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ABSTRACT

While LLMs have revolutionized the field of machine learning due to their high
performance on a strikingly wide range of problems, they are also known to hal-
lucinate false answers and underperform on less canonical versions of the same
tasks. There are several emerging theories of LLM performance, among them that
LLMs lack world modeling ability, that they have an undesirable bias towards an
autoregressive prior, and that they struggle on more novel problems. The existing
literature on LLM input novelty has focused on tasks of relatively high complex-
ity, studying perturbations of canonical but complex problems. In this paper, we
attempt to minimize complexity in order to isolate novelty as a factor in LLM
underperformance and investigate the power of in-context-learning. To this end,
we consider an extremely simple domain: next token prediction on simple lan-
guage tasks. The twist is that these language tasks are wholly unseen, as they
are randomly drawn from a large, parsimoniously defined set of languages arising
from simple grammar rules. This experimental setup allows us to evaluate ICL
independently of models’ parametric knowledge. We find that LLMs uniformly
underperform n-gram models on this task, both when used as next token predictors
and in chain-of-thought.

1 INTRODUCTION

One of the surprising capabilities of contemporary LLMs is their ability to perform in-context-
learning (ICL), in which they learn by demonstration from provided input/output examplars to pro-
duce an appropriate output for a new but similarly structured input. This capability allows LLMs
to generalize to tasks beyond interpolations of their training corpus, resulting in remarkably strong
generalization capabilities. It is challenging to isolate the effects of ICL, as, given the large datasets
LLMs are trained on, it is difficult to distinguish a model detecting novel patterns in examples from
it being guided towards knowledge it gained during training. Akyürek et al. (2022) demonstrate that,
in specially trained transformers, ICL is “true learning”. However, it remains unclear to what degree
the performance of foundation-model LLMs can be attributed to strong ICL capabilities.

The task best suited to isolating LLM ICL performance should have the following properties: (1) It
should be a language completion task within the expressive power of an LLM. LLMs are capable of
many tasks, but they are primarily models of language, and as such, language tasks are the most fair
evaluations. (2) It should not require sophisticated world modeling to solve. This helps us eliminate
a possible source of underperformance distinct from ICL capability. (3) It should be selected at
random in an unbiased manner to reduce the effect of bias from the training corpus.

To satisfy these properties, we propose the following general approach. First we define a large,
exhaustive, and parsimoniously-defined space of languages that represents all languages of a certain
difficulty level. Then, we sample random languages from this space. By sampling randomly, we can
guarantee no bias towards canonical languages that might share structure with common ones in the
training dataset. In this work, we use languages recognized by 3-state DFAs as these are the lowest
nontrivial difficulty level. 1 Finally, to ensure we are not measuring world modeling performance,

1This technique can be generalized to produce benchmarks of any difficulty level. For larger numbers of
states, we would be able to guarantee that the majority of the exponentially large number of corresponding
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we compare to n-GRAM baselines that are not capable of anything other than matching clusters of
tokens.

Figure 1: We sample randomly gen-
erated languages to test LLMs by
sampling deterministic finite automata
(DFAs). (a) The DFA shown here, mod-
eling the sum modulo 3 operation (with
abc representing 0, 1, and 2 respec-
tively), can be used to accept or reject
strings from a 3-character alphabet. Ac-
cepted strings belong to the grammar;
rejected strings do not. We evaluate
models on their ability to (b) act as a
transducer, recognizing strings that be-
long to the grammar, and (c) generate
new strings following the grammar.

Our results demonstrate that even for very simple lan-
guage induction tasks that don’t rely on world model-
ing or background knowledge, LLM ICL still underper-
forms simple language models when dealing with ran-
domly sampled and likely unfamiliar problem instances.
These results suggest that while LLMs can pick up some
learning signal from examples in prompts, this in-context
learning is not competitive with even very primitive forms
of learning, and suggests that LLMs do not posses the
ability to generalize to entirely novel language reasoning
tasks.

In summary, we make the following contributions:

1. We introduce a benchmark for LLM ICL language
reasoning evaluation, consisting of novel tasks.

2. We evaluate a suite of popular LLMs on instances of
this benchmark and demonstrate that LLMs under-
perform compared to simple language model base-
lines.

3. We analyze the differences in behavior between these
models, illustrating the influence of RLHF and chain-
of-thought prompting on language reasoning capac-
ity.

2 RELATED WORK

LLMs are known to fail in many cases, with some sug-
gesting that these failures are due to lack of a world model
(Valmeekam et al., 2022) or “embers” of autoregression
polluting non-autoregressive task performance (McCoy
et al., 2023). Another theory is that of task novelty; that
is, LLMs perform worse on tasks more dissimilar from
those seen during training.

2.1 LANGUAGE UNDERSTANDING AND LLMS

LLMs can be quite adept at generating programs in
general-purpose programming languages (Xu et al., 2022a). In contrast, adapting models to under-
stand domain-specific languages (Mernik et al., 2005) introduces unique problems such as navigat-
ing idiosyncratic syntax and semantics and leveraging sparse sample language data. To address these
challenges, researchers have considered how well general-purpose LLMs can use language reason-
ing skills to quickly understand rare or unseen DSLs with only a small set of exemplars (Joel et al.,
2024). While most work in this vein focuses on semantic parsing for downstream applications (Lin
et al., 2023), selecting exemplars (Zhao et al., 2021), and improving DSL recognition by leveraging
more common languages (Bogin et al., 2023), experiments show strong baseline performance for
LLM DSL recognition and parsing out-of-the-box (Wang et al., 2024). Some have suggested that
indicate that LLMs may possess emergent language reasoning abilities (Millière, 2024).

Related lines of work are compositional generalization (Xu et al., 2022b), which assesses models’
ability to organize known units into novel structures, and structural generalization (Yao & Koller,
2022), which assesses models’ ability to recognize new structures. Yao & Koller (2022) show that

languages do not lie in the training dataset by a pigeonhole argument; unfortunately this does not apply to the
relatively small set of 3-state DFAs (there are only 78786). However, they still represent an set of tasks of a
particular difficulty level not biased towards the canonical.
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smaller language models like BART and T5 can struggle on these tasks, but to our knowledge there
are not comprehensive experiments extending this line of work to LLMs.

2.2 REASONING WITH LLMS

Reasoning is one of many “emergent abilities” (Wei et al., 2022a) possibly possessed by
LLMs (Huang & Chang, 2022), although the nonlinear dependence of such emergent abilities on
model size is disputed (Schaeffer et al., 2024). The chain-of-thought prompting technique (Wei
et al., 2022b) has inspired a number of approaches to encourage the latent reasoning ability of mod-
els (Yao et al., 2023; Besta et al., 2024; Kojima et al., 2022), including neuro-symbolic methods (Hua
& Zhang, 2022; Weir et al., 2023; 2024). Building on this, other work considers how to optimize
exemplars used for in-context learning (Dong et al., 2022) and chain-of-thought prompting, known
as “rationale refinement” (Liu et al., 2021; Fu et al., 2022). Problem-decomposition is also shown
to be effective (Zhou et al., 2022; Khot et al., 2022).

2.3 LLM REASONING EVALUATION

LLM reasoning abilities are often tested on natural language benchmarks and commonly seen prob-
lems like arithmetic (Cobbe et al., 2021; Amini et al., 2019; Hendrycks et al., 2021), commonsense
reasoning (Bhargava & Ng, 2022), and other, sometimes generative, tasks (Lake & Baroni, 2018;
Pasupat & Liang, 2015; Lin et al., 2019) and task collections (Srivastava et al., 2022). LLMs have
been shown to lack sufficient reasoning capability across a range of tasks including multi-step plan-
ning and complex inference (Valmeekam et al., 2022). Fan et al. (2023) introduce an LLM rea-
soning benchmark on algorithmic problems through NP-hard complexity, and Hazra et al. (2024)
show that LLMs struggle to complete simple 3SAT problems. Patel et al. (2021) demonstrate that
much of LLM mathematical reasoning can be explained by shallow heuristics, Razeghi et al. (2022)
similarly find that term frequency in training data impacts models’ in-context learning ability, and
(McCoy et al., 2023) theorizes that “embers” of autoregression are polluting non-autoregressive task
performance.

