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Abstract

Recently, interest has grown in the use of proxy
variables of unobserved confounding for inferring
the causal effect in the presence of unmeasured
confounders from observational data. One diffi-
culty inhibiting the practical use is finding valid
proxy variables of unobserved confounding to a
target causal effect of interest. These proxy vari-
ables are typically justified by background knowl-
edge. In this paper, we investigate the estimation
of causal effects among multiple treatments and
a single outcome, all of which are affected by
unmeasured confounders, within a linear causal
model, without prior knowledge of the validity
of proxy variables. To be more specific, we first
extend the existing proxy variable estimator, origi-
nally addressing a single unmeasured confounder,
to accommodate scenarios where multiple unmea-
sured confounders exist between the treatments
and the outcome. Subsequently, we present two
different sets of precise identifiability conditions
for selecting valid proxy variables of unmeasured
confounders, based on the second-order statistics
and higher-order statistics of the data, respectively.
Moreover, we propose two data-driven methods
for the selection of proxy variables and for the
unbiased estimation of causal effects. Theoretical
analysis demonstrates the correctness of our pro-
posed algorithms. Experimental results on both
synthetic and real-world data show the effective-
ness of the proposed approach.

1Department of Applied Statistics, Beijing Technology and
Business University, Beijing, China 2School of Computer Sci-
ence, Guangdong University of Technology, Guangzhou 510006,
China 3Machine Learning Department, Mohamed bin Zayed Uni-
versity of Artificial Intelligence, Abu Dhabi, UAE 4Department
of Probability and Statistics, Peking University, Beijing, China.
Correspondence to: Shanshan Luo <shanshanluo@btbu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Estimating the causal effect from observational data is a
fundamental problem in various fields of scientific research,
including social sciences (Pearl, 2009; Spirtes et al., 2000),
economics (Imbens & Rubin, 2015), public health (Hernán
& Robins, 2006a), and machine learning (Spirtes, 2010; Pe-
ters et al., 2017; Fernández-Lorı́a & Provost, 2022). Within
the framework of causal graphical models, covariate adjust-
ment, such as the use of the back-door criterion, emerges
as a powerful and primary tool for estimating causal effects
from observational data (Pearl, 2009; Van Der Zander et al.,
2019). However, although this method has been used in a
range of fields, it should be noted that biased causal effects
can arise when unmeasured confounders are present and the
covariate adjustment set does not exist in the system (Pearl,
2009; Rotnitzky & Smucler, 2020; Cheng et al., 2022).

The method of instrumental variables is a general approach
used to estimate the causal effect of interest in the pres-
ence of unobserved confounders (Pearl, 2009; Wright, 1928;
Goldberger, 1972; Bowden & Turkington, 1990). This
method has been extensively studied in practical sciences, in-
cluding economics (Imbens & Rubin, 2015; Imbens, 2014),
sociology (Pearl, 2009; Spirtes et al., 2000) and epidemiol-
ogy (Hernán & Robins, 2006b; Baiocchi et al., 2014). In
practice, it can be quite challenging to identify a valid in-
strumental variable (Pearl, 1995; Kuroki & Cai, 2005; Kang
et al., 2016; Silva & Shimizu, 2017; Gunsilius, 2021; Xie
et al., 2022a; Cheng et al., 2023). Sometimes, in the system
of interest, an instrumental variable may not even exist.

Recently, the proximal causal learning method, also referred
to as negative control, has emerged as an alternative strat-
egy to address unmeasured confounders and estimate the
unbiased causal effects of interest (Kuroki & Pearl, 2014;
Miao et al., 2016; de Luna et al., 2017; Miao et al., 2018a;b;
Wang & Blei, 2019; Shi et al., 2020a; Tchetgen et al., 2020;
Singh, 2020; Wang & Blei, 2021; Mastouri et al., 2021;
Xu et al., 2021; Shpitser et al., 2023). This method al-
lows us to infer the causal effect of interest by observing
suitable proxy variables for unmeasured confounding, with
these proxy variables often being termed Negative Controls
(NCs). NCs are readily applicable in various domains (Lip-
sitch et al., 2010; Sofer et al., 2016). For instance, one study
of the causal effect of the flu shot (Xk) on influenza-related
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hospitalization (Y ), where there exists unmeasured health-
seeking behavior (U ) (Shi et al., 2020b). The proximal
causal learning method operates on the following principles:
(i) find a variable e.g., a person’s annual wellness visit his-
tory (Z), that is influenced by confounder U and has no
direct effect on the outcome Y , referred to as the Negative
Control Exposure (NCE); (ii) find another variable, e.g.,
a person’s injury/trauma hospitalization (W ), that is influ-
enced by confounder U and is not causally affected by the
treatment Xk, referred to as the Negative Control Outcome
(NCO); and (iii) use these two proxy variables to estimate
the causal effect of flu shot on influenza-related hospital-
ization. Figure 1 illustrates the corresponding causal graph
that satisfies the above conditions respectively, with further
details in Section 2.2. However, although these methods
have been used in a range of fields, the valid proxy variables
are typically justified by background knowledge in those
works. Thus, it is vital to develop statistical methods for
selecting proxy variables of unmeasured confounding from
observational data.

UZ W

Xk Y
flu shot influenza

hospitalization

annual wellness
visit history

injury/trauma
hospitalization

(NCE) (NCO)

Figure 1. A typical confounder proxy causal diagram. Z and W
are NCE and NCO of unmeasured confounder U for the causal
relationship Xk → Y .

Recently, Kummerfeld et al. (2022) established sufficient
conditions for selecting valid NCE and NCO of one unmea-
sured confounder in a linear causal model, making valuable
contributions to the field. However, their work is limited to
single-treatment settings, where potential proxy variables
cannot directly affect both the treatment and the outcome
of interest. In reality, multiple-treatment scenarios exist,
where unmeasured confounders influence both treatments
and the outcome. For instance, in gene expression studies,
there exist multiple gene expressions may affect the trait of
a human of interest (e.g., body weight) (Miao et al., 2022).
Besides, their work only considers a particular class of proxy
variables of an unmeasured confounder, where those proxy
variables are independent of both the treatment and outcome
conditional on the unmeasured confounder while our work
does not restrict this condition. In this paper, we tackle the
challenge of proxy variable identification in a more com-
plex scenario, where the proxy variables can have effects
on the outcome, and multiple unmeasured confounders may
exist in the system. Specifically, we make the following
contributions:

1. We extend the existing proxy variable estimator that
deals with a single unmeasured confounder, as previ-
ously discussed by Kuroki & Pearl (2014), to accommo-
date scenarios where multiple unmeasured confounders

exist between treatments and the outcome.
2. We present two different sets of precise identifiability

conditions for selecting proxy variables of unmeasured
confounders, based on the second-order statistics 1 and
higher-order statistics 2, respectively.

3. We propose two efficient algorithms for selecting proxy
variables of unmeasured confounders. The first algo-
rithm leverages the rank-deficiency properties of covari-
ance matrices, while the second algorithm takes advan-
tage of the non-Gaussianity of the data. Both algorithms
consistently estimate the desired causal effect and come
with theoretical proofs that establish their correctness.

4. We demonstrate the efficacy of the proposed algorithms
on both synthetic and real-world data.

2. Preliminaries
2.1. Notations

Our work is in the framework of causal graphical models
(Pearl, 2009; Spirtes et al., 2000). In a directed acyclic graph
(DAG) G, a path is a sequence of nodes {X1, . . . , Xr} such
that Xi and Xi+1 are adjacent in G, where 1 ≤ i < r. A
collider on a path {X1, ...Xp} is a node Xi , 1 < i < p,
such that Xi−1 and Xi+1 are parents of Xi. A trek between
Xi and Xj is a path that does not contain any colliders in
G. A source in a trek is a unique node such that no arrows
point to it. We use the ordered pair of directed paths (P1, P2)
denotes a trek in G from Xi to Xj , where P1 has sink Xi,
P2 has sink Xj , and both P1 and P2 have the same source.3

Other commonly used concepts in graphical models, such as
d-separation, can be found in standard sources (Pearl, 1988;
2009; Spirtes et al., 2000).

We denote vectors and matrices by boldface letters. The
(i, j) entry of matrix M is denoted by Mi,j . The notation
|A| denotes the cardinality of set A. The notation ΣA,B

denotes the cross-covariance matrix of set A (rows) and B
(columns). The notation rk(C) denotes the rank of matrix
C, e.g., rk(ΣA,B) denotes the rank of cross-covariance
matrix of set A and B. The determinant of a matrix A is
denoted det(A). We use the notation A ⊥⊥ B|C for “A is
independent of B given C”, and A ⊥̸⊥ B|C for the negation
of the same sentence (Dawid, 1979).

2.2. Proximal Causal Learning

The proximal causal learning approach offers a new strategy
for inferring the causal effect of interest in the presence of
unmeasured confounders (Kuroki & Pearl, 2014; de Luna

1Second-order statistics means the second-order moments (like
covariances or correlations).

2Higher-order statistics means beyond the second-order mo-
ments in statistics, e.g., skewness, kurtosis, etc. of the data.

3A sink of a graph G is any node that is not a parent of any
other node.
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et al., 2017; Miao et al., 2018a; Wang & Blei, 2019; Shi
et al., 2020a; Tchetgen et al., 2020). Specifically, suppose
that Xk is the treatment, Y is the outcome, and U represents
the set of unmeasured confounders between Xk and Y . The
theory around the proximal causal learning approach says
that the target causal effect of Xk on Y can be identified
when two sets of proxy variables, Z and W, are available
for the unmeasured confounder U. In such cases, the proxy
set Z, referred to as the Negative Control Exposure (NCE),
does not causally affect the primary outcome Y , and another
proper proxy set W, called the Negative Control Outcome
(NCO), is not causally affected by the treatment Xk. The
graphical condition for NCE and NCO relative to a target
causal effect of Xk on Y is described in Definition 1, and
an illustrative example is provided accordingly.

Definition 1 (NCE and NCO (Miao et al., 2018a; Shi et al.,
2020b)). Given a target causal effect of Xk on Y in the case
where U are the set of unmeasured confounding between
Xk and Y , sets Z and W are the valid NCE and NCO
respectively if the following conditions hold:

1. Z is independent of Y conditional on (U, Xk), i.e., Z ⊥⊥
Y |(U, Xk), and

2. W is independent of (Xk,Z) conditional on U, i.e.,
W ⊥⊥ (Xk,Z)|U.

%

% %

UZ W

Xk Y

(NCE) (NCO)

Figure 2. Diagram of one possible violation of NCE and NCO
assumptions. Dashed lines represent active paths. The symbol
”%” indicates that the current active paths should not exist here.
For the rest of the paper, we will call the above two condi-
tions the graphical criteria for proxy variables validity, or
simply proximal criteria. Figure 2 is an illustration of the
NCE and NCO conditions and one potential violation of the
NCE and NCO conditions. Notice that the validity of both
proxy variables NCE and NCO are mutually dependent on
each other. Therefore, when we say that proxy variables are
valid for a causal relationship, we mean that both NCE and
NCO are valid simultaneously.

Definition 2 (Connected (Disconnected) NCE and NCO).
Assume Z and W are NCE and NCO of unmeasured con-
founders U for the causal relationship Xk → Y . We refer to
the set Z as Connected (Disconnected) NCE if Z ⊥̸⊥ Xk|U
(Z ⊥⊥ Xk|U). Similarly, we refer to the set W as Connected
(Disconnected) NCO if W ⊥̸⊥ Y |U (W ⊥⊥ Y |U).

Definition 3 (Quadruple-disconnected NC). Assume Z
and W are NCE and NCO of unmeasured confounder U
for the causal relationship Xk → Y . We say a variable Q
is a Quadruple-disconnected NC if Q ⊥⊥ Xk|U, Q ⊥⊥ Y |U,
Q ⊥⊥ Z|U, and Q ⊥⊥W|U.

