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ABSTRACT

AI agents are AI systems that can achieve complex goals autonomously. Assess-
ing the level of agent autonomy is crucial for understanding both their potential
benefits and risks. Current assessments of autonomy often focus on specific risks
and rely on run-time evaluations – observations of agent actions during operation.
We introduce a code-based assessment of autonomy that eliminates the need to
run an AI agent to perform specific tasks, thereby reducing the costs and risks
associated with run-time evaluations. Using this code-based framework, the or-
chestration code used to run an AI agent can be scored according to a taxonomy
that assesses attributes of autonomy: impact (actions, environment) and oversight
(orchestration, human-in-the-loop, observability). We demonstrate this approach
with the AutoGen framework and select applications.

1 INTRODUCTION

Language model research and product attention focuses on creating Artificial Intelligence systems
capable of flexibly planning and acting to influence environments over time (‘AI agents’) (Wang
et al., 2024; Kapoor et al., 2024). In many cases, these systems orchestrate language models and
their outputs to perform complex chains of thought and action for tasks ranging from software de-
velopment to vacation planning. The responsible development and deployment of AI agents present
many open questions today (Shavit et al., 2023; Chan et al., 2024; Gabriel et al., 2024; Wu et al.,
2023).

AI agents are designed to function autonomously. Autonomous systems can present risks of harm
that have drawn policy scrutiny globally (Cihon, 2024; Chan et al., 2023). Early evaluations of AI
agent capabilities have focused on general capability benchmarks (Liu et al., 2023; Mialon et al.,
2023; Jimenez et al., 2024) and measuring specific threat models from frontier-capable models inte-
grated into agent scaffolding (METR, 2024; UK AI Safety Institute, 2024).

Measuring the level of autonomy of an AI agent is helpful for a number of reasons.

• Risk Assessment: Measuring agent autonomy helps identify the range and consequence of
decisions the agent might make, which is essential for assessing risks it might pose to those
that interact with it.

• Operational Control and Safe Deployment Strategies: Understanding agent autonomy
helps users and organizations set appropriate safety and control mechanisms, including
escalation paths or fallback options. The resulting safety case may influence deployment
strategies such as phased rollouts, testing in restricted environments, or setting guardrails
on certain AI agent behaviors prior to scaling up deployment to assure safety.
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• Accountability, Liability, and Governance: By measuring autonomy levels, organiza-
tions can more effectively allocate accountability and clarify liability across different ac-
tors, including users and AI agent developers.

This paper offers an initial approach to measure the autonomy of AI agents at scale. Complementing
capability evaluations on running systems, our approach uses code inspection to assess how develop-
ers have structured the agent to function autonomously. Taking inspiration from ’autonomy levels’
in other fields, our work aims to support research in developing empirically grounded measures of
agent autonomy to inform policy and governance.

Code-based evaluations offer several advantages over run-time evaluations but also come with cer-
tain limitations (see Table 1). For policymakers, AI system developers, and evaluators, these eval-
uations can provide a resource-efficient, potentially scalable way to assess AI autonomy without
the risks associated with run-time evaluations. This approach enables consistent, scaled evaluations
that can help guide decisions, from establishing system security requirements to setting standards
for safe AI deployment. Additionally, code inspection supports monitoring the development of au-
tonomous AI agents in open source ecosystems and provides a framework for assessing proprietary
applications when code access is available.

Table 1: Code-Based Evaluations in Comparison to Run-Time Evaluations for Assessing Autonomy
Benefits of Code-Based Evaluations Limitations of Code-Based Evaluations

Reduced Risk of Harm During Evaluation:
Allows evaluation of autonomy features without
running the AI agent, reducing potential for
unintended, harmful behaviors during testing.

Limited Insight into Emergent and
Context-Specific Behaviors: Cannot capture
unexpected or adaptive behaviors that only emerge in
real-world or complex environments, which may
sometimes be observable with run-time evaluations.

Lower Evaluation Costs: Avoids the need for
resource-intensive run-time environments, leading to
faster and more cost-effective autonomy assessments.

Challenges in Understanding User Interaction:
Misses real-time adjustments the agent may make in
response to user inputs, which can reveal nuances in
autonomy that aren’t evident from code alone.

Early Detection of Risk Factors: Enables
identification of autonomy risks early in
development, allowing preemptive adjustments
before deployment.

Potential for Overlooking Latent Dependencies
and Resource Usage: Dependencies on external data
sources or network availability can affect an AI agent
autonomy under real operational conditions –
differences that may be more apparent at run-time.