The effect of novelty on performance has also been explored in prior work, generally via investigat-
ing perturbations of existing tasks, taking existing problems (that are often inherently quite complex,
and are only easy because they are well known, e.g., addition of numbers or logical reasoning over
natural language) and changing one small aspect of the problem (Wu et al., 2024; Saparov et al.,
2023). LLM ICL itself has been studied in prior work, with Kossen et al. (2023) demonstrating that
LLMs use labels provided in exemplars in naturalistic tasks and de Wynter (2025) using a mixture
of simple and complex canonical formal language tasks to demonstrate that LLM ICL outperforms
kNN baselines on these tasks but is brittle to minor changes in task performance. We also LLM ICL
but push both language simplicity and language unfamiliarity to their limits, by exploring simple
languages recognized by randomly sampled DFAs. This enables us to best isolate the power of ICL
in the language domain, where LLMs should perform best.

2.4 TRAINING TRANSFORMERS ON FORMAL LANGUAGES

A key assumption behind this work is that the tasks we are using to evaluate LLMs are solvable
by LLMs. Vafa et al. (2025) frame world modeling (a statistical model inferring the true underly-
ing causal graph behind the data being observed) as a latent DFA identification task, finding that
transformers trained on DFA traces (of massive DFAs representing board games and city maps) do
not reconstruct the underlying DFA. Other work also trains language models on formal languages
(Butoi et al., 2024; Bhattamishra et al., 2023; Valvoda et al., 2022) and probabilistic formal lan-
guages (Borenstein et al., 2024). Akyürek et al. (2024) find that transformers trained on 4-12 state
DFA transducer traces more effectively learn to in-context-learn regular languages than RNNs or
n-GRAM models. Therefore, in this work, where we evaluate much larger LLMs on much simpler
3-state DFAs, we can be confident that underperformance relative to n-GRAMs is not linked to inher-
ent transformer limitations and must be instead related somehow to specific properties of foundation
models.

3
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3 DFA REASONING TASKS

3.1 DFAS AND REGULAR LANGUAGES

The original Chomsky Hierarchy (Chomsky, 1959) separates language into four types (Figure 2).
We focus on the task of understanding Type 3 languages, the simplest form of language in the hierar-
chy, that are recognized by a Deterministic Finite Automata (DFAs) whose outputs are boolean ({0,
1}). Examples of languages recognized by DFAs include simple ones like binary strings
with an even number of ones, and even such examples as numbers in base 10
divisible by 7. Type 3 languages are also known as regular languages, which are recognized
by regular expressions.

One simple metric of the difficulty of a regular language is the number of states in the corresponding
DFA, i.e., the amount of working memory.2 2-state DFAs have the property that their set of states
is no larger than the output set {0, 1}, and, therefore, do not have any hidden state. We thus explore
3-state DFAs, as this is the simplest nontrivial case.

3.2 LANGUAGE REASONING TASKS

Figure 2: An illustration of Chomsky’s hierarchy of lan-
guages, ranging from Type 0 to Type 3, which are defined
by what formal models can recognize their grammars. In
this work, we focus on the simplest language type in the
hierarchy, regular grammars, which are recognized by de-
terministic finite automata (DFAs).

We define a language reasoning task
as a task corresponding to some la-
tent language L, where a set of posi-
tive/negative examples is provided to
a model, with the goal being either
classification of a new string in this
language, or completion of an exist-
ing string to place it in the language.

3.2.1 SEQUENCE
COMPLETION TASK

We first pose a sequence completion
task, in which models must complete
a sequence in a given DFA’s lan-
guage. This mirrors how foundation models are trained using masked language modeling, where
data is presented in this format, with several example sequences in a given language followed by a
distinct prefix that needs to be completed.

To generate test cases for this task given a DFA, we (1) sample 30 example sequences of length 10
that this DFA accepts, and then (2) sample a distinct prefix of length 5 that is not a prefix of any
of our 30 example sequences, with the property that there exists some length-≤ 5 completion of
this prefix that the DFA would accept. The task is to find a completion (not necessarily the same
completion found in sampling) of this prefix of between 1 and 5 characters such that the DFA accepts
the full sequence. For details on sampling, see Appendix A.2.

We evaluate models by (1) sampling a DFA, (2) sampling 30 problem instances at random (each
of which contains 30 example sequences and a distinct prefix), and then (3) computing a binary
prediction score (whether or not the predicted completion creates a valid string in the language) for
each instance separately, then computing a correctness metric as a fraction. We then average this
metric over several sampled DFAs to produce our accuracy score.

3.2.2 TRANSDUCER TASK

While the sequence completion task is the natural one that comes to mind as a basic language task,
it has a difficulty-gap problem. Specifically, many DFAs, including the one shown in Figure 1,
recognize languages that are particularly difficult to identify based on a set of examples, unless
you build some kind of world model.3 This is problematic as we would like to be able to assess

2There are other metrics of difficulty, but we choose number of states as it is highly parsimonious.
3The difficulty gap exists because a set of recognized sequences of length 10 gives no direct insight into

intermediate states between the first and tenth token. As such, to be able to utilize this information for languages
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the performance of language models at pattern recognition, independent of their world modeling
abilities. To assess pattern recognition, we explore the Transducer task.

In this task, an input sequence is annotated with an output at each token, the final output is masked,
and the masked output is predicted by a language model. E.g., given the language even number
of ’a’ tokens and the input abcabcaabbccaa, the annotated string (all that is provided
to the model) is a0b0c0a1b1c1a0a1b1b1c1c1a0a and the output to predict is 1. For each
problem instance, we provide 30 symbols, and for the first 29, the corresponding transducer output.

This task is significantly more transparent than the sequence completion task as the model has access
to intermediate outputs, an (imperfect) proxy for intermediate state.

3.3 BASELINES

To contextualize LLM accuracies, we provide several baselines with varying degrees of sophistica-
tion.

Sequence Completion Task For the Sequence Completion task, we have four baselines.

• RANDOMS baseline: produce a random string of length 5 characters. While this might
seem redundant as it should have a success rate of 50%, in practice our rejection sampling
approach (see Appendix A.2) leads to a slight bias towards DFAs with more accept states.
This baseline measures that bias.

• COMMON-SUFFIXS baseline: find the completion s of length between 1 and 5 that maxi-
mizes (# of occurrences as a suffix×|s|). This baseline does not take the distinct prefix into
account, and instead tries to find a universal completion that will always end in an accept
state for this language.

• n-GRAMS baseline: we take the last n−1 characters of the distinct prefix and search to see
if they appear in any of the example sequences at a position where the sequence following
is an appropriate length to be a completion (at least 1 but at most 5). We then take a
plurality vote among the completions and return this, breaking ties arbitrarily. If there are
no matches, we return the result of (n− 1)-GRAMS . Technically these cover more than n
characters, since the completion is often > 1 character long; for simplicity, however, we
keep the naming consistent with the Transducer baselines. Despite the similarity between
an n-GRAM and a DFA in terms of token-to-token transitions, n-GRAMS do not have access
to DFA hidden state and thus cannot solve arbitrary DFA language problems, regardless of
n.

• BRUTE-FORCES : take all possible DFAs with 3 states and 3 symbols. Filter for ones that
accept all the example sequences. Then try all remaining DFAs on all 35 possible 5-length
completions and return the completion that the maximal number of DFAs accept, breaking
ties arbitrarily.