Example 1. Consider the causal relationship X2 → Y
in Figure 3. X1 and X6 are valid disconnected NCE and
disconnected NCO relative to X2 → Y , respectively. Be-
cause X3 ⊥⊥ X2|U, X3 ⊥⊥ Y |U, X3 ⊥⊥ X1|U, and
X3 ⊥⊥ X6|U, X3 can serve as a Quadruple-disconnected
NC.

Proposition 1 (Proxy Variables Estimator (Kuroki &
Pearl, 2014)). Assume the system is a linear causal model,
i.e., all variables are continuous and the causal relation-
ships among variables are linear. Further, assume that there
exist one unmeasured confounder U that affects both treat-
ment Xk and outcome Y , and that Z and W are NCE and
NCO of confounder U , e.g., the causal graph in Figure 1,
the unbiased estimator for the causal effect βXk→Y of Xk

on Y is as follows,

βXk→Y =
σXkY σWZ − σXkWσY Z

σXkXk
σWZ − σXkWσXkZ

(1)

where σXkY is the covariance between Xk and Y , etc.

It is worth noting that this standard estimator is only ap-
plicable in the case of a single U . For scenarios involving
multiple confounders U, please refer to the extended esti-
mator introduced in Section 3.

2.3. Model Definition

In this paper, let X = {X1, . . . , Xp}⊺ denote a vector
of p-dimensional treatments, Y denote an outcome, and
U = {U1, . . . , Uq}⊺ denote a vector of q-dimensional un-
measured confounders. Analogous to Wang & Blei (2019);
Ogburn et al. (2019); D’Amour (2019b), we consider the
case that U affects both treatments X and outcome Y . With-
out loss of generality, we assume that all variables have a
zero mean. We here restrict our attention to a linear acyclic
causal model,

X = BX+CU+ εX, cij ̸= 0,

Y = β⊺X+ δ⊺U+ εY , δi ̸= 0,
(2)

where β is the column vector that signifies the causal effects
of interest. The noise terms in εX and U are independent
of each other, εY is independent of X and U. We assume
that the generating process is recursive. That is to say, the
causal relationships among variables can be represented by
a DAG (Pearl, 2009; Spirtes et al., 2000).

In contrast to the single-treatment model studied in Kummer-
feld et al. (2022), where potential variables cannot directly
influence the treatment and outcome of interest, our work
explores a more general scenario. In our study, the system
of interest accommodates multiple unmeasured confounders
and multiple treatments, where latent variables can have
a direct effect on both the treatment and the outcome of
interest. Figure 3 provides a simple graph that satisfies
our model while violating the model in Kummerfeld et al.
(2022), where the variables Xi, i = 1, . . . , 6 are potential
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treatments, Y is the outcome, and U is an unmeasured con-
founder.

U

X1 X2 X3 X4 X5 X6 Y

Figure 3. A simple causal graph involving 6 potential treatments
and one outcome.

For convenience, we further assume that the number of
unmeasured confounders is known. When the number of
confounders is unknown, consistent estimation of the num-
ber of confounders has been well-established by Bai & Ng
(2002) under factor models. In practical applications, one
may directly use open-source software, to perform a signifi-
cance test to determine whether the number of confounders
in a factor model is sufficient to capture the full dimensional-
ity of the dataset, as stated in Miao et al. (2022). Notice that
the model of Equation 2 assumes that U affects both treat-
ments X and outcome Y , i.e., all entries of C are non-zero,
as the studied in Kummerfeld et al. (2022). In Appendix H,
we explored a scenario in which, after applying certain nec-
essary preprocessing steps, our theory remains applicable,
even when certain entries of C are zero.

Goal: The goal of this paper is to identify sets NCE and
NCO of unmeasured confounders that satisfy proximal cri-
teria for a given casual relationship Xk → Y,Xi ∈ X
and estimate the total causal effect of treatment Xi on Y
simultaneously.

Remark 1. In the problem described above, conventional
constraint-based causal discovery methods that account for
unmeasured confounders, such as the FCI (Fast Causal In-
ference) algorithm (Spirtes et al., 1995; Zhang, 2008) or
its variants, like the RFCI algorithm (Really Fast Causal
Inference) (Colombo et al., 2012), result in a fully con-
nected causal graph. This occurs because unmeasured
confounders U affect both the treatments X and Y . As
a result, it becomes challenging to identify valid Negative
Control Exposure (NCE) and Negative Control Outcome
(NCO) for unmeasured confounders from the resulting (fully
connected) graph.

3. Extended Proxy Variables Estimator with
Multiple Unmeasured Confounders

In this section, we will extend the existing proxy variable
estimator with a single unmeasured confounder (Proposition
1) to handle the case when there exist multiple unmeasured
confounders between treatment and outcome. Specifically,
we build upon the work of Kuroki & Pearl (2014) on the
proxy variable estimator with an unmeasured confounder

and extend it to include multiple unmeasured confounders
in the case of a linear causal model. To improve readability,
we defer all proofs to Appendix K.

Proposition 2 (Extended Proxy Variables Estimator). As-
sume the system is a linear causal model, i.e., all variables
are continuous and the causal relationships among vari-
ables are linear, and assume there exist q unmeasured con-
founders, denoted by U, that affect both treatment Xk and
outcome Y . Let Z with |Z| = q and W with |W| = q
be two valid NCE and NCO of U respectively. Thus, the
unbiased estimator for the total causal effect βXk→Y of Xk

on Y is as follows,

βXk→Y =
det(Σ{Xk∪Z},{Y ∪W})

det(Σ{Xk∪Z},{Xk∪W})
. (3)

Proposition 2 asserts that, given two valid q-dimensional
NCE and q-dimensional NCO for the causal relationship
Xk → Y when there exist q-dimensional unmeasured con-
founders, then the total causal effect of Xk on Y can be
consistently estimated using Eq. 3. Note that if the dimen-
sion of NCE and NCO is less than q, the estimated βXk→Y

will be biased (see an example described in Appendix. A).

Remark 2. If q = 1, i.e., there exists only one unmeasured
confounder between Xk and Y , the estimator in Proposition
2 is equal to the estimator in Proposition 1.

Remark 3. According to Proposition 2, for a given
causal relationship Xk → Y , the necessary condi-
tions for the NCE Z and NCO W to be valid are that
Σ{Xk,Z},{Y,W} and Σ{Xk,Z},{Xk,W} both are full rank,
i.e., rk(Σ{Xk,Z},{Y,W}) = q + 1, rk(Σ{Xk,Z},{Xk,W}) =
q + 1.

4. Identifiability with Second-Order Statistics
In this section, we first investigate the identifiability of the
proxy variables in the model described in Eq. 2 with second-
order statistics. Then, we provide a data-driven method for
selecting valid proxy variables (i.e., NCE and NCO) of each
treatment Xk on outcome Y and obtaining its corresponding
unbiased causal effect of Xk on Y simultaneously. All
proofs are included in Appendix K.

4.1. Identification of Proxy Variables with
Second-Order Statistics

In this section, we investigate the identifiability of proxy
variables using second-order statistics. Before giving our
main results, we first introduce the concept of rank con-
straints (which is an extension of the famous Tetrad con-
straints presented in Spearman (1928)), which is an essential
constraint that leverages the second-order statistics derived
from the data (Sullivant et al., 2010; Spirtes, 2013).

Definition 4 (Rank Constraint). Suppose all variables
follow the linear acyclic causal model. Let A and B be two
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Figure 4. A linear causal model with any of the graphical structures above entails all possible rank constraints in the marginal covariance
matrix of {Xk, Y, Z,W}.

sets of random variables. A rank constraint in the submatrix
of the covariance matrix rk(ΣA,B) is any constraint of the
type rk(ΣA,B) ≤ r, where r is some constant.

It is noteworthy that if one uses rank constraints to struc-
tural constraints with unobserved variables, the rank-faithful
assumption is necessary (Spirtes, 2013).
Definition 5 (rank-faithfulness). Let a probability distribu-
tion P be rank-faithful to a DAG G if every rank constraint
on a sub-covariance matrix that holds in P is entailed by
every linear structural equation model with respect to G.
The rank-faithfulness assumption allows us to use the rank-
deficiency constraints to impose structural constraints with
unobserved variables. Intuitively speaking, the set of values
of free parameters for which rk(ΣA,B) ≤ r has a Lebesgue
measure of 0. Note that this assumption does not restrict the
data distribution, making it a distribution-free assumption.
Furthermore, the practicality of rank-faithfulness has been
demonstrated through simulation results and applications in
Kummerfeld & Ramsey (2016); Xie et al. (2022b); Huang
et al. (2022), as well as in our paper. For a further discussion
of rank-faithfulness assumptions, please refer to Section 4
in Spirtes (2013) for more details.

A Motivating Example: Before showing the theoretical re-
sults, we give a simple example to illustrate the basic idea.
Consider the causal diagram in Figure 3. We observe a
causal relationship X2 → Y . In this case, X1 and X6 serve
as valid NCE and NCO, respectively, for this causal relation-
ship. The cross-covariance matrix Σ{X2,X3,X1},{X2,Y,X6}
is singular, that is,

det(Σ{X2,X3,X1},{X2,Y,X6}) = 0. (4)

By Eq.4, we quickly know that
rk(Σ{X2,X3,X1},{X2,Y,X6}) ≤ 2. We introduce an
edge X1 → Y in the graph of Figure 3, causing X1 and X6

to become invalid NCE and NCO, respectively, concerning
the causal relationship X2 → Y . The cross-covariance
matrix Σ{X2,X3,X1},{X2,Y,X6} will no longer have a
vanishing determinant, and instead,

det(Σ{X2,X3,X1},{X2,Y,X6}) ̸= 0. (5)

That is to say, Σ{X2,X3,X1},{X2,Y,X6} is full rank. Assum-
ing the distribution is rank-faithful to the graph, the above
facts show that lack of edge X1 → Y , i.e., the variable of
NCE does not causally affect the primary outcome, has a
testable implication.

We now investigate the conditions under which the valid

NCE and NCO of unmeasured confounder U relative to a
causal relationship Xk → Y can be identified in terms of
rank constraints. To estimate the causal effect of Xk ∈ X
on Y in the system, according to Proposition 2, the minimal
condition is as follows,

Assumption 1. For a given causal relationship Xk → Y in
the system, there exist at least q variables in X that qualify
as NCE and q variables in X that qualify as NCO.

Assumption 1 is a very natural condition that one expects to
hold. This is because if Assumption 1 fails, i.e., there are no
valid sets of NCE and NCO for the causal relationship in the
system, then we can not estimate the unbiased causal effect
of interest using the extended proxy variables estimator.
Unfortunately, Assumption 1 is an insufficient condition
for identifying the sets of NCE and NCO in terms of rank
constraints. An illustrative example is given below.

Example 2 (Counterexample). Consider the causal dia-
grams shown in Figure 4. Assume that the data are gener-
ated from a linear causal model and rank-faithfulness holds.
We find that all possible rank constraints are full-rank (no
rank-deficiency) in the marginal matrix of {Xk, Y, Z,W},
e.g., rk(Σ{Xk,Y },{Z,W}) = 2 in three subgraphs. How-
ever, according to proximal criteria, we know that only in
subgraph (a), Z and W are NCE and NCO of unmeasured
confounder U for the causal relationship Xk → Y , while
they are not in other subgraphs (b) and (c). The above facts
imply that one can not identify valid NCE and NCO using
rank constraints under Assumption 1.

We next give two sufficient conditions that render the sets of
NCE and NCO of the unmeasured confounders U relative
to a causal relationship Xk → Y identifiable, respectively.

Assumption 2. For a given causal relationship Xk → Y
in the system, the following conditions hold: i) there exist at
least q variables in X that qualify as NCE and q variables
in X that qualify as NCO, and ii) there exist at least one
Quadruple-disconnected NC relative to Xk → Y .

