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Abstract

Due to the continuous emergence of online001
data, version iteration has become an indispens-002
able requirement for Large Language Models003
(LLMs), which exacerbates the training cost of004
LLMs. Hence, one of the pivotal challenges for005
LLMs is how to reduce the total training cost006
across different versions. To achieve a better007
balance between the pre-training performance008
and training cost, we conduct a systematic in-009
vestigation into the impact of various learning010
rate schedules. Extensive experiments on com-011
monly used learning rate schedules show that012
these approaches primarily focus on the perfor-013
mance of LLMs of the current version, but over-014
look the mutual influence of training processes015
of LLMs across different versions. To address016
above issue, we design a pre-training strategy017
called Branches Switching based Pre-Training018
for the training of LLMs across different ver-019
sions. Compared with pre-training LLMs of020
different versions from scratch, our strategy021
reduces the total training cost to 58% while022
maintaining optimal pre-training performance.023

1 Introduction024

In recent years, there has been significant progress025

in the research of Large Language Models (LLMs).026

By conducting large-scale parameters training on027

massive datasets, LLMs have demonstrated remark-028

able capabilities, contributing to unprecedented ad-029

vancements in various fields (Wang et al., 2023a;030

Guo et al., 2024; Wu et al., 2023; Cui et al., 2023).031

However, the training cost of LLMs is significantly032

higher than that of traditional NLP models. In033

practical applications, LLMs have to face the re-034

quirement of version iteration due to the continuous035

emergence of online data, which exacerbates the036

training cost of LLMs. Therefore, how to reduce037

training cost while ensuring optimal pre-training038

performance of LLMs across different versions has039

become one of the pivotal challenges in the practi-040

cal implementation of LLMs.041

Figure 1: The pre-training performance vs. total training
cost of the proposed Branches Switching based Pre-
Training (BSPT), Pre-Training From Scratch (PTFS)
and Continual Pre-Training (CPT) on LLaMA-153M.
“APPL” denotes the average perplexity (↓) of LLMs of
different versions, "Relative Cost" denotes the relative
training cost of LLMs of different versions. The lower
left corner achieves the best trade-off.

Approaches applicable for LLMs version iter- 042

ation can be broadly categorized into two types: 043

1) Pre-Training From Scratch (PTFS): conduct- 044

ing pre-training on full datasets that include both 045

old and new data. LLMs such as LLaMA (Tou- 046

vron et al., 2023a,b), GLM (Zeng et al., 2023), 047

and Baichuan (Yang et al., 2023) employ this ap- 048

proach for version iteration. It can yield a better pre- 049

training performance, but also involves extremely 050

high training cost. 2) Continual Pre-Training 051

(CPT): conducting pre-training on new data based 052

on the checkpoints of existing LLMs (Gogoulou 053

et al., 2023b; Xie et al., 2023). This approach is 054

often utilized in constrained scenarios, such as lim- 055

ited computational resources or unavailability of 056

all data. Compared with PTFS, CPT incurs lower 057

cost but may result in diminished pre-training per- 058

formance of LLMs. 059
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Figure 2: Learning rate curves of different approaches
for version iteration of LLMs. The three approaches
are Pre-Training From Scratch (PTFS), Continual Pre-
Training (CPT) and the proposed Branches Switching
based Pre-Training (BSPT) from top to bottom.