Enables Scalable and Broad Evaluation:
Facilitates quick assessment across large numbers of
agents or versions, enhancing comparability and
consistency.

Absence of Real-World Feedback Loops: Code
inspections cannot capture how agent actions may
affect or alter the environment over time, creating
feedback loops that might shift agent autonomy.

Functioning agent systems make use of a language model(s) and ‘orchestration’ or ‘scaffolding’
software frameworks that routes model inputs and outputs (Davidson et al., 2023). We focus on
the latter, seeking to answer (1) how frameworks, like AutoGen and LangChain, are designed for
autonomy and (2) how do downstream developers implement these frameworks into applications for
autonomy? As an initial proof of concept, we analyze AutoGen (Wu et al., 2023) and some of its
downstream applications. In subsequent work, this analysis could be scaled to possibly cover the
wider universe of open source AI agent frameworks and applications.

This work makes three contributions: (1) a review of how system autonomy levels are operational-
ized in policy and AI (Section 2), (2) a taxonomy to assess autonomy levels of AI agents, based
on AutoGen (Section 3), and (3) a pilot code inspection rating the autonomy of select AI Agent
applications (Section 4). Section 5 concludes with implications, limitations and future work.

2 APPROACHES FOR ASSESSING AUTONOMY OF SYSTEMS

Autonomy has been defined and operationalized differently across contexts. Autonomy can include
conceptions of self-actualization (constitutive) and capacity for interactions (behavioral) (Froese
et al., 2007). We focus on a form of the latter: decision autonomy, which refers to the ability
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of an AI system to implement decisions without human oversight (Walsh et al., 2021) 1 It is this
concept that centers the impact of actions, environments and human oversight – which are central
for understanding and addressing risks from deployments.

Regulatory initiatives worldwide have started to define autonomy with a focus on decision auton-
omy. The EU AI Act considers AI systems with varying degrees of autonomy, meaning that they
have some degree of independence of actions from human involvement and of capabilities to operate
without human intervention (EU, 2024). Similarly, NIST (2005) guidance defines a system as fully
autonomous if it is capable of achieving its goal within a defined scope without human interven-
tions while adapting to operational and environmental conditions. This guidance may be applicable
across domains including manufacturing and national security (Huang, 2007).

In other industries, autonomy of systems is assessed along levels. For instance, autonomous driv-
ing levels are distinguished by the boundedness of the environment (operational design domain),
the responsibility for advanced actions (dynamic driving tasks) and the degree of human oversight
(fallback) (SAE, 2021). Similarly, degrees of autonomy of medical robots or aviation depend on the
environment, difficulty of tasks and human oversight (Yang et al., 2017; Anderson et al., 2018).

For AI systems, researchers have operationalized levels of autonomy with empirical evaluations on
tasks requiring increasing autonomy (benchmarked to humans taking minutes, hours, days or months
to complete it) (Kinniment et al., 2023; Morris et al., 2023), according to levels of human oversight
(in-, on-, and off-the-loop) (Simmler & Frischknecht, 2021), autonomy of AI agents to determine
suitable outputs and actions to take in the environment (LangChain, 2023; Li et al., 2024). Proto-
cols have also been developed to evaluate an AI system’s capability to pose autonomy-related risks
(METR, 2024). Appendix A.1 provides an overview of levels of autonomy of different approaches.

In summary, across regulatory definitions, standards in other industries, and initial AI-specific char-
acterisations, degrees of autonomy are differentiated based on (1) possible impact as a result of
possible actions and environments, and (2) oversight in relation to orchestrating interactions and
fallbacks within the system or between the system and the human. In the next section, we will
operationalize an assessment of these attributes with AutoGen, an AI agent framework.

3 ASSESSING AUTONOMY OF AUTOGEN

AutoGen is a popular2 open source software framework for building AI agent systems using lan-
guage models (Wu et al., 2023). AutoGen supports multi-agent conversations and tool-use to achieve
arbitrary goals with varying levels of autonomy. It includes features that involve human users in the
agent workflow, although downstream developers have ultimate control over how to configure their
applications. Building on the literature above, we present a taxonomy of autonomy that assesses the
specific features of the AutoGen framework for their relevance to system impact and oversight. For
this preliminary work, we identify three general levels of autonomy associated with each attribute.

IMPACT concerns the overall consequences of what an agent system can do. The deployment
of agent systems in critical or consequential use cases influences their impact. At the framework
level (as opposed to specific application-level uses), impact is shaped by the system’s configuration,
including the environment it can access and the range of actions it can take.

