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Abstract

Due to the continuous emergence of online
data, version iteration has become an indispens-
able requirement for Large Language Models
(LLMs), which exacerbates the training cost of
LLMs. Hence, one of the pivotal challenges for
LLMs is how to reduce the total training cost
across different versions. To achieve a better
balance between the pre-training performance
and training cost, we conduct a systematic in-
vestigation into the impact of various learning
rate schedules. Extensive experiments on com-
monly used learning rate schedules show that
these approaches primarily focus on the perfor-
mance of LLMs of the current version, but over-
look the mutual influence of training processes
of LLMs across different versions. To address
above issue, we design a pre-training strategy
called Branches Switching based Pre-Training
for the training of LLMs across different ver-
sions. Compared with pre-training LLMs of
different versions from scratch, our strategy
reduces the total training cost to 58% while
maintaining optimal pre-training performance.

1 Introduction

In recent years, there has been significant progress
in the research of Large Language Models (LLMs).
By conducting large-scale parameters training on
massive datasets, LLMs have demonstrated remark-
able capabilities, contributing to unprecedented ad-
vancements in various fields (Wang et al., 2023a;
Guo et al., 2024; Wu et al., 2023; Cui et al., 2023).
However, the training cost of LLMs is significantly
higher than that of traditional NLP models. In
practical applications, LLMs have to face the re-
quirement of version iteration due to the continuous
emergence of online data, which exacerbates the
training cost of LLMs. Therefore, how to reduce
training cost while ensuring optimal pre-training
performance of LLMs across different versions has
become one of the pivotal challenges in the practi-
cal implementation of LLMs.
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Figure 1: The pre-training performance vs. total training
cost of the proposed Branches Switching based Pre-
Training (BSPT), Pre-Training From Scratch (PTFS)
and Continual Pre-Training (CPT) on LLaMA-153M.
“APPL” denotes the average perplexity () of LLMs of
different versions, "Relative Cost" denotes the relative
training cost of LLMs of different versions. The lower
left corner achieves the best trade-off.

Approaches applicable for LLMs version iter-
ation can be broadly categorized into two types:
1) Pre-Training From Scratch (PTFS): conduct-
ing pre-training on full datasets that include both
old and new data. LLMs such as LLaMA (Tou-
vron et al., 2023a,b), GLM (Zeng et al., 2023),
and Baichuan (Yang et al., 2023) employ this ap-
proach for version iteration. It can yield a better pre-
training performance, but also involves extremely
high training cost. 2) Continual Pre-Training
(CPT): conducting pre-training on new data based
on the checkpoints of existing LLMs (Gogoulou
et al., 2023b; Xie et al., 2023). This approach is
often utilized in constrained scenarios, such as lim-
ited computational resources or unavailability of
all data. Compared with PTFS, CPT incurs lower
cost but may result in diminished pre-training per-
formance of LLMs.
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Figure 2: Learning rate curves of different approaches
for version iteration of LLMs. The three approaches
are Pre-Training From Scratch (PTFS), Continual Pre-
Training (CPT) and the proposed Branches Switching
based Pre-Training (BSPT) from top to bottom.

These approaches focus on the performance of
LLMs of current version. PTFS emphasizes the
performance of LLMs on all data, while CPT ad-
dresses how to balance the performance on old and
new data. However, both approaches overlook the
mutual influence of training processes across differ-
ent versions. We can analyze the aforementioned
issue from the perspective of optimization.

* PTFS: Experiments show that the learning rate
schedules with period-related hyper-parameters
can achieve the optimal performance for PTFS.
When training LLMs of different versions us-
ing these schedules, it is necessary to configure
distinct decay periods for each version. In this
scenario, the inability to reuse checkpoints of
existing LL.Ms results in high training cost.

e CPT: A complete learning rate decay period pro-
motes the convergence of LLMs, which ensures
the pre-training performance of LLMs of current
version. However, it is detrimental for the param-
eters of LLMs of future versions to escape from
the current local optimum and search for a better
local optimum.