Note that these baselines are entirely unparameterized and operate identically regardless of the un-
derlying DFA. This makes them direct comparisons to using LLMs in in-context-learning4. We do
not consider BRUTEFORCES to be a reasonable comparison due to its computational complexity,
and instead consider it an upper bound on performance on this particular task. We choose n-GRAM
baselines as they are are unambiguously representable by transformers (Svete & Cotterell, 2024), so
a transformer model should be able to match their performance.

Transducer Task We have similar baselines for the Transducer task.

like the one in Figure 1 where there are no “resets” (sequences of symbols that necessarily lead to a particular
state), a model must be capable of hollistically evaluating the entire sequence, probably requiring a world
model. Many other DFAs contain these resets, but do so in such a way that makes it possible to e.g., recognize
that all sequences that end in a are in the language, making the problem trivial.

4One thing to note is that LLMs are required to determine that they are performing next token prediction
on a particular string from a natural language description such as “You are a sequence completion model. . . ,”
while n-GRAM models are programmed to do so. However, we believe all LLMs we evaluate are sophisticated
enough to accomplish this without issue.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• NULLT baseline: for a given DFA, whichever of the following strategies produces a higher
accuracy: always predict 0 or always predict 1.

• n-GRAMT baseline: take the n−1 symbols ending at the end of the concatenated transducer
sequence (e.g., for n = 5 and the above example, this would be 1a0a). If that sequence
does not appear elsewhere in the sequence, return the result of the (n−1)-GRAMT baseline.
Otherwise, take the token that appears immediately after each occurrence. If there is a
majority, return that, otherwise return the last example.

• BRUTEFORCET : take all possible DFAs with 3 states and 3 symbols. Filter them for ones
that match the given transducer sequence. Take this set and predict the next token. Take a
majority vote among these, returning 1 by default if there is no majority.

4 EXPERIMENTS

We evaluated the open-weight models Llama 3-8B, Llama 3-70B (AI@Meta, 2023), Llama 3.1-8B
(AI@Meta, 2024b), Llama 3.1-8B-Instruct (AI@Meta, 2024c), Llama 3.1-70B (AI@Meta, 2024a),
Mistral Nemo Minitron 8B (NVIDIA, 2024), Mistral Nemo Base 2407 (Mistral AI, 2024b) and Mis-
tral Nemo Instruct 2407 (Mistral AI, 2024c), Gemma 7B (Google, 2024), Falcon 7B (Almazrouei
et al., 2023), Qwen 2.5-7B and Qwen 2.5-32B Team (2024).

We also evaluated the open-weight code models StarCoder2-15B (Lozhkov et al., 2024), Codestral-
22B-v0.1 (Mistral AI, 2024a), Deepseek Coder 33B Instruct (Deepseek, 2024), Qwen2.5-Coder-7B,
Qwen2.5-Coder-7B-Instruct, and Qwen2.5-Coder-32B-Instruct (Hui et al., 2024).

Finally, we evaluated the proprietary models Claude 3.5 Sonnet (Anthropic, 2024), GPT-3.5-turbo-
instruct, GPT-3.5 Chat (turbo-0125) (OpenAI, 2024a), GPT-4o-mini (2024-07-18), GPT 4o (2024-
05-13) (OpenAI, 2024b), o3-mini (2025-01-31) (OpenAI, 2025b), and gpt-5 (2025-08-07) (OpenAI,
2025a).

For both tasks, we consider two main prompting formats. BASIC provides no context, presenting the
problem as a generic sequence generation or next-token prediction task, where output is provided
immediately following the input, with no space to think. BASIC-COT provides the same prompt but
asks the model to think step by step and provide an answer. These prompts test ICL, presenting the
task in an unstructured manner and requiring the model to learn the problem structure via induction.
Our main results are the maximum over these two prompting strategies.

We also provide three “control” prompting formats where information on the problem structure is
provided. MORE-EXPL explains that the strings are generated from a simple grammar, but is other-
wise identical to BASIC. This remains a sequence generation/next token prediction task. DFA-COT
provides the full structure of the latent language, stating that it is a 3-state DFA, and additionally
invokes chain-of-thought reasoning to help the model reason over the task. RED-GREEN casts the
tasks as independent word problems that describe the underlying grammar structure without relying
on world knowledge about DFAs and regular languages. It describes an N-state DFA as a house
with N rooms, each of which has 3 portals that deterministically go to other rooms (or back to the
same room), where the walls of each room are red or green (mirroring transducer output symbols 0
and 1). Similarly to DFA-COT, the model is given space to show work before providing a tagged
answer.

We produce versions of each of these prompts for each task, denoting these with a subscript S for
sequence completion prompts and T for transducer prompts. Full listings of these prompts can be
found in Appendix H. While no finite set of prompts will be fully sufficient to capture all possible
model behavior, we believe maximizing over both BASIC prompts allows both models that perform
best at next-token-prediction and those that perform better in chain-of-thought reasoning to do their
best.

For each open weight model, we used a local VLLM (Kwon et al., 2023) server for evaluation and
always evaluated on 1000 distinct DFAs. For GPT-4o and Claude, o3-mini, and gpt-5, we evaluated
on 30 DFAs due to computation costs. (Due to greater interest in o3-mini’s performance on RED-
GREENT , we used 100 to get a more precise estimate). For gpt-3.5 and gpt-4o-mini, we evaluated
on 100 DFAs. All models were evaluated with temperature 0, except reasoning models o3-mini and
gpt-5, which do not support a custom temperature.
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Model Size IT? Code? Sequence Completion SR Transducer TR
Baselines

BRUTEFORCE – 100.0 (99.9–100.0) 1 96.4 (96.2–96.7) 1
6-GRAM – 91.7 (91.0–92.4) 2 93.5 (93.1–93.9) 2
5-GRAM – 91.2 (90.4–91.9) 3 93.4 (93.0–93.7) 3
4-GRAM – 89.6 (88.7–90.4) 4 91.1 (90.6–91.6) 4
3-GRAM – 87.0 (86.1–87.8) 5 87.0 (86.4–87.6) 19
2-GRAM – 83.3 (82.2–84.2) 7 74.5 (73.6–75.3) 30
COMMON-SUFFIX – 84.7 (83.6–85.6) 6 – –
RANDOMS /NULLT – 53.3 (51.7–54.7) 32 68.9 (68.2–69.6) 31

Open Weight Completion
llama3-8B 8.0B 73.8 (72.4–75.1) 22 87.5 (86.9–88.0) 18
llama3-70B 70.6B 71.4 (70.0–72.7) 29 87.7 (87.2–88.3) 15
llama3.1-8B-Instruct 8.0B ✓ 75.3 (74.0–76.6) 19 85.9 (85.3–86.5) 22
llama3.1-8B 8.0B ✓ 75.2 (73.8–76.3) 20 88.0 (87.5–88.6) 10
llama3.1-70B 70.0B ✓ 71.8 (70.4–73.1) 28 87.7 (87.2–88.2) 17
qwen-2.5-7B 7.6B 73.5 (72.1–74.8) 24 88.7 (88.2–89.2) 5
qwen-2.5-32B 32.5B 76.8 (75.5–78.0) 16 88.3 (87.8–88.8) 7
mistral-nemo-minitron-8B 8.4B 78.7 (77.5–79.8) 13 88.6 (88.0–89.1) 6
mistral-nemo-base-12B 12.2B 75.5 (74.3–76.6) 18 87.9 (87.4–88.4) 13
mistral-nemo-instruct-12B 12.2B ✓ 72.2 (70.9–73.4) 27 88.0 (87.5–88.5) 11
gemma-7b 8.5B 72.6 (71.3–73.7) 25 82.1 (81.4–82.7) 27
falcon-7b 7.2B 69.0 (67.6–70.2) 30 84.9 (84.3–85.5) 24

