
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RANDOMLY SAMPLED
LANGUAGE REASONING PROBLEMS
ELUCIDATE LIMITATIONS OF IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While LLMs have revolutionized the field of machine learning due to their high
performance on a strikingly wide range of problems, they are also known to hal-
lucinate false answers and underperform on less canonical versions of the same
tasks. There are several emerging theories of LLM performance, among them that
LLMs lack world modeling ability, that they have an undesirable bias towards an
autoregressive prior, and that they struggle on more novel problems. The existing
literature on LLM input novelty has focused on tasks of relatively high complex-
ity, studying perturbations of canonical but complex problems. In this paper, we
attempt to minimize complexity in order to isolate novelty as a factor in LLM
underperformance and investigate the power of in-context-learning. To this end,
we consider an extremely simple domain: next token prediction on simple lan-
guage tasks. The twist is that these language tasks are wholly unseen, as they
are randomly drawn from a large, parsimoniously defined set of languages arising
from simple grammar rules. This experimental setup allows us to evaluate ICL
independently of models’ parametric knowledge. We find that LLMs uniformly
underperform n-gram models on this task, both when used as next token predictors
and in chain-of-thought.

1 INTRODUCTION

One of the surprising capabilities of contemporary LLMs is their ability to perform in-context-
learning (ICL), in which they learn by demonstration from provided input/output examplars to pro-
duce an appropriate output for a new but similarly structured input. This capability allows LLMs
to generalize to tasks beyond interpolations of their training corpus, resulting in remarkably strong
generalization capabilities. It is challenging to isolate the effects of ICL, as, given the large datasets
LLMs are trained on, it is difficult to distinguish a model detecting novel patterns in examples from
it being guided towards knowledge it gained during training. Akyürek et al. (2022) demonstrate that,
in specially trained transformers, ICL is “true learning”. However, it remains unclear to what degree
the performance of foundation-model LLMs can be attributed to strong ICL capabilities.

The task best suited to isolating LLM ICL performance should have the following properties: (1) It
should be a language completion task within the expressive power of an LLM. LLMs are capable of
many tasks, but they are primarily models of language, and as such, language tasks are the most fair
evaluations. (2) It should not require sophisticated world modeling to solve. This helps us eliminate
a possible source of underperformance distinct from ICL capability. (3) It should be selected at
random in an unbiased manner to reduce the effect of bias from the training corpus.

To satisfy these properties, we propose the following general approach. First we define a large,
exhaustive, and parsimoniously-defined space of languages that represents all languages of a certain
difficulty level. Then, we sample random languages from this space. By sampling randomly, we can
guarantee no bias towards canonical languages that might share structure with common ones in the
training dataset. In this work, we use languages recognized by 3-state DFAs as these are the lowest
nontrivial difficulty level. 1 Finally, to ensure we are not measuring world modeling performance,

1This technique can be generalized to produce benchmarks of any difficulty level. For larger numbers of
states, we would be able to guarantee that the majority of the exponentially large number of corresponding

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

we compare to n-GRAM baselines that are not capable of anything other than matching clusters of
tokens.

Figure 1: We sample randomly gen-
erated languages to test LLMs by
sampling deterministic finite automata
(DFAs). (a) The DFA shown here, mod-
eling the sum modulo 3 operation (with
abc representing 0, 1, and 2 respec-
tively), can be used to accept or reject
strings from a 3-character alphabet. Ac-
cepted strings belong to the grammar;
rejected strings do not. We evaluate
models on their ability to (b) act as a
transducer, recognizing strings that be-
long to the grammar, and (c) generate
new strings following the grammar.

Our results demonstrate that even for very simple lan-
guage induction tasks that don’t rely on world model-
ing or background knowledge, LLM ICL still underper-
forms simple language models when dealing with ran-
domly sampled and likely unfamiliar problem instances.
These results suggest that while LLMs can pick up some
learning signal from examples in prompts, this in-context
learning is not competitive with even very primitive forms
of learning, and suggests that LLMs do not posses the
ability to generalize to entirely novel language reasoning
tasks.

In summary, we make the following contributions:

1. We introduce a benchmark for LLM ICL language
reasoning evaluation, consisting of novel tasks.

2. We evaluate a suite of popular LLMs on instances of
this benchmark and demonstrate that LLMs under-
perform compared to simple language model base-
lines.

3. We analyze the differences in behavior between these
models, illustrating the influence of RLHF and chain-
of-thought prompting on language reasoning capac-
ity.

2 RELATED WORK

LLMs are known to fail in many cases, with some sug-
gesting that these failures are due to lack of a world model
(Valmeekam et al., 2022) or “embers” of autoregression
polluting non-autoregressive task performance (McCoy
et al., 2023). Another theory is that of task novelty; that
is, LLMs perform worse on tasks more dissimilar from
those seen during training.

2.1 LANGUAGE UNDERSTANDING AND LLMS

LLMs can be quite adept at generating programs in
general-purpose programming languages (Xu et al., 2022a). In contrast, adapting models to under-
stand domain-specific languages (Mernik et al., 2005) introduces unique problems such as navigat-
ing idiosyncratic syntax and semantics and leveraging sparse sample language data. To address these
challenges, researchers have considered how well general-purpose LLMs can use language reason-
ing skills to quickly understand rare or unseen DSLs with only a small set of exemplars (Joel et al.,
2024). While most work in this vein focuses on semantic parsing for downstream applications (Lin
et al., 2023), selecting exemplars (Zhao et al., 2021), and improving DSL recognition by leveraging
more common languages (Bogin et al., 2023), experiments show strong baseline performance for
LLM DSL recognition and parsing out-of-the-box (Wang et al., 2024). Some have suggested that
indicate that LLMs may possess emergent language reasoning abilities (Millière, 2024).

Related lines of work are compositional generalization (Xu et al., 2022b), which assesses models’
ability to organize known units into novel structures, and structural generalization (Yao & Koller,
2022), which assesses models’ ability to recognize new structures. Yao & Koller (2022) show that

languages do not lie in the training dataset by a pigeonhole argument; unfortunately this does not apply to the
relatively small set of 3-state DFAs (there are only 78786). However, they still represent an set of tasks of a
particular difficulty level not biased towards the canonical.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

smaller language models like BART and T5 can struggle on these tasks, but to our knowledge there
are not comprehensive experiments extending this line of work to LLMs.

2.2 REASONING WITH LLMS

Reasoning is one of many “emergent abilities” (Wei et al., 2022a) possibly possessed by
LLMs (Huang & Chang, 2022), although the nonlinear dependence of such emergent abilities on
model size is disputed (Schaeffer et al., 2024). The chain-of-thought prompting technique (Wei
et al., 2022b) has inspired a number of approaches to encourage the latent reasoning ability of mod-
els (Yao et al., 2023; Besta et al., 2024; Kojima et al., 2022), including neuro-symbolic methods (Hua
& Zhang, 2022; Weir et al., 2023; 2024). Building on this, other work considers how to optimize
exemplars used for in-context learning (Dong et al., 2022) and chain-of-thought prompting, known
as “rationale refinement” (Liu et al., 2021; Fu et al., 2022). Problem-decomposition is also shown
to be effective (Zhou et al., 2022; Khot et al., 2022).

2.3 LLM REASONING EVALUATION

LLM reasoning abilities are often tested on natural language benchmarks and commonly seen prob-
lems like arithmetic (Cobbe et al., 2021; Amini et al., 2019; Hendrycks et al., 2021), commonsense
reasoning (Bhargava & Ng, 2022), and other, sometimes generative, tasks (Lake & Baroni, 2018;
Pasupat & Liang, 2015; Lin et al., 2019) and task collections (Srivastava et al., 2022). LLMs have
been shown to lack sufficient reasoning capability across a range of tasks including multi-step plan-
ning and complex inference (Valmeekam et al., 2022). Fan et al. (2023) introduce an LLM rea-
soning benchmark on algorithmic problems through NP-hard complexity, and Hazra et al. (2024)
show that LLMs struggle to complete simple 3SAT problems. Patel et al. (2021) demonstrate that
much of LLM mathematical reasoning can be explained by shallow heuristics, Razeghi et al. (2022)
similarly find that term frequency in training data impacts models’ in-context learning ability, and
(McCoy et al., 2023) theorizes that “embers” of autoregression are polluting non-autoregressive task
performance.