These approaches focus on the performance of060

LLMs of current version. PTFS emphasizes the061

performance of LLMs on all data, while CPT ad-062

dresses how to balance the performance on old and063

new data. However, both approaches overlook the064

mutual influence of training processes across differ-065

ent versions. We can analyze the aforementioned066

issue from the perspective of optimization.067

• PTFS: Experiments show that the learning rate068

schedules with period-related hyper-parameters069

can achieve the optimal performance for PTFS.070

When training LLMs of different versions us-071

ing these schedules, it is necessary to configure072

distinct decay periods for each version. In this073

scenario, the inability to reuse checkpoints of074

existing LLMs results in high training cost.075

• CPT: A complete learning rate decay period pro-076

motes the convergence of LLMs, which ensures077

the pre-training performance of LLMs of current078

version. However, it is detrimental for the param-079

eters of LLMs of future versions to escape from080

the current local optimum and search for a better081

local optimum.082

To achieve a better balance between pre-training083

performance and training cost, we systematically084

explore the optimal learning rate settings for PTFS085

and CPT. Based on the exploratory experiments,086

we design a pre-training strategy called Branches087

Switching based Pre-Training (BSPT), that is088

applicable to learning rate schedules such as co- 089

sine (Smith and Topin, 2019), knee (Iyer et al., 090

2023), and multi-step (Bi et al., 2024) learning rate 091

schedule. An intuitive comparison of PTFS, CPT 092

and BSPT is shown in Figure 1. As depicted in 093

Figure 2, our strategy comprises one major learn- 094

ing rate branch and multiple minor learning rate 095

branches. The major branch maintains a higher 096

learning rate, which facilitates the discovery of bet- 097

ter local optimum for LLMs. The minor branches 098

consist of decaying learning rate schedules, and 099

the number of minor branches matches the number 100

of versions, ensuring the convergence of different 101

LLMs. LLMs of different versions share one pri- 102

mary branch. Hence, the training of current LLMs 103

can reuse the checkpoints of previous LLMs on 104

major branch, which reduces the total training cost. 105

Additionally, LLMs of different versions utilize dis- 106

tinct minor branches for convergence. Therefore, 107

the training of current LLMs is not influenced by 108

previous versions. 109

Our main contributions are as follows: 110

• Compared with PTFS, our strategy reduces the 111

total training cost to 58% while maintaining opti- 112

mal pre-training performance. To the best of our 113

knowledge, this is the first pre-training strategy 114

designed for version iteration of LLMs. 115

• Empirical experiments demonstrates the gener- 116

alization of our strategy in model scaling, data 117

scaling, and maximum learning rate. 118

• We provide a better understanding of learning 119

rate schedule at LLMs to help prioritize future 120

exploration towards efficient training. 121

2 Preliminary 122

2.1 Experiment Setting 123

Models We conduct all experiments on 124

LLaMA (Touvron et al., 2023a,b). The main 125

experiments are conducted on LLaMA-153M 126

(similar experiments on LLaMA-1.2B are listed 127

in Appendix A.3). To verify the generalization 128

of model scaling, we also report results on 129

LLaMA-206M, LLaMA-406M, LLaMA-608M, 130

LLaMA-2.1B and LLaMA-3.1B respectively. 131

Datasets We pre-train all LLMs on Chinese and 132

English datasets. Similar to LLaMA (Touvron 133

et al., 2023a,b), our pre-training data sources in- 134

clude: 1) Code; 2) Paper; 3) Wikipedia; 4) Books; 135
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5) Mathematics; 6) Commoncrawl and C4; 7) Web-136

page; 8) Translation; 9) Others. Constrained by137

GPU resources, we doesn’t use the entire dataset to138

train LLMs. The training data of LLMs is sampled139

from 764 million samples.140

Learning Rate Schedule We conduct experi-141

ments on commonly used learning rate schedules142

for LLMs (Zhao et al., 2023), including constant,143

inverse square root, cosine, knee and multi-step144

learning rate schedules. The specific learning rate145

curves are plotted in Figure 6 in Appendix.146

Hyper-Parameters The batch size is 512 sam-147

ples, and the maximum length of samples is 2048.148

Hence, there are 1.05 million tokens per step. Lim-149

ited by GPU resources, most LLMs are trained for150

40K steps (about 42B tokens). To verify the gen-151

eralization of our method in terms of data scaling,152

we also train LLaMA-153M for 320K steps (about153

336B tokens), and LLaMA-1.2B for 160K steps154

(about 168B tokens). We set the warmup length for155

all LLMs as 2K steps (about 2.1B tokens). More156

details about hyper-parameters of LLMs are pre-157

sented in Table 11 in Appendix.158

Evaluation We mainly use perplexity (PPL) to159

evaluate the pre-training performance of LLMs.160

2.2 Pre-Training From Scratch161

Different Learning Rate Schedules The learn-162

ing rate schedules can be broadly categorized into163

the following four types (Wu et al., 2019; Wu and164

Liu, 2023; Jin et al., 2024): 1) Fixed learning rate165

policy; 2) Decaying learning rate policy; 3) Cyclic166

learning rate policy; 4) Composite learning rate167

policy. To choose the optimal learning rate sched-168

ules for PTFS, we firstly conduct systematic ex-169

periments to study the effect of these learning rate170

schedules.171

Experimental results of different learning rate172

schedules with training steps ranging from 10k to173

40k are depicted in Table 1. Compared to fixed174

policy and decaying policy, cyclic policy and com-175

posite policy achieve superior pre-training per-176

formance. These two types of learning rate sched-177

ules all have hyper-parameters associated with the178

period, which significantly impacts the pre-training179

performance of LLMs. In this case, LLMs of180

different versions require different decay periods.181

Hence, the training of current LLMs cannot reuse182

the checkpoints of previous LLMs, which results183

in high training cost.184

Schedule PPL

10K 20K 30K 40K

Fixed
Const(1e-3) 42.97 39.41 38.05 37.27
Const(1e-4) 70.24 54.03 47.93 44.56

Decaying
Inv-Sqrt 42.03 38.22 36.67 35.75

Cyclic
Cos 39.85 35.93 34.35 33.42

Composite
Knee 38.99 35.23 33.73 32.86
Multi 38.81 35.14 33.63 32.74

Table 1: PPLs of the most commonly used learning rate
schedules on LLaMA-153M. Experiments on LLaMA-
1.2B are also listed in Table 12 in Appendix.

Figure 3: Comparison of cosine learning rate schedules
with different decay periods.

Different Periods Decay period is one of the 185

most important hyper-parameters for cyclic and 186

composite learning rate policies. Without loss of 187

generality, we study the impact of decay period 188

based on cosine learning rate schedule. We com- 189

pare the pre-training performance of LLMs trained 190

with different cosine decay periods. 191

Figure 3 shows the PPL curves for different de- 192

cay periods. For LLMs trained with 20K steps, a 193

shorter decay period leads to better pre-training 194

performance(20K: 35.93 vs. 30K: 36.83 vs. 40K: 195

37.86). Experimental results illustrate that a com- 196

plete decay period can lead to improved pre- 197

training performance in LLMs. A complete de- 198

cay period indicates that the learning rate gradually 199

decreases from its maximum to the minimum. It 200

ensures the convergence of LLMs parameters to 201

local optimum. 202
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Figure 4: Comparison between cosine learning rate
schedule and concatenated learning rate schedule.