Open Weight Code
starcoder2-15b 16.0B ✓ 73.5 (72.0–74.7) 23 87.7 (85.8–89.5) 16
codestral-22B 22.2B ✓ 78.0 (76.8–79.1) 14 86.6 (86.0–87.1) 21
deepseek-coder-33b-instruct 33.3B ✓ ✓ 76.7 (75.3–77.8) 17 85.6 (85.0–86.2) 23
qwen-2.5-coder-7B 7.6B ✓ 79.5 (78.4–80.5) 10 88.2 (87.6–88.7) 9
qwen-2.5-coder-instruct-7B 7.6B ✓ ✓ 79.5 (78.3–80.5) 11 88.3 (87.8–88.8) 8
qwen-2.5-coder-instruct-32B 32.8B ✓ ✓ 79.2 (78.0–80.3) 12 87.9 (87.4–88.4) 12

Proprietary
gpt-3.5-instruct ? ✓ 67.3 (63.1–71.5) 31 87.8 (85.9–89.6) 14
gpt-3.5-chat ? ✓ N/A – 66.8 (63.4–69.8) 32
gpt-4o-mini ? ✓ 72.4 (68.1–76.3) 26 79.8 (77.3–82.2) 28
gpt-4o ? ✓ 74.8 (69.3–80.4) 21 83.7 (80.1–86.9) 25
claude-3.5 ? ✓ 82.8 (77.5–87.5) 8 86.9 (83.3–90.0) 20
o3-mini ? ✓ 81.1 (76.0–85.8) 9 74.7 (70.7–78.8) 29
gpt-5 ? ✓ 77.9 (71.6–84.0) 15 83.6 (79.9–87.1) 26

Table 1: Results for our experiments on both the Transducer and Sequence completion tasks. Each
cell contains the mean performance across DFAs for the best-performing BASIC prompt (see Table 2
for details), with 95% confidence intervals of the mean in parentheses. “N/A” means the model
returned an invalid result ≥ 25% of the time. (IT = Instruction-Tuned, TR/SR = rank on each task.)

Model BASIC BASIC-COT MORE-EXPL DFA-COT RED-GREEN
Sequence Completion
gpt-4o-mini 72.4 (68.1–76.3) 60.0 (55.8–64.4) 70.5 (66.4–74.6) 58.0 (53.4–62.4) 59.1 (54.9–63.2)
gpt-4o 72.1 (65.9–78.2) 74.8 (69.3–80.4) N/A 67.4 (60.8–73.8) 74.4 (69.9–78.6)
claude-3.5 N/A 82.8 (77.5–87.5) N/A 84.0 (79.3–88.4) 80.0 (74.9–85.2)
o3-mini N/A 81.1 (76.0–85.8) N/A 58.2 (49.6–66.8) 69.8 (64.4–75.0)
gpt-5 77.9 (71.6–84.0) 75.1 (68.6–81.7) 68.9 (61.0–76.7) 66.0 (58.9–72.8) 87.5 (83.1–91.5)
Transducer
gpt-4o-mini 79.8 (77.3–82.2) 66.5 (64.3–68.7) 76.7 (74.2–79.3) 65.2 (63.1–67.4) 74.5 (72.0–77.0)
gpt-4o 83.7 (80.1–86.9) 67.8 (62.4–73.2) 82.6 (79.1–85.9) 67.8 (63.1–72.3) 82.6 (78.8–86.3)
claude-3.5 86.9 (83.3–90.0) 74.2 (70.0–78.3) 87.1 (83.9–90.2) 76.4 (72.9–79.9) 82.9 (78.9–86.9)
o3-mini 72.8 (68.4–77.3) 74.7 (70.7–78.8) 74.7 (70.3–79.2) 86.1 (83.9–88.4) 92.4 (91.3–93.5)
gpt-5 83.6 (79.1–87.7) 83.6 (79.9–87.1) 85.2 (81.0–88.8) 96.7 (95.3–98.0) 96.6 (95.4–97.8)

Table 2: Results for models where we investigated multiple prompts (we only used BASIC on other
models). We bold the best prompt for each model.
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5 RESULTS

Main results for all tasks are presented in Table 1. We ignore non-answers, i.e., if for a given DFA
a model gets 25 correct answers, 1 incorrect answer, and responds with an unparseable result on 4,
this counts as a 25/26, not a 25/29. We then aggregate across DFAs. All comparisons involving
4-GRAM, 5-GRAM, and 6-GRAM to all other models are statistically significant (see Appendix G
for details).

5.1 SEQUENCE COMPLETION

As seen in Table 1, this task is nearly always fully determined, that is, it can be solved with ∼100%
accuracy in theory, as demonstrated by BRUTEFORCES results. Of course, BRUTEFORCES is ex-
tremely computationally expensive, and, as such, we primarily focus on the n-GRAMS heuristics as
our baselines. Still, we find that n-GRAMS heuristics tend to outperform LLMs.

As seen in Table 2, we find that giving the model the opportunity to logically reason about the
prompt via chain-of-thought and present a conclusion has inconsistent results. Specifically, we find
that for gpt-4o-mini, immediately predicting a next token seems to be better, while for gpt-4o
and gpt-5 there is no large effect. claude-3.5 and o3-mini are unable to answer the BA-
SICS prompt at all, but outperform other proprietary models when using BASIC-COTS . In this task,
revealing the problem structure appears to not have a massive effect on performance, with gpt-5
being the only model to incorporate this information into a statistically significantly improved per-
formance, and even then only in the Red-GreenS word problem prompt (still underperforming
4-GRAMS).

Additionally, we find that in this task, code-specific open-weight models tend to perform better than
sequence completion models, suggesting some generalized ability to produce strings from novel
languages demonstrated by example. Overall, the relative performances of LLMs and prompts gen-
erally comport to heuristics on which models and prompting strategies should work best (with the
notable exception of gpt-5). Nonetheless, LLMs underperform simple n-GRAM heuristics.

One potential problem with using this task for cross-model comparisons is the relevance of tokeniza-
tion. We found that forcing uniform tokenization by using commas in the prompt uniformly reduced
accuracy, see Appendix E.1 for details; we confirmed that the LLMs we investigate could reason
about strings without commas, see Appendix E.2 for details.

5.2 TRANSDUCER

Unlike sequence completion, this task is not fully determined, with BRUTEFORCET getting 96.4%
accuracy. Comparisons are still valid as all models see the same fraction of unsolvable instances.

We find that in general all LLMs underperform a 4-GRAMT model, demonstrating that they are un-
able to adequately solve this task. The relative performance of the models also does not correspond
to their overall scale, with open weight LLama-3 and Mistral Nemo 8B parameter models outper-
forming much larger proprietary models. Even within a model class we find no clear pattern: all
other GPT models are outperformed by GPT 3.5, Llama 3-70B has similar performance to Llama
3-8B, and the Mistral Nemo 12B models perform similarly to Nemo Minitron 8B. Coding models
also demonstrate no advantage on this task.

The generally lower performance of chat-oriented models suggests this task is better suited to non-
chat models. More specifically, as seen in Table 2, our BASIC-COTT prompt results in underperfor-
mance by all non-reasoning models, suggesting that models are generally most able to solve this task
when it is a simple next-token-prediction task. Providing the problem structure also does not help
non-reasoning models improve substantially, but does allow o3-mini to perform well, and gpt-5
to completely solve the task (achieving parity with BRUTEFORCE), demonstrating that reasoning
models’ underperformance at the original ICL language reasoning task is not due to the underlying
difficulty of the task itself.

We conclude that LLM ICL is unable to perform well at language inference. This failure cannot be
attributed to a lack of world modeling, as n-GRAMT models do not construct world models. Instead,
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it seems the LLMs are unable to detect patterns when those patterns are drawn from an unfamiliar
and unknown source, even a relatively simple one.