The effect of novelty on performance has also been explored in prior work, generally via investigat-
ing perturbations of existing tasks, taking existing problems (that are often inherently quite complex,
and are only easy because they are well known, e.g., addition of numbers or logical reasoning over
natural language) and changing one small aspect of the problem (Wu et al., 2024; Saparov et al.,
2023). LLM ICL itself has been studied in prior work, with Kossen et al. (2023) demonstrating that
LLMs use labels provided in exemplars in naturalistic tasks and de Wynter (2025) using a mixture
of simple and complex canonical formal language tasks to demonstrate that LLM ICL outperforms
kNN baselines on these tasks but is brittle to minor changes in task performance. We also LLM ICL
but push both language simplicity and language unfamiliarity to their limits, by exploring simple
languages recognized by randomly sampled DFAs. This enables us to best isolate the power of ICL
in the language domain, where LLMs should perform best.

2.4 TRAINING TRANSFORMERS ON FORMAL LANGUAGES

A key assumption behind this work is that the tasks we are using to evaluate LLMs are solvable
by LLMs. Vafa et al. (2025) frame world modeling (a statistical model inferring the true underly-
ing causal graph behind the data being observed) as a latent DFA identification task, finding that
transformers trained on DFA traces (of massive DFAs representing board games and city maps) do
not reconstruct the underlying DFA. Other work also trains language models on formal languages
(Butoi et al., 2024; Bhattamishra et al., 2023; Valvoda et al., 2022) and probabilistic formal lan-
guages (Borenstein et al., 2024). Akyürek et al. (2024) find that transformers trained on 4-12 state
DFA transducer traces more effectively learn to in-context-learn regular languages than RNNs or
n-GRAM models. Therefore, in this work, where we evaluate much larger LLMs on much simpler
3-state DFAs, we can be confident that underperformance relative to n-GRAMs is not linked to inher-
ent transformer limitations and must be instead related somehow to specific properties of foundation
models.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 DFA REASONING TASKS

3.1 DFAS AND REGULAR LANGUAGES

The original Chomsky Hierarchy (Chomsky, 1959) separates language into four types (Figure 2).
We focus on the task of understanding Type 3 languages, the simplest form of language in the hierar-
chy, that are recognized by a Deterministic Finite Automata (DFAs) whose outputs are boolean ({0,
1}). Examples of languages recognized by DFAs include simple ones like binary strings
with an even number of ones, and even such examples as numbers in base 10
divisible by 7. Type 3 languages are also known as regular languages, which are recognized
by regular expressions.

One simple metric of the difficulty of a regular language is the number of states in the corresponding
DFA, i.e., the amount of working memory.2 2-state DFAs have the property that their set of states
is no larger than the output set {0, 1}, and, therefore, do not have any hidden state. We thus explore
3-state DFAs, as this is the simplest nontrivial case.

3.2 LANGUAGE REASONING TASKS

Figure 2: An illustration of Chomsky’s hierarchy of lan-
guages, ranging from Type 0 to Type 3, which are defined
by what formal models can recognize their grammars. In
this work, we focus on the simplest language type in the
hierarchy, regular grammars, which are recognized by de-
terministic finite automata (DFAs).

We define a language reasoning task
as a task corresponding to some la-
tent language L, where a set of posi-
tive/negative examples is provided to
a model, with the goal being either
classification of a new string in this
language, or completion of an exist-
ing string to place it in the language.

3.2.1 SEQUENCE
COMPLETION TASK

We first pose a sequence completion
task, in which models must complete
a sequence in a given DFA’s lan-
guage. This mirrors how foundation models are trained using masked language modeling, where
data is presented in this format, with several example sequences in a given language followed by a
distinct prefix that needs to be completed.

To generate test cases for this task given a DFA, we (1) sample 30 example sequences of length 10
that this DFA accepts, and then (2) sample a distinct prefix of length 5 that is not a prefix of any
of our 30 example sequences, with the property that there exists some length-≤ 5 completion of
this prefix that the DFA would accept. The task is to find a completion (not necessarily the same
completion found in sampling) of this prefix of between 1 and 5 characters such that the DFA accepts
the full sequence. For details on sampling, see Appendix A.2.

We evaluate models by (1) sampling a DFA, (2) sampling 30 problem instances at random (each
of which contains 30 example sequences and a distinct prefix), and then (3) computing a binary
prediction score (whether or not the predicted completion creates a valid string in the language) for
each instance separately, then computing a correctness metric as a fraction. We then average this
metric over several sampled DFAs to produce our accuracy score.

3.2.2 TRANSDUCER TASK

While the sequence completion task is the natural one that comes to mind as a basic language task,
it has a difficulty-gap problem. Specifically, many DFAs, including the one shown in Figure 1,
recognize languages that are particularly difficult to identify based on a set of examples, unless
you build some kind of world model.3 This is problematic as we would like to be able to assess

2There are other metrics of difficulty, but we choose number of states as it is highly parsimonious.
3The difficulty gap exists because a set of recognized sequences of length 10 gives no direct insight into

intermediate states between the first and tenth token. As such, to be able to utilize this information for languages

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the performance of language models at pattern recognition, independent of their world modeling
abilities. To assess pattern recognition, we explore the Transducer task.

In this task, an input sequence is annotated with an output at each token, the final output is masked,
and the masked output is predicted by a language model. E.g., given the language even number
of ’a’ tokens and the input abcabcaabbccaa, the annotated string (all that is provided
to the model) is a0b0c0a1b1c1a0a1b1b1c1c1a0a and the output to predict is 1. For each
problem instance, we provide 30 symbols, and for the first 29, the corresponding transducer output.

This task is significantly more transparent than the sequence completion task as the model has access
to intermediate outputs, an (imperfect) proxy for intermediate state.

3.3 BASELINES

To contextualize LLM accuracies, we provide several baselines with varying degrees of sophistica-
tion.

Sequence Completion Task For the Sequence Completion task, we have four baselines.

• RANDOMS baseline: produce a random string of length 5 characters. While this might
seem redundant as it should have a success rate of 50%, in practice our rejection sampling
approach (see Appendix A.2) leads to a slight bias towards DFAs with more accept states.
This baseline measures that bias.

• COMMON-SUFFIXS baseline: find the completion s of length between 1 and 5 that maxi-
mizes (# of occurrences as a suffix×|s|). This baseline does not take the distinct prefix into
account, and instead tries to find a universal completion that will always end in an accept
state for this language.

• n-GRAMS baseline: we take the last n−1 characters of the distinct prefix and search to see
if they appear in any of the example sequences at a position where the sequence following
is an appropriate length to be a completion (at least 1 but at most 5). We then take a
plurality vote among the completions and return this, breaking ties arbitrarily. If there are
no matches, we return the result of (n− 1)-GRAMS . Technically these cover more than n
characters, since the completion is often > 1 character long; for simplicity, however, we
keep the naming consistent with the Transducer baselines. Despite the similarity between
an n-GRAM and a DFA in terms of token-to-token transitions, n-GRAMS do not have access
to DFA hidden state and thus cannot solve arbitrary DFA language problems, regardless of
n.

• BRUTE-FORCES : take all possible DFAs with 3 states and 3 symbols. Filter for ones that
accept all the example sequences. Then try all remaining DFAs on all 35 possible 5-length
completions and return the completion that the maximal number of DFAs accept, breaking
ties arbitrarily.

Note that these baselines are entirely unparameterized and operate identically regardless of the un-
derlying DFA. This makes them direct comparisons to using LLMs in in-context-learning4. We do
not consider BRUTEFORCES to be a reasonable comparison due to its computational complexity,
and instead consider it an upper bound on performance on this particular task. We choose n-GRAM
baselines as they are are unambiguously representable by transformers (Svete & Cotterell, 2024), so
a transformer model should be able to match their performance.

Transducer Task We have similar baselines for the Transducer task.

like the one in Figure 1 where there are no “resets” (sequences of symbols that necessarily lead to a particular
state), a model must be capable of hollistically evaluating the entire sequence, probably requiring a world
model. Many other DFAs contain these resets, but do so in such a way that makes it possible to e.g., recognize
that all sequences that end in a are in the language, making the problem trivial.

4One thing to note is that LLMs are required to determine that they are performing next token prediction
on a particular string from a natural language description such as “You are a sequence completion model. . . ,”
while n-GRAM models are programmed to do so. However, we believe all LLMs we evaluate are sophisticated
enough to accomplish this without issue.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• NULLT baseline: for a given DFA, whichever of the following strategies produces a higher
accuracy: always predict 0 or always predict 1.

• n-GRAMT baseline: take the n−1 symbols ending at the end of the concatenated transducer
sequence (e.g., for n = 5 and the above example, this would be 1a0a). If that sequence
does not appear elsewhere in the sequence, return the result of the (n−1)-GRAMT baseline.
Otherwise, take the token that appears immediately after each occurrence. If there is a
majority, return that, otherwise return the last example.