To achieve a better balance between pre-training
performance and training cost, we systematically
explore the optimal learning rate settings for PTFS
and CPT. Based on the exploratory experiments,
we design a pre-training strategy called Branches
Switching based Pre-Training (BSPT), that is

applicable to learning rate schedules such as co-
sine (Smith and Topin, 2019), knee (Iyer et al.,
2023), and multi-step (Bi et al., 2024) learning rate
schedule. An intuitive comparison of PTFS, CPT
and BSPT is shown in Figure 1. As depicted in
Figure 2, our strategy comprises one major learn-
ing rate branch and multiple minor learning rate
branches. The major branch maintains a higher
learning rate, which facilitates the discovery of bet-
ter local optimum for LLMs. The minor branches
consist of decaying learning rate schedules, and
the number of minor branches matches the number
of versions, ensuring the convergence of different
LLMs. LLMs of different versions share one pri-
mary branch. Hence, the training of current LLMs
can reuse the checkpoints of previous LLMs on
major branch, which reduces the total training cost.
Additionally, LLMs of different versions utilize dis-
tinct minor branches for convergence. Therefore,
the training of current LLMs is not influenced by
previous versions.
Our main contributions are as follows:

* Compared with PTFS, our strategy reduces the
total training cost to 58% while maintaining opti-
mal pre-training performance. To the best of our
knowledge, this is the first pre-training strategy
designed for version iteration of LLMs.

* Empirical experiments demonstrates the gener-
alization of our strategy in model scaling, data
scaling, and maximum learning rate.

* We provide a better understanding of learning
rate schedule at LLMs to help prioritize future
exploration towards efficient training.

2 Preliminary

2.1 Experiment Setting

Models We conduct all experiments on
LLaMA (Touvron et al.,, 2023a,b). The main
experiments are conducted on LLaMA-153M
(similar experiments on LLaMA-1.2B are listed
in Appendix A.3). To verify the generalization
of model scaling, we also report results on
LLaMA-206M, LLaMA-406M, LLaMA-608M,
LLaMA-2.1B and LLaMA-3.1B respectively.

Datasets We pre-train all LLMs on Chinese and
English datasets. Similar to LLaMA (Touvron
et al., 2023a,b), our pre-training data sources in-
clude: 1) Code; 2) Paper; 3) Wikipedia; 4) Books;



5) Mathematics; 6) Commoncrawl and C4; 7) Web-
page; 8) Translation; 9) Others. Constrained by
GPU resources, we doesn’t use the entire dataset to
train LLMs. The training data of LLMs is sampled
from 764 million samples.

Learning Rate Schedule We conduct experi-
ments on commonly used learning rate schedules
for LLMs (Zhao et al., 2023), including constant,
inverse square root, cosine, knee and multi-step
learning rate schedules. The specific learning rate
curves are plotted in Figure 6 in Appendix.

Hyper-Parameters The batch size is 512 sam-
ples, and the maximum length of samples is 2048.
Hence, there are 1.05 million tokens per step. Lim-
ited by GPU resources, most LLMs are trained for
40K steps (about 42B tokens). To verify the gen-
eralization of our method in terms of data scaling,
we also train LLaMA-153M for 320K steps (about
336B tokens), and LLaMA-1.2B for 160K steps
(about 168B tokens). We set the warmup length for
all LLMs as 2K steps (about 2.1B tokens). More
details about hyper-parameters of LLMs are pre-
sented in Table 11 in Appendix.

Evaluation We mainly use perplexity (PPL) to
evaluate the pre-training performance of LLMs.

2.2 Pre-Training From Scratch

Different Learning Rate Schedules The learn-
ing rate schedules can be broadly categorized into
the following four types (Wu et al., 2019; Wu and
Liu, 2023; Jin et al., 2024): 1) Fixed learning rate
policy; 2) Decaying learning rate policy; 3) Cyclic
learning rate policy; 4) Composite learning rate
policy. To choose the optimal learning rate sched-
ules for PTFS, we firstly conduct systematic ex-
periments to study the effect of these learning rate
schedules.