Larger Average Learning Rate Another key to203

improve pre-training performance of LLMs is to204

find a better local optimum for LLMs. Existing205

researches indicate that a high learning rate can ac-206

celerate the convergence of model training (Smith207

and Topin, 2019; Smith, 2018). Review the ex-208

perimental results in Table 1. Compared to the209

cosine learning rate schedule, LLMs trained with a210

constant learning rate schedule exhibit inferior pre-211

training performance, while LLMs trained with212

composite learning rate schedules (such as knee213

and multi-step) exhibit superior pre-training perfor-214

mance. We hypothesize that the differences stem215

from the completeness of the decay period. To216

further validate this hypothesis, we concatenate217

constant and cosine learning rate schedules.218

The specific learning rate and PPL curves are219

plotted in Figure 4. Both cosine learning rate sched-220

ule and the concatenated learning rate schedule221

have a complete decay period, but the concatenated222

learning rate schedule has a larger average learning223

rate. As the results shown in Figure 4, although224

the pre-training performance of the constant learn-225

ing rate schedule is inferior than that of the cosine226

learning rate schedule, the concatenated learning227

rate schedule exhibits superior pre-training perfor-228

mance compared to that of the cosine learning rate229

schedule. It indicates that the constant learning rate230

schedule can find better local optimum compared231

to the cosine learning rate schedule. In other words,232

a larger average learning rate is beneficial for233

LLMs to find a better local optimum.234

Schedule Type PPL

20K 30K 40K

Cos
Rewarm 36.36 34.81 33.90
Reset 36.28 34.74 33.82
Gap -0.08 -0.07 -0.08

Knee
Rewarm 35.89 34.50 33.66
Reset 35.67 34.27 33.44
Gap -0.22 -0.23 -0.22

Multi
Rewarm 35.86 34.53 33.71
Reset 35.67 34.30 33.50
Gap -0.19 -0.23 -0.21

Table 2: Comparison between rewarm and reset for CPT
on LLaMA-153M.

2.3 Continual Pre-Training 235

Rewarm or Reset One key factor for CPT is 236

how to start the new learning rate schedule for 237

LLMs of new version? There are two methods for 238

this problem, including rewarm and reset. Rewarm 239

means progressively increasing the learning rate 240

from minimum to maximum, while reset means 241

reseting the learning rate as maximum directly. 242

To answer this question, we conduct comparison 243

experiments in Table 2. Different from previous 244

study (Gupta et al., 2023), reset is stably better 245

than rewarm. Compared with rewarm, reset has 246

a larger average learning rate, which is beneficial 247

for LLMs to find a better optimum. Hence, we 248

choose reset to start the new learning rate schedule 249

for LLMs of new version. 250

Combination Another key factor for CPT is how 251

to choose the combination of old and new learning 252

rate schedules? For general LLMs, the datasets of 253

different versions are similar. If the best combina- 254

tion consists of more than two types of learning rate 255

schedules, we can replace one of them to achieve 256

better performance. Hence, without loss of gen- 257

erality, we hypothesize that at most two different 258

learning rate schedules are used. There are three 259

methods to choose learning rate schedule for CPT, 260

including extending, cycling and switching. 261

• Extending: The LLMs of new versions continual 262

to be trained with the original learning rate sched- 263

ule. This method is only applicable to the fixed 264

and the decaying learning rate policies, which 265

have no period-related hyper-parameters. 266
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Schedule PPL

20K 30K 40K

Extending
Const(1e-3) 39.41 38.05 37.27
Const(1e-4) 54.03 47.93 44.56
Inv-Sqrt 38.22 36.67 35.75

Switching
Cos 38.23 37.30 36.64
Knee 37.37 36.59 36.03
Multi 37.12 36.34 35.79

Cycling
Cos 36.28 34.74 33.82
Knee 35.67 34.27 33.44
Multi 35.67 34.30 33.50

Table 3: Comparison of different methods for the com-
bination of old and new learning rate schedules.