• BRUTEFORCET : take all possible DFAs with 3 states and 3 symbols. Filter them for ones
that match the given transducer sequence. Take this set and predict the next token. Take a
majority vote among these, returning 1 by default if there is no majority.

4 EXPERIMENTS

We evaluated the open-weight models Llama 3-8B, Llama 3-70B (AI@Meta, 2023), Llama 3.1-8B
(AI@Meta, 2024b), Llama 3.1-8B-Instruct (AI@Meta, 2024c), Llama 3.1-70B (AI@Meta, 2024a),
Mistral Nemo Minitron 8B (NVIDIA, 2024), Mistral Nemo Base 2407 (Mistral AI, 2024b) and Mis-
tral Nemo Instruct 2407 (Mistral AI, 2024c), Gemma 7B (Google, 2024), Falcon 7B (Almazrouei
et al., 2023), Qwen 2.5-7B and Qwen 2.5-32B Team (2024).

We also evaluated the open-weight code models StarCoder2-15B (Lozhkov et al., 2024), Codestral-
22B-v0.1 (Mistral AI, 2024a), Deepseek Coder 33B Instruct (Deepseek, 2024), Qwen2.5-Coder-7B,
Qwen2.5-Coder-7B-Instruct, and Qwen2.5-Coder-32B-Instruct (Hui et al., 2024).

Finally, we evaluated the proprietary models Claude 3.5 Sonnet (Anthropic, 2024), GPT-3.5-turbo-
instruct, GPT-3.5 Chat (turbo-0125) (OpenAI, 2024a), GPT-4o-mini (2024-07-18), GPT 4o (2024-
05-13) (OpenAI, 2024b), o3-mini (2025-01-31) (OpenAI, 2025b), and gpt-5 (2025-08-07) (OpenAI,
2025a).

For both tasks, we consider two main prompting formats. BASIC provides no context, presenting the
problem as a generic sequence generation or next-token prediction task, where output is provided
immediately following the input, with no space to think. BASIC-COT provides the same prompt but
asks the model to think step by step and provide an answer. These prompts test ICL, presenting the
task in an unstructured manner and requiring the model to learn the problem structure via induction.
Our main results are the maximum over these two prompting strategies.

We also provide three “control” prompting formats where information on the problem structure is
provided. MORE-EXPL explains that the strings are generated from a simple grammar, but is other-
wise identical to BASIC. This remains a sequence generation/next token prediction task. DFA-COT
provides the full structure of the latent language, stating that it is a 3-state DFA, and additionally
invokes chain-of-thought reasoning to help the model reason over the task. RED-GREEN casts the
tasks as independent word problems that describe the underlying grammar structure without relying
on world knowledge about DFAs and regular languages. It describes an N-state DFA as a house
with N rooms, each of which has 3 portals that deterministically go to other rooms (or back to the
same room), where the walls of each room are red or green (mirroring transducer output symbols 0
and 1). Similarly to DFA-COT, the model is given space to show work before providing a tagged
answer.

We produce versions of each of these prompts for each task, denoting these with a subscript S for
sequence completion prompts and T for transducer prompts. Full listings of these prompts can be
found in Appendix H. While no finite set of prompts will be fully sufficient to capture all possible
model behavior, we believe maximizing over both BASIC prompts allows both models that perform
best at next-token-prediction and those that perform better in chain-of-thought reasoning to do their
best.

For each open weight model, we used a local VLLM (Kwon et al., 2023) server for evaluation and
always evaluated on 1000 distinct DFAs. For GPT-4o and Claude, o3-mini, and gpt-5, we evaluated
on 30 DFAs due to computation costs. (Due to greater interest in o3-mini’s performance on RED-
GREENT , we used 100 to get a more precise estimate). For gpt-3.5 and gpt-4o-mini, we evaluated
on 100 DFAs. All models were evaluated with temperature 0, except reasoning models o3-mini and
gpt-5, which do not support a custom temperature.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Size IT? Code? Sequence Completion SR Transducer TR
Baselines

BRUTEFORCE – 100.0 (99.9–100.0) 1 96.4 (96.2–96.7) 1
6-GRAM – 91.7 (91.0–92.4) 2 93.5 (93.1–93.9) 2
5-GRAM – 91.2 (90.4–91.9) 3 93.4 (93.0–93.7) 3
4-GRAM – 89.6 (88.7–90.4) 4 91.1 (90.6–91.6) 4
3-GRAM – 87.0 (86.1–87.8) 5 87.0 (86.4–87.6) 19
2-GRAM – 83.3 (82.2–84.2) 7 74.5 (73.6–75.3) 30
COMMON-SUFFIX – 84.7 (83.6–85.6) 6 – –
RANDOMS /NULLT – 53.3 (51.7–54.7) 32 68.9 (68.2–69.6) 31

Open Weight Completion
llama3-8B 8.0B 73.8 (72.4–75.1) 22 87.5 (86.9–88.0) 18
llama3-70B 70.6B 71.4 (70.0–72.7) 29 87.7 (87.2–88.3) 15
llama3.1-8B-Instruct 8.0B ✓ 75.3 (74.0–76.6) 19 85.9 (85.3–86.5) 22
llama3.1-8B 8.0B ✓ 75.2 (73.8–76.3) 20 88.0 (87.5–88.6) 10
llama3.1-70B 70.0B ✓ 71.8 (70.4–73.1) 28 87.7 (87.2–88.2) 17
qwen-2.5-7B 7.6B 73.5 (72.1–74.8) 24 88.7 (88.2–89.2) 5
qwen-2.5-32B 32.5B 76.8 (75.5–78.0) 16 88.3 (87.8–88.8) 7
mistral-nemo-minitron-8B 8.4B 78.7 (77.5–79.8) 13 88.6 (88.0–89.1) 6
mistral-nemo-base-12B 12.2B 75.5 (74.3–76.6) 18 87.9 (87.4–88.4) 13
mistral-nemo-instruct-12B 12.2B ✓ 72.2 (70.9–73.4) 27 88.0 (87.5–88.5) 11
gemma-7b 8.5B 72.6 (71.3–73.7) 25 82.1 (81.4–82.7) 27
falcon-7b 7.2B 69.0 (67.6–70.2) 30 84.9 (84.3–85.5) 24

Open Weight Code
starcoder2-15b 16.0B ✓ 73.5 (72.0–74.7) 23 87.7 (85.8–89.5) 16
codestral-22B 22.2B ✓ 78.0 (76.8–79.1) 14 86.6 (86.0–87.1) 21
deepseek-coder-33b-instruct 33.3B ✓ ✓ 76.7 (75.3–77.8) 17 85.6 (85.0–86.2) 23
qwen-2.5-coder-7B 7.6B ✓ 79.5 (78.4–80.5) 10 88.2 (87.6–88.7) 9
qwen-2.5-coder-instruct-7B 7.6B ✓ ✓ 79.5 (78.3–80.5) 11 88.3 (87.8–88.8) 8
qwen-2.5-coder-instruct-32B 32.8B ✓ ✓ 79.2 (78.0–80.3) 12 87.9 (87.4–88.4) 12

Proprietary
gpt-3.5-instruct ? ✓ 67.3 (63.1–71.5) 31 87.8 (85.9–89.6) 14
gpt-3.5-chat ? ✓ N/A – 66.8 (63.4–69.8) 32
gpt-4o-mini ? ✓ 72.4 (68.1–76.3) 26 79.8 (77.3–82.2) 28
gpt-4o ? ✓ 74.8 (69.3–80.4) 21 83.7 (80.1–86.9) 25
claude-3.5 ? ✓ 82.8 (77.5–87.5) 8 86.9 (83.3–90.0) 20
o3-mini ? ✓ 81.1 (76.0–85.8) 9 74.7 (70.7–78.8) 29
gpt-5 ? ✓ 77.9 (71.6–84.0) 15 83.6 (79.9–87.1) 26

Table 1: Results for our experiments on both the Transducer and Sequence completion tasks. Each
cell contains the mean performance across DFAs for the best-performing BASIC prompt (see Table 2
for details), with 95% confidence intervals of the mean in parentheses. “N/A” means the model
returned an invalid result ≥ 25% of the time. (IT = Instruction-Tuned, TR/SR = rank on each task.)

