c to length(CategoricalColumns) do
34: x̃c ← softmax(X̂j,c:c+cb)

35: X̂j,c:c+cb =


OneHot(argmax(x̃c)), if max(x̃c) ≥ θ

[?, . . . , ?︸ ︷︷ ︸
cb times

], otherwise

36: end for
37: end for
38: return X̂
39: end function
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1 def obtain_feature_gradient(
2 x, # missing feature matrix
3 classifier, # 2-layer MLP
4 labels, # supervisions
5 train_mask,
6 val_mask,
7 epochs
8 )
9

10 # Initialize missing features as zeros
11 x = torch.nan_to_num(x, 0)
12

13 optimizer = optim.Adam(classifier.parameters())
14 best_val_performance = 0
15 grads = []
16

17 for epoch in range(0, epochs):
18 classifier.train()
19 optimizer.zero_grad()
20

21 # Allow tracking gradients for x
22 x.requires_grad=True
23 out = classifier(x)
24 loss = F.CrossEntropy(out[train_mask], labels[train_mask])
25

26 loss.backward()
27 optimizer.step()
28

29 grad = x.grad # Feature Gradient
30 x.requires_grad=False
31

32 classifier.eval()
33 out = classifier(x)
34

35 val_performance = roc_auc_score(out[val_mask], labels[val_mask])
36

37 # Save gradient
38 if best_val_performance <= val_performance:
39 best_val_performance = val_performance
40 grads.append(F.normalize(grad, dim=0, p=2).cpu())
41

42 # Average gradients
43 feature_gradient = torch.mean(torch.stack(grads), dim=0)
44

45 return feature_gradient

Listing 1: PyTorch-style pseudocode for obtaining feature gradient via training 2-layer MLP.

𝑘!"#

𝑘 $
"%

𝑘$"%

(b) Medical - ABIDE dataset
𝑘!"# 𝑘$"%

𝑘 $
"%

(a) Bio - Mouse ES dataset

Not Strongly ConnectedNot Strongly Connected

Strongly Connected
AUROCMADGapMacro-F1 MADGap

Strongly Connected

Figure 6: Performance comparison upon increasing the values of kcol and krow, which are responsible
for generating the column-wise and row-wise graphs, respectively. This increase ensures convergence
in (a) the Mouse ES dataset and (b) a Medical dataset. For each dataset, the best-performing models,
FP and NM, with GRASS initialized, are utilized to assess performance. The MADGap metric,
calculated as the normalized distance in the warmed-up matrix (X̂) between remote nodes within an
8-hop distance and neighboring nodes within a 3-hop distance (as suggested in the original paper), is
used to measure oversmoothing. A smaller MADGap value indicates a more severe oversmoothing.
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A.4 DISCUSSION ON CONVERGENCE OF COLUMN-WISE FEATURE PROPAGATION

One of the hallmark advantages of FP is its ability to guarantee convergence of feature representations
for missing nodes, provided the graph is undirected and maintains strong connectivity (Berman &
Plemmons, 1994). In contrast to graph domains where the initial graph structure is given without any
missing elements and can thereby extract a strongly connected component, our situation, defined by
initially missing features devoid of a graph structure, requires manual graph construction, such as the
kNN graph as detailed in Equation 2. This approach does not ensure strong connectivity, making the
convergence of imputed values for missing features uncertain. Nonetheless, we argue that within our
context of missing features, simply increasing the number of neighbors, k, to achieve the convergence
property might not always be advantageous.

Claim: Elevating k to attain strong connectivity (which increases the likelihood, albeit without
guarantees) and consequently secure the convergence property can sometimes be detrimental to
performance. This might inadvertently introduce a primary drawback inherent to graph-based
learning: over-smoothing. ⇔ Rationale: As the value of k escalates, the adjacency matrix Afeat

becomes increasingly dense. However, considering our scenario of missing features where feature
representation remains incomplete, the veracity of the new connections becomes dubious. For the
representation of missing nodes in the feature matrix used in Equation 2, denoted as X⊤ ∈ RF×N

and represented by xu ∈ RN , a high missing rate combined with an extensive k implies that the
feature representation of the majority node, xu, will evolve via feature propagation. As the number
of layers increases and k approaches the total number of nodes F , these nodes end up with almost
identical representations.

