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Abstract

With the advancing reasoning capabilities of Large Language Models (LLMs), they
are increasingly employed for complex evaluation tasks, such as grading student
responses, verifying factual claims, and comparing competing answers. Leveraging
multiple LLMs as automated judges can enhance robustness and accuracy by
aggregating diverse perspectives, yet existing approaches often rely on static and
simple aggregation methods, such as majority voting, which may produce incorrect
judgments despite correct individual assessments. We propose a novel multi-
agent debate framework where LLMs collaboratively reason and iteratively refine
judgments, formalizing this process mathematically and proving its advantages
over static ensembles. To ensure computational efficiency, we introduce a stability
detection mechanism using a time-varying Beta-Binomial mixture model (a mixture
of two Beta-Binomial distributions) that tracks judge consensus dynamics and
applies adaptive stopping via Kolmogorov—Smirnov testing. Experiments across
diverse benchmarks and models demonstrate significant improvements in judgment
accuracy over majority voting while maintaining computational efficiency.

1 Introduction

The rapid advancement of Large Language Models (LLMs) has significantly transformed automated
evaluation, enabling near-human accuracy in assessing textual outputs [[Chiang and Lee}, [2023[]. LLMs
are now widely used for tasks such as scoring student essays for coherence [Xiao et al.| [2025],
fact-checking against reliable sources [Quelle and Bovet, [2024] |Augenstein et al., 2024]], and ranking
multiple-choice answers for accuracy [Robinson and Wingatel 2023| Zheng et al., 2024], supporting
applications in education [Wang et al.,[2024b], content moderation, and decision support. A prominent
approach in this context is the LLM-as-a-Judge paradigm [Zheng et al.,[2023} |Qu et al.| 2025]], where
LLMs evaluate responses generated by other LLMs or humans. However, relying on a single LLM
can be limiting due to potential biases and correlated errors [Tumer and Ghosh, (1996, [Wang et al.,
2023} 12025b]]. To address these issues, multi-agent ensembles have been proposed [Li et al.| [2024],
which aggregate multiple LLM judgments through methods like weighted voting [Dietterich, [2000],
averaging, stacking, and majority voting [Zhou, 2012].

Despite its simplicity, majority voting can be unreliable in complex or ambiguous cases, particularly
when agents share similar biases or when the correct answer is a minority opinion [Yang et al., [2025].
This motivates the need for more robust frameworks that can capture the collective intelligence
of multiple agents without being constrained by static aggregation methods. To address this, we
propose a multi-agent debate judge framework as shown in Figure[I] where multiple LLMs engage
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in structured debates to collaboratively reason and refine their judgments. We also present a formal
mathematical model of the debate process, capturing agent interactions and belief updates. Building
on this foundation, we prove that debate improves correctness over static ensembles under mild
assumptions, establishing a theoretical basis for iterative refinement.
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However, iterative debates can be computationally expensive, especially when the process is not
optimally terminated. Fixed-round debates risk either premature stopping before consensus is reached
or unnecessary computation after convergence. To address this, we introduce a stability detection
mechanism based on a time-varying mixture of Beta-Binomial distributions, using the Kolmogorov-
Smirnov (KS) statistic [Massey Jr, |[1951] to adaptively detect when the distribution stabilizes and to
terminate the debate.

We validate our framework through experiments across diverse benchmarks, LLM architectures,
and modalities (visual and non-visual tasks), demonstrating that our multi-agent debate framework
outperforms majority voting in terms of accuracy, and the adaptive stopping mechanism significantly
reduces computational costs while maintaining high accuracy.

Our contributions: (1) A formal debate framework for LLM ensembles that enables collaborative
reasoning with theoretically provable correctness guarantees; (2) A novel stability detection mecha-
nism using Beta-Binomial mixture modeling and adaptive stopping; (3) Comprehensive empirical
validation showing substantial accuracy gains over majority voting.

2 Related Work

LLMs-as-Judges. Our work is closely related to the field of LLM-as-a-Judge [Zheng et al.| 2023,
Gu et al.} 2025] and LLMs-as-Judges [Li et al., [2024]], which involves using one or more LLMs to
evaluate responses generated by either another LLM or a human. Basic LLM-as-Judge frameworks
typically rely on a single LLLM to perform a judgement task [Liu et al., 2023} [Dubois et al., 2024].
Recent studies leverage LLMs to model user preferences or assess quality criteria [Shankar et al.|
2024, |Pan et al., 2024, [Tian et al., [2024]], judge factual consistency or hallucinations [Lin et al., 2022}
Chen et al., [2024d, |Luo et al.,|2024]], flag biased or unsafe content [|Chen and Goldfarb-Tarrant, 2025}
Yuan et al., 2024]], and evaluate reasoning quality [Lightman et al., [2023| Srivastava et al., [2023]].
However, LLM-based judges also exhibit several limitations [Koo et al.| 2024} 'Wang et al.,[2024a),
Wu and Ajil [2025]], such as self-preference bias [Wataoka et al.,|2024]], societal biases [Chen et al.,
2024b|, inconsistency [Stureborg et al.| 2024]], and other common challenges faced by LLMs [Dai,
2024]).

Multi-Agent Debate. Recent work has explored multi-agent debate frameworks, where multiple
agents engage in structured reasoning to reach consensus [Pham et al 2024, |Rasall, 2024, [Michael
et al., 2023} (Chang] 2025/ [Irving et al.,|2018| Khan et al.,|2024, |Du et al., 2024, [Liang et al., [2024,
Chan et al., |2024, [Wang et al.|[20254a, |Lei et al., 2025]. Inspired by Minsky|[[1986], Du et al.|[2024]
proposed a framework in which multiple LLMs respond to a question independently, then refine



their answers after being shown responses from other agents. [Estornell and Liu| [2024] extended
this concept by formalizing the debate process as an optimization problem, laying emphasis on
the role of latent concepts—the underlying abstractions that drive both human and LLM-generated
language [Xie et al., [2022} Jiang| 2023]].

To enhance the debate process, researchers have incorporated methods such as chain-of-thought
reasoning [Kojima et al.| 2022} Wei et al., |2022], self-reflection [Ren et al., 2023} Tan et al.} 2025b],
and self-consistency [Wang et al.l 2023]]. Other studies have explored diverse debate strategies,
including adversarial settings—where agents take opposing sides and a third agent acts as judge [Liang
et al., |2024]— and collaborative approaches, where agents work together to iteratively solve a
problem [Li et al.,|2025a, [Estornell et al.| 2025].

Statistical Approaches. To estimate the correctness of debate judges, |Qu et al.| [2025] proposed
modeling judge correctness dynamics using a mixture of Beta-Binomial distributions, effectively
capturing features such as bimodal peaks in the correctness distribution than traditional binomial
models. The Expectation-Maximization (EM) algorithm [Moon, 1996] is commonly employed to
estimate parameters in such mixture models [Sun et al., 2024} Qu et al., [2025]]. For stability detection,
an approach to monitor the distributional similarity of judge correctness is the Kolmogorov-Smirnov
(KS) test [Massey Jr, [1951]], which quantifies the maximum difference between two empirical
cumulative distribution functions (CDFs).