Model BASIC BASIC-COT MORE-EXPL DFA-COT RED-GREEN
Sequence Completion
gpt-4o-mini 72.4 (68.1–76.3) 60.0 (55.8–64.4) 70.5 (66.4–74.6) 58.0 (53.4–62.4) 59.1 (54.9–63.2)
gpt-4o 72.1 (65.9–78.2) 74.8 (69.3–80.4) N/A 67.4 (60.8–73.8) 74.4 (69.9–78.6)
claude-3.5 N/A 82.8 (77.5–87.5) N/A 84.0 (79.3–88.4) 80.0 (74.9–85.2)
o3-mini N/A 81.1 (76.0–85.8) N/A 58.2 (49.6–66.8) 69.8 (64.4–75.0)
gpt-5 77.9 (71.6–84.0) 75.1 (68.6–81.7) 68.9 (61.0–76.7) 66.0 (58.9–72.8) 87.5 (83.1–91.5)
Transducer
gpt-4o-mini 79.8 (77.3–82.2) 66.5 (64.3–68.7) 76.7 (74.2–79.3) 65.2 (63.1–67.4) 74.5 (72.0–77.0)
gpt-4o 83.7 (80.1–86.9) 67.8 (62.4–73.2) 82.6 (79.1–85.9) 67.8 (63.1–72.3) 82.6 (78.8–86.3)
claude-3.5 86.9 (83.3–90.0) 74.2 (70.0–78.3) 87.1 (83.9–90.2) 76.4 (72.9–79.9) 82.9 (78.9–86.9)
o3-mini 72.8 (68.4–77.3) 74.7 (70.7–78.8) 74.7 (70.3–79.2) 86.1 (83.9–88.4) 92.4 (91.3–93.5)
gpt-5 83.6 (79.1–87.7) 83.6 (79.9–87.1) 85.2 (81.0–88.8) 96.7 (95.3–98.0) 96.6 (95.4–97.8)

Table 2: Results for models where we investigated multiple prompts (we only used BASIC on other
models). We bold the best prompt for each model.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 RESULTS

Main results for all tasks are presented in Table 1. We ignore non-answers, i.e., if for a given DFA
a model gets 25 correct answers, 1 incorrect answer, and responds with an unparseable result on 4,
this counts as a 25/26, not a 25/29. We then aggregate across DFAs. All comparisons involving
4-GRAM, 5-GRAM, and 6-GRAM to all other models are statistically significant (see Appendix G
for details).

5.1 SEQUENCE COMPLETION

As seen in Table 1, this task is nearly always fully determined, that is, it can be solved with ∼100%
accuracy in theory, as demonstrated by BRUTEFORCES results. Of course, BRUTEFORCES is ex-
tremely computationally expensive, and, as such, we primarily focus on the n-GRAMS heuristics as
our baselines. Still, we find that n-GRAMS heuristics tend to outperform LLMs.

As seen in Table 2, we find that giving the model the opportunity to logically reason about the
prompt via chain-of-thought and present a conclusion has inconsistent results. Specifically, we find
that for gpt-4o-mini, immediately predicting a next token seems to be better, while for gpt-4o
and gpt-5 there is no large effect. claude-3.5 and o3-mini are unable to answer the BA-
SICS prompt at all, but outperform other proprietary models when using BASIC-COTS . In this task,
revealing the problem structure appears to not have a massive effect on performance, with gpt-5
being the only model to incorporate this information into a statistically significantly improved per-
formance, and even then only in the Red-GreenS word problem prompt (still underperforming
4-GRAMS).

Additionally, we find that in this task, code-specific open-weight models tend to perform better than
sequence completion models, suggesting some generalized ability to produce strings from novel
languages demonstrated by example. Overall, the relative performances of LLMs and prompts gen-
erally comport to heuristics on which models and prompting strategies should work best (with the
notable exception of gpt-5). Nonetheless, LLMs underperform simple n-GRAM heuristics.

One potential problem with using this task for cross-model comparisons is the relevance of tokeniza-
tion. We found that forcing uniform tokenization by using commas in the prompt uniformly reduced
accuracy, see Appendix E.1 for details; we confirmed that the LLMs we investigate could reason
about strings without commas, see Appendix E.2 for details.

5.2 TRANSDUCER

Unlike sequence completion, this task is not fully determined, with BRUTEFORCET getting 96.4%
accuracy. Comparisons are still valid as all models see the same fraction of unsolvable instances.

We find that in general all LLMs underperform a 4-GRAMT model, demonstrating that they are un-
able to adequately solve this task. The relative performance of the models also does not correspond
to their overall scale, with open weight LLama-3 and Mistral Nemo 8B parameter models outper-
forming much larger proprietary models. Even within a model class we find no clear pattern: all
other GPT models are outperformed by GPT 3.5, Llama 3-70B has similar performance to Llama
3-8B, and the Mistral Nemo 12B models perform similarly to Nemo Minitron 8B. Coding models
also demonstrate no advantage on this task.

The generally lower performance of chat-oriented models suggests this task is better suited to non-
chat models. More specifically, as seen in Table 2, our BASIC-COTT prompt results in underperfor-
mance by all non-reasoning models, suggesting that models are generally most able to solve this task
when it is a simple next-token-prediction task. Providing the problem structure also does not help
non-reasoning models improve substantially, but does allow o3-mini to perform well, and gpt-5
to completely solve the task (achieving parity with BRUTEFORCE), demonstrating that reasoning
models’ underperformance at the original ICL language reasoning task is not due to the underlying
difficulty of the task itself.

We conclude that LLM ICL is unable to perform well at language inference. This failure cannot be
attributed to a lack of world modeling, as n-GRAMT models do not construct world models. Instead,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

it seems the LLMs are unable to detect patterns when those patterns are drawn from an unfamiliar
and unknown source, even a relatively simple one.

5.3 COMPARISON OF BENCHMARKS

Figure 3: Transducer and sequence completion results plotted against each other. Points are the
mean over several DFAs, with 95% confidence intervals. Points are colored by model type, with the
best and worst model by each metric in each category labeled, as well as all baseline & proprietary
models.

Figure 3 displays the relationship between model performance on the Sequence Completion and
Transducer benchmarks. While at a high level, there is a positive correlation between the two, there
are a few notable differences. For one, the Code models perform notably better than other open
weight models on Sequence Completion, but not on Transducer. Additionally, on Transducer, a
ceiling on performance is observed, where LLMs cluster together between 3-GRAMT and 4-GRAMT

performance; this clustering does not appear on the Sequence Completion benchmark.

6 CONCLUSION

Our findings highlight significant weaknesses in large language models’ ability to in-context-learn
entirely novel language reasoning problems, even simple ones solely involving next-token prediction
on basic languages recognized by 3-state DFAs. These results, combined with that of previous
work demonstrating that large language models can quite accurately perform a variety of language
tasks, suggests that LLMs solve language problems via a mechanism distinct from general language
reasoning ability. Our use of n-gram baselines and next-token prediction tasks allows us to exclude
the possibility that the issue is primarily related to LLMs’ lack of world modeling or any inherent
limitations of next-token prediction models. We believe our results suggest that LLMs have learned
individual models of particular languages, but not a general theory of language.

Interestingly, in our transducer experiments, directly predicting the next token rather than explicitly
reasoning through the problem works better, except for reasoning models where they perform simi-
larly. While our conclusions are limited by the finite nature of our prompt set, this suggests that they
do, in fact, possess some latent understanding of language, but this understanding is inferior to basic
n-gram models for n > 3.

One potential goal for foundation models is to replace all machine learning with ICL. Our results
suggest that current models are not progressing towards this goal.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

IMPACT STATEMENT

Aside from the social consequences of this work as related to advancing the field of Machine Learn-
ing in general, this work has the goal of advancing the field of benchmarks in Machine Learning.
While we view this as a positive objective, as it ensures that models are being evaluated fairly, it
might have negative consequences insofar as benchmarking techniques might be best left unpub-
lished to prevent deliberate or unintentional overfitting.

REFERENCES

AI@Meta. Llama 3 model card, 2023. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

AI@Meta. Llama 3.1 70b, 2024a. URL https://huggingface.co/meta-llama/
Llama-3.1-70B.

AI@Meta. Llama 3.1 8b, 2024b. URL https://huggingface.co/meta-llama/
Llama-3.1-8B.

AI@Meta. Llama 3.1 8b instruct, 2024c. URL https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Archi-
tectures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large lan-
guage model with state-of-the-art performance, 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319, 2019.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38.16, pp. 17682–17690, 2024.

Prajjwal Bhargava and Vincent Ng. Commonsense knowledge reasoning and generation with pre-
trained language models: A survey. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36.11, pp. 12317–12325, 2022.

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and llms by learning to learn discrete functions. arXiv preprint
arXiv:2310.03016, 2023.

Ben Bogin, Shivanshu Gupta, Peter Clark, and Ashish Sabharwal. Leveraging code to improve
in-context learning for semantic parsing. arXiv preprint arXiv:2311.09519, 2023.