Given this perspective, we aim to avert ambiguous node connections and counteract over-smoothing,
which could potentially degrade classification performance. To this end, we commit to using a
relatively modest and smaller value of k when crafting the graph from the feature’s perspective.

Discussion on the Convergence and Performance Gain Relationship. To further investigate
whether the convergence property contributes to performance gain, we conducted an empirical
analysis to validate our claims. In Figure 6, we extended our proposed range of kcol and krow values,
{1,3,5,10}, up to 50, and tested the resulting graph’s connectivity. We observed that when kcol and krow
exceed 10, the generated graph becomes strongly connected, meaning that every node is reachable
from every other node. Interestingly, while strong connectivity provides convenience in choosing the
number of neighbors and satisfies the necessary condition for FP to converge, it does not necessarily
translate to performance gains. Optimal performance was, in fact, achieved within a smaller range of
k values, as initially proposed. Upon further investigation, we discovered that increasing kcol leads
to an oversmoothing issue in the resulting output, particularly in the warmed-up matrix. This effect
was quantified using the MADGap metric (Chen et al., 2020), which measures the representational
difference between remote and neighboring nodes. In summary, our findings suggest that when
dealing with bio-medical tabular data, where an initial graph structure is not provided and a kNN
graph must be manually generated, selecting a large k value to leverage the convergence property of
FP may not be the most effective strategy in scenarios with severe missing.

A.5 DETAILS OF DATASETS

In the bio datasets, we make use of cell-gene matrices to predict the relevant annotated cell types
for each cell. This cell type information serves as the supervisory signal during training. For
preprocessing, we typically filter out cells and genes that have not been transcribed in each row and
column, respectively, and apply a log transformation to normalize the count values.

• Mouse ES (Klein et al., 2015) dataset employs a droplet-microfluidic approach for parallel
barcoding. We used concatenated data originally separated by different days post-leukemia
inhibitory factor (LIF) withdrawal, treating the day of withdrawal as the annotation for the
cell type.

• Pancreas (Luecken et al., 2022) dataset, obtained via the inDrop method, captures the
transcriptomes of individual pancreatic cells from four human donors and two mouse strains.
It includes 14 annotated cell types.

• Baron Human (Baron et al., 2016) dataset focuses on individual pancreatic cells from
human donors, sequenced using a droplet-based method. It features 14 annotated cell types.
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• Mouse Bladder (Han et al., 2018) dataset, sourced from the Mouse Cell Atlas (MCA)
project and sequenced via the Microwell-seq platform, includes cell types as defined by the
original authors’ annotations.

In our medical datasets, we focused on datasets that originally include missing values and feature a
mix of categorical and numerical features. During preprocessing, we removed rows and columns if
all features were missing in each sample or if all samples were missing in each feature, respectively.
We selected the most representative feature column related to the patient’s diagnosis as the class label
for prediction.

• Breast Cancer (Asuncion & Newman, 2007): Published in the UCI repository and provided
by the Oncology Institute, this dataset contains tumour-related features. We use ’recurrence’,
a binary attribute, as the class label.

• Hepatitis (Asuncion & Newman, 2007): Also published in the UCI repository, this dataset
includes data on hepatitis occurrences in individuals, with attributes related to liver char-
acteristics. The binary annotation of the patient’s outcome (die or live) is used as the class
label.

• Duke Breast (Saha et al., 2018): Made available by The Cancer Imaging Archive (TCIA),
this dataset consists of medical images and non-image clinical data for tumor prediction.
From the tabular data provided, we use the ‘Tumor_Grade’ feature, which indicates the
grade of the tumor, as the class label.

• ADNI (Petersen et al., 2010): This collection includes various types of medical images and
non-image clinical data related to Alzheimer’s disease. We utilize the ‘DX_bl’ feature from
the clinical data, indicating the patient’s diagnosis, as the class label.