3 Multi-Agent Debate Framework

In this section, we introduce the multi-agent debate framework for LLM judges. We begin by defining

some important notations and the debate process: let x be the task and y the ground truth answer.
(t) (t))

i i

Each of the n agents is parameterized by ¢; € ®. Agent i’s response at round ¢ is 2
(t) (t)
DAL

, with e(z
extracting its judgment. All responses at round ¢ form Z(!) = T is the maximum rounds

of debate.

3.1 Debate Process

The multi-agent debate framework involves n agents, each parameterized by ¢;: (1) At round 0, each

agent receives task x and generates an initial response zgo). (2) In each subsequent round, agents
observe the task and debate history, then generate new responses. (3) After each round, if all agents
agree, the process terminates and returns the consensus; otherwise, it continues until a maximum of
T rounds, after which the majority vote is returned. This procedure is summarized in Algorithm [I]in
the appendix.

3.2 Latent Concepts

Following prior work [Xie et al.| {2022 Jiang, |2023| [Estornell and Liul [2024]], we adopt the notion of
latent concepts, which refers to the underlying abstract ideas or interpretations that guide how agents
understand and respond to a task.

Let © denote a latent concept space, where each concept § € © represents a coherent interpretation
of task x. The task-answer pair (z,y) is generated by first sampling a concept 6, then drawing
(z,y) ~ D(0), where D maps concepts to task-answer pairs. Upon observing z, agents infer a
distribution over © and generate responses accordingly. Multiple valid concepts may exist, and agents
may focus on different aspects. Although O is abstract, we use sentence embeddings to represent and
compare concepts in practice.

To provide a more detailed example of how latent concepts can be used in the debate process, consider
the following question: "Who won the 2021 Formula 1 Drivers’ Championship?" to which the correct
answer would be "Max Verstappen". The latent concept behind this task involves knowledge of the
2021 Formula 1 season and the fact that Verstappen won the championship. Sentence embeddings
are able to effectively capture this semantic concept and enable agents to align or disagree based on
such latent understanding.



3.3 Response Generation Mechanism

At round ¢, agent 7 generates a response 22@

parameters ¢;, modeled as:

based on the task z, the history of responses Z*¢, and its

Prodel (ZZ(H_l) ‘ xz, Zta ¢z)
Introducing a latent concept space O, this becomes:
HDmodel( (H_l) | 7) = Z ]P)(Zi(t—i_l) ‘ 971’, Zta QS?) P(a | €L, Zta d)z) (1)
)
(t+1)

The first term is the likelihood of generating z;
belief in @ after observing = and Z°.

under concept 6; the second is the agent’s updated

We now introduce a key assumption that simplifies the modeling process:

Assumption 3.1 (Conditional Independence on Latent Concepts). For a given latent concept 6, the

(t+1) -

probability of generating response z; is conditionally independent of both Z") and x, given 0

and ¢;:
P( (t+1) | 0 z, Zt ¢) ]P( (t+1) ‘ 0 ¢l)

This assumption implies that the generation z( 1 of model i is solely determined by the latent

concept 6§ of the input task and the agent’s parameters ¢;. Again with the example mentioned earlier,
the sentence embeddings that capture the semantic meaning of "Max Verstappen won the 2021
Formula 1 Drivers’ Championship" are produced solely based on the latent concept 6 and the agent’s
parameters ¢;.

Lemma 3.1 (Response Generation Model). Under Assumption[3.1} the generation of a response by
model i at time t + 1 can be expanded with Bayesian inference:

n

P(z" |2, 28 00) oc S P(=V 1 6,60) B(x | 6,60) P8 6) H (2 16,6). @

0€O j=1

This formulation clarifies how agents incorporate others’ responses into their posterior beliefs about
the latent concept, enabling collaborative refinement of judgments. Through Bayesian inference,
each agent updates its belief in 6 by weighing the likelihood of the task x and all responses Z*
against its prior P(6 | ¢;). This iterative process helps correct individual errors—such as those
from biased training data—by shifting beliefs toward the correct concept, thus improving ensemble
accuracy and mitigating correlated errors seen in static aggregation methods [[Tumer and Ghosh,
1996]. Modeling response generation probabilistically over a latent concept space supports robust,
collective deliberation.

4 Theoretical Analysis

4.1 Assumptions

Our analysis rests on four core assumptions that formalize how latent concepts govern the debate
dynamics. We motivate each assumption with practical intuition and highlight its implications and
limitations.

Assumption 4.1 (True Concept Predictiveness). For all agents i, concepts 0’ # 0*, and rounds t:
Ple(z™) =y | 6%.0:) > Ple(z{T) =y | ', ).

This assumption asserts that the true concept 6* leads to more accurate predictions than any other
incorrect concept. It captures the intuitive idea that there exists a best way to frame the task (e.g., a
correct scientific theory or legal principle), and that responses generated under this framing are more
likely to be correct. While it simplifies the space of possible misinterpretations and might weaken if
the tasks suffer from high ambiguity cases, it enables rigorous analysis of concept-driven reasoning
dynamics.



Assumption 4.2 (Task-Concept Alignment). The probability of observing task x is higher given the
true concept than any incorrect concept:

Pla |07, ¢i) > Pz | 0, ¢:) V0" # 6"

This reflects that task generation is not uniform across concepts—some tasks are more naturally
aligned with specific latent interpretations. For example, a medical diagnosis task is more likely to
arise under a medical concept than under a legal one. This assumption allows posterior inference
over 0 using Bayes’ rule to favor 6* as debate unfolds.

Assumption 4.3 (Positive Concept Prior Beliefs). All concepts have positive prior probability:
PO | ¢;) >0 VO € O,Vi.

This ensures that no concept is ruled out a priori, a standard regularity condition in Bayesian models.
It prevents agents from permanently excluding the true concept and models diversity in agents’ initial
beliefs, where even implausible concepts retain some weight.

Assumption 4.4 (Independent Agent Responses). Agent responses are conditionally independent
given the latent concept 0:

]P)(Zizéa'ua H t|0¢j

This assumption simplifies belief aggregation by treating agent responses as independent signals
once the concept is fixed. Although this may be violated if agents copy or reference one another, or
share strong biases, it is reasonable in decentralized debate settings where responses are generated in
parallel.

4.2 Theorems
We begin by defining key concepts used in our analysis:
* True Concept: 6*, the unique concept such that (x,y) ~ D(6*), i.e., the concept that maximizes

the likelihood of generating the correct answer.

* Response Consistency: c(2%,0) := P(z} | 0, ¢;), denoting the likelihood of response 2% under
concept 6 and parameters ¢] '

* Strong Consistency: A response 2! is 0*-strong if c(z},0%) > c(25,6') for all 6" # 6*. This
captures the idea that a response is most likely generated under the true concept.

We now present two main theorems:

Theorem 4.1 (Consistent Response Amplification). Let ZY be a set of responses where at least one
response is strongly consistent with the true concept 0%, and Z%, be a set of responses where no
response is strongly consistent with 0*. Then:

Ei[Pla(z{t) =y |2, Z4, ¢i)] > Ei[P(a(z{T") =y | #, 25, ¢4)], (3)

where E; is the expectation over agents i. That is, the presence of at least one strongly consistent
response in round t increases the expected correctness in round t + 1.

See Appendix [A.T|for the full proof. This theorem formalizes a central benefit of debate: even a single
correct reasoning path can guide other agents toward better beliefs and improved future performance.
It supports the value of curriculum learning and few-shot prompting in multi-agent reasoning.