Nadav Borenstein, Anej Svete, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein,
Eleanor Chodroff, and Ryan Cotterell. What languages are easy to language-model? a perspective
from learning probabilistic regular languages. arXiv preprint arXiv:2406.04289, 2024.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexandra Butoi, Ghazal Khalighinejad, Anej Svete, Josef Valvoda, Ryan Cotterell, and Brian
DuSell. Training neural networks as recognizers of formal languages. arXiv preprint
arXiv:2411.07107, 2024.

Noam Chomsky. On certain formal properties of grammars. Information and control, 2(2):137–167,
1959.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Adrian de Wynter. Is in-context learning learning? arXiv preprint arXiv:2509.10414, 2025.

Deepseek. Deepseek coder 33b instruct, 2024. URL https://huggingface.co/
deepseek-ai/deepseek-coder-33b-instruct.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. arXiv preprint
arXiv:2312.14890, 2023.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Google. gemma-7b, 2024. URL https://huggingface.co/google/gemma-7b.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large lan-
guage models reason? a characterization via 3-sat. arXiv preprint arXiv:2408.07215, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Wenyue Hua and Yongfeng Zhang. System 1+ system 2= better world: Neural-symbolic chain of
logic reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2022, pp.
601–612, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Sathvik Joel, Jie JW Wu, and Fatemeh H Fard. A survey on llm-based code generation for low-
resource and domain-specific programming languages. arXiv preprint arXiv:2410.03981, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
not conventional learning. arXiv preprint arXiv:2307.12375, 2023.

11

https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/google/gemma-7b

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. Commongen: A constrained text generation challenge for generative commonsense
reasoning. arXiv preprint arXiv:1911.03705, 2019.

Kevin Lin, Patrick Xia, and Hao Fang. Few-shot adaptation for parsing contextual utterances with
llms. arXiv preprint arXiv:2309.10168, 2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-
draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii
Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan
Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han
Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Cha-
pados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming
Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Star-
coder 2 and the stack v2: The next generation, 2024.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers
of autoregression: Understanding large language models through the problem they are trained to
solve. arXiv preprint arXiv:2309.13638, 2023.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-specific
languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

Raphaël Millière. Language models as models of language. arXiv preprint arXiv:2408.07144, 2024.

Mistral AI. Codestral-22b-v0.1, 2024a. URL https://huggingface.co/mistralai/
Codestral-22B-v0.1.

Mistral AI. Mistral-nemo-base-2407, 2024b. URL https://huggingface.co/
mistralai/Mistral-Nemo-Base-2407.

Mistral AI. Mistral-nemo-instruct-2407, 2024c. URL https://huggingface.co/
mistralai/Mistral-Nemo-Instruct-2407.

NVIDIA. Mistral-nemo-minitron-8b-base, 2024. URL https://huggingface.co/
nvidia/Mistral-NeMo-Minitron-8B-Base.

OpenAI. Gpt 3.5 turbo, 2024a. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

OpenAI. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410.21276.

OpenAI. Openai gpt-5 system card, 2025a. URL https://openai.com/index/
gpt-5-system-card/.

OpenAI. Openai o3-mini system card, 2025b. URL https://openai.com/index/
o3-mini-system-card/.

12

https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base
https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://arxiv.org/abs/2410.21276
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305, 2015.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples. Advances in Neural Information Processing Systems, 36:3083–3105,
2023.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. arXiv preprint
arXiv:2404.14994, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Keyon Vafa, Justin Chen, Ashesh Rambachan, Jon Kleinberg, and Sendhil Mullainathan. Evaluating
the world model implicit in a generative model. Advances in Neural Information Processing
Systems, 37:26941–26975, 2025.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Adina Williams, and Ryan Cotterell. Benchmark-
ing compositionality with formal languages. arXiv preprint arXiv:2208.08195, 2022.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar prompt-
ing for domain-specific language generation with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Nathaniel Weir, Peter Clark, and Benjamin Van Durme. Nellie: A neuro-symbolic inference engine
for grounded, compositional, and explainable reasoning. Preprint, 2023.

Nathaniel Weir, Kate Sanders, Orion Weller, Shreya Sharma, Dongwei Jiang, Zhengping Zhang,
Bhavana Dalvi Mishra, Oyvind Tafjord, Peter Jansen, Peter Clark, et al. Enhancing systematic de-
compositional natural language inference using informal logic. arXiv preprint arXiv:2402.14798,
2024.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1819–1862, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, pp. 1–10, 2022a.

Zhenlin Xu, Marc Niethammer, and Colin A Raffel. Compositional generalization in unsupervised
compositional representation learning: A study on disentanglement and emergent language. Ad-
vances in Neural Information Processing Systems, 35:25074–25087, 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv. org/pdf/2305.10601. pdf, 2023.

Yuekun Yao and Alexander Koller. Structural generalization is hard for sequence-to-sequence mod-
els. arXiv preprint arXiv:2210.13050, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

A DETAILS ON SAMPLING

A.1 SAMPLING OF DFAS

We use rejection sampling to sample DFAs. Specifically, we uniformly sample a start state, then for
each (source state, symbol) pair, we sample a post-transition state. We also randomly assign each
state to be accept or reject with probability 50%. We then reject any DFA that has all accept or all
reject states (so only DFAs with 1 or 2 accept states are allowed), or for which certain states are
unreachable from the start state.

A.2 SAMPLING OF SEQUENCE COMPLETION TASKS

To sample a sequence completion task, we first sample a DFA as described in Appendix A.1.

To sample a task instance, we sample example sequences and distinct prefix. Each example sequence
is sampled uniformly from the space of {a, b, c}10 and then rejected if the DFA does not accept the
sequence. Our distinct prefix and completion are sampled uniformly from {a, b, c}5 × {a, b, c}5,
and are rejected if the DFA does not accept the concatenation of the two, or if the prefix is the prefix
of any of the previous sequences. We then discard the completion. If we, at any point, reject 50
sequences when attempting to sample a sequence or prefix, we return an error.

We run a “pilot” sampling for a DFA to ensure that it is valid, in which we sample an instance as
described above. If there is an error in sampling this pilot instance, we reject the DFA. Otherwise,
we proceed to sample our task instances. At this stage, if there is an error in sampling, we reject the
instance rather than the DFA. This pilot sample rejection procedure leads to a slight bias towards
2-accept state DFAs over 1-accept state DFAs, as measured by the RANDOMS baseline.

A.3 SAMPLING OF TRANSDUCER TASKS

We sample a DFA as described in Appendix A.1, and then sample random sequences (30 in our
experiments) and generate transducer traces. If every transducer trace ends with a 0 or every trace
ends with a 1, we reject the DFA and resample.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B TRANSDUCER RESULTS BY DIFFICULTY CLASS

Figure 4: Transducer results by difficulty class. We classify each DFA based on which of the
baselines first achieves a score of 28/30 on the given instances. 6-GRAM is excluded as it has very
similar performance to 5-GRAM. Each model’s best prompt results are plotted, with 95% confidence
intervals, for all models with at least 100 DFAs; those with 10 or 30 had error bars too large to make
this analysis useful.

Figure 4 displays results by difficulty level, as judged by the smallest n-GRAM model that can solve
a particular task. All models behave roughly monotonically, performing more poorly as difficulty
increases. Additionally, we find that the best models continue to perform similarly to 4-GRAM for
tasks that 4-GRAM does not perfectly solve.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C INCREASED NUMBER OF EXAMPLES

Figure 5: Accuracy by number of examples, as we vary the number from 30 to 600 (note the log
scale). ∞-GRAM is a model that finds the longest sequence that matches the ending of the sequence
and copies the following token.