5.3 COMPARISON OF BENCHMARKS

Figure 3: Transducer and sequence completion results plotted against each other. Points are the
mean over several DFAs, with 95% confidence intervals. Points are colored by model type, with the
best and worst model by each metric in each category labeled, as well as all baseline & proprietary
models.

Figure 3 displays the relationship between model performance on the Sequence Completion and
Transducer benchmarks. While at a high level, there is a positive correlation between the two, there
are a few notable differences. For one, the Code models perform notably better than other open
weight models on Sequence Completion, but not on Transducer. Additionally, on Transducer, a
ceiling on performance is observed, where LLMs cluster together between 3-GRAMT and 4-GRAMT

performance; this clustering does not appear on the Sequence Completion benchmark.

6 CONCLUSION

Our findings highlight significant weaknesses in large language models’ ability to in-context-learn
entirely novel language reasoning problems, even simple ones solely involving next-token prediction
on basic languages recognized by 3-state DFAs. These results, combined with that of previous
work demonstrating that large language models can quite accurately perform a variety of language
tasks, suggests that LLMs solve language problems via a mechanism distinct from general language
reasoning ability. Our use of n-gram baselines and next-token prediction tasks allows us to exclude
the possibility that the issue is primarily related to LLMs’ lack of world modeling or any inherent
limitations of next-token prediction models. We believe our results suggest that LLMs have learned
individual models of particular languages, but not a general theory of language.

Interestingly, in our transducer experiments, directly predicting the next token rather than explicitly
reasoning through the problem works better, except for reasoning models where they perform simi-
larly. While our conclusions are limited by the finite nature of our prompt set, this suggests that they
do, in fact, possess some latent understanding of language, but this understanding is inferior to basic
n-gram models for n > 3.

One potential goal for foundation models is to replace all machine learning with ICL. Our results
suggest that current models are not progressing towards this goal.

9
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IMPACT STATEMENT

Aside from the social consequences of this work as related to advancing the field of Machine Learn-
ing in general, this work has the goal of advancing the field of benchmarks in Machine Learning.
While we view this as a positive objective, as it ensures that models are being evaluated fairly, it
might have negative consequences insofar as benchmarking techniques might be best left unpub-
lished to prevent deliberate or unintentional overfitting.
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A DETAILS ON SAMPLING

A.1 SAMPLING OF DFAS

We use rejection sampling to sample DFAs. Specifically, we uniformly sample a start state, then for
each (source state, symbol) pair, we sample a post-transition state. We also randomly assign each
state to be accept or reject with probability 50%. We then reject any DFA that has all accept or all
reject states (so only DFAs with 1 or 2 accept states are allowed), or for which certain states are
unreachable from the start state.

A.2 SAMPLING OF SEQUENCE COMPLETION TASKS

To sample a sequence completion task, we first sample a DFA as described in Appendix A.1.

To sample a task instance, we sample example sequences and distinct prefix. Each example sequence
is sampled uniformly from the space of {a, b, c}10 and then rejected if the DFA does not accept the
sequence. Our distinct prefix and completion are sampled uniformly from {a, b, c}5 × {a, b, c}5,
and are rejected if the DFA does not accept the concatenation of the two, or if the prefix is the prefix
of any of the previous sequences. We then discard the completion. If we, at any point, reject 50
sequences when attempting to sample a sequence or prefix, we return an error.

We run a “pilot” sampling for a DFA to ensure that it is valid, in which we sample an instance as
described above. If there is an error in sampling this pilot instance, we reject the DFA. Otherwise,
we proceed to sample our task instances. At this stage, if there is an error in sampling, we reject the
instance rather than the DFA. This pilot sample rejection procedure leads to a slight bias towards
2-accept state DFAs over 1-accept state DFAs, as measured by the RANDOMS baseline.

A.3 SAMPLING OF TRANSDUCER TASKS

We sample a DFA as described in Appendix A.1, and then sample random sequences (30 in our
experiments) and generate transducer traces. If every transducer trace ends with a 0 or every trace
ends with a 1, we reject the DFA and resample.
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B TRANSDUCER RESULTS BY DIFFICULTY CLASS

Figure 4: Transducer results by difficulty class. We classify each DFA based on which of the
baselines first achieves a score of 28/30 on the given instances. 6-GRAM is excluded as it has very
similar performance to 5-GRAM. Each model’s best prompt results are plotted, with 95% confidence
intervals, for all models with at least 100 DFAs; those with 10 or 30 had error bars too large to make
this analysis useful.

Figure 4 displays results by difficulty level, as judged by the smallest n-GRAM model that can solve
a particular task. All models behave roughly monotonically, performing more poorly as difficulty
increases. Additionally, we find that the best models continue to perform similarly to 4-GRAM for
tasks that 4-GRAM does not perfectly solve.
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C INCREASED NUMBER OF EXAMPLES

Figure 5: Accuracy by number of examples, as we vary the number from 30 to 600 (note the log
scale). ∞-GRAM is a model that finds the longest sequence that matches the ending of the sequence
and copies the following token.

We varied the number of examples parameter from 30 to 600, investigating specifically mistral-
nemo-minitron-8B as it is a better performing model on the transducer task. We find that for the
Sequence Completion task, the n-GRAM models do not generally improve as the number of exam-
ples increases, while the LLM does; however, the LLM remains below 4-GRAM performance at all
points. In the Transducer experiment, both the n-GRAM models and the LLM improve, with the
LLM crossing 4-GRAM and 5-Gram performance and eventually roughly matching 6-GRAM per-
formance. However, there is now an increased gap between 6-GRAM and 7-GRAM that did not exist
at 30 (we did not include 7-GRAM or above in the main table for this reason). Overall, it is possible
that the larger number of instances of the “correct n-GRAM” appearing (i.e., the suffix of the prompt
followed by the correct answer) causes the model to be better at producing predictions. As the LLM
at no point outperforms the best n-GRAM, we do not believe that this alters our overall conclusions.
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D NONZERO TEMPERATURE

Model Prompt Zero Temp Nonzero Temp Difference
Sequence Completion
mistral-nemo-minitron-8B BASIC 78.70% (77.49% – 79.79%) 77.67% (76.51% – 78.76%) -1.04% (-1.49% – -0.63%)
claude-3.5 COT 84.00% (79.33% – 88.44%) 84.22% (79.56% – 89.00%) 0.22% (-2.11% – 2.33%)
claude-3.5 RED-GREEN 80.00% (74.89% – 85.22%) 80.78% (75.00% – 86.11%) 0.78% (-2.11% – 3.44%)
Transducer
mistral-nemo-minitron-8B BASIC 88.56% (88.05% – 89.08%) 88.17% (87.64% – 88.68%) -0.39% (-0.58% – -0.22%)
claude-3.5 BASIC 86.89% (83.33% – 90.00%) 87.00% (83.33% – 90.11%) 0.11% (-0.67% – 0.89%)
claude-3.5 MORE-EXPL 87.11% (83.88% – 90.22%) 86.89% (83.22% – 90.11%) -0.22% (-1.11% – 0.67%)
claude-3.5 COT 76.44% (72.89% – 79.89%) 78.11% (74.66% – 81.33%) 1.67% (-0.56% – 3.78%)
claude-3.5 RED-GREEN 82.89% (78.89% – 86.89%) 82.78% (78.89% – 86.33%) -0.11% (-2.00% – 1.78%)

Table 3: Results varying temperature. Second column is a temperature of 0.1, third column is
differences. In all columns, we annotate a 95% confidence interval, using paired differences for the
third column.