• Cycling: The LLMs of new versions are trained267

with the same learning rate schedule, which may268

has different parameters with the original one,269

such as the decay period. This method is appli-270

cable to the cyclic and composite learning rate271

policies, such as cosine learning rate schedule.272

• Switching: The LLMs of new versions are273

trained with two different learning rate sched-274

ules. In order to distinguish from the method275

of cycling, we choose a constant learning rate276

schedule for new version. In order to ensure the277

convergence of LLMs, we set a small learning278

rate for switching.279

We compare these methods in Table 3. Experi-280

mental results show that LLMs trained with cycling281

is significantly better than extending and switching.282

It means that cycling is the best choice for CPT.283

Comparison between PTFS and CPT After284

determining the optimal learning rate setting for285

LLMs, we compare PTFS and CPT on cosine, knee286

and multi-step learning rate schedules in Table 4.287

Compared to PTFS, CPT incurs lower training cost,288

but also results in inferior performance for LLMs.289

The performance gap between PTFS and CPT290

increases with the number of versions.291

2.4 Definition of Our Strategy292

Based on the above experiments, we believe that293

the pre-training of LLMs carry out two tasks simul-294

taneously: 1) Searching for a better local optimum;295

Sch. Strategy Cost PPL

20K 30K 40K

Cos
PTFS 1.00× 35.95 34.35 33.42
CPT 0.44× 36.28 34.74 33.82
Gap - -0.33 -0.39 -0.40

Knee
PTFS 1.00× 35.23 33.73 32.86
CPT 0.44× 35.67 34.27 33.44
Gap - -0.44 -0.54 -0.58

Multi
PTFS 1.00× 35.14 33.63 32.74
CPT 0.44× 35.67 34.30 33.50
Gap - -0.53 -0.67 -0.76

Table 4: Performance gaps between PTFS and CPT on
LLaMA-153M.

Figure 5: Implementations for the the proposed BSPT,
which are based on cosine, knee and multi-step learning
rate schedules.

2) Converging to the nearest local optimum. When 296

the learning rate is large, the training of LLMs 297

focuses more on searching for a better local opti- 298

mum; as the learning rate gradually decays, the fo- 299

cus shifts to converging parameters of LLMs to the 300

nearest local optimum. For the training of LLMs of 301

different versions, a complete decay period ensures 302

the pre-training performance of current LLMs, but 303

is harmful for new LLMs to find a better optimum. 304

When the learning rate decays slowly, LLMs grad- 305

ually converge to different local optima before find- 306

ing the final local optimum. It doesn’t bring any 307

benefit to the pre-training performance of LLMs. 308

To address the above issues, we propose 309

Branches Switching based Pre-Training (BSPT) 310

strategy for version iteration of LLMs. Our strategy 311

is applicable to different learning rate schedules, 312

including cosine, knee, and multi-step schedules. 313

The specific learning rate curves are plotted in Fig- 314
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Sch. Strategy Cost PPL

20K 30K 40K

Cos
PTFS 1.00× 35.95 34.35 33.42
CPT 0.44× 35.67 34.30 33.50

BSPT 0.58× 35.03 33.59 32.78

Knee
PTFS 1.00× 35.23 33.73 32.86
CPT 0.44× 35.67 34.27 33.44

BSPT 0.58× 35.22 33.78 32.95

Multi
PTFS 1.00× 35.14 33.63 32.74
CPT 0.44× 35.67 34.30 33.50

BSPT 0.58× 35.43 33.76 32.86

Table 5: Comparison of different strategies for training
LLaMA-153M of different versions. The experiments
on LLaMA-1.2B are presented in Table 13 in Appendix.

ure 5. Our strategy comprises one major learn-315

ing rate branch and multiple minor learning rate316

branches. The number of minor branches matches317

the number of versions. The major branch main-318

tains a higher learning rate, which facilitates the319

discovery of better local optimum. And the minor320

branches employ rapid decay learning rate sched-321

ules, which facilitate LLMs to converge to the near-322

est local optimum. Besides, LLMs of different ver-323

sions share the same major branch learning rate. As324

a result, the training of current LLMs can reuse the325

checkpoints of previous versions, which reduces326

the total training cost. Compared with pre-training327

LLMs of different versions from scratch, our strat-328

egy reduces the total training cost to 58% while329

maintaining optimal pre-training performance.330

3 Experiment331

In this section, we focus on the characteristics of332

our strategy, including: 1) Comparison of different333

pre-training strategies in terms of performance and334

cost; 2) How to determine the value of rapid decay335

period; 3) Generalization in terms of model scaling,336

data scaling and maximum learning rate.337

3.1 Version Iteration of LLMs338

Table 5 lists the experimental results of PTFS, CPT339

and BSPT in terms of the training cost and pre-340

training performance. Compared with PTFS and341

CPT, BSPT reduces the total training cost to342

58% while maintaining optimal pre-training343

performance. A more intuitive comparison of344

these methods can be seen in Figure 1 and Fig-345

ure 2.346

Schedule PPL

20K 30K 40K

Const 39.41 38.05 37.27
+ RD(10%) 35.33 33.97 32.93
+ RD(20%) 35.07 33.59 32.71
+ RD(30%) 35.03 33.69 32.81
+ RD(40%) 35.07 33.73 32.85
+ RD(2K) 35.33 34.02 33.26
+ RD(4K) 35.07 33.71 32.93
+ RD(6K) 35.03 33.59 32.78
+ RD(8K) 35.07 33.55 32.71

Table 6: PPL of constant schedule and our strategy with
different rapid decay periods. “RD” is rapid decay, and
values in parentheses indicate the rapid decay periods.
Experiments are conducted on LLaMA-153M.