We varied the number of examples parameter from 30 to 600, investigating specifically mistral-
nemo-minitron-8B as it is a better performing model on the transducer task. We find that for the
Sequence Completion task, the n-GRAM models do not generally improve as the number of exam-
ples increases, while the LLM does; however, the LLM remains below 4-GRAM performance at all
points. In the Transducer experiment, both the n-GRAM models and the LLM improve, with the
LLM crossing 4-GRAM and 5-Gram performance and eventually roughly matching 6-GRAM per-
formance. However, there is now an increased gap between 6-GRAM and 7-GRAM that did not exist
at 30 (we did not include 7-GRAM or above in the main table for this reason). Overall, it is possible
that the larger number of instances of the “correct n-GRAM” appearing (i.e., the suffix of the prompt
followed by the correct answer) causes the model to be better at producing predictions. As the LLM
at no point outperforms the best n-GRAM, we do not believe that this alters our overall conclusions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D NONZERO TEMPERATURE

Model Prompt Zero Temp Nonzero Temp Difference
Sequence Completion
mistral-nemo-minitron-8B BASIC 78.70% (77.49% – 79.79%) 77.67% (76.51% – 78.76%) -1.04% (-1.49% – -0.63%)
claude-3.5 COT 84.00% (79.33% – 88.44%) 84.22% (79.56% – 89.00%) 0.22% (-2.11% – 2.33%)
claude-3.5 RED-GREEN 80.00% (74.89% – 85.22%) 80.78% (75.00% – 86.11%) 0.78% (-2.11% – 3.44%)
Transducer
mistral-nemo-minitron-8B BASIC 88.56% (88.05% – 89.08%) 88.17% (87.64% – 88.68%) -0.39% (-0.58% – -0.22%)
claude-3.5 BASIC 86.89% (83.33% – 90.00%) 87.00% (83.33% – 90.11%) 0.11% (-0.67% – 0.89%)
claude-3.5 MORE-EXPL 87.11% (83.88% – 90.22%) 86.89% (83.22% – 90.11%) -0.22% (-1.11% – 0.67%)
claude-3.5 COT 76.44% (72.89% – 79.89%) 78.11% (74.66% – 81.33%) 1.67% (-0.56% – 3.78%)
claude-3.5 RED-GREEN 82.89% (78.89% – 86.89%) 82.78% (78.89% – 86.33%) -0.11% (-2.00% – 1.78%)

Table 3: Results varying temperature. Second column is a temperature of 0.1, third column is
differences. In all columns, we annotate a 95% confidence interval, using paired differences for the
third column.

In order to determine whether a small nonzero temperature might lead to better results, we inves-
tigated using a temperature of 0.1 for mistral-nemo-minitron-8B and claude-3.5 (these two chosen
for the reasons described in Section I, notably o3-mini/gpt-5 already are using nonzero tempera-
tures). We find that a temperature of 0.1 does not significantly change performance, resulting in no
significant change for any model/task/prompt combination. The largest improvement we observe
is claude-3.5 on COT on the Transducer task, which gains 1.7%, from 76.4% to 78.1% (still not
enough to make it the best prompt for claude-3.5).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E TOKENIZATION

Model BASICS BASIC-COMMASS
qwen-2.5-coder-7B 79.5 (78.4–80.5) 60.7 (59.3–62.1)

qwen-2.5-coder-instruct-7B 79.5 (78.3–80.5) 55.5 (54.0–56.9)
qwen-2.5-coder-instruct-32B 79.2 (78.0–80.3) 55.2 (53.7–56.7)

mistral-nemo-minitron-8B 78.7 (77.5–79.8) 59.3 (57.9–60.8)
codestral-22B 78.0 (76.8–79.1) 59.0 (57.5–60.3)
qwen-2.5-32B 76.8 (75.5–78.0) 60.3 (58.9–61.6)

deepseek-coder-33b-instruct 76.7 (75.3–77.8) 54.9 (53.0–56.8)
mistral-nemo-base-12B 75.5 (74.3–76.6) 60.6 (59.1–62.2)

llama3.1-8B-Instruct 75.3 (74.0–76.6) 56.3 (54.4–58.1)
llama3.1-8B 75.2 (73.8–76.3) 61.1 (59.8–62.5)

llama3-8B 73.8 (72.4–75.1) 61.5 (60.2–62.9)
starcoder2-15b 73.5 (72.0–74.7) 58.2 (56.7–59.8)

qwen-2.5-7B 73.5 (72.1–74.8) 57.0 (55.5–58.5)
gemma-7b 72.6 (71.3–73.7) 54.0 (51.9–56.0)

gpt-4o-mini 72.4 (68.1–76.3) 64.1 (59.5–68.3)
mistral-nemo-instruct-12B 72.2 (70.9–73.4) 58.2 (56.4–59.8)

gpt-4o 72.1 (65.9–78.2) 66.8 (58.5–74.8)
llama3.1-70B 71.8 (70.4–73.1) 57.7 (56.1–59.2)

llama3-70B 71.4 (70.0–72.7) 56.4 (54.7–58.0)
falcon-7b 69.0 (67.6–70.2) 56.1 (54.5–57.6)

gpt-3.5-instruct 67.3 (63.1–71.5) 52.3 (46.5–57.9)
o3-mini N/A N/A

claude-3.5 N/A N/A
gpt-3.5-chat N/A N/A

Table 4: Results on Sequence Completion Task. We compare BASICS to the comma-variant BASIC-
COMMASS .

E.1 SEQUENCE COMPLETION TASK PROMPT WITH COMMAS

To avoid tokenization differences with models, we also investigate a version of our Sequence Com-
pletion prompt that uses spaces and commas between the elements of the sequence. Unfortunately,
results using this prompt were uniformly worse than results on the prompt without spaces and com-
mas. Table 4 shows the results on a variety of models. All are worse with commas than without.

E.2 DIRECTLY CONFIRMING MODELS CAN READ SEQUENCES OF LETTERS

To fully exclude the possibility that models are unable to read sequences of letters, we perform the
following experiment: we take the regular expression ab(abc)+ and directly provide it to the
model, then ask the model to test it on a string (one string provided per query), using the prompt I
will give you a string. Tell me whether it matches the following
regular expression: ’âb(abc)+$’ (without quotes). Just answer
YES or NO. on one line, followed by a string on the next. We sample 100 random strings of
length 2-17, via the following procedure (1) sample a random valid string uniformly (2) with 50%
probability, randomly mutate one of the elements of the string to a different character. All strings
are thus either correct or near-correct. We also add Answer (YES or NO): on a third line for
non-chat models to encourage them to provide a response rather than another string.

Results for this are presented in Table 5. While not all models perform well at this task, perfor-
mances follow roughly what one might expect from standard benchmarks (rather than the Sequence
Completion results in the paper). Frontier proprietary models perform extremely well, larger open
weight models tend to perform well, and smaller open weight models are more hit-and-miss (some
performing well, some poorly).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model Accuracy Non-response

llama3-8B 66%
llama3-70B 80% 26%
llama3.1-8B-Instruct 83%
llama3.1-8B 89%
llama3.1-70B 86% 36%
qwen-2.5-7B 62%
qwen-2.5-32B 100%
mistral-nemo-instruct-12B 99%
gemma-7b 67% 15%
starcoder2-15b 62%
codestral-22B 95%
qwen-2.5-coder-7B 100%
qwen-2.5-coder-instruct-7B 56%
qwen-2.5-coder-instruct-32B 96%
gpt-3.5-instruct 67%
gpt-3.5-chat 82%
gpt-4o-mini 100%
gpt-4o 100%
claude-3.5 100%
o3-mini 100%
gpt-5 100%

Table 5: Results on Regex task. As in the rest of this paper, accuracies are computed ignoring non-
response. Models mistral-nemo-minitron-8B, mistral-nemo-base-12B, falcon-7b, deepseek-coder-
33b-instruct have non-response rates over 98%.

The proprietary models newer than the GPT-3 series get 100% accuracy on this task, while perfor-
mance is lower for the open weight models. There is no obvious relationship between models that
perform well at this particular task and models that perform well at Sequence Completion, indicat-
ing that to whatever degree models are performing poorly at this test task, it is not because they are
unable to process the string. Notably, o3-mini, gpt-4o, and gpt-4o-mini all perform fairly poorly at
the Sequence Completion task, placing below median, but all achieve 100% on this task.

Open weight models are more mixed, with larger ones tending to do nearly as well as newer propri-
etary models (notable exception being llama3-70B), but smaller ones occasionally performing well
and occasionally performing poorly.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F MODEL NON-ANSWERS

Table 6 depicts the percentage of model non-answers by model and prompt. In general, this distri-
bution is highly bimodal, with values always being either below 9% or above 97%.

The only prompt-vs-prompt orderings that are changed by scoring non-answers as 0 are that, on
Sequence Completion, BASICS rises above RED-GREENS for gpt-4o, making it the best prompt;
and that on Transducer, RED-GREENT for gpt-4o-mini rises above MORE-EXPLT (though still
behind BASICT . The qualitative conclusions about next token prediction vs chain of thought results
remain the same.