Assumption 2 says that apart from satisfying the minimum
number of NCE and NCO, the system also requires at least
one additional Quadruple-disconnected NC. Assumption 2
is much milder than the assumptions considered in Kummer-
feld et al. (2022), since for a causal relationship Xk → Y in
the presence of one unmeasured confounder, we only need
one Quadruple-disconnected NC, one unrestricted NCE,
and one unrestricted NCO, while they need three Quadruple-
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disconnected NCs. Roughly speaking, the existence of a
quadruple disconnected negative control, termed as Q, sim-
plifies the condition testing in the proximal criteria. That is
to say, when verifying the two criteria of proximal criteria,
that is, when finding two Rank-Deficiency Constraints, it is
only necessary to add this variable to the rows and columns
of the cross-covariance matrix. For example, the variable
X3 in Example 3 is a quadruple disconnected negative con-
trol.

Lemma 1. Assume that the input data X and Y strictly
follow the Equation 2 and the rank-faithfulness holds. If
Assumption 2 holds, then the underlying NCE and NCO
relative to the causal relationship Xk → Y can be identified
by using the following rule.
R1. Let A and B be two disjoint subsets of X, where |A| =

q and |B| = q. Furthermore, let Q be a variable in
{X\{A∪B∪Xk}}. If 1) rk(Σ{Xk,Q,A},{Xk,Y,B}) ≤
q + 1, and 2) rk(Σ{Xk,A},{Q,B}) ≤ q, then A and B
are valid NCE and NCO relative to Xk → Y respec-
tively.

Example 3 (R1). Let’s consider the causal diagram
shown in Figure 3. We consider the causal relationship
X2 → Y (Assumption 2 holds for X2 → Y ). Let
A = {X1}, B = {X6}, and Q = X3. We check R1
and obtain that 1) rk(Σ{X2,X3,X1},{X2,Y,X6}) ≤ 2, and 2)
rk(Σ{X2,X1},{X3,X6}) ≤ 1. These facts imply that X1 and
X6 are valid NCE and NCO relative to X2 → Y , respec-
tively.

We next introduce another sufficient condition when there
is no proper Quadruple-disconnected NC mentioned in As-
sumption 2 in the system.

Assumption 3. For a given causal relationship Xk → Y
in the system, there exist at least q + 1 variables in X that
qualify as NCE and q + 1 variables in X that qualify as
NCO.

Assumption 3 states that apart from satisfying the minimum
number of NCE and NCO, i.e., q NCE and q NCO, the
system also requires at least one additional NCE and one
additional NCO.

Lemma 2. Assume that the input data X and Y strictly
follow the Equation 2 and the rank-faithfulness holds. If
Assumption 3 holds, then the underlying NCE and NCO
relative to the causal relationship Xk → Y can be identified
by using the following rule.
R2. Let A and B be two disjoint subsets of X, where |A| =

q+1 and |B| = q+1. If 1) rk(Σ{Xk,A},{Xk,Y,B}) ≤
q + 1, and 2) rk(Σ{Xk,A},B) ≤ q, then A and B are
valid NCE and NCO relative to Xk → Y respectively.

Example 4 (R2). Continue to consider the causal di-
agram shown in Figure 3. We now consider the
causal relationship X6 → Y . Let A = {X4, X5},

and B = {X1, X2}. We check R2 and obtain
that 1) rk(Σ{X6,X4,X5},{X6,Y,X1,X2}) ≤ 2, and 2)
rk(Σ{X6,X4,X5},{X1,X2}) ≤ 1. These facts imply that
{X4, X5} and {X1, X2} are valid NCE and NCO relative
to X6 → Y respectively.

Building upon Lemmas 1 and 2, we provide graphical con-
ditions that are sufficient for the identifiability of NCE and
NCO in terms of rank constraints.

Theorem 1 (Identifiability of NCE and NCO with Rank
Constraints). Assume that the input data X and Y strictly
follow the Equation 2 and the rank-faithfulness holds. Then
the underlying NCE and NCO relative to the causal rela-
tionship Xk → Y can be identified if Assumption 2 or 3 is
satisfied.

4.2. Algorithm

In this section, we will leverage the above theoretical results
and propose a data-driven method called Proxy-Rank to
estimate the total causal effects of treatment Xk ∈ X on
outcome Y :

Proxy-Rank algorithm

1. Given a p-dimensional treatments X, outcome Y , the
number of unmeasured confounders q. Initialize the
sets of NCE, and NCO, causal effect, asNCE ,NCO,
and C, respectively, with an empty set, i.e.,NCE := ∅,
NCO := ∅, and C := ∅.

2. Find valid NCE and NCO of unmeasured confounder U
relative to per causal relationship Xk → Y according
to Lemmas 1 and 2.

3. Estimate the corresponding unbiased causal effect by
Proposition 2 given NCE and NCO for per causal
relationship Xk → Y . Otherwise, output a value
(NA) indicating the lack of knowledge to obtain the
unbiased causal effect.

The specific details of algorithm execution are provided in
the Appendix E.

We now show the correctness of the proposed algorithm.
That is to say, for the causal relationships of interest, our
algorithm outputs the true proxy variables and the unbiased
estimation of causal effects.

Theorem 2 (Correctness). Assume that the data Y and
X strictly follow the Equation 2 and the rank-faithfulness
holds. Given infinite samples, the Proxy-Rank algorithm
outputs the true causal effect C correctly.

For more discussion on the consistency result and conver-
gence rate of the above theorem, please refer to Appendix
G.

We finally analyze the complexity of the Proxy-Rank algo-
rithm. Let q be the number of latent confounders, and p be
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the number of treatments. There are two dominant parts.
One dominant part is to checkR1 of Lemma 1 with worst-
case complexity isO

(
p!

q!·q!·(p−2q−1)!

)
. The other dominant

part is to checkR2 of Lemma 2 with worst-case complexity
is also O

(
p!

q!·q!·(p−2q−1)!

)
. Hence, the worst-case complex-

ity of the Proxy-Rank algorithm is O
(

p!
q!·q!·(p−2q−1)!

)
.

5. Identifiability with Higher-Order Statistics
In the above section, we have shown that the proxy variables
can be identified with the help of rank constraints of the
covariance matrix (second-order statistics) under some mild
assumptions. However, if Assumption 2 or Assumption 3 is
violated, e.g., the dimension of the sets of NCE and NCO are
exactly q, the underlying NCE and NCO are not guaranteed
to be identified with second-order statistics. To tackle this
issue, below we show that we can benefit from higher-order
statistics of the noise terms. Then, we provide another data-
driven method with higher-order statistics for selecting valid
proxy variables for a given causal relationship Xk → Y and
obtaining its unbiased causal effect of Xk on Y .

5.1. Identification of Proxy Variables with Higher-Order
Statistics

We assume the model of interest is a linear causal model
with non-Gaussian error terms (also known as Linear, Non-
Gaussian, Acyclic Model, shortly LiNGAM) (Shimizu et al.,
2006). Specifically, the assumption is as follows,

Assumption 4. The noise terms of variables follow non-
Gaussian distributions.

Assumption 4 states the non-Gaussianity of data, which
is expected to be ubiquitous, due to Cramér Decomposi-
tion Theorem (Cramér, 1962), as stated in Spirtes & Zhang
(2016). Within the framework of this assumption, a signifi-
cant body of research has already been initiated (Hyvärinen
et al., 2010; Wang & Drton, 2020; Salehkaleybar et al., 2020;
Zhao et al., 2022). For further reference, we recommend
consulting the work of Shimizu (2022).

We next introduce an important constraint, Generalized Inde-
pendent Noise (GIN) (which is an extension of the familiar
Independent Noise (IN) constraint presented in Shimizu
et al. (2011)), which is an essential constraint that exploits
the non-Gaussianity (higher-order statistics) from data (Xie
et al., 2020; Cai et al., 2019; Xie et al., 2023).

Definition 6 (GIN Condition). Suppose all variables follow
the linear non-Gaussian acyclic causal model. Let Y , Z be
two sets of random variables. We say that (Z,Y) follows the
GIN condition if and only if ω⊺Y ⊥⊥ Z , where ω satisfies
ω⊺E(YZ⊺) = 0 and ω ̸= 0.

By Darmois–Skitovich theorem (Darmois, 1953; Skitovitch,

1953)4, GIN (that is linear transformation ω⊺Y ⊥⊥ Z) im-
plies that ω⊺Y shares no common non-Gaussian exogenous
noise components with Z .

A Motivating Example: To illustrate the intuitions behind
it, we will begin by providing a straightforward example
before presenting the theoretical results. Let’s consider the
causal relationship Xk → Y shown in Figure 4. Assume
that the data are generated from a linear causal model with
non-Gaussian error terms. In the subgraph (a), Z and W
are the valid NCE and NCO for the causal relationship
Xk → Y . We have that ({Xk, Z}, {Xk, Y,W}) follows
the GIN constraint, as explained below. The causal models
of latent variables is U = εU , and {Xk, Y,W} and {Xk, Z}
can then be represented asXk

Y
W


︸ ︷︷ ︸

Y

=

1 0
β c+ fd
0 d

[
Xk

U

]
+

 0
fεW + εY

εW


︸ ︷︷ ︸

EY

,

[
Xk

Z

]
︸ ︷︷ ︸

Z

=

[
1 0
0 a

] [
Xk

U

]
+

[
0
εZ

]
︸ ︷︷ ︸
EZ

.

According to the above equations, ω⊺E(YZ⊺) = 0⇒ ω =
(dβ,−d, c+df)⊺. Then we can see ω⊺Y = ω⊺EY = cεW−
dεY . By Darmois–Skitovich theorem, ω⊺Y is independent
of Z because there is no common non-Gaussian noise terms
between cεW − dεY and Z (including noise terms εU and
εZ). That is to say, ({Xk, Z}, {Xk, Y,W}) follows the
GIN constraint.

Next, we discuss the subgraph (b), where Z and W are the
invalid NCE and NCO, respectively, concerning the causal
relationship Xk → Y . {Xk, Y,W} and {Xk, Z} can then
be represented asXk

Y
W


︸ ︷︷ ︸

Y

=

1 0
β c+ fd+ ag
0 d

[
Xk

U

]
+

 0
fεW + aεZ + εY

εW


︸ ︷︷ ︸

EY

,

[
Xk

Z

]
︸ ︷︷ ︸

Z

=

[
1 0
0 a

] [
Xk

U

]
+

[
0
εZ

]
︸ ︷︷ ︸
EZ

.

We have ω⊺Y is dependent of Z because there exists
common non-Gaussian noise terms εZ between ω⊺Y and
Z , no matter ω⊺E(YZ⊺) = 0 or not. That is to say,
({Xk, Z}, {Xk, Y,W}) violates the GIN constraint. As-
suming the distribution is rank-faithful to the graph, the
above facts show that the lack of edge Z → Y , i.e., the vari-
able of NCE does not causally affect the primary outcome,

4Assume that V1 and V2 are linear combinations of independent
noise terms εi(i = 1, ..., n). If V1 and V2 are statistically indepen-
dent, there are no common non-Gaussian noise terms between V1

and V2. See Theorem 6 of Appendix. K.
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has a testable implication with the help of non-Gaussianity.
For further details regarding the above example, please refer
to the Appendix. C.

We now demonstrate that if valid NCE and NCO relative to
a causal relationship Xk → Y exist (Assumption 1 holds),
we can identify them using GIN constraints.

Lemma 3. Assume that the input data X and Y strictly
follow the Equation 2 and the rank-faithfulness holds. If
Assumptions 1 and 4 hold, then the underlying NCE and
NCO relative to the causal relationship Xk → Y can be
identified by using the following rule.

R3. Let A and B be two disjoint subsets of X, where |A| =
q and |B| = q. If 1) ({Xk,A}, {Xk, Y,B}) follows
the GIN constraint, and 2) (B, {Xk,A}) follows the
GIN constraint, then A and B are valid NCE and NCO
relative to Xk → Y respectively.

Note that the result of Lemma 3 does not strictly require
adherence to Assumption 3-that is, not all noise variables
need to follow a non-Gaussian distribution. For further
discussion, please see Appendix D.