Experimental results of different learning rate
schedules with training steps ranging from 10k to
40k are depicted in Table 1. Compared to fixed
policy and decaying policy, cyclic policy and com-
posite policy achieve superior pre-training per-
formance. These two types of learning rate sched-
ules all have hyper-parameters associated with the
period, which significantly impacts the pre-training
performance of LLMs. In this case, LLMs of
different versions require different decay periods.
Hence, the training of current LLMs cannot reuse
the checkpoints of previous LLMs, which results
in high training cost.

Schedule PPL
10K 20K 30K 40K
Fixed
Const(le-3) 4297 3941 38.05 37.27
Const(le-4) 7024 54.03 4793 44.56
*********** Decaying
Inv-Sqrt 42.03 38.22 36.67 35.75
777777777777 Cyclic
Cos 39.85 3593 3435 3342
~ Composite
Knee 3899 3523 3373 3286
Multi 38.81 35.14 33.63 32.74

Table 1: PPLs of the most commonly used learning rate
schedules on LLaMA-153M. Experiments on LLaMA-
1.2B are also listed in Table 12 in Appendix.
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Figure 3: Comparison of cosine learning rate schedules
with different decay periods.

Different Periods Decay period is one of the
most important hyper-parameters for cyclic and
composite learning rate policies. Without loss of
generality, we study the impact of decay period
based on cosine learning rate schedule. We com-
pare the pre-training performance of LLMs trained
with different cosine decay periods.

Figure 3 shows the PPL curves for different de-
cay periods. For LL.Ms trained with 20K steps, a
shorter decay period leads to better pre-training
performance(20K: 35.93 vs. 30K: 36.83 vs. 40K:
37.86). Experimental results illustrate that a com-
plete decay period can lead to improved pre-
training performance in LLMs. A complete de-
cay period indicates that the learning rate gradually
decreases from its maximum to the minimum. It
ensures the convergence of LLMs parameters to
local optimum.
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Figure 4: Comparison between cosine learning rate
schedule and concatenated learning rate schedule.

Larger Average Learning Rate Another key to
improve pre-training performance of LLMs is to
find a better local optimum for LLMs. Existing
researches indicate that a high learning rate can ac-
celerate the convergence of model training (Smith
and Topin, 2019; Smith, 2018). Review the ex-
perimental results in Table 1. Compared to the
cosine learning rate schedule, LLMs trained with a
constant learning rate schedule exhibit inferior pre-
training performance, while LLMs trained with
composite learning rate schedules (such as knee
and multi-step) exhibit superior pre-training perfor-
mance. We hypothesize that the differences stem
from the completeness of the decay period. To
further validate this hypothesis, we concatenate
constant and cosine learning rate schedules.

The specific learning rate and PPL curves are
plotted in Figure 4. Both cosine learning rate sched-
ule and the concatenated learning rate schedule
have a complete decay period, but the concatenated
learning rate schedule has a larger average learning
rate. As the results shown in Figure 4, although
the pre-training performance of the constant learn-
ing rate schedule is inferior than that of the cosine
learning rate schedule, the concatenated learning
rate schedule exhibits superior pre-training perfor-
mance compared to that of the cosine learning rate
schedule. It indicates that the constant learning rate
schedule can find better local optimum compared
to the cosine learning rate schedule. In other words,
a larger average learning rate is beneficial for
LLMs to find a better local optimum.

Schedule Type PPL
20K 30K 40K
Rewarm 36.36 34.81 33.90
Cos  Reset 3628 3474 3382
Gap -0.08 -0.07 -0.08
Rewarm 35.89 34.50 33.66
Knee  Reset 3567 3427 3344
Gap -0.22  -0.23 -0.22
Rewarm 35.86 34.53 33.71
Muli  Reset 3567 3430 3350
Gap -0.19 -0.23 -0.21

Table 2: Comparison between rewarm and reset for CPT
on LLaMA-153M.