• ABIDE (Di Martino et al., 2014): Containing data on autism spectrum disorder based on
brain imaging and clinical data, this dataset uses the ‘DX_Group’ feature from the clinical
data, which represents the diagnostic group of the patient, as the class label.

Table 9 provides an overview of dataset statistics. In the medical domain, where features can be both
numerical and categorical, we employed MinMaxScaler for numerical columns and one-hot encoding
for categorical ones. For the bio domain, we employed datasets from the single-cell RNA-sequencing
domain. In this domain, both false-zeros and biologically true zeros coexist (van Dijk et al., 2018; Li
& Li, 2018). However, since we cannot distinguish whether a given zero is a false-zero or a true-zero,
we treat this situation as a missing data scenario. Accordingly, we consider zeros as missing values,
aligning with the approach taken in the recent work, scFP (Yun et al., 2023). The initial missing
ratio (IMR) represents the absence of data in the original table before any preprocessing. The final
column of Table 9 indicates the extent of missing data even after obtaining the warmed-up feature
matrix and adjacency matrix. This phenomenon is particularly evident in datasets with categorical
features. Yet, the designed allowance for subsequent graph-based imputation methods has proven to
complement effectively, as illustrated in Table 7. The dataset split of train/validation/test as 10:10:80
is particularly relevant given the shift in the scRNA-seq domain. Traditionally, this domain has been
approached through unsupervised methods. However, the growing availability of public scRNA-seq
datasets and known cell types has increasingly steered research towards supervised machine learning
models. This evolution in research methodology reflects the changing landscape and emerging trends
in the field, as noted in recent studies Cao et al. (2022).

Table 9: Statistics of datasets. (IMR: Initially Missing Rate)
Dataset Domain N F Num. Cat. Preprocessed C IMR GRASS Init.

Mouse ES Bio 2717 24047 24047 0 2000 4 27.21% 0.00%
Pancreas Bio 1937 15575 15575 0 2000 14 56.65% 0.00%
Baron Human Bio 8569 17499 17499 0 2000 14 57.25% 0.00%
Mouse Bladder Bio 2746 19771 19771 0 2000 16 69.05% 0.14%
Breast Cancer Medical 286 9 1 8 39 2 0.35% 0.00%
Hepatitis Medical 155 19 4 15 298 2 5.67% 5.53%
Duke Breast Medical 907 93 34 59 3364 3 11.94% 9.42%
ADNI Medical 2419 113 92 21 2741 5 30.02% 4.18%
ABIDE Medical 1112 72 64 8 284 2 69.74% 3.39%
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(b) scFP (c) GRASS (Ours)
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Figure 7: Comparison of scFP and GRASS. (a) scFP builds a Row-wise kNN graph only via input
feature matrix (X). (b) GRASS builds a Column-wise kNN graph incorporating both the input feature
matrix (X) and the supplementary feature gradient (∇X).

A.6 DETAILS OF BASELINES

To tackle the challenge of generalizing graph-based imputation methods to bio-medical tabular data,
we have adopted two types of baseline approaches. For graph-based imputation methods, which
typically target downstream tasks like classification, we adopted widely-used methods as follows.

• LP (Zhu, 2005) is a semi-supervised algorithm that spreads known labels to similar data
points in an unlabeled dataset, based on the given graph structure.

• GCNMF (Taguchi et al., 2021) is an end-to-end GNN-based model that imputes missing
features by assuming a Gaussian Mixture Model aligned with GCN.

• PaGNN (Jiang & Zhang, 2020) is a GNN-based method that implements a partial message-
passing scheme, propagating only observed features.

• Zero (Rossi et al., 2021) is a simple 2-layer Graph Convolution Network. We impute
missing features with zeros in this model.

• NM (Rossi et al., 2021) imputes missing features by averaging the features of one-hop
neighboring nodes, followed by GCN layers.

• FP (Rossi et al., 2021) propagates given features through neighbors, replacing observed
ones with their original values to minimize Dirichlet energy.