Example 5 (R3). Consider the causal diagram shown
in Figure 3. We consider the causal relationship X2 →
Y . Assume that the data are generated from a lin-
ear non-Gaussian acyclic causal model. Let A =
{X1}, and B = {X6}. We check R3 and obtain that
({X2, X1}, {X2, Y,X6}) follows the GIN constraint, and
2) that (X6, {X2, X1}) follows the GIN constraint. These
facts imply that X1 and X6 are valid NCE and NCO relative
to X2 → Y respectively.

Based on Lemma 3, we present the identifiability of NCE
and NCO in terms of GIN constraints.

Theorem 3 (Identifiability of NCE and NCO with GIN
Constraints). Assume that the input data X and Y strictly
follow the Equation 2 and the rank-faithfulness holds. Fur-
thermore, assume Assumption 4 holds. Then the underlying
NCE and NCO relative to the causal relationship Xk → Y
can be identified if Assumption 1 holds.

5.2. Algorithm

In this section, we will leverage the above the-
oretical results and propose another data-driven
method called Proxy-GIN to estimate the total
causal effects of treatment Xk ∈ X on outcome Y :

Proxy-GIN algorithm

1. Given a p-dimensional treatments X, outcome Y , the
number of unmeasured confounders q. Initialize the
sets of NCE, and NCO, causal effect, asNCE ,NCO,
and C, respectively, with an empty set, i.e.,NCE := ∅,
NCO := ∅, and C := ∅.

2. Find valid NCE and NCO of unmeasured confounder U
relative to per causal relationship Xk → Y according
to Lemmas 3.

3. Estimate the corresponding unbiased causal effect by
Proposition 2 given NCE and NCO for per causal re-
lationship Xk → Y . Otherwise, output a value (NA)
indicating the lack of valid NCE and NCO for this
causal relationship Xk → Y to obtain the unbiased
causal effect.

The specific details of algorithm execution are provided in
the Appendix F.

We now show that, in the large sample limit, for the causal
relationships of interest, our algorithm outputs the true proxy
variables and the unbiased estimation of causal effect.

Theorem 4 (Correctness). Assume that the input data
X and Y strictly follow the Equation 2 and the rank-
faithfulness holds. Furthermore, assume that Assumption
4 holds. Given infinite samples, the Proxy-GIN algorithm
outputs the true causal effect C correctly.

We finally analyze the complexity of the Proxy-GIN al-
gorithm. Let q be the number of latent confounders,
and p be the number of treatments. The dominant
part is to check R3 of Lemma 3 with worst-case
complexity is O

(
p!

(q+1)!·(q+1)!·(p−2q−3)!

)
. Hence, the

worst case complexity of the Proxy-GIN algorithm is
O
(

p!
(q+1)!·(q+1)!·(p−2q−3)!

)
.

6. Experimental Results on Synthetic Data
In this section, we evaluate the performance of the proposed
methods in estimating causal effects from synthetic data.
We here consider the following two typical settings: Gaus-
sian case: The data are generated according to the causal
graph in Figure 3, with the noise terms being generated
from standard normal distributions; Non-Gaussian case:
The data are generated according to the graph obtained by
removing variable X3 from Figure 3, with the noise terms
being generated from standard exponential distributions. In
three cases, the connected coefficient βk is sampled from a
uniform distribution between [−1, 1]. Note that in the Gaus-
sian case, either Assumption 2 or 3 holds for the causal
relationships X2 → Y , X5 → Y , and X6 → Y . However,
in the non-Gaussian case, both Assumption 2 and 3 are
violated for the causal relationships X2 → Y and X5 → Y ,
but Assumption 1 holds. As a result, we will focus on these
three causal relationships in this context.

The methods we compare against are: 1) NAIVE, the least-
squares regression coefficient of Y on Xk ∈ X; 2) FindNC,
the algorithm 1 of in (Kummerfeld et al., 2022) + standard
confounder proxy estimator; 3) Proxy-Rank, our method,
using T. W. Anderson’s canonical correlation-based rank

8
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Figure 5. Performance of NAIVE, FindNC, Proxy-Rank, and Proxy-GIN on the Gaussian case.
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Figure 6. Performance of NAIVE, FindNC, Proxy-Rank, and Proxy-GIN on the Non-Gaussian case.

test (Anderson, 1984) to evaluate the Rank constraint, and 4)
Proxy-GIN, our method, using HSIC-based independence
test (Zhang et al., 2018) to evaluate the GIN constraint, due
to the non-Gaussianity of the data. For the sake of compari-
son, if the algorithm fails to find the valid NCE and NCO
for a causal relationship, we will randomly select variables
as NCE and NCO to estimate the causal effect of interest.
Each experiment was repeated 100 times with randomly
generated data and the results were averaged. The sample
size is selected from {1, 000(1k), 3, 000(3k), 5, 000(5k)}.
The source code is in the Supplementary file.

Figures 5 ∼ 6 summarize the bias of the estimators of each
parameter. As expected, our proposed Proxy-Rank algo-
rithm almost outperforms other methods (with little bias
for all causal effects) in all two cases (except for βX2→Y

and βX5→Y in the Non-Gaussian case), with all sample
sizes. The reason that βX2→Y and βX5→Y cannot be con-
sistently estimated by the Proxy-Rank algorithm is that, in
the Non-Gaussian case, there are no valid NCE and NCO
for the causal relationship X2 → Y and X5 → Y in the
ground-truth graph. The Proxy-GIN algorithm outperforms
the NAIVE algorithm and the FindNC algorithm in non-
Gaussian cases, with all sample sizes, which verifies the
correctness of the Proxy-GIN algorithm. The the NAIVE
algorithm and FindNC algorithm are expected to perform
poorly, since there exists unmeasured confounder U and
the FindNC algorithm needs three Quadruple-disconnected
NCs for per causal relationships. More experimental results
are provided in Appendix I.
7. Experimental Results on Real-world Data
In this section, we apply the proposed methods to analyze
the causal effects of gene expressions on the body weight

of F2 mice using the mouse obesity dataset as described by
Wang et al. (2006). The dataset we used comprises 17 gene
expressions that are known to potentially influence mouse
weight, as reported by Lin et al. (2015). Additionally, it
includes body weight as the outcome variable and data col-
lected from 227 mice. As discussed in Miao et al. (2022),
gene expression studies like this one may encounter unmea-
sured confounding issues stemming from batch effects or
unobserved phenotypes.

Following the analysis conducted by Miao et al., we assume
that there is only one latent variable underlying the com-
mon influence, and the data generation mechanism adheres
to a linear causal model. We observed that the majority
of our findings align with those presented by Miao et al.
(2022). For instance, the gene expressions Gstm2, Sirpa,
and 2010002N04Rik exhibit positive and significant effects
on body weight, whereas the gene expression Dscam demon-
strates a negative impact on body weight. Detailed results
and analysis are included in Appendix J.

8. Conclusion
This paper focuses on the identifiability conditions for select-
ing proxy variables for unmeasured confounders in observa-
tional data. Initially, we introduce an extended proxy vari-
able estimator to handle multiple unmeasured confounders
between treatments and outcomes. Subsequently, we pro-
vide two specific identifiability conditions based on second-
order and higher-order statistics. Additionally, the paper
proposes two efficient algorithms for selecting proxy vari-
ables, utilizing Rank-deficiency and GIN properties, with
their effectiveness substantiated by experimental results.
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A. More Details on Extended Proxy Variables Estimator
We provide simulation results to demonstrate that when the dimension of NCE and NCO is lower than the number of
unmeasured confounders, the estimated causal effect becomes biased when using a standard proxy variable estimator
(Proposition 1). In particular, we examine the causal relationship Xk → Y depicted in Figure 7. We consider different
quantities of unmeasured confounders, denoted as q = 1, 2, 3, 4. We employ the following estimators:

• The Traditional Proxy Variables Estimator described in Proposition 1, which is given by:

βXk→Y =
σXkY σW1Z1

− σXkW1
σY Z1

σXkXk
σW1Z1

− σXkW1
σXkZ1

. (6)

• The Extended Proxy Variables Estimator described in Proposition 2, which is expressed as:

βXk→Y =
det(Σ{Xk∪Z},{Y ∪W})

det(Σ{Xk∪Z},{Xk∪W})
, (7)

where Z = {Z1, . . . , Zq} and W = {W1, . . . ,Wq}.

U
U1

... Uq

Zq... Xk
...Y W1Z1 Wq

β

(c)

Figure 7. Causal Diagram used in our simulation studies, where q = 1, 2, 3, 4.

Figures 8 summarizes the bias of the estimators of each parameter. As expected, our proposed Extended Proxy Variables
Estimator outperforms Traditional Proxy Variables Estimator (with little bias for the causal effect of Xk on Y ) when the
number of unmeasured confounders is greater or equal to 2.

1 2 3 4
Num. Confounders

−1.0

−0.5

0.0

0.5

1.0
traditional
extended

Figure 8. Performance of extended estimator and traditional estimator with varying numbers of unmeasured confounders.

B. More Details on the Motivating Example for Second-Order Statistics (in Section 4.1)
In this section, we will give the details of the motivating example described in Section 4.1.
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Figure 9. A simple causal graph involving 6 potential treatments and one outcome.

We assume that all random variables have mean zero for simplicity.

Structure (a): Since the variables strictly follow the linear causal model, we obtain

U = εU ,

X1 = c1U + εX1 = c1εU + εX1 ,

X2 = c2U + b21X1 + εX2 = (c1b21 + c2)εU + b21εX1 + εX2 ,

X3 = c3U + εX3 = c3εU + εX3 ,

X4 = c4U + εX4 = c4εU + εX4 ,

X5 = c5U + b54X4 + εX5 = (c5 + c4b54)εU + b54εX4 + εX5 ,

X6 = c6U + b65X5 + εX6

= (c6 + b65c5 + b65c4b54)εU + b65b54εX4 + b65εX5 + εX6 , (8)
Y = δU + β6X6 + β2X2 + εY

= [δ + β6(c6 + b65c5 + b65c4b54) + β2c1b21] εU + β2b21εX1 + β2εX2

+ β6b65b54εX4 + β6b65εX5 + β6εX6 + εY . (9)

We now consider the causal relationship X2 → Y in Figure 9(a). X1 and X6 are the valid NCE and NCO for the causal rela-
tionship X2 → Y , respectively. We have the vanishing determinants on the cross-covariance matrix Σ{X2,X3,X1},{X2,Y,X6},
i.e.,

det(Σ{X2,X3,X1},{X2,Y,X6}) = det(

σX2X2 σX2Y σX2X6

σX3X2 σX3Y σX3X6

σX1X2
σX1Y σX1X6

) = 0 (10)

By Eq.10, we quickly know that rk(Σ{X2,X3,X1},{X2,Y,X6}) ≤ 2. We next add an edge X1 → Y to Figure 9(a) such that
X1 and X6 are the invalid NCE and NCO relative to the causal relationship X2 → Y (as shown in Figure 9(b)). Now, the
vanishing determinant on the cross-covariance matrix Σ{X2,X3,X1},{X2,Y,X6} will fail, i.e.,

det(Σ{X2,X3,X1},{X2,Y,X6}) = det(

σX2X2
σX2Y σX2X6

σX3X2
σX3Y σX3X6

σX1X2 σX1Y σX1X6

)
= σ2

Uσ
2
X1

σ2
X2

c3β1(c4b54b65 + c5b65 + c6) ̸= 0 (11)

That is to say, Σ{X2,X3,X1},{X2,Y,X6} is full rank. Assuming the distribution is rank-faithful to the graph, the above facts
show that lack of edge X1 → Y , i.e., the variable of NCE does not causally affect the primary outcome, has a testable
implication.

C. More Details on the Motivating Example for Higher-Order Statistics (in Section 5.1)
In this section, we will give the details of another motivating example described in Section 5.1.

We assume that all random variables have mean zero for simplicity. We consider the linear causal model with non-Gaussian
noise terms.
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Figure 10. A linear causal model with any of the graphical structures above entails the same rank constraints in the marginal covariance
matrix of {Xk, Y, Z,W}, but it entails different GIN constraints.