3.2 Rapid Decay Period 347

The rapid decay period of BSPT significantly im- 348

pact the pre-training performance and training cost. 349

On the one hand, the additional training cost of 350

BSPT depends on the decay periods of minor 351

branches. On the other hand, an excessively long 352

period may result in a sub-optimal local optimum, 353

while an excessively short period may prevent 354

LLMs from converging sufficiently to local opti- 355

mum. Therefore, how to appropriately configure 356

the rapid decay period of BSPT is crucial in bal- 357

ancing training cost and pre-training performance 358

of LLMs across different versions. To provide em- 359

pirical answers to this question, we conduct ex- 360

periments of minor branches trained with different 361

absolute and relative periods. Additionally, we also 362

provide another method for determining the value 363

of rapid decay period in section 3.3, which is more 364

accurate but has a higher cost. 365

Relative Periods We conduct experiments by set- 366

ting the rapid decay periods as 10%, 20%, 30%, 367

and 40% of the total steps, respectively. Based 368

on experimental results in Table 6, we find that 369

the optimal pre-training performance of LLMs is 370

achieved when the rapid decay period is set to 20%- 371

30% of the total steps. Both excessively long and 372

excessively short rapid decay periods can result 373

in suboptimal pre-training performance. 374

Absolute Periods We also conduct experiments 375

by setting the rapid decay periods as 2K, 4K, 6K, 376

and 8K steps, respectively. The experimental re- 377

sults of absolute periods are also indicated in Ta- 378
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Schedule PPL

20K 30K 40K

203M
PTFS 30.97 29.50 28.65
CPT 31.31 29.90 29.07
BSPT 30.25 28.94 28.19

406M
PTFS 26.58 25.06 24.19
CPT 26.89 25.49 24.67
BSPT 25.85 24.52 23.79

608M
PTFS 23.12 21.75 20.93
CPT 23.50 22.26 21.52
BSPT 22.59 21.43 20.77

1.2B
PTFS 20.84 19.28 18.36
CPT 21.22 19.79 18.97
BSPT 20.13 18.81 18.09

2.1B
PTFS 18.33 16.88 16.04
CPT 18.76 17.47 16.72
BSPT 17.82 16.63 15.97

3.1B
PTFS 17.22 15.87 15.07
CPT 17.67 16.48 15.77
BSPT 16.84 15.72 15.09

Table 7: The generalization of BSPT in terms of model
scaling. The model sizes range from 203M to 3.1B.

ble 6. We can draw the following conclusions: 1)379

The performance of absolute periods is better than380

that of relative periods at a lower cost. 2) The opti-381

mal pre-training performance is achieved with382

an absolute period of 6K-8K steps. Taking into383

account both performance and cost, we set the rapid384

decay period as 6K in subsequent experiments.385

3.3 Generalization386

Model Scaling The effectiveness of our strategy387

has only been verified on LLaMA-153M, but not388

on larger model sizes. To demonstrate the general-389

ization of model scaling, we conduct evaluations390

on other 6 model sizes ranging from 203M to 3.1B.391

Table 11 in Appendix presents the essential hyper-392

parameters for these model sizes, while the pre-393

training performance of these models are depicted394

in Table 7.395

Schedule PPL

160K 240K 320K

Cos 30.59 30.17 29.87
Const 34.61 34.10 33.78

+ RD(16K) 29.98 29.53 29.26
+ RD(32K) 29.93 29.46 29.18
+ RD(48K) 29.96 29.47 29.18
+ RD(64K) 30.02 29.50 29.35

Table 8: The generalization of BSPT in terms of data
scaling. The training steps of LLMs across different
versions are 160K, 240K and 320K steps. We also pro-
vide experimental results on LLaMA-1.2B in Table 14
in Appendix, which are trained for 80K, 120K, 160K
steps.

Experimental results demonstrate that our strat- 396

egy consistently enhances the pre-training per- 397

formance of LLMs across different model sizes. 398

The notable consistency provides new insights into 399

the question of "How to configure the rapid decay 400

period". The optimal value for the rapid decay 401

period can be determined through systematic enu- 402

merations on smaller models. 403

Data Scaling To investigate the generalization in 404

terms of data scaling, we conduct experiments on 405

LLaMA-153M trained for 320K steps (about 336B 406

tokens). To ensure the adequate convergence of 407

LLMs across different versions, we also scale the 408

rapid decay periods to 16K, 32K, 48K, and 64K 409

steps, respectively. The experimental results are 410

shown in Table 8, and the experimental results on 411

LLaMA-1.2B trained for 160K steps (about 178B 412

tokens) are listed in Table 14 in Appendix. Com- 413

pared to the experimental results in Table 6, we ob- 414

serve similar behavior of the LLaMA-153M model 415

when trained for 40K steps and 320K steps, respec- 416

tively. Furthermore, for LLaMA-153M trained for 417

320K steps, the optimal rapid decay is determined 418

to be 32K steps. This implies a lower total training 419

cost. It indicates that our strategy also demon- 420

strates generalization in terms of data scaling. 421

Maximum Learning Rate Compared to the co- 422

sine learning rate schedule, our learning rate sched- 423

ules based on BSPT have a larger average learn- 424

ing rate. It motivates us to explore the following 425

two questions: Q1. Can a larger maximum learn- 426

ing rate improve the pre-training performance of 427

LLMs? Q2. Is our strategy still effective when the 428

maximum learning rate is large enough? 429
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Max LR 10K 20K

5e-4 44.73 38.58
1e-3 39.85 35.93
2e-3 37.67 34.71
5e-3 36.73 34.38
1e-2 36.67 34.80

Table 9: The impact of maximum learning rate for our
strategy. Experiments are conducted on LLaMA-153M.