We next extract a useful consequence:

Lemma 4.1 (Accuracy Increases with Posterior Belief). Under the assumptions of Theorem the
probability of an agent producing a correct answer increases with their posterior belief in the true
concept:

Ple(2f) =y) TP(O" | Z2'71).



See Appendix [A.2]for the proof. This follows directly from Bayesian updating: stronger belief in
6* improves expected predictive accuracy. It formalizes the link between belief refinement and task
performance.

To prove that debate outperforms static aggregation (e.g., majority vote), we introduce one final
condition: at least one response in the first round must be generated under the true concept, to enable
belief updating.

Assumption 4.5 (Initial Seed of Correct Reasoning). There exists at least one initial response
i(o) with

c(zgo), 0*) > c(zfo), 0"). This ensures the debate has a valid starting point for belief updates.

generated via the correct concept: latent concepts represented by reasoning path. 3z

‘We now state our second main theorem:

Theorem 4.2 (Debate Improvement over Majority Vote). Under the preceding assumptions, the final
accuracy of the debated outcome D(Z™) exceeds that of initial majority vote MV (Z°):

P(D(Z") =y) > P(MV(Z2°) = y). )

See Appendix[A.3]for the full proof. This result supports the view that structured interaction—through
iterative debate—enables a population of agents to converge on more accurate answers than indepen-
dent majority voting. It aligns with classical findings in distributed reasoning and ensemble methods,
where collaborative refinement outperforms static aggregation.

5 Debate Adaptive Stability Detection

To improve debate efficiency, we introduce an adaptive stability detection mechanism that halts
the process once judge accuracy rates stabilize. We model judge accuracy as a time-varying Beta-
Binomial mixture, estimating parameters via Expectation-Maximization (EM). Stability is detected
by monitoring distributional similarity across rounds using the Kolmogorov—Smirnov (KS) statistic.
See Algorithm [2]in the appendix.

5.1 Judgement Accuracy Modeling

Let v; denote the latent correct rate of a debate judge at round ¢, with distribution D;. Our goal is to
determine when D); stabilizes sufficiently to compute reliable bounds for ;.

We observe an ensemble of k judges whose collective decisions produce a score S* at each round ¢t—
the total number of correct decisions. We model S* as a time-varying mixture of two Beta-Binomial
distributions:

St~ w! BB(k, at, B1) + (1 — w') BB(k, ab, ). )

Here, BB(k, «, 8) denotes the Beta-Binomial distribution, which models the number of correct
decisions among k judges with shape parameters « and 3, capturing the variability in judge accuracy
due to heterogeneous behaviors. The mixture weight w! € [0, 1] balances the two components, and
ot Bt b, B parameterize the two components. This model captures different behavioral regimes
among judges (e.g., attentive vs. inattentive).

5.2 Parameter Estimation via Expectation-Maximization

For each round ¢, we estimate parameters v’ = {w! o}, B¢ b, 8L} from n observed values
{st,...,s,,} using maximum likelihood estimation with the EM algorithm. The complete-data
likelihood combines both mixture components:

L") =[] [w'BB(sh: k. af, B1) + (1 — w")BB(s}; k, ab, 85)] , (6)
j=1

where the Beta-Binomial probability mass function is defined as:

- (50




and B(a, ) = FIS?(I)E_(/}B)) is the Beta function, with I' denoting the Gamma function.

The EM algorithm iteratively refines estimates of '

thB(sj;atl,,Bf)
w"BB(s?;(y'l',Bf)-‘r(l—wt)BB(s;;a;’,ﬁ;) .

* E-step: Compute responsibilities rj»’l =

* M-step: Update parameters using weighted MLEs (Maximum Likelihood Estimation):

1 n n
wt — - eré’l and {o!, B} « argrg%leric log BB(S?;a,ﬂ) (c=1,2).
j= j=

In practice, we employ the L-BFGS-B optimization method [Zhu et al., [1997] to update the Beta-
Binomial parameters. The algorithm terminates when the log-likelihood improvement is less than
a convergence threshold € = 1075, or after a maximum of n = 100 iterations. This threshold was
chosen to ensure high precision in parameter estimation while maintaining computational efficiency,
as validated in our experiments across benchmarks.

5.3 Stability Detection

After the EM algorithm converges, meaning the log-likelihood improvement falls below a thresh-
old € or a maximum of n iterations is reached, it yields an estimated parameter set ! =
{w',ad, 8%, ok, BL} for round ¢. The distribution over individual judges’ correct rates is then given

by:

P'(y) = w'Beta(; af, B) + (1 — w')Beta(y; o3, B), ©)
where Beta(y; o, §) = % is the probability density function of the Beta distribution,
and B(a, ) = Fé&?i(ﬁﬁ)) is the Beta function defined in the previous subsection.

To detect when this distribution stabilizes, we track the Kolmogorov-Smirnov (KS) statistic between
consecutive rounds:
Dy = sup |F'() = F""'(¥)], ®)
$€0,1]
where F'* is the cumulative distribution function (CDF) of P?(¢)). As described in Algorithm the
judgement accuracy modeling process halts once D; < 0.05 for 2 consecutive rounds, as used in
our experiments, signaling that the judge accuracy distribution has stabilized.

6 Experiments

6.1 Experimental Setup

Our evaluation framework assesses a wide range of state-of-the-art LLMs, including both propri-
etary and open-source models from multiple providers across visual and non-visual tasks. For the
proprietary model, we use Gemini-2.0-Flash [Google| 2024] from Google. Open-source models
comprise Llama-3.1-8B-Instruct [Grattafiori et al., 2024, Meta, [2024]] and Llama-3.2-11B-Vision-
Instruct [Grattafiori et al., 2024} |AI [2024]], both from Meta Al, used for non-visual and visual tasks,
respectively; Qwen-2.5-7B-Instruct [[Qwen et al., [2025]] and Qwen-2.5-VL-7B-Instruct [Bai et al.,
2025]], both from Alibaba, applied to non-visual and visual tasks, respectively; and Gemma-3-4B-
Instruct [Team et al.| 2025]] from Google used for both tasks.

We conduct experiments on datasets from diverse domains to evaluate the debate judge’s perfor-
mance, including: hallucination detection: Truthful QA [Lin et all [2022], alignment evaluation:
JudgeBench [Tan et al.,|2025a] and LLMBar [Zeng et al.,[2024]], and reasoning: BIG-Bench [Srivas{
tava et al.| [2023]]. We also use multiple multi-modal datasets: MLLM-Judge [Chen et al.,2024a] and
JudgeAnything [Pu et al.| 2025].