2.3 Continual Pre-Training

Rewarm or Reset One key factor for CPT is
how to start the new learning rate schedule for
LLMs of new version? There are two methods for
this problem, including rewarm and reset. Rewarm
means progressively increasing the learning rate
from minimum to maximum, while reset means
reseting the learning rate as maximum directly.

To answer this question, we conduct comparison
experiments in Table 2. Different from previous
study (Gupta et al., 2023), reset is stably better
than rewarm. Compared with rewarm, reset has
a larger average learning rate, which is beneficial
for LLMs to find a better optimum. Hence, we
choose reset to start the new learning rate schedule
for LLMs of new version.

Combination Another key factor for CPT is how
to choose the combination of old and new learning
rate schedules? For general LLMs, the datasets of
different versions are similar. If the best combina-
tion consists of more than two types of learning rate
schedules, we can replace one of them to achieve
better performance. Hence, without loss of gen-
erality, we hypothesize that at most two different
learning rate schedules are used. There are three
methods to choose learning rate schedule for CPT,
including extending, cycling and switching.

» Extending: The LLMs of new versions continual
to be trained with the original learning rate sched-
ule. This method is only applicable to the fixed
and the decaying learning rate policies, which
have no period-related hyper-parameters.



Schedule PPL
20K 30K 40K
Extending
Const(1le-3) 3941 38.05 37.27
Const(le-4) 54.03 4793 44.56
Inv-Sqrt 38.22 36.67 35.75
Switching
Cos 38.23 3730 36.64
Knee 37.37 36.59 36.03
Multi 37.12 3634 35.79
Cycling
Cos 36.28 34.74 33.82
Knee 35.67 34.27 33.44
Multi 35.67 34.30 33.50

Table 3: Comparison of different methods for the com-
bination of old and new learning rate schedules.

¢ Cycling: The LLMs of new versions are trained
with the same learning rate schedule, which may
has different parameters with the original one,
such as the decay period. This method is appli-
cable to the cyclic and composite learning rate
policies, such as cosine learning rate schedule.

* Switching: The LLMs of new versions are
trained with two different learning rate sched-
ules. In order to distinguish from the method
of cycling, we choose a constant learning rate
schedule for new version. In order to ensure the
convergence of LLMs, we set a small learning
rate for switching.

We compare these methods in Table 3. Experi-
mental results show that LLMs trained with cycling
is significantly better than extending and switching.
It means that cycling is the best choice for CPT.

Comparison between PTFS and CPT After
determining the optimal learning rate setting for
LLMs, we compare PTFS and CPT on cosine, knee
and multi-step learning rate schedules in Table 4.
Compared to PTFS, CPT incurs lower training cost,
but also results in inferior performance for LLM:s.
The performance gap between PTFS and CPT
increases with the number of versions.

2.4 Definition of Our Strategy

Based on the above experiments, we believe that
the pre-training of LLMs carry out two tasks simul-
taneously: 1) Searching for a better local optimum;

Sch.  Strategy Cost

20K 30K 40K
PTFS 1.00x 35.95 34.35 33.42

Cos _CPT__ 044x_ 3628 3474 3382
Gap - -0.33  -0.39 -040
PTFS 1.00x 35.23 33.73 32.86

Knee CPT__ 044x 3567 3427 3344
Gap - -044  -0.54 -0.58
PTFS 1.00x 35.14 33.63 32.74

Multi _ CPT__ 044x_ 3567 3430 3350
Gap - -0.53  -0.67 -0.76

Table 4: Performance gaps between PTFS and CPT on
LLaMA-153M.
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Figure 5: Implementations for the the proposed BSPT,
which are based on cosine, knee and multi-step learning
rate schedules.