The only change to relative model ordering is that on Sequence Completion, gpt-4o drops 8 ranks,
from 17th place to 25nd place, being passed by several open weight models, gpt-4o-mini, and o3-
mini. No change occurs on the transducer results. Qualiative conclusions about model ordering
remain the same.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Model BASIC BASIC-COT MORE-EXPL DFA-COT RED-GREEN

Sequence Completion
llama3-8B 0.0 (0.0–0.0) – – – –
llama3-70B 0.0 (0.0–0.0) – – – –
llama3.1-8B-Instruct 0.0 (0.0–0.0) – – – –
llama3.1-8B 0.0 (0.0–0.0) – – – –
llama3.1-70B 0.0 (0.0–0.0) – – – –
mistral-nemo-minitron-8B 0.0 (0.0–0.0) – – – –
mistral-nemo-base-12B 0.0 (0.0–0.0) – – – –
mistral-nemo-instruct-12B 0.0 (0.0–0.0) – – – –
gemma-7b 0.0 (0.0–0.0) – – – –
falcon-7b 0.0 (0.0–0.0) – – – –
starcoder2-15b 0.0 (0.0–0.0) – – – –
codestral-22B 0.0 (0.0–0.0) – – – –
deepseek-coder-33b-instruct 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-32B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-32B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-7B 0.0 (0.0–0.0) – – – –
gpt-3.5-instruct 2.5 (1.9–3.0) – – – –
gpt-3.5-chat 99.9 (99.7–100.0) – – – –
gpt-4o-mini 0.0 (0.0–0.0) 0.3 (0.2–0.5) 0.0 (0.0–0.0) 1.0 (0.6–1.4) 0.2 (0.1–0.4)
gpt-4o 4.4 (3.3–5.7) 1.9 (1.1–2.8) 100.0 (100.0–100.0) 5.0 (3.8–6.2) 8.4 (6.6–10.2)
claude-3.5 99.7 (99.2–100.0) 0.1 (0.0–0.3) 97.8 (96.9–98.6) 0.0 (0.0–0.0) 0.0 (0.0–0.0)
o3-mini 80.2 (78.0–82.3) 3.8 (2.6–5.2) 91.6 (89.9–93.2) 5.7 (4.1–7.2) 0.4 (0.0–1.0)
gpt-5 0.0 (0.0–0.0) 0.0 (0.0–0.0) 8.2 (4.7–12.1) 5.2 (3.1–7.4) 0.4 (0.1–0.9)
Transducer
llama3-8B 0.0 (0.0–0.0) – – – –
llama3-70B 0.0 (0.0–0.0) – – – –
llama3.1-8B-Instruct 0.0 (0.0–0.0) – – – –
llama3.1-70B 0.0 (0.0–0.0) – – – –
llama3.1-8B 0.0 (0.0–0.0) – – – –
starcoder2-15b 0.0 (0.0–0.0) – – – –
codestral-22B 0.0 (0.0–0.0) – – – –
deepseek-coder-33b-instruct 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-32B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-32B 0.0 (0.0–0.0) – – – –
mistral-nemo-minitron-8B 0.0 (0.0–0.0) – – – –
mistral-nemo-base-12B 0.0 (0.0–0.0) – – – –
mistral-nemo-instruct-12B 0.0 (0.0–0.0) – – – –
gemma-7b 0.0 (0.0–0.0) – – – –
falcon-7b 0.0 (0.0–0.0) – – – –
gpt-3.5-instruct 0.0 (0.0–0.1) – – – –
gpt-3.5-chat 0.1 (0.0–0.3) – – – –
gpt-4o-mini 1.8 (1.3–2.3) 0.0 (0.0–0.0) 5.8 (4.8–6.9) 0.0 (0.0–0.0) 0.7 (0.4–1.0)
gpt-4o 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)
claude-3.5 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)
o3-mini 0.1 (0.0–0.3) 0.0 (0.0–0.0) 0.4 (0.1–0.9) 0.0 (0.0–0.0) 0.0 (0.0–0.1)
gpt-5 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.7 (0.1–1.4)

Table 6: Model non-answers, as a percentage of all prompt responses. A non-response is not in-
cluded in accuracy computations for Table 1 or Table 2, but whenever it rises above 25%, N/A is
placed in those tables.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G SIGNIFICANCE

Figure 6: Significance of comparisons between rows of Table 1. Results in blue and orange are
significant, results in pink are not.

Figure 6 shows which comparisons between rows of Table 1 are significant. Significance computa-
tions are performed by running a 2-tailed bootstrap significance test on paired (by DFAs) differences.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H PROMPT LISTINGS

H.1 SUMMARIES

Table 7 contains summaries of each prompt.

H.2 FULL EXAMPLE LISTINGS

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt T S

BASIC

You are a sequence completion model. Output the
next element of the sequence, and nothing
else.

<TRANSDUCER PREFIX>,

The following strings come from an alien language
that follows a simple grammar. Infer the
alien grammar using the example strings.
Then, add a suffix to the final string using
between 1 and 5 characters such that the

full string follows the grammar. Output only
the necessary suffix to complete the final

string, and nothing else.

<EXAMPLES>
<PREFIX>

BASIC-COT

You are a sequence completion model. Reason step
by step, and then output the next output
integer using <answer> tags, like <answer
>0</answer>.

Input sequence: <TRANSDUCER PREFIX>
Output sequence:

The following strings come from an alien language
that follows a simple grammar. Infer the
alien grammar using the example strings.
Then, add a suffix to the final string using
between 1 and 5 characters such that the

full string follows the grammar. Reason step
by step, and then output the next necessary
suffix for this final string, <answer> tags

, like <answer>ab</answer>.

<EXAMPLES>
<PREFIX>

MORE-EXPL

You are a sequence completion model. The following
sequence is generated from an unknown but
consistent grammar. Identify the patterns
within the sequence to determine its next
element. Output the next element of the
sequence, and nothing else.

<TRANSDUCER PREFIX>,

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the

underlying DFA model using these strings and
complete the final string, using up to n

characters, such that it is also a valid
string. Output only the necessary suffix to
complete the final string, and nothing else.

<EXAMPLES>
<PREFIX>

DFA-COT

A DFA is a finite-state machine that accepts or
rejects a given string of symbols, by
running through a n-state sequence uniquely
determined by the string.

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect the inputs and outputs into
an input sequence and an output sequence.
Infer the underlying DFA model to predict
the next integer in the output sequence.
Reason step by step, and then output the
next output integer using <answer> tags,
like <answer>0</answer>.

Input sequence: <TRANSDUCER PREFIX>
Output sequence:

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the

underlying DFA model using these strings and
complete the final string, using up to n

characters, such that it is also a valid
string. Reason step by step, and then output
the next necessary suffix for this final

string, <answer> tags, like <answer>ab</
answer>.

Given these valid strings:
<EXAMPLES>

Complete the following string:
<PREFIX>

RED-GREEN

‘‘‘
You are in a house of rooms and portals. There are

3 rooms in the house, and each room has 3
unique portals labeled A, B, and C. Each
portal teleports you to one room of the
house (and sometimes the destination is the
room the portal is in). Every portal in a
given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *three* rooms in total, so you
cannot determine which room you are in by
color alone, and two rooms of the same color
may have portals that behave differently.
As you move through the house, at each time
step you write down what portal you take and
the color of the room you arrive (or stay)
in. Based on your notes, predict what color
room you will end up in after the last step.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "<TRANSDUCER
PREFIX>" and end up in a red room.

‘‘‘

You are outside a house of rooms and portals.
There are 3 rooms in the house, and each
room has 3 unique portals labeled a, b, and
c. Each portal teleports you to one room of
the house (and sometimes the destination is
the room the portal is in). Every portal in
a given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *3* rooms in total, so you cannot
determine which room you are in by color
alone, and two rooms of the same color may
have portals that behave differently. You’ve
been into this house many times before.

Each time, as you move through the house,
you write down what series of portals you
take and the color of the room you end up in
. You have a collection of paths you’ve
taken where you’ve ended up in a room with
green walls, listed below. Given the final
incomplete path at the bottom, write a
series of up to 5 remaining steps that will
cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

Given these paths that end in a room with green
walls:

<EXAMPLES>

Complete the following path:
<PREFIX>

Table 7: Shortened summary of each prompt

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H.2.1 BASICT

You are a sequence completion model. Output the next element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

H.2.2 BASIC-COTT

You are a sequence completion model. Reason step by step, and then output the next output integer using <
answer> tags, like <answer>0</answer>.

Input sequence: a, b, a, b, b, c, a, c, a, a, a, c, b, c, c, a, b, b, b, b, a, b, a, a, b, c, a, c, a, b
Output sequence: 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

H.2.3 MORE-EXPLT

You are a sequence completion model. The following sequence is generated from an unknown but consistent
grammar. Identify the patterns within the sequence to determine its next element. Output the next
element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

H.2.4 DFA-COTT

A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running through a n-
state sequence uniquely determined by the string.

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect the inputs and
outputs into an input sequence and an output sequence. Infer the underlying DFA model to predict the
next integer in the output sequence. Reason step by step, and then output the next output integer using
<answer> tags, like <answer>0</answer>.