Max LR Strategy 10k 20k

5e-3
PTFS 36.56 34.38
CPT 36.56 34.40

BSPT 36.29 33.83

1e-2
PTFS 36.63 34.80
CPT 36.63 34.68

BSPT 36.36 34.26

Table 10: The generalization of BSPT in terms of op-
timal maximum learning rates. Experiments are con-
ducted on LLaMA-153M.

To provide empirical answers to these questions,430

we conduct experiments based on cosine leaning431

rate schedule. The experimental results about dif-432

ferent maximum learning rates are presented in433

Table 9. For LLMs trained with 10K steps, the434

optimal maximum learning rate is 1e-2; while for435

LLMs trained with 20K steps, the optimal maxi-436

mum learning rate is 5e-3. The experimental results437

demonstrate that, when the maximum learning rate438

is smaller than the optimum, the pre-training per-439

formance of LLMs increases as the maximum440

learning rate is increased.441

To answer the question of Q2, we also conduct442

experiments of BSPT based on optimal maximum443

learning rates. The experimental results in Table 10444

demonstrate that BSPT still outperforms PTFS445

and CPT even when setting the maximum learn-446

ing rate as the optimal value. In other words, the447

generalization of our strategy in terms of maximum448

learning rate has been verified.449

4 Related Work450

Learning Rate Policy The learning rate is one451

of the most important hyper-parameters in LLMs452

training. Existing learning rate schedules can453

be broadly categorized into the following four454

types (Wu et al., 2019; Wu and Liu, 2023; Jin et al., 455

2024): 1) Fixed learning rate policy, such as con- 456

stant learning rate schedule; 2) Decaying learning 457

rate policy, such as inverse square root learning rate 458

schedule; 3) Cyclic learning rate policy, such as co- 459

sine learning rate schedule; 4) Composite learning 460

rate policy, such as knee and multi-step learning 461

rate schedules. Among these policies, the cosine 462

learning rate schedule is the most commonly used 463

for LLMs training (Zhao et al., 2023). However, 464

it performs poorly in terms of version iteration in 465

LLMs. Hence, we conduct a systematic investiga- 466

tion into the impact of various learning rate sched- 467

ules, and design a novel pre-training strategy for 468

version iteration of LLMs. 469

Continual Training Continual training is a 470

straightforward approach to address the version it- 471

eration problem in LLMs. Research related to con- 472

tinual training of language models can be broadly 473

categorized into the following types: 1) New chal- 474

lenges in the era of LLMs (Jang et al., 2021; Cossu 475

et al., 2022; Wang et al., 2023b); 2) Methods based 476

on a small number of additional parameters (Song 477

et al., 2023; PENG et al., 2024; Ke et al., 2022, 478

2023); 3) Prompt-based approaches (Razdaibied- 479

ina et al., 2023; Wang et al., 2022b,a); 4) Methods 480

tailored to specific scenarios (Peng et al., 2023; 481

Gogoulou et al., 2023a,a). These methods are often 482

applied in constrained scenarios, such as limited 483

computational resources or unavailability of com- 484

plete data. They trade-off performance for lower 485

training cost and are not suitable for version itera- 486

tion in LLMs. 487

5 Conclusion 488

In this study, we systematically explore the optimal 489

learning rate settings for PTFS and CPT. These 490

approaches focus on the performance of LLMs 491

of current version, but overlook the mutual influ- 492

ence of training processes across different versions. 493

To achieve a better balance between pre-training 494

performance and training cost, we design a new 495

pre-training strategy for the training of LLMs of 496

different versions. Compared with PTFS, our strat- 497

egy reduces the total training cost to 58% while 498

maintaining optimal pre-training performanc. Be- 499

sides, the generalization of our strategy in model 500

scaling, data scaling, and maximum learning rate 501

has been verified. 502
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Limitations503

We list the main limitations of this paper as follows:504

Insufficient Experiments 1. Due to limited com-505

puting resources, we don’t further verify the gen-506

eralization of our method on larger models and507

more data. 2. Limited by the length of paper, We508

do not provide more detailed analysis experiments,509

including the impact of minimum learning rate,510

comparation with other continual training methods511

and, etc.512

Additional Training Cost Despite our strategy513

shows superiority in version iteration of LLMs,514

it still incurs about 30% additional training cost515

compared to pre-training from scratch, which can516

be further reduced. We will further investigate this517

problem in future work.518

References519

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,520
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,521
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-522
ing open-source language models with longtermism.523
arXiv.524

Andrea Cossu, Tinne Tuytelaars, Antonio Carta, Lucia525
Passaro, Vincenzo Lomonaco, and Davide Bacciu.526
2022. Continual pre-training mitigates forgetting in527
language and vision. arXiv.528

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang529
Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu, Zi-530
chong Yang, Kuei-Da Liao, et al. 2023. A survey on531
multimodal large language models for autonomous532
driving. arXiv.533