2) Converging to the nearest local optimum. When
the learning rate is large, the training of LLMs
focuses more on searching for a better local opti-
mum; as the learning rate gradually decays, the fo-
cus shifts to converging parameters of LLMs to the
nearest local optimum. For the training of LLMs of
different versions, a complete decay period ensures
the pre-training performance of current LLMs, but
is harmful for new LLMs to find a better optimum.
When the learning rate decays slowly, LLMs grad-
ually converge to different local optima before find-
ing the final local optimum. It doesn’t bring any
benefit to the pre-training performance of LLMs.
To address the above issues, we propose
Branches Switching based Pre-Training (BSPT)
strategy for version iteration of LLMs. Our strategy
is applicable to different learning rate schedules,
including cosine, knee, and multi-step schedules.
The specific learning rate curves are plotted in Fig-



Sch.  Strategy Cost
20K 30K 40K
PTFS 1.00x 3595 3435 3342
Cos CPT 044x 35.67 3430 33.50
- BSPT  0.58x 35.03 33.59 32.78
PTFS 1.00x 3523 33.73 32.86
Knee CPT__ 0A4dx 3567 3427 3344
BSPT 0.58x 3522 3378 3295
PTFS 1.00x 35.14 33.63 32.74
Multi _ CPT__ 044x_ 3567 3430 33.50
BSPT 0.58x 3543 33.76 32.86

Table 5: Comparison of different strategies for training
LLaMA-153M of different versions. The experiments
on LLaMA-1.2B are presented in Table 13 in Appendix.

ure 5. Our strategy comprises one major learn-
ing rate branch and multiple minor learning rate
branches. The number of minor branches matches
the number of versions. The major branch main-
tains a higher learning rate, which facilitates the
discovery of better local optimum. And the minor
branches employ rapid decay learning rate sched-
ules, which facilitate LLMs to converge to the near-
est local optimum. Besides, LLMs of different ver-
sions share the same major branch learning rate. As
a result, the training of current LLMs can reuse the
checkpoints of previous versions, which reduces
the total training cost. Compared with pre-training
LLMs of different versions from scratch, our strat-
egy reduces the total training cost to 58% while
maintaining optimal pre-training performance.

3 Experiment

In this section, we focus on the characteristics of
our strategy, including: 1) Comparison of different
pre-training strategies in terms of performance and
cost; 2) How to determine the value of rapid decay
period; 3) Generalization in terms of model scaling,
data scaling and maximum learning rate.

3.1 Version Iteration of LLMs

Table 5 lists the experimental results of PTFS, CPT
and BSPT in terms of the training cost and pre-
training performance. Compared with PTFS and
CPT, BSPT reduces the total training cost to
58% while maintaining optimal pre-training
performance. A more intuitive comparison of
these methods can be seen in Figure 1 and Fig-
ure 2.

Schedule PPL

20K 30K 40K
Const 3941 38.05 37.27

"~ +RD(10%) 3533 3397 3293
+RD(20%) 35.07 33.59 32.71
+RD(B0%) 35.03 33.69 32381
+RD40%) 35.07 33.73 32.85

" +RD(2K)  35.33 34.02 33.26
+ RD(4K) 35.07 33.71 3293
+RD(6K)  35.03 33.59 3278
+ RD(8K) 35.07 33.55 32.71

Table 6: PPL of constant schedule and our strategy with
different rapid decay periods. “RD” is rapid decay, and
values in parentheses indicate the rapid decay periods.
Experiments are conducted on LLaMA-153M.

3.2 Rapid Decay Period

The rapid decay period of BSPT significantly im-
pact the pre-training performance and training cost.
On the one hand, the additional training cost of
BSPT depends on the decay periods of minor
branches. On the other hand, an excessively long
period may result in a sub-optimal local optimum,
while an excessively short period may prevent
LLMs from converging sufficiently to local opti-
mum. Therefore, how to appropriately configure
the rapid decay period of BSPT is crucial in bal-
ancing training cost and pre-training performance
of LL.Ms across different versions. To provide em-
pirical answers to this question, we conduct ex-
periments of minor branches trained with different
absolute and relative periods. Additionally, we also
provide another method for determining the value
of rapid decay period in section 3.3, which is more
accurate but has a higher cost.

Relative Periods We conduct experiments by set-
ting the rapid decay periods as 10%, 20%, 30%,
and 40% of the total steps, respectively. Based
on experimental results in Table 6, we find that
the optimal pre-training performance of LLMs is
achieved when the rapid decay period is set to 20%-
30% of the total steps. Both excessively long and
excessively short rapid decay periods can result
in suboptimal pre-training performance.