Input sequence: a, b, a, b, b, c, a, c, a, a, a, c, b, c, c, a, b, b, b, b, a, b, a, a, b, c, a, c, a, b
Output sequence: 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

H.2.5 RED-GREENT

‘‘‘
You are in a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique portals

labeled A, B, and C. Each portal teleports you to one room of the house (and sometimes the destination
is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *three* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. As you move

through the house, at each time step you write down what portal you take and the color of the room you
arrive (or stay) in. Based on your notes, predict what color room you will end up in after the last step
.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a ...
‘‘‘

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H.2.6 BASICS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

H.2.7 BASIC-COTS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Reason step by step, and then output the next necessary suffix for
this final string, <answer> tags, like <answer>ab</answer>.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

H.2.8 BASIC-COMMASS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

c, b, c, b, a, b, b, c, c, a
a, b, c, a, a, a, c, b, a, a

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

a, a, b, c, c, b, a, b, b, b
b, b, b, c, c, b, b, b, c, a
a, a, b, a, b, a, c, c, b, a
a, a, a, a, c, b, a, c, a, c
b, a, a, c, b, c, c, b, a, a
c, b, b, a, a, c, a, b, c, c
b, a, a, b, a, a, c, a, a, b
b, b, b, b, b, c, a, c, a, b
a, c, a, a, b, c, b, b, b, a
a, c, a, a, c, b, c, c, a, c
c, a, c, b, a, b, c, b, b, a
a, b, c, b, c, b, c, b, c, c
c, c, a, c, c, c, c, a, b, a
b, c, b, c, a, b, b, c, c, a
b, a, a, b, a, c, a, b, c, a
c, a, a, b, a, b, a, c, a, c
b, a, c, a, c, a, c, c, a, a
b, c, a, c, b, b, b, b, c, a
b, c, b, b, b, c, a, c, c, c
c, c, a, b, b, c, c, c, b, b
b, c, c, b, c, a, b, b, c, a
b, a, a, c, b, a, b, c, b, c
c, c, a, c, a, b, c, c, a, b
c, a, a, c, b, c, a, a, a, b
c, a, c, b, a, a, c, c, a, c
a, a, c, c, b, c, a, a, b, b
a, b, a, c, a, b, c, a, a, b
b, a, c, b, c, b, c, a, c, a
c, a, a, c, b,

H.2.9 MORE-EXPLS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Output only the
necessary suffix to complete the final string, and nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

H.2.10 DFA-COTS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Reason step by step,
and then output the next necessary suffix for this final string, <answer> tags, like <answer>ab</answer
>.

Given these valid strings:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following string:
caacb

H.2.11 RED-GREENS

You are outside a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique
portals labeled a, b, and c. Each portal teleports you to one room of the house (and sometimes the
destination is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *3* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. You’ve been into
this house many times before. Each time, as you move through the house, you write down what series of
portals you take and the color of the room you end up in. You have a collection of paths you’ve taken
where you’ve ended up in a room with green walls, listed below. Given the final incomplete path at the
bottom, write a series of up to 5 remaining steps that will cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

Given these paths that end in a room with green walls:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following path:
caacb

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I CASE STUDY: SUM MODULO 3 DFA

(a)

(b)

Correct Incorrect
Total 100% 100%

a is no-op 70% 73%
1b and 1c lead to 0 47% 57%

2-periodic 30% 47%
3-periodic 13% 13%

2 red rooms 7% 10%

Figure 7: Results on Sum Modulo 3 DFA.
(a) MB=mistral-nemo-minitron-8B/BASICT ,
CR=claude-3.5/RED-GREENT . Venn diagram
of errors (out of 1000). Labeled percentages are
accuracies. (b) Results of qualitative analysis, out
of 30 in both cases.

We investigate the transducer task on the DFA
depicted in Figure 1. This DFA can be inter-
preted as an arithmetic check, where a repre-
sents 0, b represents 1, and c represents 2, and
the DFA accepts strings whose sum is equal to
0 modulo 3. For this case study, we focus on
the model/prompt combinations MB (mistral-
nemo-minitron-8B/BASICT : the best perform-
ing non-reasoning model combination overall)
and CR (claude-3.5/RED-GREENT : the best
performing non-reasoning model combination
that provides an explanation, needed later for
our qualitative analysis).

Figure 7a depicts the number of errors each
model receives on 1000 instances of the trans-
ducer task for this DFA. Nearly all errors made
by the 6-GRAMT model were also made by at
least one LLM, while the two LLMs often made
unique errors. While this task is better-known
than most DFAs, all 3 models perform worse on
this DFA than average.

We also performed a qualitative analysis, in-
vestigating CR’s outputs on the RED-GREENT

prompt to see what kind of reasoning it is using;
specifically we sampled 30 examples where it
had the correct answer, and 30 examples where
it had the incorrect answer but the 6-GRAMT

model had the correct answer. Results of this analysis can be found in Figure 7b. We find that, in
general, CR is following a 3-GRAM approach, learning rules relating to the conditions under which
the previous output and symbol can be used to predict the next output. Specifically, it is able to
learn that a does not change the output, and that b and c will lead a 1 state to a 0 state. These
results comport with the overall finding of Table 1, where we found that 3-GRAMT was the largest
n-GRAMT that any non-reasoning LLM outperformed, as well as our finding that LLM performance
decreases for tasks that are not solvable by n-GRAMs; see Appendix B for details.

The model also attempts to identify periodic patterns, but identifies period-2 patterns more than
period-3 patterns, despite knowing that there are three “rooms” (states). At no point in any of the
60 reasoning traces analyzed does it realize that this is a version of the Sum Modulo 3 DFA5, but
it does show some glimmers of world modeling: in a few cases it correctly determines that there
are two red rooms; however, this does not lead to further discoveries. It is not superior reasoning
that leads to correct solutions, rather the correct examples are more likely to be ones that a 3-GRAM
model would infer correctly, i.e., those traces ending in a, 1b, or 1c, which occur cumulatively in
5
9 of cases6.

Despite transformers’ high computational capacity, without the ability to pattern match to existing
problems, Claude uses an unsophisticated and ineffectual approach.

5In fact, in none of the 1000 traces do the substrings “sum” or “mod” appear, except as a part of “assuming”
6On the ∼ 5

9
of examples following this pattern, CR achieves 93.5%, to the 6-GRAMT ’s 97.3%, and on the

remaining ∼ 4
9

, it achieves 43.8%, to the 6-GRAMT ’s 60.7%. Detailed Venn diagrams on these conditions can
be found in Figure 8.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a)

(b)

Figure 8: Results on Sum Modulo 3 DFA under trivial / nontrivial conditions. Percentages are
accuracy numbers, and venn diagram is error counts. (a) In this condition, CR and the 6-GRAMT

both get very high accuracies, with nearly all 6-GRAMT also being CR errors. MB does relatively
poorly. (b) In this condition, models do significantly more poorly overall, with CR in particular
performing worse than chance. Here, errors are more symmetric, with more 6-GRAMT errors that
are not accounted for by either or both model, indicating that a larger fraction of both successes and
failures in this condition are down to random chance.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J COMPUTE USAGE

The experiments in this paper on proprietary models had the following (approximate) costs.

• gpt-5: $920
• o3-mini: $430
• 4o: somewhere between $100 and $200
• 4o-mini: somewhere between $50 and $150
• claude-3.5: $80

The open weight experiments took a cumulative 10-50 GPU-hours on NVIDIA RTX 6000 Ada
Generation GPUs, some models requireed the use of 4 in parallel.

31

	Introduction
	Related Work
	Language Understanding and LLMs
	Reasoning with LLMs
	LLM reasoning evaluation
	Training transformers on Formal Languages

	DFA Reasoning Tasks
	DFAs and Regular Languages
	Language Reasoning Tasks
	Sequence Completion Task
	Transducer Task

	Baselines

	Experiments
	Results
	Sequence Completion
	Transducer
	Comparison of Benchmarks

	Conclusion
	Details on Sampling
	Sampling of DFAs
	Sampling of Sequence Completion Tasks
	Sampling of Transducer Tasks

	Transducer results by difficulty class
	Increased number of examples
	Nonzero temperature
	Tokenization
	Sequence Completion task prompt with Commas
	Directly confirming models can read sequences of letters

	Model non-answers
	Significance
	Prompt Listings
	Summaries
	Full example listings
	BasicT
	Basic-COTT
	More-ExplT
	DFA-COTT
	Red-GreenT
	BasicS
	Basic-COTS
	Basic-CommasS
	More-ExplS
	DFA-COTS
	Red-GreenS

	Case Study: Sum Modulo 3 DFA
	Compute Usage