Evangelia Gogoulou, Timothée Lesort, Magnus Boman,534
and Joakim Nivre. 2023a. A study of continual learn-535
ing under language shift. arXiv.536

Evangelia Gogoulou, Timothée Lesort, Magnus Boman,537
and Joakim Nivre. 2023b. A study of continual learn-538
ing under language shift. arXiv.539

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,540
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-541
angliang Zhang. 2024. Large language model based542
multi-agents: A survey of progress and challenges.543
arXiv.544

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,545
Mats L. Richter, Quentin Anthony, Eugene546
Belilovsky, Irina Rish, and Lesort Timothée. 2023.547
Continual pre-training of large language models:548
How to (re)warm your model? In ICML Workshop.549

Nikhil Iyer, V Thejas, Nipun Kwatra, Ramachan-550
dran Ramjee, and Muthian Sivathanu. 2023. Wide-551
minima density hypothesis and the explore-exploit552

learning rate schedule. Journal of Machine Learning 553
Research. 554

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin, 555
Janghoon Han, Gyeonghun Kim, Stanley Jungkyu 556
Choi, and Minjoon Seo. 2021. Towards continual 557
knowledge learning of language models. arXiv. 558

Hongpeng Jin, Wenqi Wei, Xuyu Wang, Wenbin Zhang, 559
Hongpeng Wu, YanzhaoJin, Wenqi Wei, Xuyu Wang, 560
Wenbin Zhang, and Yanzhao Wu. 2024. Rethink- 561
ing learning rate tuning in the era of large language 562
models. arXiv. 563

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu, 564
and Bing Liu. 2022. Continual training of language 565
models for few-shot learning. In EMNLP. 566

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, 567
Gyuhak Kim, and Bing Liu. 2023. Continual pre- 568
training of language models. In ICLR. 569

Bohao PENG, Zhuotao Tian, Shu Liu, Ming-Chang 570
Yang, and Jiaya Jia. 2024. Scalable language model 571
with generalized continual learning. In ICLR. 572

Guangyue Peng, Tao Ge, Si-Qing Chen, Furu Wei, and 573
Houfeng Wang. 2023. Semiparametric language 574
models are scalable continual learners. arXiv. 575

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma- 576
dian Khabsa, Mike Lewis, and Amjad Almahairi. 577
2023. Progressive prompts: Continual learning for 578
language models. In ICLR. 579

Leslie N Smith. 2018. A disciplined approach to neu- 580
ral network hyper-parameters: Part 1–learning rate, 581
batch size, momentum, and weight decay. arXiv. 582

Leslie N Smith and Nicholay Topin. 2019. Super- 583
convergence: Very fast training of neural networks 584
using large learning rates. In Artificial intelligence 585
and machine learning for multi-domain operations 586
applications. 587

Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, Chen 588
Chen, Zhiyuan Liu, Maosong Sun, and Tao Yang. 589
2023. Conpet: Continual parameter-efficient tuning 590
for large language models. 591

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 592
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 593
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 594
Azhar, et al. 2023a. Llama: Open and efficient foun- 595
dation language models. arXiv. 596

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 597
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 598
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 599
Bhosale, et al. 2023b. Llama 2: Open foundation and 600
fine-tuned chat models. arXiv. 601

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 602
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 603
Xu Chen, Yankai Lin, et al. 2023a. A survey on large 604
language model based autonomous agents. arXiv. 605

9

https://arxiv.org/abs/2311.08545
https://arxiv.org/abs/2311.08545
https://arxiv.org/abs/2311.08545
https://arxiv.org/abs/2205.09357
https://arxiv.org/abs/2205.09357
https://arxiv.org/abs/2205.09357
https://arxiv.org/abs/2311.12320
https://arxiv.org/abs/2311.12320
https://arxiv.org/abs/2311.12320
https://arxiv.org/abs/2311.12320
https://arxiv.org/abs/2311.12320
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2309.08859
https://arxiv.org/abs/2309.08859
https://arxiv.org/abs/2309.08859
https://arxiv.org/abs/2309.08859
https://arxiv.org/abs/2309.08859
https://arxiv.org/abs/2210.05549
https://arxiv.org/abs/2210.05549
https://arxiv.org/abs/2210.05549
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2302.03241
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://arxiv.org/abs/2303.01421
https://arxiv.org/abs/2303.01421
https://arxiv.org/abs/2303.01421
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432


Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang606
Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui607
Zheng, Yicheng Zou, Tao Gui, et al. 2023b. Trace:608
A comprehensive benchmark for continual learning609
in large language models. arXiv.610

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi611
Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong612
Su, Vincent Perot, Jennifer Dy, et al. 2022a. Dual-613
prompt: Complementary prompting for rehearsal-614
free continual learning. In ECCV.615

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,616
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,617
Jennifer Dy, and Tomas Pfister. 2022b. Learning to618
prompt for continual learning. In CVPR.619

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng620
Wan, and Philip S. Yu. 2023. Multimodal large lan-621
guage models: A survey. arXiv.622