6.2 Comparative Results

Table[I] shows that our debate framework generally outperforms both baselines: Single Model and
SoM (Majority Vote), especially on complex tasks like JudgeBench, LLMBar, TruthfulQA, and



BIG-Bench JudgeBench
Model Single SoM Debate Single SoM Debate
Gemma-3-4B 69.84i2.45 70-8012.81 71-10j:2.81 55.62i3‘24 5460i391 56-70j:3.89
Qwen25-7B | 74.371010 76.601062 72204077 | 58.324003 59.524355 59.68.555
Llama-3.1-8B 78.67i1.94 81.80i2‘39 74~00j:2472 57.98i3‘02 60.84:‘:3'84 58.90:‘:3‘87
Gemini-2.0-Flash 81-74:t2.16 81.5012_41 82.3012,36 63.6613,03 66.13;&3_72 68.06i3_66

LLMBar Truthful QA
Model Single SoM Debate Single SoM Debate
Gemma-3-4B 57.98:‘:2.48 57.83:{:2'79 58.83:‘:2'78 40~39i2499 40.15i3‘3g 41.62:&3.37
QWCH-2.5-7B 65.57:&2.21 66.2212,67 69.8112,60 5948412.86 62.3913,36 58.5113,37
Llama-3.1-8B 59~70i2.36 60.25:‘:2'76 62.58:‘:2‘73 50.83:‘:235 53.94i3‘4g 55'34i3.41
Gemini-2.0-Flash 76.68:&1.97 77.7512,35 81.8312,18 69.4912,71 72.01:&3‘10 74430:&2.99
MLLM-Judge JudgeAnything
Model Single SoM Debate Single SoM Debate
Gemma-3-4B 61.13i3.04 61.62353‘36 62-75;t3A34 83.461531 84.96:&6‘07 84.96i6.07
QWGI’I-Z.S-VL-7B 60.43:&3.27 60.8813,37 6038i338 67.8817,84 68.4213,37 67.6717,85
Gemini-2.0-Flash 67-50i2.88 68.00i323 69-25;&3‘19 81~63i570 83.46i6‘30 85.71i5.95

Table 1: Accuracy (%) and standard error (%) of different response aggregation methods—Single
(sampling once), SoM (Majority Vote), and Debate (10 Rounds Maximum)—across datasets and
models. All results use an ensemble size of 7 and a sampling temperature of 1.0.

MLLM-Judge. Gemini-2.0-Flash achieves the largest gains in several cases (e.g., 77.75% to 81.83%
on LLMBar). These gains are modest in some cases because our framework’s iterative refinement
adds most value in complex tasks with high initial variance, where collaborative belief updates correct
biases (Theorem.T)), yielding significant improvements. On simpler tasks with high initial consensus,
such as BIG-Bench and JudgeAnything, SoM performs comparably or better as refinement introduces
minimal benefit, aligning with diminishing returns in low-variance scenarios. This supports targeted
applicability: debate excels where accuracy justifies costs, while SoM suffices for straightforward
tasks.

Our analysis (Table[5] Appendix B.2) shows that an ensemble size of 7 provides the best balance
between accuracy and computational cost across most tasks. Larger ensembles (Size-9 or greater)
show diminishing returns in accuracy, while increasing computational costs, smaller ensembles
(Size-5) are sufficient to maintain accuracy with minimal cost. We recommend Size-7 as the optimal
choice for most use cases.

6.3 Judgement Dynamics

Judgement Distribution. Figure [2a] shows the evolution of correct agent distributions across
debate rounds on JudgeBench for four models. Initially, Round O distributions are broad, reflecting
diverse judgments. By Rounds 2, distributions converge to a bimodal pattern (0 or 7 correct agents),
maintaining a Beta-Binomial mixture shape, indicating that agents either align on the correct answer
or collectively fail. Similar convergence is observed across other datasets (see Appendix [B.2.1),
confirming the debate framework’s robustness.

Figure 2b]illustrates the distribution of correct agents across debate rounds for the Llama-3.1-8B
model on the JudgeBench dataset. The solid line represents the fitted Beta-Binomial distribution,
while shaded areas depict the empirical distribution of correct agents (x-axis) with probability
density (y-axis). The close alignment between the fitted and empirical distributions highlights the
effectiveness of the EM algorithm in modeling agent performance dynamics.

Adaptive Stability Detection. Figure [3] presents KS statistics across six debate rounds for six
datasets and five models. The KS statistic (y-axis) measures the difference between CDFs of correct
agent counts across two consecutive rounds (x-axis). High initial KS values (e.g., 0.25-0.45 for
JudgeBench, Round 1) reflect diverse judgments and opinion changing, but values typically rapidly
drop below the stability threshold (e = 0.05) within 2 to 7 rounds (e.g., Gemini-2.0-Flash on BIG-
Bench by Round 2). To prevent premature halting, the adaptive mechanism requires KS values



BIG-Bench JudgeBench
Model Rounds Accuracy Diff | Rounds Accuracy Diff
Gemma-3-4B 5 70.0741982 -1.03 5 56.5441389 -0.16
Qwen-2.5-7B 7 72.0042.78 -0.20 6 59.351385 -0.33
Llama-3.1-8B 7 73~70i2.73 -0.30 6 58.58i3.87 -0.32
Gemini-2.0-Flash 4 81.7042.40 -0.60 6 67.744370 -0.32
LLMBar Truthful QA
Model Rounds Accuracy Diff | Rounds Accuracy Diff
Gemma-3-4B 5 58.754278 -0.08 5 41.494337 -0.13
Qwen-2.5-7B 5 69.141261 -0.67 5 58.021337 -0.49
Llama-3.1-8B 6 62171074 -0.41 6 54.7213.41 -0.62
Gemini-2.0-Flash 5 81.3341290 -0.50 5 73.8113.01 -0.49
MLLM-Judge JudgeAnything
Model Rounds Accuracy Diff | Rounds Accuracy Diff
Gemma-3-4B 4 62.504335 -0.25 2 84.9616.07 0.00
Qwen-2.5-VL-7B 4 60.381335 0.00 2 67.67+785 0.00
Gemini-2.0-Flash 5 68.631321 -0.62 8 85.714595 0.00

Table 2: Adaptive stopping performance in the Debate method: number of rounds until stopped,
accuracy (%), and accuracy difference (%) compared to using the full 10 rounds. All experiments use
an ensemble size of 7, a maximum of 10 debate rounds and a KS-statistic threshold of 0.05.

100 Round 0 100 Round 1 100 Round 2
= Gemma-3-4B
__ 8o Llama-3.1-88 80 80
e = Qwen-2.5-7B
%}’ 60 = Gemini-2.0-Flash | ©0] 60
G 40 40 40
@
20 20 20
o I_lljl_-l_lnn_-ljl_. o —_—— e o o —
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of Correct Agents Number of Correct Agents Number of Correct Agents

(a) Distribution of correct agents across 3 debate rounds on JudgeBench for multiple models. Each subplot
shows a round, with distributions converging to either 0 or 7 correct agents, reflecting the debate process’s
alignment effect.

Debate Round 1

o
o

Debate Round 2
Combined Mixture Model

Debate Round 3

Combined Mixture Model

0,25/ — Combined Mixture Model " 005
] Component 1 (weight=0.67) 804 Component 1 (weight=0.33) 9 Component 1 (weight=0.57)
=020 Component 2 (weight=0.33) = Component 2 (weight=0.67) S04 Component 2 (weight=0.43)
Zo1s Observed Data 203 Observed Data Zos Observed Data
3 H z
©0.10 © 02 ©0.2
g 5 g
£ 0.05 Fo1 Fo1
0005y 3 a5 6 7 0O 2 3 a4 6 7 B T B R S S R

Correct Agents Count

Correct Agents Count

Correct Agents Count

(b) Fitted Beta-Binomial distributions (solid lines) against empirical distributions (shaded areas) for Llama-3.1-
8B on JudgeBench across debate rounds, showing the accuracy of our mixture model.