In order to determine whether a small nonzero temperature might lead to better results, we inves-
tigated using a temperature of 0.1 for mistral-nemo-minitron-8B and claude-3.5 (these two chosen
for the reasons described in Section I, notably o3-mini/gpt-5 already are using nonzero tempera-
tures). We find that a temperature of 0.1 does not significantly change performance, resulting in no
significant change for any model/task/prompt combination. The largest improvement we observe
is claude-3.5 on COT on the Transducer task, which gains 1.7%, from 76.4% to 78.1% (still not
enough to make it the best prompt for claude-3.5).
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E TOKENIZATION

Model BASICS BASIC-COMMASS
qwen-2.5-coder-7B 79.5 (78.4–80.5) 60.7 (59.3–62.1)

qwen-2.5-coder-instruct-7B 79.5 (78.3–80.5) 55.5 (54.0–56.9)
qwen-2.5-coder-instruct-32B 79.2 (78.0–80.3) 55.2 (53.7–56.7)

mistral-nemo-minitron-8B 78.7 (77.5–79.8) 59.3 (57.9–60.8)
codestral-22B 78.0 (76.8–79.1) 59.0 (57.5–60.3)
qwen-2.5-32B 76.8 (75.5–78.0) 60.3 (58.9–61.6)

deepseek-coder-33b-instruct 76.7 (75.3–77.8) 54.9 (53.0–56.8)
mistral-nemo-base-12B 75.5 (74.3–76.6) 60.6 (59.1–62.2)

llama3.1-8B-Instruct 75.3 (74.0–76.6) 56.3 (54.4–58.1)
llama3.1-8B 75.2 (73.8–76.3) 61.1 (59.8–62.5)

llama3-8B 73.8 (72.4–75.1) 61.5 (60.2–62.9)
starcoder2-15b 73.5 (72.0–74.7) 58.2 (56.7–59.8)

qwen-2.5-7B 73.5 (72.1–74.8) 57.0 (55.5–58.5)
gemma-7b 72.6 (71.3–73.7) 54.0 (51.9–56.0)

gpt-4o-mini 72.4 (68.1–76.3) 64.1 (59.5–68.3)
mistral-nemo-instruct-12B 72.2 (70.9–73.4) 58.2 (56.4–59.8)

gpt-4o 72.1 (65.9–78.2) 66.8 (58.5–74.8)
llama3.1-70B 71.8 (70.4–73.1) 57.7 (56.1–59.2)

llama3-70B 71.4 (70.0–72.7) 56.4 (54.7–58.0)
falcon-7b 69.0 (67.6–70.2) 56.1 (54.5–57.6)

gpt-3.5-instruct 67.3 (63.1–71.5) 52.3 (46.5–57.9)
o3-mini N/A N/A

claude-3.5 N/A N/A
gpt-3.5-chat N/A N/A

Table 4: Results on Sequence Completion Task. We compare BASICS to the comma-variant BASIC-
COMMASS .

E.1 SEQUENCE COMPLETION TASK PROMPT WITH COMMAS

To avoid tokenization differences with models, we also investigate a version of our Sequence Com-
pletion prompt that uses spaces and commas between the elements of the sequence. Unfortunately,
results using this prompt were uniformly worse than results on the prompt without spaces and com-
mas. Table 4 shows the results on a variety of models. All are worse with commas than without.

E.2 DIRECTLY CONFIRMING MODELS CAN READ SEQUENCES OF LETTERS

To fully exclude the possibility that models are unable to read sequences of letters, we perform the
following experiment: we take the regular expression ab(abc)+ and directly provide it to the
model, then ask the model to test it on a string (one string provided per query), using the prompt I
will give you a string. Tell me whether it matches the following
regular expression: ’âb(abc)+$’ (without quotes). Just answer
YES or NO. on one line, followed by a string on the next. We sample 100 random strings of
length 2-17, via the following procedure (1) sample a random valid string uniformly (2) with 50%
probability, randomly mutate one of the elements of the string to a different character. All strings
are thus either correct or near-correct. We also add Answer (YES or NO): on a third line for
non-chat models to encourage them to provide a response rather than another string.

Results for this are presented in Table 5. While not all models perform well at this task, perfor-
mances follow roughly what one might expect from standard benchmarks (rather than the Sequence
Completion results in the paper). Frontier proprietary models perform extremely well, larger open
weight models tend to perform well, and smaller open weight models are more hit-and-miss (some
performing well, some poorly).
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Model Accuracy Non-response

llama3-8B 66%
llama3-70B 80% 26%
llama3.1-8B-Instruct 83%
llama3.1-8B 89%
llama3.1-70B 86% 36%
qwen-2.5-7B 62%
qwen-2.5-32B 100%
mistral-nemo-instruct-12B 99%
gemma-7b 67% 15%
starcoder2-15b 62%
codestral-22B 95%
qwen-2.5-coder-7B 100%
qwen-2.5-coder-instruct-7B 56%
qwen-2.5-coder-instruct-32B 96%
gpt-3.5-instruct 67%
gpt-3.5-chat 82%
gpt-4o-mini 100%
gpt-4o 100%
claude-3.5 100%
o3-mini 100%
gpt-5 100%

Table 5: Results on Regex task. As in the rest of this paper, accuracies are computed ignoring non-
response. Models mistral-nemo-minitron-8B, mistral-nemo-base-12B, falcon-7b, deepseek-coder-
33b-instruct have non-response rates over 98%.

The proprietary models newer than the GPT-3 series get 100% accuracy on this task, while perfor-
mance is lower for the open weight models. There is no obvious relationship between models that
perform well at this particular task and models that perform well at Sequence Completion, indicat-
ing that to whatever degree models are performing poorly at this test task, it is not because they are
unable to process the string. Notably, o3-mini, gpt-4o, and gpt-4o-mini all perform fairly poorly at
the Sequence Completion task, placing below median, but all achieve 100% on this task.

Open weight models are more mixed, with larger ones tending to do nearly as well as newer propri-
etary models (notable exception being llama3-70B), but smaller ones occasionally performing well
and occasionally performing poorly.
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F MODEL NON-ANSWERS

Table 6 depicts the percentage of model non-answers by model and prompt. In general, this distri-
bution is highly bimodal, with values always being either below 9% or above 97%.

The only prompt-vs-prompt orderings that are changed by scoring non-answers as 0 are that, on
Sequence Completion, BASICS rises above RED-GREENS for gpt-4o, making it the best prompt;
and that on Transducer, RED-GREENT for gpt-4o-mini rises above MORE-EXPLT (though still
behind BASICT . The qualitative conclusions about next token prediction vs chain of thought results
remain the same.

The only change to relative model ordering is that on Sequence Completion, gpt-4o drops 8 ranks,
from 17th place to 25nd place, being passed by several open weight models, gpt-4o-mini, and o3-
mini. No change occurs on the transducer results. Qualiative conclusions about model ordering
remain the same.
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Model BASIC BASIC-COT MORE-EXPL DFA-COT RED-GREEN