• PCFI (Um et al., 2023) improves FP by considering the relationship among features with
pseudo confidence, defined by the shortest path to the known feature.

In our experiments, we initially used zero imputation for missing values when applying these
methods. Additionally, we explored hybrid approaches that combine elements of tabular and graph-
based methods, including MEAN and the more recent tabular baseline, IGRM. However, we found
that these methods did not perform optimally, as they both struggled in scenarios with initial missing
data. For the classifier, we utilized a 2-layer Graph Convolutional Network (GCN) as our classifier.
Additionally, as our primary focus is on tabular data, we include common table-based imputation
methods as follows.

• Mean (Little & Rubin, 2019) replaces missing values in a dataset with the mean value of
the available data for the same feature.

• kNN (Troyanskaya et al., 2001) imputes missing data by finding the k nearest neighbors
based on cosine similarity and then averaging their features.

• GAIN (Yoon et al., 2018) uses a generative adversarial network to impute missing values,
where one network generates candidates and another evaluates them.

• MIWAE (Mattei & Frellsen, 2019) employs a type of autoencoder for multiple imputations,
capturing the data’s underlying distribution to provide multiple plausible values for missing
data.

• GRAPE (You et al., 2020) adopts a bipartite graph framework, viewing observations and
features as two node types, and imputes missing values through edge-level prediction.
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• IGRM (Zhong et al., 2023) enhances the bipartite graph framework by introducing the
concept of a friend network, which denotes relationships between samples.

In these methods, which were originally designed for imputing missing values, a logistic classifier
has been incorporated to perform classification tasks.

A.7 COMPARISON BETWEEN SCFP AND GRASS

As GRASS integrates FP with the aim of enhancing generalizability in the bio-medical domain, it is
necessary to compare it with the recently proposed single-cell Feature Propagation (scFP), which
also adopts FP, specifically targeting the single-cell RNA-seq domain.

• (1) Target Domain: While scFP focuses on the scRNA-seq domain, particularly from a
biological perspective, GRASS adopts a more general approach for the broader ‘biomedical’
domain, as indicated in the paper’s title. This distinction is crucial as scRNA-seq datasets
typically comprise numerical features where each element represents the count of a gene’s
RNA transcript sequenced by the sequencing machine. In contrast, medical datasets often
include both numerical and categorical features, such as patient information. This versatility
underscores the broader applicability of GRASS, capable of handling both numerical and
categorical features, the latter through the clamping technique as discussed in Section 3.3.
Therefore, we argue that the target domain of scFP, primarily focused on numerical matrix
imputation in scRNA-seq, differs from that of GRASS, which extends to handling categorical
data often encountered in patient data.

• (2) Target Task and Imputation Methodology: Unlike scFP, which is unsupervised with
its primary goal being effective imputation in sparse and noisy cell-gene count matrices,
this work concentrates on supervised tasks, specifically on downstream applications like
classification. Notably, the objective of imputation is often to enhance performance in
relevant downstream tasks (Rossi et al., 2021; van Dijk et al., 2018; Wang et al., 2021).
In this context, while the unsupervised approach of scFP can align with supervised tasks
through probing (i.e., attaching a classifier), it is important to note that since its imputation
occurs prior to probing, scFP cannot incorporate any downstream task-related knowledge
during the imputation process, potentially leading to shortcomings in classification tasks.
Conversely, as GRASS is directly designed with downstream tasks in mind, it incorporates
knowledge pertinent to these tasks during imputation. This is achieved by utilizing the
feature gradient, which is obtained during training 2-layer MLP. This fundamental difference
in the target task (classification vs. imputation) and the imputation process (incorporating
relevant downstream knowledge or not) distinctly sets the two methodologies apart.