Absolute Periods We also conduct experiments
by setting the rapid decay periods as 2K, 4K, 6K,
and 8K steps, respectively. The experimental re-
sults of absolute periods are also indicated in Ta-



PPL

Schedule
20K 30K 40K
203M
PTES 30.97 29.50 28.65
CPT 31.31 29.90 29.07
"BSPT 3025 28.94 2819
406M
PTFS 26.58 25.06 24.19
CPT 26.89 25.49 24.67
"BSPT  25.85 24.52 2379
608M
PTFS 23.12 21.75 20.93
CPT 2350 2226 21.52
"BSPT 2259 2143 20.77
1.2B
PTFS 20.84 19.28 18.36
CPT 21.22 19.79 18.97
"BSPT 2013 18.81 18.09
2.1B
PTFS 18.33 16.88 16.04
CPT 18.76 17.47 16.72
"BSPT  17.82 16.63 1597
3.1B
PTFS 17.22 15.87 15.07
CPT 17.67 16.48 15.77
"BSPT  16.84 1572 15.09

Table 7: The generalization of BSPT in terms of model
scaling. The model sizes range from 203M to 3.1B.

ble 6. We can draw the following conclusions: 1)
The performance of absolute periods is better than
that of relative periods at a lower cost. 2) The opti-
mal pre-training performance is achieved with
an absolute period of 6K-8K steps. Taking into
account both performance and cost, we set the rapid
decay period as 6K in subsequent experiments.

3.3 Generalization

Model Scaling The effectiveness of our strategy
has only been verified on LLaMA-153M, but not
on larger model sizes. To demonstrate the general-
ization of model scaling, we conduct evaluations
on other 6 model sizes ranging from 203M to 3.1B.
Table 11 in Appendix presents the essential hyper-
parameters for these model sizes, while the pre-
training performance of these models are depicted
in Table 7.

Schedule PPL
160K 240K 320K
Cos 30.59 30.17 29.87
Const 34.61 34.10 33.78

~ +RD(16K) 29.98 29.53 29.26

+RD(32K) 29.93 2946 29.18
+RD(48K) 29.96 29.47 29.18
+ RD(64K) 30.02 29.50 29.35

Table 8: The generalization of BSPT in terms of data
scaling. The training steps of LLMs across different
versions are 160K, 240K and 320K steps. We also pro-
vide experimental results on LLaMA-1.2B in Table 14
in Appendix, which are trained for 80K, 120K, 160K
steps.

Experimental results demonstrate that our strat-
egy consistently enhances the pre-training per-
formance of LLMs across different model sizes.
The notable consistency provides new insights into
the question of "How to configure the rapid decay
period". The optimal value for the rapid decay
period can be determined through systematic enu-
merations on smaller models.

Data Scaling To investigate the generalization in
terms of data scaling, we conduct experiments on
LLaMA-153M trained for 320K steps (about 336B
tokens). To ensure the adequate convergence of
LLMs across different versions, we also scale the
rapid decay periods to 16K, 32K, 48K, and 64K
steps, respectively. The experimental results are
shown in Table 8, and the experimental results on
LLaMA-1.2B trained for 160K steps (about 178B
tokens) are listed in Table 14 in Appendix. Com-
pared to the experimental results in Table 6, we ob-
serve similar behavior of the LLaMA-153M model
when trained for 40K steps and 320K steps, respec-
tively. Furthermore, for LLaMA-153M trained for
320K steps, the optimal rapid decay is determined
to be 32K steps. This implies a lower total training
cost. It indicates that our strategy also demon-
strates generalization in terms of data scaling.

Maximum Learning Rate Compared to the co-
sine learning rate schedule, our learning rate sched-
ules based on BSPT have a larger average learn-
ing rate. It motivates us to explore the following
two questions: Q1. Can a larger maximum learn-
ing rate improve the pre-training performance of
LLMs? Q2. Is our strategy still effective when the
maximum learning rate is large enough?