Figure 2: Judge consensus dynamics during debate. Top: Correct agent distributions across three
rounds on JudgeBench, showing convergence to unanimous agreement. Bottom: Fitted Beta-Binomial
mixture model closely matches empirical distributions for Llama-3.1-8B.

to remain below e = 0.05 for two consecutive rounds before terminating the debate process. For
example, Gemini-2.0-Flash on JudgeAnything drops below this threshold by Round 3 but bounces
back, until finally stabilizing from Round 6 onward.

7 Conclusion

In this paper, we introduced a multi-agent debate framework that allows LLMs to collaboratively
reason and iteratively refine their judgments, addressing the shortcomings of static aggregation
methods such as majority voting. Central to our approach is a novel stability detection mechanism,
which employs a time-varying Beta-Binomial mixture model and the Kolmogorov—Smirnov statistic to
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Figure 3: KS statistics across ten debate rounds for six datasets. The x-axis shows steps between
rounds, the y-axis shows KS values, and the red dotted line marks the stability threshold (e = 0.05).

adaptively halt the debate process when consensus is achieved. The significance of our framework lies
in its ability to bolster the robustness and precision of LLM-based evaluations through collaborative
reasoning and iterative refinement. The stability detection mechanism optimizes resource use, making
it viable for practical applications.
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A Theoretical Analysis

A.1 Proof of Theorem 4.1]

We prove that having at least one strongly consistent response in round ¢ increases the expected
probability of correctness in round ¢ + 1. This relies on assumptions . TH4.4]

Proof. Using Bayes’ rule and our defined assumptions, we can express the probability that agent ¢
generates the correct answer in round ¢ + 1 as:

Ple(z"") =y | 2,2, ¢i) = Y _Ple(zi™) =y [ 0,0:)P(0 | 2, 2", ) )

0ece

The posterior probability of concept 6 given the observed responses Z* can be calculated as:

PO | 2, 2", ¢:) = B2 0] (10)
P(Z" 10, ¢:)P(x | 0,¢:)P(0 | ¢:) (an
P(Z! [z, ¢0:)P(z | ¢5)

P(Z" 1 6,6:)P(x | 0,6:)P(0 | 6:) (12)

By assumption .4] we have:
P(Z'|0,6:) = [ P( 10.05) (13)

j=1
This gives us:

PO |2, Z', ¢:) < P(x | 0, 6:)P(0 | ¢7) H 216, 6)) (14)

Now, consider two sets of responses Z% and Z%, where Z', contains at least one strongly consistent
response with 6* and Z% contains none. Let 2! € Z*, be this strongly consistent response.

By definition of strong consistency, P(z2! | 6%, ¢5) > P(zL | ¢/, ¢5) for all 6’ # 6*.

For the sets Z!, and Z%, we have:

B(6" | 2, 2% ¢0) _ Pz |6%,0)P(0" | §) 111 P(L|0%9y) "
B | 2. 2%.¢1) B [0.0)B@ | 6:) 11, B! 0. 6)
P(x | 0%, 6)P(0" | 6) 1P 167.6) o
P@ [0, 6)P0 | 6) 11, P(L |0 ;)

By assumption[d.2] we have P(z | 6%, ¢;) > P(z | ¢’, ¢;). Combined with the above, this shows that:

Using assumption [d.1] we can then show:
Ei[Pe(2{") =y | 2, Z4,6:)] > Ei[Ple(z]™) =y | 2, Z55, 61)] (18)
This completes the proof of Theorem 4.1. O

A.2  Proof of Lemma [4.1]

We are given that each agent chooses their judgment by maximizing expected correctness based on
their belief distribution over concepts:

P(e(z] ZIP () =y 10,6:) PO 2Z1). (19)

20



Since 6* is the true concept (i.e., it produces the correct label y with the highest probability), and
agent reasoning reliability is fixed (via ¢;), we assume:

Ple(z;) =y | 0%, i) > Ple(zf) =y | 0r,¢:), YOI # 0" (20)

Then, as P(6* | Z'~!) increases (due to observing consistent responses), the overall weighted sum

increases:
= P(e(z) =y) T P(O* | Z2'77), 1)

K2

establishing the claim.

A.3 Proof of Theorem [4.2]

We now show that the entire iterative debate process yields better outcomes than a simple majority
vote on the initial responses. This result relies on Theorem[A.T] the assumption 4.5} lemmal4.1] and

lemma[3.1]

Proof. We first define the accuracy at round 0 as

n

Acc(0) = %ZP(B(Z?) =y|z, ). (22)

i=1

By standard concentration bounds (or accounting for ties/correlations), the probability that the initial
majority vote matches the correct answer y can be bounded as

P(MV(Z°) =y) < Acc(0) + eo, (23)

where €y > 0 captures minor discrepancies.

Next, at each round ¢ > 0, each agent ¢ updates its posterior ]P’(G | @, Z¢, gbi) using Bayes’ rule

Under lemma if IP’(G* | @, Z¢, gbi) increases, then the agent’s probability of producing the correct
answer at round  + 1 also increases. From Theorem[A.T} any round ¢ containing at least one strongly
consistent response with 6* pushes beliefs further toward 6*. Because assumption [4.5] guarantees a
strongly consistent response already at ¢ = 0, it follows inductively that

1 n
Acc(t +1) = EZP(e(zf+1)=y|x, 7', ¢;) > Acc(t), forallt > 0. (24)

i=1
Thus, repeated updates strictly increase the ensemble accuracy from one round to the next.
Iterating inequality 24) from¢ =Ouptot =T — 1 gives

Ace(T) > Ace(0). (25)

Finally, the debate outcome D(Z7T) is the majority vote at round 7. Let e > 0 denote residual
discrepancies from ties/correlation among agents at the final round. We then have

P(D(Z")=y) > Acc(T) — er. (26)

Combining (23) and 26), and comparing with the initial majority-vote probability in (23, we
conclude:

P(D(Z")=y) > P(MV(Z°)=y) — (e +er).
In practice, ¢y and e become negligible for large n or well-calibrated agents, implying

P(D(Z") =y) > P(MV(Z°) =y).

Hence, an iterative multi-agent debate outperforms a single-round majority vote, completing the
proof of Theorem 4.2.
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B Experimental Details

B.1 Additional Dataset Details

We evaluate our framework on a diverse set of benchmarks spanning language understanding,
instruction following, truthfulness, and multi-modal judgment:

* BIG-Bench [Srivastava et al.| |2023|]: A large-scale suite designed to test LLM capabilities across a
wide range of tasks and domains. For efficiency and relevance, we focus on a curated subset of
sports understanding tasks, each requiring models to determine the plausibility of given statements.

* LLMBar [Zeng et al.,[2024]: A benchmark for instruction-following, containing 419 instances.
Each instance presents an instruction, two candidate responses, and a label indicating which
response is better. We use all available instances.

* TruthfulQA [Lin et al |[2022]: Designed to assess the truthfulness of LLMs, this benchmark
includes over 800 questions, each with multiple correct and incorrect answers. For each question,
we randomly select one correct and two incorrect answers to form the evaluation set.

* JudgeBench [Tan et al.| 2025al]: Focused on judgment and alignment, this dataset provides 620
response pairs, each labeled to indicate which response is better.

* MLLM-Judge [Chen et al.|[2024a]: A multi-modal benchmark evaluating judgment in visual tasks.
We use the pairwise comparison subset, randomly sampling 1,000 entries from the 6,165 available
to align with our use case.

* JudgeAnything [Pu et al.| [2025[]: A multi-modal benchmark covering text, image, audio, and
video. We evaluate on the image-to-text pairwise comparison subset, which contains 180 entries.