Actions are the direct capabilities an agent has to influence an environment. AutoGen enables
language models to take actions using tools, which may be more or less restricted. At its most con-
strained, AutoGen can facilitate agent conversation without any action. Other implementations can
make use of registered tools, which can enable bounded actions (such as obtaining web content us-
ing a specified search engine, for example). When frameworks enable code execution, the potential
for impactful actions increases significantly. This capability allows agents to execute any software-
defined action, ranging from interacting with online resources to controlling physical actuators.

1This work is focused on informing governance of deployed AI systems. Thus, this paper builds on regula-
tory definitions of decision autonomy, leaving aside broader forms of autonomy or ‘agenticness’ (Chan et al.,
2023; Ezenkwu & Starkey, 2019).

2At the time of writing, the AutoGen repository had over 35000 stars, 5100 forks, and over 2300 dependents
on GitHub. Please see this note on governance changes in the open source project.
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Table 2: AutoGen-focused Taxonomy of Agent System Autonomy

Autonomy
Impact Oversight

Actions Environment Orchestration Human-in-
the-loop Observability

What actions
can the

system take?

In what
environment does

the system operate?

How are agent
interactions

orchestrated?

How are humans
kept in the loop?

How to monitor
the system?

Lower None
(conversation
only)

Constrained
(limits on
internet
access,
memory, and
compute)

Agent
interaction is
pre-
determined

Agent(s)
always
consult
human user

Dashboards
or
user-focused
explanations

Middle Pre-
configured
tools for
specific
actions

Protected
(Docker
container
deployment
prevents
agent from
modifying its
deployment
environment
directly)

Agent
interaction is
flexible but
bounded
(agent
interactions
are finite)

Agent(s)
consult user
for
termination
condition

Logs

Higher Code
execution
permits
arbitrary
actions

Unconstrained
(access to
both internet
and local
deployment)

Agent
interaction is
unbounded

Agent(s)
never consult
user

No logs

Deployment environments define the operational context and constraints for agent systems. By
imposing access limits, they can reduce the potential impact of an agent’s actions. The AutoGen
framework has two default configurations: local deployment or deployment to a Docker container.
In the former, tools or executed code can alter the machine where the system is deployed, introduc-
ing computer security risks. The AutoGen framework default for code execution is the latter. By
constraining the system’s environment to a Docker container, it cannot directly affect its deployment
environment, even while it can access the broader internet (by default). Docker containers can be
configured to limit network access, memory and compute resources.

In sum, impact is a function of the interplay between the actions an agent can take and the (con-
strained) environment within which it operates. For example, a Docker-deployed system without
access to tools represents a low-impact implementation, whereas a locally deployed system with
unrestricted code execution exemplifies a high-impact configuration.

OVERSIGHT concerns how developers and users may monitor and direct what an agent does.
Design decisions at both the framework and application levels will impact how a user exercises
oversight. At the framework level, these can be considered in three attributes: how agents are
orchestrated, how the user is kept in the loop, and observability of the system during operation.

Orchestration of agents within a system determines the flow of their interactions. The AutoGen
framework supports single agent chains of tasks and multi-agent interactions. Both can be pre-
determined in practice, where a developer designs a fixed flow for the agent system. Alternatively,
agent interactions can be orchestrated flexibly, changing with each system run. Such flexibility is
often bounded in practice: agent and multi-agent interaction (GroupChat) parameters govern an
interaction, namely how it ends: for agents, how many auto-replies may be given and how many
interactions total an agent may make, for GroupChat, how many rounds of interactions among all
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the agents. An interaction can be unbounded, where it does not have a set termination. At the
extreme, AutoBuild3 is an implementation that can permit the unbounded creation of sub-agents to
complete a task.

Human-in-the-loop is an express feature of the AutoGen framework. Each agent has a parameter
‘human input mode’ which can take three values: never, terminate, and always. With ‘always,’ an
agent will seek input from a human following every step, though it may continue after a delay inso-
far as the agent was initialized with an ‘auto-reply’; else, the agent will be blocked awaiting human
input. For ‘terminate’, the agent will continue until given the terminate command. With ‘never’,
the agent will never wait for human input once initialized. ‘Never’ may be common in systems
with a Society of Mind agent or otherwise Nested Chat: for example, an user-agent may interact
with the human while running numerous sub-agents without direct human input.4 In practice, this
may complicate analyzing oversight by simply looking for the presence of a human in the loop,
when a system could do so while retaining complex and possibly opaque autonomous agent inter-
actions. Understanding the needs and competence of intended users can support a better assessment
of humans-in-the-loop, although this is beyond the scope of our code inspection method.