• (3) Usage of FP: Although both scFP and GRASS employ FP, their applications of this
process differ significantly. Specifically, scFP utilizes FP from a row-wise perspective, i.e.,
focusing on cell-cell relationships while assuming gene-gene relationship independence.
Although beneficial for smoothing similar and relevant samples, this approach does not
capture interactions between columns (features), which are pivotal in the bio-medical domain.
For instance, in scRNA-seq, gene-gene relationships, such as co-expression networks,
play a critical role in identifying key regulatory genes or pathways, offering insights into
underlying biological or disease mechanisms (Cochain et al., 2018; Chowdhury et al., 2019;
Galfre et al., 2021). Acknowledging this, GRASS initially employs column-wise FP to
capture potential feature interactions, e.g., gene-gene relationships. It’s also noteworthy
that GRASS incorporates not only the feature matrix but also the feature gradient relevant
to downstream tasks when generating the column-wise kNN graph. Consequently, before
initiating row-wise (sample-wise) smoothing in the relevant GNN model, GRASS is able to
consider feature relationships that scFP does not capture. This distinction is illustrated in
Figure 7 and significantly differentiates the two methodologies.

A.8 DETAILS OF HYPERPARAMETERS

For graph-based imputation methods, we generated a kNN graph, selecting k from {1, 3, 5, 10}.
Following Rossi et al. (2021), we set a consistent dropout rate of 0.5 and a dimension of 64 across all
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methods. For baselines, their own hyperparameters were tuned based on each paper’s recommen-
dations. For our model, we explored values for kcol and krow within {1, 3, 5, 10}. The clamping
process’s threshold, θ, was tested among {0.0, 0.2, 0.4, 0.6, 0.8}. We set the number of iterations,
K, to 40, as advised in the FP paper. Tables 10 and 11 detail the optimal hyperparameter settings
when GRASS and existing graph-based imputation models are best aligned.

Table 10: Hyperparameter setting of Best Performing models.

Dataset Best Performing θ kcol krow OG GRASS Improvement

Mouse ES FP - 10 5 0.900 0.983 9.17%
Pancreas LP - 3 3 0.656 0.799 21.66%
Baron Human scFP - 1 10 0.809 0.853 5.43%
Mouse Bladder PaGNN - 3 5 0.713 0.760 8.78%
Breast Cancer GCNMF 0.2 3 5 0.552 0.580 5.02%
Hepatitis PaGNN 0.6 5 1 0.729 0.742 1.74%
Duke Breast GAIN 0.4 5 10 0.699 0.700 0.09%
ADNI Zero 0.4 10 10 0.956 0.960 0.16%
ABIDE NM 0.2 1 3 0.905 0.919 1.48%Table 11: Hyperparameter setting of Most Improved models.

Dataset Most Improved θ kcol krow OG GRASS Improvement

Mouse ES GCNMF - 5 1 0.525 0.973 85.31%
Pancreas GCNMF - 10 1 0.527 0.708 34.27%
Baron Human GCNMF - 5 3 0.350 0.818 133.30%
Mouse Bladder GCNMF - 1 3 0.300 0.702 133.90%
Breast Cancer NM 0.6 10 10 0.539 0.565 5.07%
Hepatitis GAIN 0.0 1 10 0.579 0.646 11.63%
Duke Breast FP 0.4 3 5 0.661 0.689 5.07%
ADNI GCNMF 0.0 3 10 0.898 0.945 5.25%
ABIDE Mean 0.2 5 10 0.608 0.906 49.09%

A.9 ADDITIONAL CLASSIFICATION PERFORMANCE

Performance on an additional bio domain dataset, Mouse ES, is detailed in Table 12, while further
results for two medical datasets, Duke Breast and ADNI, are available in Tables 13 and 14, respec-
tively. These results further demonstrate the enhancement of graph-based imputation methods when
initialized with GRASS. This underscores the significance of employing a task-relevant, warmed-up
feature matrix and adjacency matrix for improved performance in these biomedical domains. The
comprehensive performance gains achieved by using GRASSas an initializer across all datasets are
presented in Figure 8. This figure highlights the performance improvements of the original methods
when initialized with GRASS, visually represented by additional grass-colored vertical bars.
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Table 12: Bio-Mouse ES.