Sequence Completion
llama3-8B 0.0 (0.0–0.0) – – – –
llama3-70B 0.0 (0.0–0.0) – – – –
llama3.1-8B-Instruct 0.0 (0.0–0.0) – – – –
llama3.1-8B 0.0 (0.0–0.0) – – – –
llama3.1-70B 0.0 (0.0–0.0) – – – –
mistral-nemo-minitron-8B 0.0 (0.0–0.0) – – – –
mistral-nemo-base-12B 0.0 (0.0–0.0) – – – –
mistral-nemo-instruct-12B 0.0 (0.0–0.0) – – – –
gemma-7b 0.0 (0.0–0.0) – – – –
falcon-7b 0.0 (0.0–0.0) – – – –
starcoder2-15b 0.0 (0.0–0.0) – – – –
codestral-22B 0.0 (0.0–0.0) – – – –
deepseek-coder-33b-instruct 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-32B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-32B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-7B 0.0 (0.0–0.0) – – – –
gpt-3.5-instruct 2.5 (1.9–3.0) – – – –
gpt-3.5-chat 99.9 (99.7–100.0) – – – –
gpt-4o-mini 0.0 (0.0–0.0) 0.3 (0.2–0.5) 0.0 (0.0–0.0) 1.0 (0.6–1.4) 0.2 (0.1–0.4)
gpt-4o 4.4 (3.3–5.7) 1.9 (1.1–2.8) 100.0 (100.0–100.0) 5.0 (3.8–6.2) 8.4 (6.6–10.2)
claude-3.5 99.7 (99.2–100.0) 0.1 (0.0–0.3) 97.8 (96.9–98.6) 0.0 (0.0–0.0) 0.0 (0.0–0.0)
o3-mini 80.2 (78.0–82.3) 3.8 (2.6–5.2) 91.6 (89.9–93.2) 5.7 (4.1–7.2) 0.4 (0.0–1.0)
gpt-5 0.0 (0.0–0.0) 0.0 (0.0–0.0) 8.2 (4.7–12.1) 5.2 (3.1–7.4) 0.4 (0.1–0.9)
Transducer
llama3-8B 0.0 (0.0–0.0) – – – –
llama3-70B 0.0 (0.0–0.0) – – – –
llama3.1-8B-Instruct 0.0 (0.0–0.0) – – – –
llama3.1-70B 0.0 (0.0–0.0) – – – –
llama3.1-8B 0.0 (0.0–0.0) – – – –
starcoder2-15b 0.0 (0.0–0.0) – – – –
codestral-22B 0.0 (0.0–0.0) – – – –
deepseek-coder-33b-instruct 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-7B 0.0 (0.0–0.0) – – – –
qwen-2.5-32B 0.0 (0.0–0.0) – – – –
qwen-2.5-coder-instruct-32B 0.0 (0.0–0.0) – – – –
mistral-nemo-minitron-8B 0.0 (0.0–0.0) – – – –
mistral-nemo-base-12B 0.0 (0.0–0.0) – – – –
mistral-nemo-instruct-12B 0.0 (0.0–0.0) – – – –
gemma-7b 0.0 (0.0–0.0) – – – –
falcon-7b 0.0 (0.0–0.0) – – – –
gpt-3.5-instruct 0.0 (0.0–0.1) – – – –
gpt-3.5-chat 0.1 (0.0–0.3) – – – –
gpt-4o-mini 1.8 (1.3–2.3) 0.0 (0.0–0.0) 5.8 (4.8–6.9) 0.0 (0.0–0.0) 0.7 (0.4–1.0)
gpt-4o 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)
claude-3.5 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)
o3-mini 0.1 (0.0–0.3) 0.0 (0.0–0.0) 0.4 (0.1–0.9) 0.0 (0.0–0.0) 0.0 (0.0–0.1)
gpt-5 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.7 (0.1–1.4)

Table 6: Model non-answers, as a percentage of all prompt responses. A non-response is not in-
cluded in accuracy computations for Table 1 or Table 2, but whenever it rises above 25%, N/A is
placed in those tables.
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G SIGNIFICANCE

Figure 6: Significance of comparisons between rows of Table 1. Results in blue and orange are
significant, results in pink are not.

Figure 6 shows which comparisons between rows of Table 1 are significant. Significance computa-
tions are performed by running a 2-tailed bootstrap significance test on paired (by DFAs) differences.
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H PROMPT LISTINGS

H.1 SUMMARIES

Table 7 contains summaries of each prompt.

H.2 FULL EXAMPLE LISTINGS
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Prompt T S

BASIC

You are a sequence completion model. Output the
next element of the sequence, and nothing
else.

<TRANSDUCER PREFIX>,

The following strings come from an alien language
that follows a simple grammar. Infer the
alien grammar using the example strings.
Then, add a suffix to the final string using
between 1 and 5 characters such that the

full string follows the grammar. Output only
the necessary suffix to complete the final

string, and nothing else.

<EXAMPLES>
<PREFIX>

BASIC-COT

You are a sequence completion model. Reason step
by step, and then output the next output
integer using <answer> tags, like <answer
>0</answer>.

Input sequence: <TRANSDUCER PREFIX>
Output sequence:

The following strings come from an alien language
that follows a simple grammar. Infer the
alien grammar using the example strings.
Then, add a suffix to the final string using
between 1 and 5 characters such that the

full string follows the grammar. Reason step
by step, and then output the next necessary
suffix for this final string, <answer> tags

, like <answer>ab</answer>.

<EXAMPLES>
<PREFIX>

MORE-EXPL

You are a sequence completion model. The following
sequence is generated from an unknown but
consistent grammar. Identify the patterns
within the sequence to determine its next
element. Output the next element of the
sequence, and nothing else.

<TRANSDUCER PREFIX>,

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the

underlying DFA model using these strings and
complete the final string, using up to n

characters, such that it is also a valid
string. Output only the necessary suffix to
complete the final string, and nothing else.

<EXAMPLES>
<PREFIX>

DFA-COT

A DFA is a finite-state machine that accepts or
rejects a given string of symbols, by
running through a n-state sequence uniquely
determined by the string.

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect the inputs and outputs into
an input sequence and an output sequence.
Infer the underlying DFA model to predict
the next integer in the output sequence.
Reason step by step, and then output the
next output integer using <answer> tags,
like <answer>0</answer>.

Input sequence: <TRANSDUCER PREFIX>
Output sequence:

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the

underlying DFA model using these strings and
complete the final string, using up to n

characters, such that it is also a valid
string. Reason step by step, and then output
the next necessary suffix for this final

string, <answer> tags, like <answer>ab</
answer>.

Given these valid strings:
<EXAMPLES>

Complete the following string:
<PREFIX>

RED-GREEN

‘‘‘
You are in a house of rooms and portals. There are

3 rooms in the house, and each room has 3
unique portals labeled A, B, and C. Each
portal teleports you to one room of the
house (and sometimes the destination is the
room the portal is in). Every portal in a
given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *three* rooms in total, so you
cannot determine which room you are in by
color alone, and two rooms of the same color
may have portals that behave differently.
As you move through the house, at each time
step you write down what portal you take and
the color of the room you arrive (or stay)
in. Based on your notes, predict what color
room you will end up in after the last step.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "<TRANSDUCER
PREFIX>" and end up in a red room.

‘‘‘

You are outside a house of rooms and portals.
There are 3 rooms in the house, and each
room has 3 unique portals labeled a, b, and
c. Each portal teleports you to one room of
the house (and sometimes the destination is
the room the portal is in). Every portal in
a given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *3* rooms in total, so you cannot
determine which room you are in by color
alone, and two rooms of the same color may
have portals that behave differently. You’ve
been into this house many times before.

Each time, as you move through the house,
you write down what series of portals you
take and the color of the room you end up in
. You have a collection of paths you’ve
taken where you’ve ended up in a room with
green walls, listed below. Given the final
incomplete path at the bottom, write a
series of up to 5 remaining steps that will
cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

Given these paths that end in a room with green
walls:

<EXAMPLES>

Complete the following path:
<PREFIX>

Table 7: Shortened summary of each prompt
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H.2.1 BASICT

You are a sequence completion model. Output the next element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

H.2.2 BASIC-COTT

You are a sequence completion model. Reason step by step, and then output the next output integer using <
answer> tags, like <answer>0</answer>.

Input sequence: a, b, a, b, b, c, a, c, a, a, a, c, b, c, c, a, b, b, b, b, a, b, a, a, b, c, a, c, a, b
Output sequence: 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

H.2.3 MORE-EXPLT

You are a sequence completion model. The following sequence is generated from an unknown but consistent
grammar. Identify the patterns within the sequence to determine its next element. Output the next
element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

H.2.4 DFA-COTT

A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running through a n-
state sequence uniquely determined by the string.