Structure (a): Since the variables strictly follow the linear causal model, we obtain

U = εU ,

Z = aU + εZ = aεU + εZ ,

W = dU + εW = dεU + εW ,

Xk = bU + eZ + εXk
= (ae+ b)εU + eεZ + εXk

,

Y = cU + βXk + fW + εY

= (ae+ b+ c+ df)εU + eβεZ + βεXk
+ fεW + εXk

. (12)

1). By the above equations, {Xk, Y,W} and {Xk, Z} can then be represented asXk

Y
W


︸ ︷︷ ︸

Y

=

1 0
β c+ fd
0 d

[
Xk

U

]
+

 0
fεW + εY

εW


︸ ︷︷ ︸

EY

, (13)

[
Xk

Z

]
︸ ︷︷ ︸

Z

=

[
1 0
0 a

] [
Xk

U

]
+

[
0
εZ

]
︸ ︷︷ ︸
EZ

, (14)

According to the above equations, ω⊺E[YZ⊺] = 0⇒ ω = [dβ,−d, c+df ]⊺. Then we can see ω⊺Y = ω⊺EY = cεW −dεY .
By Darmois–Skitovich theorem, ω⊺Y is independent of Z because there is no common non-Gaussian noise terms between
cεW − dεY and Z (including εU and εZ). That is to say, ({Xk, Z}, {Xk, Y,W}) follows the GIN constraint.

2). {Xk, Z} and W can then be represented as[
Xk

Z

]
︸ ︷︷ ︸

Y

=

[
ae+ b

a

] [
U
]
+

[
eεZ + εXk

εZ

]
︸ ︷︷ ︸

EY

, (15)

[
W

]︸︷︷︸
Z

=
[
d
] [

U
]
+

[
εW

]︸ ︷︷ ︸
EZ

, (16)

According to the above equations, ω⊺E[YZ⊺] = 0⇒ ω = [−a, e+ b]⊺. Then we can see ω⊺Y = ω⊺EY = bεZ − aεXk
. By

Darmois–Skitovich theorem, ω⊺Y is independent of [W ] because there is no common non-Gaussian noise terms between
bεZ − aεXk

and [W ]. That is to say, ({W}, {Xk, Z}) follows the GIN constraint.

Structure (b): The data generation process is as follows:

U = εU ,

Z = aU + εZ = aεU + εZ ,

W = dU + εW = dεU + εW ,

Xk = bU + eZ + εXk
= (ae+ b)εU + eεZ + εXk

,

Y = cU + βXk + fW + gZ + εY

= (ae+ b+ c+ df + ag)εU + (eβ + g)εZ + βεXk
+ fεW + εXk

. (17)
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1). By the above equations, {Xk, Y,W} and {Xk, Z} can then be represented asXk

Y
W


︸ ︷︷ ︸

Y

=

1 0
β c+ fd+ ag
0 d

[
Xk

U

]
+

 0
fεW + aεZ + εY

εW


︸ ︷︷ ︸

EY

, (18)

[
Xk

Z

]
︸ ︷︷ ︸

Z

=

[
1 0
0 a

] [
Xk

U

]
+

[
0
εZ

]
︸ ︷︷ ︸
EZ

, (19)

We have ω⊺Y is dependent of [Xk, Z] because there exists common non-Gaussian noise terms εZ between Y and Z , no
matter ω⊺E[YZ⊺] = 0 or not. That is to say, ({Xk, Z}, {Xk, Y,W}) violates the GIN constraint.

2). {Xk, Z} and W can then be represented as[
Xk

Z

]
︸ ︷︷ ︸

Y

=

[
ae+ b

a

] [
U
]
+

[
eεZ + εXk

εZ

]
︸ ︷︷ ︸

EY

, (20)

[
W

]︸︷︷︸
Z

=
[
d
] [

U
]
+

[
εW

]︸ ︷︷ ︸
EZ

, (21)

According to the above equations, ω⊺E[YZ⊺] = 0⇒ ω = [−a, e+ b]⊺. Then we can see ω⊺Y = ω⊺EY = bεZ − aεXk
. By

Darmois–Skitovich theorem, ω⊺Y is independent of [W ] because there is no common non-Gaussian noise terms between
bεZ − aεXk

and [W ]. That is to say, ({W}, {Xk, Z}) follows the GIN constraint.

Structure (c): The data generation process is as follows:

U = εU ,

Z = aU + εZ = aεU + εZ ,

W = dU + εW = dεU + εW ,

Xk = bU + eZ + gW + εXk
= (ae+ b+ gd)εU + eεZ + gεW + εXk

,

Y = cU + βXk + fW + εY

= (ae+ b+ gd+ c+ df)εU + eβεZ + βεXk
+ (βg + f)εW + εXk

. (22)

1). By the above equations, {Xk, Y,W} and {Xk, Z} can then be represented asXk

Y
W


︸ ︷︷ ︸

Y

=

1 0
β c+ fd
0 d

[
Xk

U

]
+

 0
fεW + εY

εW


︸ ︷︷ ︸

EY

, (23)

[
Xk

Z

]
︸ ︷︷ ︸

Z

=

[
1 0
0 a

] [
Xk

U

]
+

[
0
εZ

]
︸ ︷︷ ︸
EZ

, (24)

According to the above equations, ω⊺E[YZ⊺] = 0⇒ ω = [dβ,−d, c+df ]⊺. Then we can see ω⊺Y = ω⊺EZ = cεW −dεY .
By Darmois–Skitovich theorem, ω⊺Y is independent of Z because there is no common non-Gaussian noise terms between
cεW − dεY and Z . That is to say, ({Xk, Z}, {Xk, Y,W}) follows the GIN constraint (This result is the same as the result
in Structure (a)).

2). However, we have that ({W}, {Xk, Z}) violates the GIN constraint, as explained below. {Xk, Z} and W can then be
represented as
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[
Xk

Z

]
︸ ︷︷ ︸

Y

=

[
ae+ b+ gd

a

] [
U
]
+

[
eεZ + gεW + εXk

εZ

]
︸ ︷︷ ︸

EY

, (25)

[
W

]︸︷︷︸
Z

=
[
d
] [
U
]
+

[
εW

]︸ ︷︷ ︸
EZ

, (26)

We have ω⊺Y is dependent of Z because there exists common non-Gaussian noise terms εW between Y and Z , no matter
ω⊺E[YZ⊺] = 0 or not.

Conclusion: Assuming the distribution is rank-faithful to the graph, the above facts show that lack of edges Z → Y (i.e.,
the variable of NCE does not causally affect the primary outcome) or W → Xk (i.e., the variable of NCO does not causally
affect the primary treatment) has a testable implication.

D. More Details about Depending on Assumption 4 in Lemma 3
We here would like to mention that the result of Lemma 3 does not strictly require adherence to Assumption 3—that is, not
all noise variables need to follow a non-Gaussian distribution. For instance, consider the causal graphs shown in Figure
4, the identification of valid NCO and NCE in subfigure (a) solely depends on the non-Gaussian distribution of the noise
components associated with variables Z and W, making them valid, whereas the other subfigures demonstrate invalid cases.
Specifically, as elaborated in Appendix C, for subfigure (b), we find that ω⊺Y is dependent on [Xk, Z] due to the presence
of common non-Gaussian noise terms εZ between Y and Z . This dependence aligns with the Darmois-Skitovitch theorem,
which necessitates that εZ must be non-Gaussian. Similarly, for subfigure (c), we observe that ω⊺Y is dependent on Z due
to the presence of common non-Gaussian noise terms εW between Y and Z , again requiring εW to be non-Gaussian as per
the Darmois-Skitovitch theorem.

E. More Details on Proxy-Rank Algorithm (in Section 4.2)
The specific details of the Proxy-Rank algorithm are provided in the following,

F. More Details on Proxy-GIN Algorithm (in Section 5.2)
The specific details of the Proxy-GIN algorithm are provided in the following,

G. Discussion on the Consistency Result and Convergence Rate of Theorem 2
G.1. Discussion on the Consistency Result

General description. Theorem 2 shows that the true causal effect obtained by the Proxy-Rank is correct in the sense that the
proxy variables relative to the causal relationship of interest are valid and the causal effect in the output C is the true value. In
fact, the consistency results of our estimation depend on two processes: first, appropriately selecting proximal variables; next,
based on the selected proxy variables, the nonparametric estimator β̂Xk→Y is obtained using Eq. (3). For Theorem 2, the
formal statement can be expressed as follows: let cond1 = (rk(Σ̂{Xk,Q,A1},{Xk,Y,B1}) ≤ q+1, rk(Σ̂{Xk,A1},{Q,B1} ≤ q),
where |A1| = q and |B1| = q (Lemma 1), and cond2 = (rk(Σ̂{Xk,A2},{Xk,Y,B2}) ≤ q + 1, rk(Σ̂{Xk,A2},{B2})) ≤ q),
where |A2| = q + 1 and |B2| = q + 1 (Lemma 2).

lim
n→∞

pr(|β̂Xk→Y − βXk→Y | > ϵ | cond1 or cond2) = 0 (27)

for all ϵ > 0, which implies that the estimated causal effect β̂Xk→Y obtained by the Proxy-Rank algorithm is consistent.

Proof details. Before presenting the detailed proof, we first introduce two lemmas that will aid in our demonstration. Let

∆1 = rk(Σ̂{Xk,A},B)− rk(Σ{Xk,A},B), ∆2 = rk(Σ̂{Xk,A},{Xk,Y,B})− rk(Σ{Xk,A},{Xk,Y,B}),
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Algorithm 1 Proxy-Rank
Input: A dataset of treatments X = {X1, ..., Xp}, outcome Y , and the number of unmeasured confounders q.
1: Initialize sets C = ∅, NCE = ∅, and NCO = ∅
2: for every variable Xk in X do
3: repeat
4: Select two subsets A, B and one variable Q from X \Xk such that A∩B∩ {Q} = ∅, and that |A| = q, |B| = q.
5: if A, B, and Q satisfyR1 of Lemma 1 then
6: NCEk ← A, NCOk ← B;
7: Ck =

det(Σ{Xk∪A},{Y ∪B})

det(Σ{Xk∪A},{Xk∪B})
;

8: Break the loop of line 3;
9: end if

10: until all possible disjoint subsets A with |A| = q, B with |B| = q, and variable Q in X \Xk are selected.
11: if NCOk ̸= ∅ then
12: Continue;
13: end if
14: repeat
15: Select two subsets A and B from X \Xk such that A ∩B = ∅, and that |A| = q + 1, |B| = q + 1.
16: if A and B satisfyR2 of Lemma 2 then
17: NCEk ← A, NCOk ← B;
18: Ck =

det(Σ{Xk∪A},{Y ∪B})

det(Σ{Xk∪A},{Xk∪B})
;

19: Break the for loop of line 14
20: end if
21: until all possible disjoint subsets A with |A| = q + 1, and B with |B| = q + 1 in X \Xk are selected.
22: end for
23: if NCOk ̸= ∅ then
24: Continue;
25: else
26: Ck = NA. // indicating the lack of knowledge to obtain the unbiased causal effect.
27: end if
Output: C, a set that collects the total causal effects of Xk ∈ X on Y .
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Algorithm 2 Proxy-GIN
Input: A dataset of treatments X = {X1, ..., Xp}, outcome Y , and the number of unmeasured confounders q.
1: Initialize sets C = ∅, NCE = ∅, and NCO = ∅
2: for every variable Xk in X do
3: repeat
4: Select two disjoint subsets A and B from X \Xk such that |A| = q, |B| = q.
5: if A and B satisfyR3 of Lemma 3 then
6: NCEk ← A, NCOk ← B;
7: Ck =

det(Σ{Xk∪A},{Y ∪B})

det(Σ{Xk∪A},{Xk∪B})
;

8: Break the loop of line 3;
9: end if

10: until all possible disjoint subsets A with |A| = q and B with |B| = q in X \Xk are selected.
11: if NCOk ̸= ∅ then
12: Continue;
13: end if
14: end for
15: if NCOk ̸= ∅ then
16: Continue;
17: else
18: Ck = NA. // indicating the lack of knowledge to obtain the unbiased causal effect.
19: end if
Output: C, a set that collects the total causal effects of Xk ∈ X on Y .