MaxLR 10K 20K
Se-4 4473  38.58
le-3 39.85 3593
2e-3 37.67 34.71
5e-3 36.73 34.38
le-2 36.67 34.80

Table 9: The impact of maximum learning rate for our
strategy. Experiments are conducted on LLaMA-153M.

Max LR Strategy 10k 20k
PTFS 36.56 34.38
Se-3 CPT 36.56 34.40

~ BSPT  36.29 33.83
PTFS 36.63 34.80

le2 CPT 3663 34.68
BSPT  36.36 34.26

Table 10: The generalization of BSPT in terms of op-
timal maximum learning rates. Experiments are con-
ducted on LLaMA-153M.

To provide empirical answers to these questions,
we conduct experiments based on cosine leaning
rate schedule. The experimental results about dif-
ferent maximum learning rates are presented in
Table 9. For LLMs trained with 10K steps, the
optimal maximum learning rate is 1e-2; while for
LLMs trained with 20K steps, the optimal maxi-
mum learning rate is Se-3. The experimental results
demonstrate that, when the maximum learning rate
is smaller than the optimum, the pre-training per-
formance of LLMs increases as the maximum
learning rate is increased.

To answer the question of Q2, we also conduct
experiments of BSPT based on optimal maximum
learning rates. The experimental results in Table 10
demonstrate that BSPT still outperforms PTFS
and CPT even when setting the maximum learn-
ing rate as the optimal value. In other words, the
generalization of our strategy in terms of maximum
learning rate has been verified.

4 Related Work

Learning Rate Policy The learning rate is one
of the most important hyper-parameters in LLMs
training. Existing learning rate schedules can
be broadly categorized into the following four

types (Wu et al., 2019; Wu and Liu, 2023; Jin et al.,
2024): 1) Fixed learning rate policy, such as con-
stant learning rate schedule; 2) Decaying learning
rate policy, such as inverse square root learning rate
schedule; 3) Cyclic learning rate policy, such as co-
sine learning rate schedule; 4) Composite learning
rate policy, such as knee and multi-step learning
rate schedules. Among these policies, the cosine
learning rate schedule is the most commonly used
for LLMs training (Zhao et al., 2023). However,
it performs poorly in terms of version iteration in
LLMs. Hence, we conduct a systematic investiga-
tion into the impact of various learning rate sched-
ules, and design a novel pre-training strategy for
version iteration of LLMs.

Continual Training Continual training is a
straightforward approach to address the version it-
eration problem in LLMs. Research related to con-
tinual training of language models can be broadly
categorized into the following types: 1) New chal-
lenges in the era of LLMs (Jang et al., 2021; Cossu
et al., 2022; Wang et al., 2023b); 2) Methods based
on a small number of additional parameters (Song
et al., 2023; PENG et al., 2024; Ke et al., 2022,
2023); 3) Prompt-based approaches (Razdaibied-
ina et al., 2023; Wang et al., 2022b,a); 4) Methods
tailored to specific scenarios (Peng et al., 2023;
Gogoulou et al., 2023a,a). These methods are often
applied in constrained scenarios, such as limited
computational resources or unavailability of com-
plete data. They trade-off performance for lower
training cost and are not suitable for version itera-
tion in LLMs.

5 Conclusion

In this study, we systematically explore the optimal
learning rate settings for PTFS and CPT. These
approaches focus on the performance of LLMs
of current version, but overlook the mutual influ-
ence of training processes across different versions.
To achieve a better balance between pre-training
performance and training cost, we design a new
pre-training strategy for the training of LLMs of
different versions. Compared with PTFS, our strat-
egy reduces the total training cost to 58% while
maintaining optimal pre-training performanc. Be-
sides, the generalization of our strategy in model
scaling, data scaling, and maximum learning rate
has been verified.