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect the inputs and
outputs into an input sequence and an output sequence. Infer the underlying DFA model to predict the
next integer in the output sequence. Reason step by step, and then output the next output integer using
<answer> tags, like <answer>0</answer>.

Input sequence: a, b, a, b, b, c, a, c, a, a, a, c, b, c, c, a, b, b, b, b, a, b, a, a, b, c, a, c, a, b
Output sequence: 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

H.2.5 RED-GREENT

‘‘‘
You are in a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique portals

labeled A, B, and C. Each portal teleports you to one room of the house (and sometimes the destination
is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *three* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. As you move

through the house, at each time step you write down what portal you take and the color of the room you
arrive (or stay) in. Based on your notes, predict what color room you will end up in after the last step
.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a ...
‘‘‘
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H.2.6 BASICS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

H.2.7 BASIC-COTS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Reason step by step, and then output the next necessary suffix for
this final string, <answer> tags, like <answer>ab</answer>.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

H.2.8 BASIC-COMMASS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

c, b, c, b, a, b, b, c, c, a
a, b, c, a, a, a, c, b, a, a
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a, a, b, c, c, b, a, b, b, b
b, b, b, c, c, b, b, b, c, a
a, a, b, a, b, a, c, c, b, a
a, a, a, a, c, b, a, c, a, c
b, a, a, c, b, c, c, b, a, a
c, b, b, a, a, c, a, b, c, c
b, a, a, b, a, a, c, a, a, b
b, b, b, b, b, c, a, c, a, b
a, c, a, a, b, c, b, b, b, a
a, c, a, a, c, b, c, c, a, c
c, a, c, b, a, b, c, b, b, a
a, b, c, b, c, b, c, b, c, c
c, c, a, c, c, c, c, a, b, a
b, c, b, c, a, b, b, c, c, a
b, a, a, b, a, c, a, b, c, a
c, a, a, b, a, b, a, c, a, c
b, a, c, a, c, a, c, c, a, a
b, c, a, c, b, b, b, b, c, a
b, c, b, b, b, c, a, c, c, c
c, c, a, b, b, c, c, c, b, b
b, c, c, b, c, a, b, b, c, a
b, a, a, c, b, a, b, c, b, c
c, c, a, c, a, b, c, c, a, b
c, a, a, c, b, c, a, a, a, b
c, a, c, b, a, a, c, c, a, c
a, a, c, c, b, c, a, a, b, b
a, b, a, c, a, b, c, a, a, b
b, a, c, b, c, b, c, a, c, a
c, a, a, c, b,

H.2.9 MORE-EXPLS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Output only the
necessary suffix to complete the final string, and nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

H.2.10 DFA-COTS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Reason step by step,
and then output the next necessary suffix for this final string, <answer> tags, like <answer>ab</answer
>.

Given these valid strings:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
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bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following string:
caacb

H.2.11 RED-GREENS

You are outside a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique
portals labeled a, b, and c. Each portal teleports you to one room of the house (and sometimes the
destination is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *3* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. You’ve been into
this house many times before. Each time, as you move through the house, you write down what series of
portals you take and the color of the room you end up in. You have a collection of paths you’ve taken
where you’ve ended up in a room with green walls, listed below. Given the final incomplete path at the
bottom, write a series of up to 5 remaining steps that will cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

Given these paths that end in a room with green walls:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following path:
caacb
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I CASE STUDY: SUM MODULO 3 DFA

(a)

(b)

Correct Incorrect
Total 100% 100%

a is no-op 70% 73%
1b and 1c lead to 0 47% 57%

2-periodic 30% 47%
3-periodic 13% 13%

2 red rooms 7% 10%

Figure 7: Results on Sum Modulo 3 DFA.
(a) MB=mistral-nemo-minitron-8B/BASICT ,
CR=claude-3.5/RED-GREENT . Venn diagram
of errors (out of 1000). Labeled percentages are
accuracies. (b) Results of qualitative analysis, out
of 30 in both cases.

We investigate the transducer task on the DFA
depicted in Figure 1. This DFA can be inter-
preted as an arithmetic check, where a repre-
sents 0, b represents 1, and c represents 2, and
the DFA accepts strings whose sum is equal to
0 modulo 3. For this case study, we focus on
the model/prompt combinations MB (mistral-
nemo-minitron-8B/BASICT : the best perform-
ing non-reasoning model combination overall)
and CR (claude-3.5/RED-GREENT : the best
performing non-reasoning model combination
that provides an explanation, needed later for
our qualitative analysis).

Figure 7a depicts the number of errors each
model receives on 1000 instances of the trans-
ducer task for this DFA. Nearly all errors made
by the 6-GRAMT model were also made by at
least one LLM, while the two LLMs often made
unique errors. While this task is better-known
than most DFAs, all 3 models perform worse on
this DFA than average.

We also performed a qualitative analysis, in-
vestigating CR’s outputs on the RED-GREENT

prompt to see what kind of reasoning it is using;
specifically we sampled 30 examples where it
had the correct answer, and 30 examples where
it had the incorrect answer but the 6-GRAMT

model had the correct answer. Results of this analysis can be found in Figure 7b. We find that, in
general, CR is following a 3-GRAM approach, learning rules relating to the conditions under which
the previous output and symbol can be used to predict the next output. Specifically, it is able to
learn that a does not change the output, and that b and c will lead a 1 state to a 0 state. These
results comport with the overall finding of Table 1, where we found that 3-GRAMT was the largest
n-GRAMT that any non-reasoning LLM outperformed, as well as our finding that LLM performance
decreases for tasks that are not solvable by n-GRAMs; see Appendix B for details.

The model also attempts to identify periodic patterns, but identifies period-2 patterns more than
period-3 patterns, despite knowing that there are three “rooms” (states). At no point in any of the
60 reasoning traces analyzed does it realize that this is a version of the Sum Modulo 3 DFA5, but
it does show some glimmers of world modeling: in a few cases it correctly determines that there
are two red rooms; however, this does not lead to further discoveries. It is not superior reasoning
that leads to correct solutions, rather the correct examples are more likely to be ones that a 3-GRAM
model would infer correctly, i.e., those traces ending in a, 1b, or 1c, which occur cumulatively in
5
9 of cases6.

Despite transformers’ high computational capacity, without the ability to pattern match to existing
problems, Claude uses an unsophisticated and ineffectual approach.

5In fact, in none of the 1000 traces do the substrings “sum” or “mod” appear, except as a part of “assuming”
6On the ∼ 5

9
of examples following this pattern, CR achieves 93.5%, to the 6-GRAMT ’s 97.3%, and on the

remaining ∼ 4
9

, it achieves 43.8%, to the 6-GRAMT ’s 60.7%. Detailed Venn diagrams on these conditions can
be found in Figure 8.
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(a)

(b)

Figure 8: Results on Sum Modulo 3 DFA under trivial / nontrivial conditions. Percentages are
accuracy numbers, and venn diagram is error counts. (a) In this condition, CR and the 6-GRAMT

both get very high accuracies, with nearly all 6-GRAMT also being CR errors. MB does relatively
poorly. (b) In this condition, models do significantly more poorly overall, with CR in particular
performing worse than chance. Here, errors are more symmetric, with more 6-GRAMT errors that
are not accounted for by either or both model, indicating that a larger fraction of both successes and
failures in this condition are down to random chance.
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J COMPUTE USAGE

The experiments in this paper on proprietary models had the following (approximate) costs.

• gpt-5: $920
• o3-mini: $430
• 4o: somewhere between $100 and $200
• 4o-mini: somewhere between $50 and $150
• claude-3.5: $80

The open weight experiments took a cumulative 10-50 GPU-hours on NVIDIA RTX 6000 Ada
Generation GPUs, some models requireed the use of 4 in parallel.
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