Observability means that a user can see what an agent system is doing. The AutoGen framework
supports logging, documenting each time an agent within the system is invoked, the input, output,
time, cost, and associated identifiers. Logs may be of use to developers looking to debug an applica-
tion they are building. However, if the logs are not used further to create explanations or dashboards,
end-users may not have meaningful observability into agent actions.

See Table 2 for a summary. These attributes are not exhaustive: other aspects of agent frameworks,
downstream application development, and use influence autonomy of systems in practice. Addi-
tional considerations include affordances for systems to learn or self-improve and to take initiative
(while considering costs and benefits of interruptions, user effort, and the chance of getting mean-
ingful user input (Horvitz, 1999)). Our approach is practical rather than comprehensive: to facilitate
empirical evaluation of applications being built with agent frameworks. We offer a case study as-
sessment for AutoGen to provide an illustrative example of how the autonomy taxonomy can be
applied to agent frameworks more broadly.

4 ASSESSING AUTONOMY OF AUTOGEN APPLICATIONS

We operationalize the autonomy taxonomy by inspecting the source code for AutoGen applications.
Appendix A.2 describes code flags used for scoring. Ten AutoGen applications5 were scored by
three researchers. Consensus results are shown in Table 3 and further detail in Appendix A.2.

The analysis shows that a differentiated categorization and scoring of agent autonomy with code
inspections is tractable. The three raters demonstrated substantial inter-rater agreement (Fleiss’
k = 0.64) across all evaluation categories, indicating consistent application of the rating criteria.

The variations between AutoGen applications are notable. Flexible platform applications like Auto-
Gen Studio or Composio allow users to build specific applications with multiple degrees of auton-
omy. For example, this includes code executions, inside or outside pre-specified environments like
Docker containers. Applications range from pre-configured machine learning agent with multiple
sub-agents who build and critique code, to financial research agent and editing agent teams.

Specific applications like Dream Team for development with quality assurance or GraphRAG for
data-based reasoning are more constrained for most autonomy attributes. Potentially for their relia-
bility for a specific purpose, they operate in bounded Docker environments. However, both applica-
tions still spin up one subagent that requires a human-in-the-loop, as a fallback or main input, and
the remaining – executing – subagents human-off-the-loop.

This pilot has limitations, partly due to our small sample and partly due to the nature of code in-
spections. Inter-rater agreement varied by attribute: orchestration (k = 0.67), human-in-the-loop

3https://microsoft.github.io/autogen/blog/2023/11/26/Agent-AutoBuild/
4https://microsoft.github.io/autogen/docs/reference/agentchat/contrib/

society_of_mind_agent/
5Top 5 dependent repositories identified from AutoGen repository by stars, and 5 uniquely significant repos-

itories like AutoGen Studio.

5

https://microsoft.github.io/autogen/blog/2023/11/26/Agent-AutoBuild/
https://microsoft.github.io/autogen/docs/reference/agentchat/contrib/society_of_mind_agent/
https://microsoft.github.io/autogen/docs/reference/agentchat/contrib/society_of_mind_agent/
https://github.com/microsoft/autogen


NeurIPS Socially Responsible Language Modelling Research (SoLaR) Workshop 2024

Table 3: Scoring Autonomy of Selected AutoGen Applications

Autonomy
Impact Oversight

Actions Environment Orchestration Human-in-
the-loop Observability

Lower – 5 2, 5 5, 10 2, 4, 7, 8, 9

Middle 5, 6 4, 6 1, 3, 4, 6, 8 8 1, 3, 6, 5, 10

Higher 1, 2, 3, 4, 7, 8,
9, 10

1, 2, 3, 7, 8, 9,
10

7, 9, 10 1, 2, 3, 4, 6, 7, 9 –

Key: 1: AutoGen Studio, 2: Composio, 3: Sibyl System, 4: Dream Team, 5: GraphRag Ollama, 6: AutoTx,
7: Letta, 8: h2oGPT, 9: Langflow, 10: GPT-Academic

(k = 0.65), environment (k = 0.60), observability (k = 0.47), and action (k = 0.30), with the latter
three being below the substantial agreement threshold. Actions may be enabled not only by the
AutoGen framework but by downstream developer choices to make custom tools or use additional
frameworks, complicating review. Observability proved challenging to consistently differentiate be-
tween maintaining logs that may be useful to developers and meaningful awareness for users that
may limit autonomy in practice. Consistent assessment of the constrained environment also proved
challenging, where in some cases wider access may be possible through API calls to other systems.
Inter-rater agreements aide, additional limitations apply to the human-in-the-loop attribute. Is an
agent that requires human approval only after trying multiple different information retrieval tools
more or less autonomous than an agent that requires human approval after each mouse click? It
might depend on more granular assessments of the kind of actions before which human approval is
required.