Limitations
We list the main limitations of this paper as follows:

Insufficient Experiments 1. Due to limited com-
puting resources, we don’t further verify the gen-
eralization of our method on larger models and
more data. 2. Limited by the length of paper, We
do not provide more detailed analysis experiments,
including the impact of minimum learning rate,
comparation with other continual training methods
and, etc.

Additional Training Cost Despite our strategy
shows superiority in version iteration of LLMs,
it still incurs about 30% additional training cost
compared to pre-training from scratch, which can
be further reduced. We will further investigate this
problem in future work.
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A Appendix

A.1 Different Learning Rate Schedules

We train LLMs with commonly used learning rate
schedules, including constant, inverse square root,
cosine, knee and multi-step learning rate sched-
ules. LLMs of different sizes have varying maxi-
mum learning rates, which are listed in Table 11.
The minimum learning rate is set to 0.1 times the
maximum learning rate. We also plot the specific
learning rate curves of these schedules in Figure 6.

10

5
— Constant
Cosine l
Inverse Square Root
Knee
— Multi-Step

|

Step

Figure 6: Learning rate curves of different schedules.

Size LR Hidden Heads Layers
153M  1le-3 512 8 12
203M  le-3 512 8 24
406M  6e-4 1024 16 12
608M  6e-4 1024 16 24

1.2B  3e-4 1536 16 24

2.1B 3e-4 1536 16 48
3.1B 3e-4 8192 32 40

Table 11: Detailed Hyper-parameters of LLMs with
different sizes.

A.2 Hyper-Parameters of LLMs

In this paper, we conduct experiments on LLMs
with 7 different sizes, including LLaMA-153M,
LLaMA-206M, LLaMA-406M, LLaMA-608M,
LLaMA-1.2B, LLaMA-2.1B and LLaMA-3.1B.
The detailed hyper-parameters are listed in Ta-
ble 11.

A.3 Experiments on LLaMA-1.2B

In this section, we present a list of significant ex-
periments conducted based on LLaMA-1.2B, in-
cluding: 1. Comparison of different learning rate
schedules; 2. Comparison of different strategies
for training LLMs of different versions; 3. The
generalization of BSPT in terms of data scaling.

Different Learning Rate Schedules Based on
LLaMa-1.2B, we also conduct systematic investiga-
tion of various learning rate schedules. The experi-
mental results are listed in Table 12, which exhibit
similarities to those presented in Table 1. Com-
pared to fixed policy and decaying policy, cyclic
policy and composite policy achieve superior pre-
training performance.
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PPL
10K 20K 30K 40K

Fixed
Const(3e-4) 25.67 2222 20.86 20.08
Const(3e-5) 53.19 37.13 3136 2823

Schedule

Decaying
Inv-Sqrt 25.62 22.15 20.71 19.84
777777777777 Cycic
Cos 24.66 20.84 19.28 18.36
~ Composite
Knee 23779 20.22 18.80 17.98

Multi-Step  23.76 20.28 18.88 18.06

Table 12: PPLs of the most commonly used learning
rate schedules on LLaMA-1.2B.

Sch.  Strategy Cost

FSPT 1.00x 20.84 19.28 18.36

Table 13: Comparison of different strategies for training
LLaMA-1.2B of different versions.

Schedule PPL

80K 120K 160K
Cos 16.70 1597 15.54
Const 18.78 18.20 17.86

+RD@BK) 1673 16.18 15.85
+RD(16K) 1653 1596 15.63
+RD(24K) 1647 1586 1551
+RD(32K) 1643 15.79 15.44

Table 14: The generalization of BSPT in terms of data
scaling. The training steps of LLMs across different
versions are 80K, 120K and 160K steps.
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Different Strategies Table 13 lists the experi-
mental results of PTFS, CPT and BSPT, which is
similar to that in Table 5. Compared with PTFS,
our strategy reduces the total training cost to 58%
while maintaining pre-training performanc.

Data Scaling To further verify the generalization
of our strategy, we conduct experiments by training
LLaMA-1.2B for 160K steps (178B tokens). The
experimental results are listed in Table 14, which
exhibit similarities to those presented in Table 8.
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