Lemma 4. ∆1 = op(1) and ∆2 = op(1), or equivalently, limn→∞ pr(|rk(Σ̂{Xk,A},B)− rk(Σ{Xk,A},B)| > ϵ) = 0 and
limn→∞ pr(|rk(Σ̂{Xk,A},{Xk,Y,B})− rk(Σ{Xk,A},{Xk,Y,B})| > ϵ) = 0 for all ϵ > 0.

Proof. The rank of rk(Σ{Xk,A},B) is equal to r if and only if there exists an invertible m×m matrix C and an invertible
n× n matrix D such that

CΣ{Xk,A},BD =

(
Ir 0
0 0

)
.

By the law of large numbers, we have that Σ̂{Xk,C},B = Σ{Xk,C},B + op(1) as well as

CΣ̂{Xk,C},BD = CΣ{Xk,A},BD + op(1) =

(
Ir 0
0 0

)
+ op(1).

As a result, we have rk(Σ̂{Xk,A},B) = r + op(1) = rk(Σ{Xk,A},B) + op(1). The proof for rk(Σ̂{Xk,A},{Xk,Y,B}) is
similar, we thus omit for simplicity.

Lemma 5. limn→∞ pr(|β̂Xk→Y −βXk→Y | > ϵ | rk(Σ{Xk,A},B) ≤ q, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q+1) = 0 for all ϵ > 0.

Proof. According to Lemma 2 in that main text, we know that the event rk(Σ{Xk,A},B) ≤ q, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q+1
implies A and B are valid NCE and NCO relative to Xk → Y respectively.

Once we have selected suitable proxies A and B, we can utilize Eq.(3) to establish nonparametric estimator β̂Xk→Y , and
according to standard M-estimation theory, specifically Theorem 5.41 in Van der Vaart (2000), we can demonstrate the
consistency of β̂Xk→Y .

Proposition 3. limn→∞ pr(|β̂Xk→Y − βXk→Y | > ϵ | rk(Σ̂{Xk,A},B) ≤ q, rk(Σ̂{Xk,A},{Xk,Y,B}) ≤ q + 1) = 0 for all
ϵ > 0.
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Proof. Without loss of generality, we assume that 0 < ϵ < 1. We thus have,

pr(rk(Σ̂{Xk,A},B) ≤ q, rk(Σ̂{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ)

= pr

 rk(Σ̂{Xk,A},B)− rk(Σ{Xk,A},B) + rk(Σ{Xk,A},B) ≤ q,

rk(Σ̂{Xk,A},{Xk,Y,B})− rk(Σ{Xk,A},{Xk,Y,B}) + rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1,

|β̂Xk→Y − βXk→Y | > ϵ


= pr(∆1 + rk(Σ{Xk,A},B) ≤ q,∆2 + rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ, |∆1| > ϵ, |∆2| > ϵ)

+ pr(∆1 + rk(Σ{Xk,A},B) ≤ q,∆2 + rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ, |∆1| > ϵ, |∆2| ≤ ϵ)

+ pr(∆1 + rk(Σ{Xk,A},B) ≤ q,∆2 + rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ, |∆1| ≤ ϵ, |∆2| > ϵ)

+ pr(∆1 + rk(Σ{Xk,A},B) ≤ q,∆2 + rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ, |∆1| ≤ ϵ, |∆2| ≤ ϵ)

≤ pr(|∆1| > ϵ) + pr(|∆1| > ϵ) + pr(|∆2| > ϵ)

+ pr

(
∆1 + rk(Σ{Xk,A},B) ≤ q,∆2 + rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ,

−ϵ ≤ −∆1 ≤ ϵ,−ϵ ≤ −∆2 ≤ ϵ

)
≤ pr(|∆1| > ϵ) + pr(|∆1| > ϵ) + pr(|∆2| > ϵ)

+ pr(rk(Σ{Xk,A},B) ≤ q + ϵ, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1 + ϵ, |β̂Xk→Y − βXk→Y | > ϵ)

≤ op(1) + pr(rk(Σ{Xk,A},B) ≤ q, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, |β̂Xk→Y − βXk→Y | > ϵ)

= op(1) + pr(|β̂Xk→Y − βXk→Y | > ϵ | rk(Σ{Xk,A},B) ≤ q, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1)

× pr(rk(Σ{Xk,A},B) ≤ q, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1)

≤ op(1) + op(1)Op(1)

= op(1),

where the two-to-last inequality holds because of (i) Lemma 4 and (ii) the event {rk(Σ{Xk,A},B) ≤ q + ϵ} is exactly
equivalent to {rk(Σ{Xk,A},B) ≤ q} for 0 < ϵ < 1, and the last inequality holds because of Lemma 5.

Therefore, we have

lim
n→∞

pr(|β̂Xk→Y − βXk→Y | > ϵ | rk(Σ̂{Xk,A},B) ≤ q, rk(Σ̂{Xk,A},{Xk,Y,B}) ≤ q + 1)

= lim
n→∞

pr(|β̂Xk→Y − βXk→Y | > ϵ, rk(Σ̂{Xk,A},B) ≤ q, rk(Σ̂{Xk,A},{Xk,Y,B}) ≤ q + 1)

pr(rk(Σ̂{Xk,A},B) ≤ q, rk(Σ̂{Xk,A},{Xk,Y,B}) ≤ q + 1)

= lim
n→∞

pr(|β̂Xk→Y − βXk→Y | > ϵ, rk(Σ̂{Xk,A},B) ≤ q, rk(Σ̂{Xk,A},{Xk,Y,B}) ≤ q + 1)

pr(rk(Σ{Xk,A},B) ≤ q, rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1)
+ op(1)

= 0.

G.2. Discussion on the Convergence Rate

Proxy-Rank algorithm involves two states: first, correctly selecting appropriate proxy variables; next, based on the selected
proxies, obtaining the nonparametric estimator β̂Xk→Y using Eq. (3). Once we have chosen suitable proxy variables, the
nonparametric estimator β̂Xk→Y of the causal effects based on Eq. (3) will exhibit a

√
n rate of convergence, meaning that

the random variables
√
n(β̂Xk→Y − βXk→Y ) will converge to a normal distribution. These asymptotic results can still be

obtained using standard M-estimation theory, particularly Theorem 5.41 of Van der Vaart (2000).

H. Discussion and Further Work
The preceding sections have provided two different sets of precise identifiability conditions for the selection of proxy
variables of unmeasured confounders, along with their corresponding search algorithms. It’s worth noting that these methods
theoretically assume that the unobserved confounding variable U affects both the treatments X and Y , meaning that all
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entries of matrix C are non-zero. This assumption inherently leads to the following two conditions: 1) all variables are
mutually dependent on each other, and 2) the two necessary conditions of the extended proxy variables estimator, that is,
Σ{Xk,Z},{Y,W} and Σ{Xk,Z},{Xk,W} both are full rank. In some real-world applications, unobserved confounding might
not affect all potential treatment variables. Thus, given a causal relationship Xk → Y , before applying the proposed rules
R1 ∼ R3, one can perform an initial screening as follows:

1. identify the maximal clique set containing both Xk and Y , ensuring the removal of variables that are statistically
independent of T and Y given the subset in X, and

2. identify the candidate sets Z and W that satisfy the following two conditions: rk(Σ{Xk,Z},{Y,W}) = q + 1 and
rk(Σ{Xk,Z},{Xk,W}) = q + 1.

The above operation ensures that even if not all entries of matrix C are non-zero, the identification methods we propose can
still be applied.

In this paper, we restrict our attention to linear causal models, which are common in the social sciences and ought to be more
common in economics and elsewhere (Bollen, 1989; Spirtes et al., 2000). One of the future research directions is to address
the discrete model or the non-linear causal model, existing techniques, e.g., extended trek separation in Spirtes (2013) or
additive noise model in Hoyer et al. (2009), Zhang & Hyvärinen (2009) and Peters et al. (2014) may help to address this
issue. Another direction of future work is to extend our results to multiple outcomes setting (Wang et al., 2017).

I. More Results on Experimental Results
We here evaluate the performance of the proposed method in an additional Mixture case setting. The data are generated
according to the causal graph in Figure 3, with the noise terms being randomly selected from standard normal distributions
and standard exponential distributions.
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Figure 11. Performance of NAIVE, FindNC, Proxy-Rank, and Proxy-GIN on the Mixture case.

Figure 11 summarizes the bias of the estimators of each parameter. As expected, our proposed Proxy-Rank algorithm almost
outperforms other methods (with little bias for all causal effects) with all sample sizes, which indicates that the Proxy-Rank
algorithm is a distribution-free method. An interesting conclusion is that in the Mixture case, the Proxy-GIN algorithm
performs equally well, even though Assumption 4 is not fully satisfied. We further noticed that the Proxy-GIN algorithm
does not have the same level of stability in the small sample size as the Proxy-Rank algorithm, e.g., 1k for the causal effect of
X5 on Y (See Remark 4 for more details). One possible reason is that reliable estimation of higher-order statistics requires
much more samples than that of second-order statistics (Hyvärinen et al., 2004).

Remark 4. Figure 12 presents a comparative graph of the results obtained from the Proxy-Rank algorithm and the
Proxy-GIN algorithm, considering two different distributions: the normal distribution and the exponential distribution,
respectively. Our findings reveal that the Proxy-GIN algorithm does not exhibit the same level of stability in cases of small
sample sizes, for instance, when the sample size is equal to 1k. One possible explanation for this behavior is that reliable
estimation of higher-order statistics typically requires a substantially larger number of samples compared to second-order
statistics (Hyvärinen et al., 2004).
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Figure 12. Performance of Proxy-Rank in Gaussian data and Proxy-GIN in Non-Gaussian.

J. More Details of Real-World Application
In this section, we apply the proposed methods to analyze the causal effects of gene expressions on the body weight of
F2 mice using the mouse obesity dataset as described by Wang et al. (2006). The dataset we used comprises 17 gene
expressions that are known to potentially influence mouse weight, as reported by Lin et al. (2015). Additionally, it includes
body weight as the outcome variable and data collected from 227 mice. As discussed in Miao et al. (2022), gene expression
studies like this one may encounter unmeasured confounding issues stemming from batch effects or unobserved phenotypes.
Diverging from the approach taken by Miao et al. (2022), we intentionally refrained from incorporating five additional
potential instrumental variables from the raw data as prior knowledge in our analysis. This choice was made to underscore
the superiority of the proposed algorithm.

Following the analysis conducted by Miao et al., we assume that there is only one latent variable underlying the common
influence, and the data generation mechanism adheres to a linear causal model. Figure 13 presents the causal effects of the 17
genes on mouse weight with our proposed methods and the NAIVE method. We observed that the majority of our findings
align with those presented by Miao et al. (2022). For instance, the gene expressions Gstm2, Sirpa, and 2010002N04Rik
exhibit positive and significant effects on body weight, whereas the gene expression Dscam demonstrates a negative impact
on body weight. Furthermore, some of our conclusions coincide with prior research results. In particular, Igfbp2 (Insulin-like
growth factor binding protein 2) displays negative and significant effects on body weight, attributable to its role in mitigating
the development of obesity, as supported by Wheatcroft et al. (2007). Similarly,Irx3 (Iroquois homebox gene 3) exhibits
negative and significant effects on body weight, which can be attributed to its association with lifestyle changes and its
pivotal role in weight regulation through energy balance, as elucidated in Schneeberger (2019).

K. Proofs
Before we proceed with presenting the proofs of our results, we require a few additional theorems and definitions.

Definition 7 (Trek). A trek in G from i to j is an ordered pair of directed paths (P1, P2) where P1 has sink i, P2 has sink j,
and both P1 and P2 have the same source k. The common source k is called the top of the trek, denoted top(P1, P2). Note
that one or both of P1 and P2 may consist of a single vertex, that is, a path with no edges.