Yanzhao Wu and Ling Liu. 2023. Selecting and compos-623
ing learning rate policies for deep neural networks.624
ACM Transactions on Intelligent Systems and Tech-625
nology.626

Yanzhao Wu, Ling Liu, Juhyun Bae, Ka-Ho Chow, Arun627
Iyengar, Calton Pu, Wenqi Wei, Lei Yu, and Qi Zhang.628
2019. Demystifying learning rate policies for high629
accuracy training of deep neural networks. In IEEE630
International conference on big data.631

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. 2023.632
Efficient continual pre-training for building domain633
specific large language models. arXiv.634

Aiyuan Yang, Bin Xiao, Bingning Xiao, Borong Zhang,635
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,636
Dong Yan, et al. 2023. Baichuan 2: Open large-scale637
language models. arXiv.638

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,639
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,640
Wendi Zheng, Xiao Zheng, et al. 2023. Glm-130b:641
An open bilingual pre-trained model. In ICLR.642

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,643
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen644
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A645
survey of large language models. arXiv.646

A Appendix647

A.1 Different Learning Rate Schedules648

We train LLMs with commonly used learning rate649

schedules, including constant, inverse square root,650

cosine, knee and multi-step learning rate sched-651

ules. LLMs of different sizes have varying maxi-652

mum learning rates, which are listed in Table 11.653

The minimum learning rate is set to 0.1 times the654

maximum learning rate. We also plot the specific655

learning rate curves of these schedules in Figure 6.656

Figure 6: Learning rate curves of different schedules.

Size LR Hidden Heads Layers

153M 1e-3 512 8 12
203M 1e-3 512 8 24
406M 6e-4 1024 16 12
608M 6e-4 1024 16 24
1.2B 3e-4 1536 16 24
2.1B 3e-4 1536 16 48
3.1B 3e-4 8192 32 40

Table 11: Detailed Hyper-parameters of LLMs with
different sizes.

A.2 Hyper-Parameters of LLMs 657

In this paper, we conduct experiments on LLMs 658

with 7 different sizes, including LLaMA-153M, 659

LLaMA-206M, LLaMA-406M, LLaMA-608M, 660

LLaMA-1.2B, LLaMA-2.1B and LLaMA-3.1B. 661

The detailed hyper-parameters are listed in Ta- 662

ble 11. 663

A.3 Experiments on LLaMA-1.2B 664

In this section, we present a list of significant ex- 665

periments conducted based on LLaMA-1.2B, in- 666

cluding: 1. Comparison of different learning rate 667

schedules; 2. Comparison of different strategies 668

for training LLMs of different versions; 3. The 669

generalization of BSPT in terms of data scaling. 670

Different Learning Rate Schedules Based on 671

LLaMa-1.2B, we also conduct systematic investiga- 672

tion of various learning rate schedules. The experi- 673

mental results are listed in Table 12, which exhibit 674

similarities to those presented in Table 1. Com- 675

pared to fixed policy and decaying policy, cyclic 676

policy and composite policy achieve superior pre- 677

training performance. 678
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Schedule PPL

10K 20K 30K 40K

Fixed
Const(3e-4) 25.67 22.22 20.86 20.08
Const(3e-5) 53.19 37.13 31.36 28.23

Decaying
Inv-Sqrt 25.62 22.15 20.71 19.84

Cyclic
Cos 24.66 20.84 19.28 18.36

Composite
Knee 23.79 20.22 18.80 17.98
Multi-Step 23.76 20.28 18.88 18.06

Table 12: PPLs of the most commonly used learning
rate schedules on LLaMA-1.2B.

Sch. Strategy Cost PPL

20K 30K 40K

Cos
FSPT 1.00× 20.84 19.28 18.36
CPT 0.44× 21.22 19.79 18.97

BSPT 0.58× 20.13 18.81 18.09

Knee
FSPT 1.00× 20.22 18.80 17.98
CPT 0.44× 20.56 19.27 18.52

BSPT 0.58× 20.12 18.81 18.08

Multi
FSPT 1.00× 20.28 18.88 18.06
CPT 0.44× 20.62 19.37 18.65

BSPT 0.58× 20.40 18.88 18.09

Table 13: Comparison of different strategies for training
LLaMA-1.2B of different versions.

Schedule PPL

80K 120K 160K

Cos 16.70 15.97 15.54
Const 18.78 18.20 17.86

+ RD(8K) 16.73 16.18 15.85
+ RD(16K) 16.53 15.96 15.63
+ RD(24K) 16.47 15.86 15.51
+ RD(32K) 16.43 15.79 15.44

Table 14: The generalization of BSPT in terms of data
scaling. The training steps of LLMs across different
versions are 80K, 120K and 160K steps.

Different Strategies Table 13 lists the experi- 679

mental results of PTFS, CPT and BSPT, which is 680

similar to that in Table 5. Compared with PTFS, 681

our strategy reduces the total training cost to 58% 682

while maintaining pre-training performanc. 683

Data Scaling To further verify the generalization 684

of our strategy, we conduct experiments by training 685

LLaMA-1.2B for 160K steps (178B tokens). The 686

experimental results are listed in Table 14, which 687

exhibit similarities to those presented in Table 8. 688
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