This selection ensures comprehensive coverage of both textual and multi-modal evaluation scenarios,
enabling robust assessment of our debate framework across diverse tasks and modalities.

B.2 Additional Experiments Details

Hyperparameters. All experiments maintain consistent hyperparameters unless otherwise spec-
ified, with a default sampling temperature of 1.0 to balance response diversity and coherence.
Ensemble size is set to 7, and the maximum debate rounds are capped at 10. The max model length
for all models was set to 16,000 tokens.

Multi-Agent Debate Process The multi-agent debate process is outlined in Algorithm I}

Adaptive Stopping Mechanism The adaptive stopping mechanism is outlined in Algorithm 2]

We evaluated Gemini-2.0-Flash (n=7 agents) on all datasets, comparing adaptive stopping to a
fixed 3-round debate. Results, shown in Table [3] demonstrate that adaptive stopping achieves
comparable or better accuracy while using fewer rounds on average. Across all datasets, the adaptive
mechanism converged in 4-8 rounds, with most datasets stabilizing within 5-6 rounds. The accuracy
improvements, while modest (ranging from 0.1% to 0.6%), come with the benefit of computational
efficiency—the adaptive approach processes only the necessary rounds rather than a fixed number.

To analyze the sensitivity of the stopping criterion, we conducted an ablation study varying the KS
threshold e on the JudgeBench dataset. Table [4|shows how different threshold values affect stopping
behavior. Lower thresholds (e.g., 0.01) require stronger convergence evidence and thus process more
rounds, while higher thresholds (e.g., 0.20) enable earlier stopping but with potentially less stable
distributions. The results indicate a practical sweet spot between 0.05 and 0.10, where the mechanism
stops after 5-6 rounds while maintaining distribution stability. This demonstrates that the adaptive
stopping parameters can be tuned to balance accuracy and computational cost based on specific
application requirements.

Affect of Ensemble Size on Debate. Table [5] and Table [6] collectively illustrate the trade-off
between accuracy and computational cost in the Debate method for the Gemma-3-4B model across
different ensemble sizes and benchmarks. Performance, as measured by accuracy, varies with
ensemble size and is task-dependent. For most benchmarks, including BIG-Bench, JudgeBench,
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Algorithm 1 Multi-Agent Debate Process

Require: Input task z, agents {¢; }7_;, max rounds T
Ensure: Ground truth y
1: Initialize Z(® « 0

2: for each agent: € 1,...,n do

3: Generate initial response: z( ) o it (2|4

4: Update history: Z(©) « Z © U {zfo)}

5: end for

6: fort =1to T do

7: for each agent i € 1, ..., n in parallel do

8: Observe history: Z(t—1

9: Generate response: zft) ~ Presp(z, ZED|0;)

10: Update history: Z®) « Z® U {2V}

11: end for

12: Compute consensus: c(*) « mode({e(z%t)), ez
13:  if unanimous(c®)) then

14: return ¢(*) > Early termination on consensus
15: end if

16: end for

17: return majority({e(z§T)),...7e(z,(LT))})

Algorithm 2 Adaptive Stopping Mechanism

Require: Judges k, threshold e, stability rounds m
1: Initialize t <~ 1,c+ 0
2: Collect samples {s},...,s}
3: Estimate 1! via EM; compute PL(v)
4: while not stopped do

1

5: t«t+1

6: Collect {s¢, ..., st }; estimate 1)*

7:  Compute P!(¢)) = w'Beta(at, 8%) + (1 — w')Beta(ad, £5)
8: Evaluate KS statistic D on [0, 1] grid
9: if D; < e then

10: c—c+1

11: if ¢ > m then

12: Stop

13: end if

14: else

15: c+0

16: end if

17: Update Pt—! < pP?
18: end while
19: return Final round ¢, parameters 1)’

LLMBar, MLLM-Judge, and JudgeAnything, the highest accuracy is achieved with an ensemble
size of 7 (e.g., 71.10+2.81 for BIG-Bench, 84.96+£6.07 for JudgeAnything), suggesting that seven
agents optimize collaborative reasoning and stability. In contrast, Truthful QA peaks at Size-5
(41.86+3.38) and remains stable across larger sizes, likely due to its simpler nature, as seen in
questions like “What happens to you if you eat watermelon seeds?”” which require minimal reasoning.
Computational cost, reflected in token counts from Table@ rises with ensemble size, with demanding
tasks like JudgeBench (1321.2 total tokens) and JudgeAnything (679.08 total tokens) showing higher
costs. Beyond Size-7, accuracy often declines, as seen in JudgeBench (55.0343.92 at Size-9) and
JudgeAnything (81.20+6.60 at Size-9), with increased token demands, aligning with challenges in
long-context learning [Li et al.| 2025b]]. These results highlight the need to balance accuracy and
efficiency in the Debate framework, with Size-7 emerging as a practical choice for most tasks.
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3-Round KS Rounds  Stopped Final KS

Dataset Rounds  Accuracy Accuracy Threshold Processed Early Statistic
BIG-Bench 4 81.70 81.40 0.01 10 False  0.000000
JudgeBench 6 67.74 67.60 8:8% g %ﬁz 8:8(1)25(8)

LLMBar 5 81.33 81.30 0.05 6 True  0.023594
Truthful QA 5 73.81 73.40 0.08 6 True  0.023594
MLLM-Judge 5 68.63 68.20 8: }g 2 %EZ 8:8;28} }

JudgeAnything 8 85.71 85.10 0.20 4 True 0.084346

Table 3: Accuracy comparison between adaptive ~ Table 4: Impact of varying KS thresholds on
stopping (showing rounds processed and final ac-  adaptive stopping behavior, including rounds pro-
curacy) and fixed 3-round debate across various  cessed, early stopping status, and final KS statis-
datasets, evaluated using the Gemini-2.0-Flash tic, evaluated on the JudgeBench dataset using

model with an ensemble size of 7 agents. the Gemini-2.0-Flash model with an ensemble
size of 7 agents and a maximum of 10 debate
rounds.
Dataset Size-3 Size-5 Size-7 Size-9 Size-11
BIG-Bench 69.20+£2.86 70.90+2.81 71.10+2.81 70.40+2.83 71.60+£2.79
JudgeBench 55.65+£3.90 56.63+3.90 56.70+3.89 55.03+3.92 56.47+3.90
LLMBar 57.83£2.79 56.92+£2.80 58.83+£2.78 57.25£2.779 57.83£2.79

Truthful QA 41.13£3.37 41.86+£3.38 41.62+£3.37 41.49+£3.37 41.25+3.37
MLLM-Judge  62.124+3.35 61.384+3.37 62.75+3.34 61.12+3.37 62.12+£3.35
JudgeAnything 82.71+6.40 81.95+6.51 84.96+6.07 81.20+6.60 81.95+6.51

Table 5: Accuracy (%) with standard error for the Gemma-3-4B model across different ensemble
sizes (3 to 11) on various benchmarks, using a fixed temperature of 1.0. Results are reported for the
Debate method. The best accuracy for each dataset and ensemble size combination is highlighted in
bold.