Definition 8 (trek-separation (t-separation)). Let A,B,CA, and CB be four variable subsets. We say the order pair
(CA,CB) t-separates A from B if for every trek (P1;P2) from a vertex in A to a vertex in B, either P1 contains a vertex in
CA or P2 contains a vertex in CB.

Note that the notion of t-separation is a more general separation criterion than d-separation in a graph (See Theorem 2.11 in
(Sullivant et al., 2010)). Sullivant et al. (2010) characterized the vanishing determinants of a cross-covariance matrix by
using the notion of t-separation.

Theorem 5 (Graphical Representation of Rank Constraints). Let G be a linear directed graphical model and A and B be
two subsets of the variables in G. The rk(ΣA,B) less than or equal to r for all covariance matrices consistent with the
graph G if and only if there exist subsets CA,CB with |CA|+ |CB| ≤ r such that (CA,CB) t-separates A from B.

We now quote Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 1953).

Theorem 6 (Darmois-Skitovitch Theorem). Define two random variables V1 and V2 as linear combinations of independent
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Figure 13. Causal Effect estimates for 17 gene expressions on body weight. The first panel depicts Proxy-Rank estimation, the second
displays Proxy-GIN estimation, and the last one showcases NAIVE estimation.
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random variables εi(i = 1, ..., n):

V1 =

n∑
i=1

αiεi, V2 =

n∑
i=1

βiεi. (28)

Then, if V1 and V2 are statistically independent, all variables εj for which αjβj ̸= 0 are Gaussian. In other words, if there
exists a non-Gaussian εj for which αjβj ̸= 0, V1 and V2 are dependent.

We next introduce the graphical representation of GIN constraints as presented in (Xie et al., 2023).

Theorem 7 (Graphical Representation of GIN Constraints Theorem). Let G be a linear directed graphical model. Let Y , Z
be two sets of observed variables in G. (Y , Z) satisfies the GIN condition (while with the same Z , no proper subset of Y
does) if and only if there exists a S with 0 ≤ |S| ≤ min(|Y| − 1, |Z|) such that 1) the order pair (∅,S) t-separates Z and Y ,
and that 2) the covariance matrix of S and Z has rank s, and so does that of S and Y .

K.1. Proof of Proposition 1

Proof. The proof can be found in Kuroki & Pearl (2014) or Miao et al. (2018a) when an unmeasured confounder exists in a
linear causal model.

K.2. Proof of Proposition 2

Here, we offer two methods of proof. The first utilizes the back door criterion and the conditional instrumental variable
approach. The second utilizes the properties of the Trek rules (Sullivant et al., 2010). The details are as follows.

Proof. We initially define Σ(A,B)·C = ΣA,B − ΣA,CΣ
−1
C,CΣC,B. In this context, Σ(A,B)·C can be interpreted as the

conditional covariance matrices of A and B given C, and Σ−1
C,C represents the inverse of ΣC,C. We then apply the back

door criterion and obtain:

βXk→Y =
Σ(Xk,Y )·U

Σ(Xk,Xk)·U
(29)

Hence, we have (
ΣXk,Xk

−ΣXk,UΣ−1
U,UΣU,Xk

)
βXk→Y = ΣXk,Y −ΣXk,UΣ−1

U,UΣU,Y . (30)

According to the proximal criteria, i.e., W ⊥⊥ (Xk,Z)|U, the following two conditions hold: Z ⊥⊥W|U and W ⊥⊥ Xk|U.
Consequently, this will imply that Σ(Z,W)·U = 0 and Σ(W,Xk)·U = 0. Let’s expand the above three equations to obtain:

ΣZ,W = ΣZ,UΣ−1
U,UΣU,W, (31)

ΣW,Xk
= ΣW,UΣ−1

U,UΣU,Xk
(32)

By solving the above Equations 31∼32, we obtain

ΣXk,WΣ−1
Z,W = ΣXk,UΣ−1

Z,U (33)

To verify the conclusion, we next consider the following two scenarios. In Scenario 1, we assume independence between Z
and Xk given U, while in Scenario 2, we assume dependence of Z on Xk given U, as illustrated in Figure 14 below. It is
worth noting that, although from the graphical representation, Scenario 2 encompasses the situation in Scenario 1, they
are not inclusive from a proof perspective. Specifically, Scenario 1 relies on the condition Z ⊥⊥ Xk|U, while the proof
in Scenario 2 capitalizes on the property of conditional instrumental variables. In other words, in Scenario 2, given the
condition U, Z can serve as the instrumental variable set for the causal relationship Xk → Y , whereas Z is not the valid
instrumental variable set in Scenario 1. In summary, although the proof strategies for both scenarios are independent, it is
intriguing that they share the same expression for the causal effect Xk → Y .

Scenario 1: Because Z ⊥⊥ Xk|U, and according to the proximal criteria, i.e., Z ⊥⊥ Y |(U, Xk), we further have Z ⊥⊥ Y |U.
Consequently, this will imply that Σ(Z,Xk)·U = 0 and Σ(Z,Y )·U = 0. Thus, we obtain

ΣZ,Xk
= ΣZ,UΣ−1

U,UΣU,Xk
(34)

ΣZ,Y = ΣZ,UΣ−1
U,UΣU,Y , (35)
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Figure 14. (a) Scenario 1: Z ⊥⊥ Xk|U, and (b) Scenario 2: Z ⊥̸⊥ Xk|U

By solving the above Equations 33∼35, we obtain

ΣXk,WΣ−1
Z,WΣZ,Xk

= ΣXk,UΣ−1
U,UΣU,Xk

, (36)

ΣXk,WΣ−1
Z,WΣZ,Y = ΣXk,UΣ−1

U,UΣU,Y (37)

By combing Equations 30, 36, and 37, we have(
ΣXk,Xk

−ΣXk,WΣ−1
Z,WΣZ,Xk

)
βXk→Y = ΣXk,Y −ΣXk,WΣ−1

Z,WΣZ,Y . (38)

Hence, we finally have (
det(Σ{Xk∪Z},{Xk∪W})

)
βXk→Y = det(Σ{Xk∪Z},{Y ∪W}), (39)

which is consistent with the Equation 3.

Scenario 2: We here apply the conditional instrumental variable approach and obtain:

βXk→Y =
ΣZiY ·U

ΣZiXk·U
, Zi ∈ Z. (40)

That is, (
ΣZi,Xk

−ΣZi,UΣ−1
U,UΣU,Xk

)
βXk→Y = ΣZk,Y −ΣZk,UΣ−1

U,UΣU,Y . (41)

Based on the proximal criteria, i.e., Z ⊥⊥ Y |(U, Xk), we conclude that, for Zi ∈ Z, Zi serves as a valid instrumental
variable for the causal relationship Xk → Y given U. Hence, the equation above can be expressed in vector form as:(

ΣZ,Xk
−ΣZ,UΣ−1

U,UΣU,Xk

)
βXk→Y = ΣZ,Y −ΣZ,UΣ−1

U,UΣU,Y . (42)

By solving Equations 30, 33, and 42 for βXk→Y , we obtain(
ΣXk,Xk

−ΣXk,WΣ−1
Z,WΣZ,Xk

)
βXk→Y = ΣXk,Y −ΣXk,WΣ−1

Z,WΣZ,Y . (43)

This will imply that (
det(Σ{Xk∪Z},{Xk∪W})

)
βXk→Y = det(Σ{Xk∪Z},{Y ∪W}), (44)

which is consistent with the Equation 3.

We hereby present an alternative proof strategy employing Trek rules. Before delving into the proof of this result, we initially
introduce two definitions and a theorem that play a crucial role in our argument.

Definition 9 (Trek System & Intersection). Let A and B be two subsets of the vertex set of a DAG G, with |A| = |B|. A
system of treks from A to B is a set of treks that each are between a vertex in A and a vertex in B. Let T be such a system.
Then T has no sided intersection if any two distinct treks in T have disjoint left sides and disjoint right sides.

Definition 10 (Trek Rule (Sullivant et al., 2010)). Let Λ = (λij) ∈ RD be the cofficients matrix and Ω = (σij) be the
variance of noise term. To any trek τ , associate a trek monomial

σ(τ) = σi1j1

ℓ−1∏
k=1

λikik+1

r−1∏
k=1

λjkjk+1
. (45)
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Theorem 8 ((Drton et al., 2020; Draisma et al., 2013)). Suppose the underlying graph G is acyclic. Then the determinant of
ΣA,B equals PA,B , and PA,B is defined as

PA,B =
∑

(−1)T
∏
τ∈T

σ(τ) (46)

with the summation being over all systems of treks T from A to B with no sided intersection.

Now, we prove the Proposition 2 based on the above theorem.

Proof. Let us first consider the trek system between Z and W. Based on the model definition, we know that Z and W are
the child set of confounders U with |Z| = |W| = |U| = q. Since Z ⊥⊥W|U, there are no direct path from Z to W but
Zi ← Ui →Wi is only trek between Zi and Wi. Thus, the trek system without sided intersection between Z and W must
have the source U according to Pigeonhole principle. That is any two treks τi and τj has source Ui and Uj respectively,
Ui ̸= Uj in all trek system (note that if Ui = Uj in a trek system, this trek system has sided intersection in source Ui).

Now, consider the numerator term of Eq(3), i.e., the determinant of covariance matrice between A = {Xk,Z} and
B = {Y,W}. To do so, by Theorem 8, it must discuss the trek system between A and B which is no side intersection.
There are two cases for A and B: Case I: Z ⊥⊥ Xk|U; and Case II: Z ̸⊥⊥ Xk|U.

Case I: Z ⊥⊥ Xk|U, i.e., there are no edges between Z and Xk. For the trek system T between A and B with |A| = |B| =
q + 1, there are q + 1 trek in T . if T is no side intersection, the trek with the sink node X on the left side and sink node Y
on the right side, denote as τi, Top(τi) /∈ U (i.e., the source of this trek can no be Ui). Otherwise, there exist two treks in
the trek system that have a common source that violates the no-sided intersection (according to the above analysis in Z and
W). For instance, the trek between Xk and Y , (Ui → Xk, Ui → Y ), is intersecting with one of the trek between Z and
W. An illustrative example is given in Example 1. Therefore, the trek between {Xk, Y } must be (Xk;Xk → Y ) in the no
side-intersection trek system between A and B, and meanwhile, other q trek between Z and W has source U. According to
Theorem 8, denote the trek between Xk and Y as τ{Xk,Y }, the determinant equals

PA,B =
∑

(−1)T
∏

τ∈T \τ{Xk,Y }

σ(τ) · σ(τ{Xk,Y }). (47)

Since σ(τ{Xk,Y }) = σ(Xi)βXk→Y (by Trek Rule), the above equation can be rewritten as

PA,B = βXk→Y σ(Xi)
∑

(−1)T
∏

τ∈T \τ{Xk,Y }

σ(τ). (48)

To show βXk→Y can be unbiasedly estimated, now we consider the denominator term of Eq. (3). Similarly, for two vectors
C = {Xk,Z} and D = {Xk,W}, the determinant can be formalized as

PC,D = σ(Xi)
∑

(−1)T
′ ∏
τ∈T \τ{Xk,Y }

σ(τ), (49)

where the covariance of the trek between Xk and Xk equals σ(Xi). Based on the above analysis, we can get the unbiased
estimation of βXk→Y by the ratio of two determinants, i.e., PA,B/PC,D.

Case II: Z ̸⊥⊥ Xk|U, i.e., there exits a edges between Zi and Xk for some Zi ∈ Z. According to the proximal criteria, e.g.,
{Xk,Z} ⊥⊥W|U, there are no other trek between Zi and Wi except for the (Ui → Zi, Ui →Wi). For this case, the key
difference to Case I is that there may exist a trek between Zi and Y in which the source Top(Zi, Y ) ̸∈ U.

There are two cases for the trek between Zi and Y : (i). τ1 = (Zi, Zi → Xk → Y ) or (ii). τ2 = (Xk → Zi, Xk → Y ).
By Trek Rule, we have σ(τ1) = σ(Zi)βZi→Xk

βXk→Y for case (i) while σ(τ2) = σ(Xk)βXk→Zi
βXk→Y for case (ii).