Mouse ES (IMR: 27.21%)

OG + GRASS init. Impr. (%)

LP 0.878±0.005 0.979±0.003 11.43
GCNMF 0.525±0.238 0.972±0.008 85.31
PaGNN 0.899±0.072 0.980±0.002 9.03
Zero 0.960±0.005 0.982±0.004 2.30
NM 0.885±0.098 0.982±0.004 10.99
FP 0.900±0.100 0.982±0.003 9.17
PCFI 0.949±0.004 0.955±0.006 0.57
Mean 0.979±0.006 0.979±0.004 0.08
kNN 0.969±0.011 0.977±0.005 0.83
GAIN 0.978±0.011 0.982±0.007 0.39
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.952±0.004 0.976±0.003 2.52

Table 13: Medical-Duke Breast.

Duke Breast (IMR: 11.94%)

OG + GRASS init. Impr. (%)

LP 0.672±0.021 0.678±0.026 0.98
GCNMF 0.664±0.035 0.688±0.032 3.61
PaGNN 0.685±0.033 0.690±0.029 0.69
Zero 0.673±0.022 0.694±0.021 3.13
NM 0.678±0.033 0.691±0.025 1.96
FP 0.661±0.031 0.688±0.028 4.21
PCFI 0.693±0.029 0.696±0.030 0.40
Mean 0.687±0.018 0.687±0.019 0.04
kNN 0.692±0.026 0.697±0.014 0.74
GAIN 0.699±0.018 0.699±0.017 0.09
MIWAE 0.692±0.013 0.693±0.012 0.13
GRAPE OOM - -
IGRM OOM - -
scFP 0.678±0.031 0.690±0.030 1.76

A.10 COMPLEXITY ANALYSIS

As GRASS serves as a preprocessing step that aligns with existing baselines to enhance their perfor-
mance, it is crucial to consider its computational demand alongside its performance benefits in two
perspectives: Memory and Time.

• Memory cost: From a memory perspective, the primary resource utilized by GRASS is
the feature gradient (∇X ∈ RN×F ), which plays a supplemental role in constructing a
column-wise graph. This feature gradient shares the same shape as the original feature
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Table 14: Medical-ADNI.

ADNI (IMR: 30.02%)

OG + GRASS init. Impr. (%)

LP 0.928±0.005 0.943±0.005 1.56
GCNMF 0.897±0.045 0.944±0.004 5.25
PaGNN 0.953±0.003 0.955±0.003 0.27
Zero 0.956±0.003 0.957±0.003 0.17
NM 0.955±0.003 0.956±0.003 0.19
FP 0.955±0.003 0.957±0.003 0.18
PCFI 0.951±0.004 0.955±0.003 0.46
Mean 0.939±0.002 0.943±0.003 0.46
kNN 0.943±0.003 0.943±0.004 0.01
GAIN 0.937±0.003 0.944±0.003 0.67
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.953±0.003 0.954±0.002 0.10
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Figure 8: Classification performance on biomedical dataset with initially missing rate (IMR). (B)
denotes the “Best” performing baseline while (M) denotes the “Most Improved” baseline with their
relative improvement. A percentage is underlined if it surpasses 80%.

matrix, with dimensions corresponding to the total number of nodes (N ) and features (F ).
However, it is important to note that in the context of graph-based imputation models,
which inherently employ a row-wise (sample-wise) adjacency matrix (A ∈ RN×N ), the
complexity associated with the adjacency matrix often surpasses that of the feature matrix,
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i.e., O(NF )+O(N2) = O(N2). This is particularly true in the bio-medical domain where
datasets are typically tabular and the number of samples significantly exceeds the number of
features (N >> F ). Therefore, the additional memory requirement for storing the feature
gradient is not prohibitively large. Furthermore, the complexity of the generated column-
wise graph (Afeat ∈ RF×F ) is also lower compared to the row-wise adjacency matrix,
allowing GRASS to align with existing graph-based models without incurring excessive
memory costs. Once the warmed-up matrix (X̂) and adjacency matrix (Â) are computed, the
memory allocated for the feature gradient and column-wise graph can be released, leaving
only the cost of training the original baseline model for the downstream task.