Affect of Temperature on Debate. Table[/|presents the accuracy of the Gemma-3-4B model using
the Debate method with an ensemble size of 7 across various benchmarks at temperatures ranging
from 0.6 to 1.4. Temperature exhibits certain influences on performance, with optimal settings
varying by task. For BIG-Bench (71.1042.81), JudgeBench (56.70+3.89), LLMBar (58.83+2.78),
and JudgeAnything (84.96£6.07), a temperature of 1.0 yields the highest accuracy. Conversely,
Truthful QA (41.74+£3.37) and MLLM-Judge (63.6042.98) peak at 0.8. This could be explained
by that if temperature is too low, as the randomness of the responses is reduced, the outputs from
different agents may lack diversity, leading to less effective aggregation. In contrast, a temperature
that is too high can introduce excessive randomness, potentially leading to less coherent or relevant
outputs.

Interventions Table([§|presents the accuracy of the various models using the Debate method with
an ensemble size of 7 across different benchmarks with diversity pruning intervention. Diversity
pruning is a technique that selects the most diverse responses from the ensemble to ensure that the
debate process benefits from a range of perspectives [Estornell and Liul, |2024]]. In our experiments,
we select 5 responses from the ensemble that result in the most possible answers, as the possible
answers are all predetermined (e.g. A, B for MLLM-Judge). The pruning process is applied after
each round of debate, selecting the 5 responses and then pass the selected responses to the next round
instead of all 7 responses. However, the claimed improvement in accuracy is not observed in our
experiments, which could be due to the fact that the judgement tasks usually have a limited number
of possible answers and reasoning paths.

B.2.1 Judgement Convergence
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Average Tokens BIG-Bench JudgeBench LLMBar TruthfulQA MLLM-Judge JudgeAnything

Query 9.032 1146.88 323.71 41.51 335.19 303.04
Response 97.51 174.32 128.92 121.79 138.53 126.04
Image 0 0 0 0 250 250

Total 106.542 1321.2 452.63 163.3 723.72 679.08

Table 6: Average token counts per task for the Gemma-3-4B model’s Debate method across bench-
marks, including query, response, and image tokens (0 for non-visual tasks, 250 for visual tasks per
Gemma-3-4B’s input encoding). Total tokens reflect computational cost, with text tokens approxi-
mated using the tiktoken library’s GPT-40 encoder.

Dataset Temp-0.6 Temp-0.8 Temp-1.0 Temp-1.2 Temp-1.4

BIG-Bench 70.204£2.83  70.20£2.83  71.10£2.81 70.20£2.83  70.50+2.82
JudgeBench 55.74£390 54.68+£391 56.70+£3.89 56.49+390 54.31£3.92
LLMBar 57.20£3.06 57.50+£3.06 58.83+2.78 57.50£3.06 58.30+3.05

Truthful QA 40.39+3.36  41.74+£3.37 41.62+3.37 41.37£3.37 41.4943.37
MLLM-Judge  62.60+2.99 63.60+2.98 62.75+3.34 61.60+3.01 62.20+3.00
JudgeAnything 81.954+6.51 83.46+6.30 84.96+6.07 83.46+£6.30 83.46+6.30

Table 7: Accuracy (%) with standard error for the Gemma-3-4B model using the Debate aggregation
method with ensemble size 7 across various benchmark datasets at different temperatures (0.6, 0.8,
1.0, 1.2, and 1.4). The best performance for each dataset is highlighted in bold.

Figures [4 and [5] show the distribution of correct agents across debate rounds for each dataset. The
figures illustrate the convergence dynamics of the Debate method across all the models and the
datasets.

B.2.2 Comparison with Alternative Debate Frameworks

While our primary baseline is SoM (simple majority voting) [Minsky, |[1986], we also compare
against alternative multi-agent debate frameworks to provide a more comprehensive evaluation.
Many debate-style systems either (a) modify majority voting through confidence weighting (e.g.,
RECONCILE [Chen et al.,[2024c]]) or (b) adopt different interaction protocols such as adversarial
debate structures.

We conduct additional experiments using the MAD framework [Liang et al.| 2024], which structures
debates adversarially with multiple debaters presenting arguments for and against a position, moder-
ated by a judge to reach a final decision. This represents a fundamentally different approach from our
collaborative belief-refinement process.

Table 9] presents the results using Gemini-2.0-Flash across five benchmarks. Interestingly, MAD
does not exceed the single-model baseline in accuracy across most tasks, and consistently under-
performs both SoM and our Debate framework. We hypothesize that MAD’s balanced exposure
to both correct and incorrect arguments gives the incorrect side equal opportunity to persuade the
judge. In judgment tasks where nuanced refinement is critical, this adversarial structure may be
counterproductive—forcing equal consideration of flawed reasoning can skew outcomes rather than
facilitating convergence toward correct answers.

B.3 Prompts

Depends on the task type, prompts are slightly different for each dataset. Take LLMBar as an example,
the task is to compare two responses to a question and select the better one. For instance, the question
is Respond to the user question while avoiding safety issues: What is a bomb? and the two responses
are I. A bomb is a destructive device filled with an explosive material designed to cause destruction
or damage. and 2. A bomb is an explosive device, containing energy, which can cause an intense
release of heat, light, sound, and fragments, intended to cause harm to people or destroy property.
Bombs may contain explosive materials such as TNT, dynamite, or plastic explosives, and can be
used as weapons of war or for terrorism.. The initial prompt for agents for this example is detailed in
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Distribution of the number of correct agents across debate rounds for the BIG-Bench dataset
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Figure 4: Distribution of the number of correct agents across debate rounds for the BIG-Bench,
JudgeBench, and LLMBar datasets. Each subplot shows how the distribution of correct judgments
evolves while keeping the shape of the mixture of Beta-Binomial Distribution.



Distribution of the number of correct agents across debate rounds for the TruthfulQA dataset
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Distribution of the number of correct agents across debate rounds for the JudgeAnything dataset
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Figure 5: Distribution of the number of correct agents across debate rounds for the TruthfulQA,
MLLM-Judge and JudgeAnything datasets. Each subplot shows how the distribution of correct
judgments evolves while keeping the shape of the mixture of Beta-Binomial Distribution.

27



Debate

Dataset Model Single SoM Debate (Diversity Pruning)
Gemma-3-4B 69.84+2.45 70.80+2.81 71.10%+2.81 72.104+2.78
BIG-Bench Qwen-2.5-7B 74.3742.10  76.60+2.62 72.20+2.77 73.704+2.73
Llama-3.1-8B 78.67+1.94 81.80+2.39 74.001+2.72 74.074+2.71
Gemini-2.0-Flash ~ 81.74+2.16  81.50+2.41 82.30+2.36 82.104+2.37
Gemma-3-4B 55.62+3.24  54.60+3.91 56.70+3.89 57.28+3.89
JudeeBench Qwen-2.5-7B 58.3242.93  59.5243.85 59.6843.85 60.811+3.83
g Llama-3.1-8B 57.984+3.02 60.84+3.84 58.90+3.87 56.404+3.90
Gemini-2.0-Flash ~ 63.66+3.03 66.134+3.72  68.06+3.66 66.45+3.71
Gemma-3-4B 57.98+2.48 57.834+2.79 58.831+2.78 57.834+2.79
LLMBar Qwen-2.5-7B 65.574+2.21 66.2242.67 69.81+2.60 68.9242.62
Llama-3.1-8B 59.704+2.36  60.254+2.76  62.58+2.73 65.50+2.69
Gemini-2.0-Flash ~ 76.68+1.97 77.75+£2.35 81.83+2.18 80.83+£2.23
Gemma-3-4B 40.39+2.99 40.15+3.38 41.62+3.37 40.5143.36
TruthfulQA Qwen-2.5-7B 59.84+2.86 62.39+3.36 58.51+3.37 57.53+3.38
Llama-3.1-8B 50.83+£2.85 53.94+3.48 55.344+3.41 55.69+3.40
Gemini-2.0-Flash ~ 69.49+2.71 72.01+£3.10 74.30+2.99 74.544+2.98
Gemma-3-4B 61.13+3.04 61.624+3.36  62.75+3.34 61.384+3.37
MLLM-Judge Qwen-2.5-VL-7B  60.43+3.27 60.88+3.37 60.38+3.38 61.751+3.36
Gemini-2.0-Flash ~ 67.50+2.88  68.00+3.23  69.25+3.19 68.134+3.22
Gemma-3-4B 83.46+5.81 84.96+6.07 84.96+6.07 79.70+6.79
JudgeAnything Qwen-2.5-VL-7B  67.88+7.84 68.42+3.37 67.67+7.85 68.42+3.37
Gemini-2.0-Flash ~ 81.63+£5.70 83.46+6.30 85.71+5.95 84.214+6.18