5 CONCLUSION AND FUTURE WORK

This paper piloted a code-inspection approach to assessing agent systems for their level of autonomy.
With further development as identified below, this approach holds promise for agent assessments at
scale. Code inspection rates AI agent applications without running them, which is resource-efficient,
reduces risks associated with run-time evaluations, and can enable uniform, scaled assessments that
can inform stakeholder decisions – from model developers to policymakers. It also supports risk
assessment to inform what level of system security might be important before running them. This
method could be used to monitor the development of autonomous agent systems in the open source
ecosystem and provide a framework to assess proprietary applications given code access.

Although final results will require additional scale, this preliminary exercise identifies the relevance
of defaults in shaping responsible behavior in the AI development value chain. The AutoGen frame-
work constructed default set-ups for human oversight that were readily used by downstream devel-
opers. Most default set-ups were used consistently. There are exceptions - the Composio repository
consistently overrode defaults to use agent code execution outside a protected docker environment.
Scaling assessment can inform governance proposals to set responsible and effective defaults.

Future work will refine the code-inspection approach and subsequently scale it for all open source
AutoGen applications using AI-assisted grading methods (Eloundou et al., 2024). Autonomy levels
will be developed further to reflect internal dependencies among the impact and oversight attributes
and to better reflect literature from other fields that uses holistic and more numerous levels of auton-
omy. Code inspection results for select systems can be compared to inference-time assessments us-
ing evaluation harnesses (UK AI Safety Institute, 2024). Subsequent work can differentiate between
agent applications and platforms, and generalize this approach to assess additional frameworks.
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A APPENDIX

A.1 LEVELS OF AUTONOMY

Table 4 provides a comparative overview of autonomy levels from AI and robotics literatures.

Table 4: Taxonomy of Autonomy Levels in Various Domains
Level Autonomous

vehicles (SAE,
2021)

Medical
robots(Yang
et al., 2017)

AI: Human
oversight
(Simmler &
Frischknecht,
2021)

AI: Action
space
(LangChain,
2023)

AI: Task
evaluations
(METR, 2024)

0 No automation No autonomy No autonomy Code –
1 Assistance:

Steering-support
Assistance Human decision:

Decision-support
AI

LLM call Few minutes

2 Partial
automation:
Acceleration-
and
steering-support

Task autonomy:
Human
maintains
discrete control

Human in the
loop: Human
approves action

Chain:
AI-generated
outputs at
multiple steps,
human
specifying action
and available
actions

Several minutes
(Implement
simple programs)

3 Conditional
automation:
Autonomous
driving, human
fallback

Conditional
autonomy:
Human selects
plan, oversees
execution

Human on the
loop: Human
does not veto
action

Router:
AI-generated
steps and (single)
action decision
with human-
determined
available actions

Under an hour or
few hours
(Debugging etc.)

4 High automation:
Fallback by
system

High autonomy:
System makes
decisions under
human oversight

Human off the
loop: AI takes
action and then
informs human

State machine:
AI-generated
steps and action
decisions with
human-
determined
available actions

Day long
(Replicate ML
papers)

5 Full automation:
Unlimited
environment

Full automation Human out of the
loop: AI takes
action
independently

Autonomous:
State machine
with
AI-generated
steps and action
decisions with
unbounded
actions

Week long or
month long
(Identify
vulnerabilities in
network, exploit
them)

A.2 APPLICATION CODE INSPECTION

Table 5 shows the code flags used to conduct the code inspections. Full scoring for
the ten repositories can be found at: https://docs.google.com/spreadsheets/d/
1f7Ft24a54QapZLdAce6yIVvoyYFixarJijE39MxzMGU.
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Table 5: Code flags for scoring autonomy of selected AutoGen applications

Autonomy
Impact Oversight

Actions Environment Orchestration Human-in-
the-loop Observability

Main code flag code exec
ution config

use docker
&
browser
config

max rounds
(GroupChat)
or
max consecuti
ve auto reply

human
input mode

search for log,
display, and
reply func

Lower =False =True
&
not set

<=1 or never
called

=ALWAYS display ...
is configured

Middle =False
& system
message with
“execute the
function”

=True
&
set

>1 =TERMINATE
or mixed

Caching,
logging, or
tracing is
invoked

Higher Absence of
=False

=False Not set =NEVER No logging or
similar
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