Furthermore, if there are more than one Zi, for example, Zi and Zj have the trek of the above cases, then this trek system
has a side intersection in the node Xk (as σ(τ1) and σ(τ2) has side intersection in the node Xk). Thus, a trek system without
sided intersection between {Xk,Z} and {Y,W} can only be one trek following the above cases, i.e., only a Zi follows the
above cases. Thus, the set of no side-intersection trek system is q treks with source U between {Z \ Zi, Xk} and {W} and
plus a trek between Zi and Y . Denote the trek between Zi and Y as τ{Zi,Y }, τ{Zi,Y } follows one of the above cases.
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Therefore, by Theorem 8, the determinant can be formalized as

βXk→Y

∑
(−1)T

′ ∏
τ ′∈T ′

σ(τ ′) +

q∑
1

τZi−Xk
βXk→Y

∑
(−1)T

′′ ∏
τ∈T ′′

σ(τ), (50)

where the first term represents the summation of no sided intersection system including the trek with source U between Z
and W and a trek from Xk to Y ; the second term presents the summation of the no sided intersection system inlcuding
the trek with source U between {Z \ Zi, Xk} and W and a trek between Zi and Y . Similarly, for two vector {Xk,Z} and
{Xk,W}, the determinant can be formalized as

∑
(−1)T

′ ∏
τ ′∈T ′

σ(τ ′) +

q∑
1

τZi−Xk

∑
(−1)T

′′ ∏
τ∈T ′′

σ(τ). (51)

In the end, we can obtain the unbiased estimation of βXk→Y by the ratio of two determinants.

U
U1 U2

Z2 Xk Y W1Z1 W2
β

Figure 15. Illustration of Proof of Proposition 2.

Example 6 (Illustration of Proof of Proposition 2). Consider a graph in Fig. 15. There are two confounders U1 and U2

that affect the Xk and Y . Let Z = {Z1, Z2} and W = {W1,W2}. For two vector {Xk, Z1, Z2} and {Y,W1,W2}, all no
intersection trek system between Z and W must has the source {U1, U2} due to Z ⊥⊥ Xk|{U1, U2}, that is,

• (U1 → Z1, U1 →W1) and (U2 → Z2, U2 →W2)

• (U2 → Z1, U2 →W1) and (U1 → Z2, U1 →W2)

• (U1 → Z2, U1 →W1) and (U2 → Z1, U2 →W2)

• (U2 → Z2, U2 →W1) and (U1 → Z1, U1 →W2)

For the trek between Xk and Y , it must be (Xk, Xk → Y ), otherwise, it will be an intersection with the trek between Z and
W in the source node U. For example, a trek between Xk and Y with source U1, (U1 → Xk, U1 → Y ), is intersecting
with (U1 → Z1, U1 → W1) in the trek system: (U1 → Z1, U1 → W1), (U2 → Z2, U2 → W2) and (U1 → Xk, U1 → Y ).
Therefore, according to Theorem 1, the determinant equals βXk→Y [σ

2
U1
σ2
U2
σ2
Xk

(a1a3b2b4 − a1a4b2b3 − a2a3b1b4 +
a2a4b1b3)], where ai represent the effect from U1 to Z ∪W while bi represent the effect from U2 to Z ∪W.

For two vectors {Xk, Z1, Z2} and {Xk,W1,W2}, based on Theorem 1, we also obtain the determinant as
σ2
U1
σ2
U2
σ2
Xk

(a1a3b2b4 − a1a4b2b3 − a2a3b1b4 + a2a4b1b3). Therefore, one may obtain an unbiased estimation of βXk→Y

by the ratio of two determinants.

K.3. Proof of Lemma 1

Proof. Firstly, in accordance with Equation 2, where all entries of the matrix C are non-zero, and under the faithfulness
assumption, we can directly infer that bothΣ{Xk,A},{Y,B} and Σ{Xk,A},{Xk,B} are always full rank. Therefore, these
necessary conditions are satisfied for any sets Z and W (otherwise, it would be required to test these conditions).

Secondly, due to condition (1), namely rk(Σ{Xk,Q,A},{Xk,Y,B}) ≤ q + 1, and the faithfulness assumption, and based on
the ”Graphical Representation of Rank Constraints” Theorem, we can assert that there exist subsets CA and CB with
|CA| + |CB| ≤ q + 1 such that (CA,CB) t-separates {Xk, Q,A} from {Xk, Y,B}. According to the data generation
process, the treks between {Q,A} and {Y,B} must go through unmeasured confounder U (except for Xk). Therefore,
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CA ∪CB = {Xk,U}. Since |Xk,U| = q + 1, we can conclude that all treks between {Xk, Q,A} and {Xk, Y,B} must
go through a node in {Xk,U}. This will imply that A ⊥⊥ Y |(U, Xk), i.e., condition 1 of proximal criteria holds, and
A ⊥⊥ B|(U, Xk).

Furthermore, because of condition 2), i.e., rk(Σ{Xk,A},{Q,B}) ≤ q, and because according to the ”Graphical Representation
of Rank Constraints” Theorem, we know that there exist subsets CA,CB with |CA| + |CB| ≤ q such that (CA,CB)
t-separates {Xk,A} from {Q,B}. According to the generation of data (Equation 2), all treks between {Xk,A} and
{Q,B} must go through unmeasured confounders U. Hence, CA ∪CB = U. This will imply that B ⊥⊥ Xk|U. Because
A ⊥⊥ B|(U, Xk), we have B ⊥⊥ (Xk,A)|U, i.e., condition 2 of proximal criteria holds.

Based on the above analysis, A and B are valid NCE and NCO with respect to Xk → Y , respectively. Furthermore, due to
Assumption 2, we know that such sets A and B must exist in the system.

K.4. Proof of Lemma 2

Proof. The proof strategy for this theorem is similar to the proof strategy for Lemma 1.

Firstly, according to Equation 2 (where all entries of matrix C are non-zero) and the faithfulness assumption, we can directly
infer that Σ{Xk,A},{Y,B} and Σ{Xk,A},{Xk,B} are both full rank. Therefore, these necessary conditions always hold for
any sets Z and W (otherwise, it would be required to test these conditions).

Secondly, due to condition (1), namely rk(Σ{Xk,A},{Xk,Y,B}) ≤ q + 1, and the faithfulness assumption, and based on
the ”Graphical Representation of Rank Constraints” Theorem, we can assert that there exist subsets CA and CB with
|CA| + |CB| ≤ q + 1 such that (CA,CB) t-separates {Xk,A} from {Xk, Y,B}. According to the data generation
process, the treks between {Q,A} and {Y,B} must go through unmeasured confounder U (except for Xk). Therefore,
CA ∪CB = {Xk,U}. Since |{Xk,U}| = q + 1, we can conclude that all treks between {Xk,A} and {Xk, Y,B} must
go through a node in {Xk,U}. This will imply that A ⊥⊥ Y |(U, Xk), i.e., condition 1 of proximal criteria holds, and
A ⊥⊥ B|(U, Xk).

Furthermore, because of condition 2), i.e., rk(Σ{Xk,A},B) ≤ q, and because according to the ”Graphical Representation
of Rank Constraints” Theorem, we know that there exist subsets CA,CB with |CA| + |CB| ≤ q such that (CA,CB)
t-separates {Xk,A} from {B}. According to the generation of data (Equation 2), all treks between {Xk,A} and {B}
must go through unmeasured confounders U. Hence, CA ∪ CB = U. This will imply that B ⊥⊥ Xk|U. Because
A ⊥⊥ B|(U, Xk), we have B ⊥⊥ (Xk,A)|U, i.e., condition 2 of proximal criteria holds.

Based on the above analysis, A and B are valid NCE and NCO with respect to Xk → Y , respectively. Furthermore, due to
Assumption 3, we know that such sets A and B must exist in the system.

K.5. Proof of Theorem 1

Proof. Assuming Assumption 2 holds, then according to Lemma 1, for a given causal relationship Xk → Y in the system,
the underlying NCE and NCO relative to the causal relationship Xk → Y can be identified usingR1.

Similarly, assuming Assumption 3 holds, then according to Lemma 2, for a given causal relationship Xk → Y in the system,
the underlying NCE and NCO relative to the causal relationship Xk → Y can be identified usingR2.

K.6. Proof of Theorem 2

Proof. The correctness of Proxy-Rank originates from the following observations:

• Firstly, for a given causal relationship Xk → Y in the system, by Lemma 1 and Proposition 2, valid set of NCE and
NCO in X \Xk have been exactly discovered, and the unbiased causal effect Ck is obtained if Assumption 2 satisfies
(Lines 3∼13 of Algorithm 1).

• Secondly, for a given causal relationship Xk → Y in the system, by Lemma 2 and Proposition 2, valid set of NCE and
NCO in X \Xk have been exactly discovered, and the unbiased causal effect Ck is obtained if Assumption 2 violates
but Assumption 3 satisfies (Lines 14∼21 Algorithm 1).

• Lastly, value (NA) is obtained, which indicates the lack of knowledge to obtain the unbiased causal effect (Lines 23∼27
Algorithm 1).
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K.7. Proof of Lemma 3

Proof. Firstly, according to Equation 2 (where all entries of matrix C are non-zero) and the faithfulness assumption, we can
directly infer that Σ{Xk,A},{Y,B} and Σ{Xk,A},{Xk,B} are both full rank. Therefore, these necessary conditions always
hold for any sets Z and W (otherwise, it would be required to test these conditions).

Secondly, due to condition (1), namely ({Xk,A}, {Xk, Y,B}) follows the GIN constraint, the faithfulness assumption,
Assumption 4 (Non-Gaussianity), and based on the ”Graphical Representation of GIN Constraints” Theorem, we can
assert that there exist S with 0 ≤ |S| ≤ min(|{Xk, Y,B}| − 1, |{Xk,A}|) = q + 1 such that 1) the order pair (∅,S)
t-separates Z and Y , and that 2) the covariance matrix of S and Z has rank s, and so does that of S and Y . According to the
data generation process, the treks between {A} and {Y,B} must go through unmeasured confounder U (except for Xk).
Therefore, S = {Xk,U}. Since |{Xk,U}| = q + 1, we can conclude that all treks between {Xk, Q,A} and {Xk, Y,B}
must go through a node in {Xk,U}. This will imply that A ⊥⊥ Y |(U, Xk), i.e., condition 1 of proximal criteria holds.

Furthermore, because of condition 2), i.e., (B, {Xk,A}) follows the GIN constraint, because of Assumption 4, and
because according to the ”Graphical Representation of Rank Constraints” Theorem, we know that there exist S with
0 ≤ |S| ≤ min(|{Xk,A}| − 1, |B|) = q such that the order pair (∅,S) t-separates B and {Xk,A}. According to the
generation of data (Equation 2), all treks between B and {Xk,A} must go through unmeasured confounders U. Hence,
S = U. This will imply that |U| = q. Thus, we have B ⊥⊥ (Xk,A)|U, i.e., condition 2 of proximal criteria holds.

Based on the above analysis, A and B are valid NCE and NCO with respect to Xk → Y , respectively. Furthermore, due to
Assumptions 1 and 4, we know that such sets A and B must exist in the system.

K.8. Proof of Theorem 3

Proof. Assuming Assumptions 1 and 4 hold, then according to Lemma 3, for a given causal relationship Xk → Y in the
system, the underlying NCE and NCO relative to the causal relationship Xk → Y can be identified usingR3.

K.9. Proof of Theorem 4

Proof. The correctness of Proxy-Rank originates from the following observations:

• Firstly, for a given causal relationship Xk → Y , by Lemma 3 and Proposition 2, valid set of NCE and NCO in X \Xk

have been exactly discovered, and the unbiased causal effect Ck is obtained if Assumption 1 satisfies (Lines 2∼10 of
Algorithm 2).

• Then, value (NA) is obtained, which the lack of valid NCE and NCO for this causal relationship Xk → Y to obtain the
unbiased causal effect (Lines 15∼19 Algorithm 2).
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