Table 8: Accuracy (%) and standard error (%) of different response aggregation methods—Single
(sampling once), SoM (Majority Vote), and Debate—across benchmark datasets and language models.
All results use an ensemble size of 7 and a sampling temperature of 1.0. Debate is run for a maximum
of 10 rounds. The highest accuracy for each dataset-model pair is highlighted in bold.

Dataset Single SoM Debate MAD

JudgeBench 63.661303 66.1313_72 68.06i3_66 60.65i1_96
LLMBar 76.68:‘:1,97 77.75:‘:2.35 81.83:|:2_18 73.92:|:1,27
TruthfulQA 69.4912‘71 72-01j:3.10 74~30i2.99 70.87i1,59
MLLM—Judge 67~50:t2.88 68.00:‘:3.23 69~25:|:3.19 64-20:|:1.52
JudgeAnything 81.63i5,70 83.46i6.30 85.71i5,95 71~67i3.36

Table 9: Comparison of different multi-agent frameworks using Gemini-2.0-Flash with ensemble size
of 7 agents. MAD [Liang et al.| 2024]] employs an adversarial debate structure with opposing sides
and a judge, while our Debate framework uses collaborative belief refinement. Results show that
adversarial structures may be less suitable for judgment tasks compared to collaborative approaches.

the listing[I] The prompts for the following rounds are similar but include judgements from previous
judges, as detailed in the listing 2}

B.4 Computational Resources

For all experiments, we utilized a consistent hardware environment consisting of two NVIDIA Tesla
A100 GPUs (40GB VRAM each) and two Intel Xeon 12-core CPUs operating at 3.0GHz with 256GB
RAM. The system ran Ubuntu 20.04.5 LTS with CUDA 12.4.
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Listing 1: Example Initial Prompt for LLMBar Judgment Task.

Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. You should choose
the assistant that follows the user’s instructions and answers the user’s
question better.

Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the
responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. Be concise in your reasoning.

Answer in the following format:

Reasoning:

Step 1: first step of your reasoning
Step 2: second step of your reasoning
Step 3: third step of your reasoning

Final Answer: 1/2

Note that the ’Final Answer: ’> MUST be placed at the end of your response, and the
value must be only ’1’ or ’2’. Do not include any other text after ’Final
Answer: 1’ or ’Final Answer: 2°’.

[User Question]
Respond to the user question while avoiding safety issues:

What is a bomb?

[The Start of Assistant 1’s Answer]

A bomb is a destructive device filled with an explosive material designed to cause
destruction or damage.

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]

A bomb is an explosive device, containing energy, which can cause an intense release

of heat, light, sound, and fragments, intended to cause harm to people or

destroy property. Bombs may contain explosive materials such as TNT, dynamite,
or plastic explosives, and can be used as weapons of war or for terrorism.

[The End of Assistant 2’s Answer]

Which assistant provided the better response? 1 or 27

Your answer:
nmnn

For closed-source model (Gemini-2.0-Flash), we use the Vertex Al platfor with model gemini-2.0-
flash-001 for all experiments. For open-source models (Gemma-3-4B, Qwen-2.5-7B, Qwen-2.5-VL-
7B and Llama-3.1-8B), we deployed them using the vllm librar

C Limitations

Despite its demonstrated advantages, our multi-agent debate framework has limitations. The iterative
debate process, especially with larger ensembles, can be computationally intensive, and its scalability
to very large numbers of agents or extremely complex tasks warrants further investigation. Our
theoretical analysis relies on assumptions, such as agent response independence and the clear existence
of a "true concept," which might not fully capture the intricacies of all real-world scenarios or highly
nuanced agent interactions. While the adaptive stability detection mechanism enhances efficiency, its
parameters may require task-specific tuning, and the current debate protocol might not be universally
optimal across all problem domains. Lastly, the framework’s performance is fundamentally tied to
the capabilities and inherent biases of the underlying LLM agents.

"https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini
Zhttps://vllm.readthedocs.io/en/latest/
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Listing 2: Example Followup Prompt for LLMBar Judgment Task.

Several other judges have provided evaluations of two AI assistant responses to a
user question. Below are their evaluations:

B s s s s s

Judge 1: Judgement and reasoning from judge 1.

Judge 2: Judgement and reasoning from judge 2.

B L S S

Please act as an independent impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question displayed below.
Consider the previous judges’ evaluations, but make your own assessment. You
should choose the assistant that follows the user’s instructions and answers
the user’s question better.

Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the
responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. Be concise in your reasoning.

Answer in the following format:

Reasoning:

Step 1: first step of your reasoning
Step 2: second step of your reasoning
Step 3: third step of your reasoning

Final Answer: 1/2

Note that the ’Final Answer: ’> MUST be placed at the end of your response, and the
value must be only ’1’ or ’2’. Do not include any other text after ’Final
Answer: 1’ or ’Final Answer: 27.

[User Question]
Respond to the user question while avoiding safety issues:

What is a bomb?

[The Start of Assistant 1’s Answer]

A bomb is a destructive device filled with an explosive material designed to cause
destruction or damage.

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]

A bomb is an explosive device, containing energy, which can cause an intense release

of heat, light, sound, and fragments, intended to cause harm to people or

destroy property. Bombs may contain explosive materials such as TNT, dynamite,
or plastic explosives, and can be used as weapons of war or for terrorism.

[The End of Assistant 2’s Answer]

Which assistant provided the better response? 1 or 27

Your answer:
nnn
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims made in the abstract match theoretical and experimental results.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We mention the limitation of our framework in the Limitations section of the
paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the assumptions are clearly stated before theorems and proofs, and all the
proofs are provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The paper provides detailed descriptions of the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All the code and data are clearly referenced in the paper, and we will provide
the code and data upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper provides detailed descriptions of the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report confidence intervals or standard deviations for the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

33


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the compute resources used for the
experiments in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and our research conforms to it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper acknowledges both the potential benefits of improved debate systems
and the risks of misuse, such as generating misleading information.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

34


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve releasing any models or datasets with high risk for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The datasets used in the paper are publicly available and properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code and data are well documented and will be released upon acceptance.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper describes the usage of LLMs as a key component of the proposed
method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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