• Time cost: From a time complexity perspective, the process is almost identical to training
a conventional 2-layer MLP, which is efficient for tabular data and involves training two
weight matrices: one that transforms the raw feature space to a hidden space, and another
that maps the hidden space to the output space for final predictions. Despite the apparent
complexity of calculating the feature gradient as outlined in Proposition 3.2, the actual
computation, as demonstrated in Listing 1, is straightforward in terms of implementation.
By enabling the ‘requires_grad’ switch, the gradient information is automatically saved,
making the time complexity for computing the feature gradient equivalent to training a
2-layer MLP. Additionally, the column-wise Feature Propagation can be efficiently executed
via sparse multiplication of the adjacency matrix and the feature matrix, as detailed in (Rossi
et al., 2021). Thus, the overall time required to obtain the warmed-up matrix and adjacency
matrix is not substantial.

A.11 FURTHER EXTENSION AND GENERALIZABILITY OF GRASS

To explore the scalability of GRASS to larger datasets, we conducted evaluations using the single-cell
RNA-seq Macosko dataset, which comprises 44,808 cells, 22,452 genes, and 14 distinct cell types,
with an initial missing ratio of 81.41%. Among these genes, we preprocessed 2,000 highly variable
genes, a common technique in scRNA-seq (Yun et al., 2023). We noted that GRASS integrates
smoothly with existing methods, except in cases where initial baselines, such as GCNMF and
GRAPE, encounter Out-Of-Memory (OOM) issues due to the weights associated with the Gaussian
Mixture Model and the construction of a heterogeneous node-feature graph, respectively. In Table 15,
it is observed that graph-based methods can enhance their performance when combined with GRASS.
In large graphs, since the feature dimension typically does not surpass the number of samples (which
is usually the case), GRASS aligns well with current graph-based imputation methods.

Additionally, while GRASS is primarily designed for the bio-medical domain, we also assessed its
applicability to other domains. For this purpose, we utilized the Wine dataset (Asuncion & Newman,
2007), which consists of 178 samples with 14 numerical features and 3 classes. As the Wine dataset
initially lacks missing values, we introduced a 30% uniform missing scenario by manually dropping
features. Table 16 demonstrates that using GRASS as an initializer, enabling existing models to start
with a warmed-up feature matrix and adjacency matrix, effectively benefits other domains as well.
This highlights the potential of GRASS for broader generalizability beyond the bio-medical domain.
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Table 15: Scalability-Macosko dataset.

Macosko (IMR: 81.41%)

OG + GRASS init. Impr. (%)

LP 0.853±0.025 0.870±0.025 7.19
GCNMF OOM - -
PaGNN 0.938±0.008 0.939±0.001 0.17
Zero 0.920±0.031 0.929±0.006 0.92
NM 0.923±0.017 0.930±0.071 0.71
FP 0.937±0.006 0.941±0.045 0.43
PCFI 0.932±0.017 0.939±0.005 0.75
Mean 0.819±0.042 0.835±0.048 1.87
kNN 0.904±0.021 0.910±0.012 0.62
GAIN 0.891±0.039 0.898±0.012 0.86
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.934±0.011 0.941±0.020 0.72

Table 16: Generalizability-Wine dataset.

Wine (IMR: 0.00%)

OG + GRASS init. Impr. (%)

LP 0.647±0.017 0.647±0.017 0.00
GCNMF 0.656±0.027 0.657±0.023 0.11
PaGNN 0.650±0.030 0.661±0.023 1.65
Zero 0.637±0.043 0.648±0.033 1.68
NM 0.629±0.034 0.660±0.030 4.93
FP 0.642±0.032 0.647±0.042 0.79
PCFI 0.650±0.042 0.670±0.031 3.06
Mean 0.585±0.028 0.600±0.021 2.46
kNN 0.629±0.012 0.640±0.012 1.75
GAIN 0.618±0.012 0.640±0.018 3.61
MIWAE 0.514±0.027 0.591±0.024 14.93
GRAPE 0.567±0.064 0.587±0.045 3.52
IGRM 0.573±0.022 0.579±0.044 0.96
scFP 0.620±0.022 0.620±0.026 0.10
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