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Abstract
The state-action occupancy measure of a policy is
the expected (discounted or undiscounted) num-
ber of times a state-action couple is visited in a tra-
jectory. For decades, RL books have been report-
ing the occupancy equivalence between Marko-
vian and non-Markovian policies in countable
state-action spaces under mild conditions. This
equivalence states that the occupancy of any non-
Markovian policy can be equivalently obtained
by a Markovian policy, i.e. a memoryless proba-
bility distribution, conditioned only on its current
state. While expected, for technical reasons, the
translation of this result to continuous state space
has resisted until now. Our main contribution is
to fill this gap and to provide a general measure-
theoretic treatment of the problem, permitting, in
particular, its extension to continuous MDPs. Fur-
thermore, we show that when the occupancy is
infinite, we may encounter some non-trivial cases
where the result does not hold anymore.

1. Introduction
Reinforcement learning (RL) is a popular and powerful the-
oretical framework for computational decision-making (Sut-
ton & Barto, 2018), with many impressive accomplishments
(Mnih et al., 2015; Silver et al., 2017). A central object
of study in the field is the Markovian policy, in which an
agent’s actions are chosen from a memoryless probability
distribution, i.e., are conditioned only on its current state.
The family of Markovian policies is broad enough to be
interesting, yet simple enough to be amenable to analysis.
For example, every MDP admits an optimal Markovian pol-
icy (Sutton & Barto, 2018), and it is possible to guarantee
monotonic improvement when moving between Markovian
policies (Kakade & Langford, 2002; Laroche & Tachet des
Combes, 2021).
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However, RL settings and algorithms often also involve
non-Markovian policies, which may choose different proba-
bility distributions of actions in the same state depending on
additional context. For example, non-Markovian policies
are encountered in Offline RL (Levine et al., 2020), where
the agent is not given the opportunity to interact with the
environment at all, but instead must learn from a dataset of
trajectories collected by an arbitrary set of policies. Other
examples are algorithms that use replay buffers (Mnih et al.,
2015), update online (Mnih et al., 2015), and/or allow sub-
policy-switching, such as in the Semi MDP framework,
options, or hierarchical policies (Barto & Mahadevan, 2003;
Nachum et al., 2018; Stolle & Precup, 2002; Sutton et al.,
1999). Formal analysis of these settings is possible, but
somewhat involved. A typical approach is to prove a re-
sult under the restrictive assumption that trajectories are
collected with a Markovian policy (Simao et al., 2020; Peng
et al., 2019).

Nevertheless, a certain form of equivalence exists between
Markovian policies and collections of non-Markovian poli-
cies. Indeed, the occupancy measure1 (Szepesvári, 2022) of
any non-Markovian policy whose total occupancy is finite
can be equivalently obtained by a Markovian policy:

Theorem 1 (Restricted version of Theorem 4). Let m be
an MDP with countable state and action spaces, a discount
factor γ < 1, and let π be a policy. Then, there exists a
Markovian policy π̃ that has the same occupancy measure
in m as π.

Variations of Theorem 1 are given in Borkar (1988); Fein-
berg & Shwartz (2002); Altman (1999); Ziebart (2010);
Puterman (2014). Its most general version can be found
in Altman (1999) where it is proved for a countable state
space, a compact action space, and under the assumption
that the policy is absorbing (i.e. that its total occupancy is
finite), which subsumes the discounted case. Feinberg &
Sonin (1996) is also of particular interest as it gives counter-
examples showing that the absorbing condition is necessary
for the equality to hold. When the condition is not veri-
fied but π is only transient, i.e. its occupancy measure on
each state is finite2, Altman (1999) also proves that the con-

1Also called state-action visits (Sutton & Barto, 2018), or dis-
tribution (Silver et al., 2014; Cheng et al., 2020).

2Transience is a necessary condition for the construction of π̃.
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structed Markovian policy π̃ lower bounds π in terms of
occupancy measures. While Theorem 1 has been featured in
most theoretical RL books for several decades, its extension
to continuous state-action spaces has resisted the test of
time.

In this paper, we solve this decades long problem and pro-
vide a generalization of Theorem 1 to any state space (no-
tably the continuous ones), including the standard RL en-
vironments not covered by the existing theory such as Mu-
JoCo (Todorov et al., 2012) and DeepMind Control (Tunya-
suvunakool et al., 2020). The extension leverages standard
measure-theoretic concepts, necessary to handle arbitrary
measurable states spaces. In particular, the absorbing and
transient conditions on the policy from existing works nat-
urally become finiteness and σ-finiteness of its occupancy
measure.

The paper is organized as follows. First, we provide the
background and notations used in the paper (Section 1.1).
Next, we formally introduce the concept of occupancy mea-
sure (Section 1.2). Then, we give a minimal example il-
lustrating the occupancy measure equivalence and the con-
struction of the Markovian policy (Section 1.3). Section 2.1
details and discusses our various results. In Section 3, we
broadly motivate the impact of the equivalence by enumer-
ating fields of research where it could be potentially useful.
Section 4 details the proofs of our main results. Finally,
Section 5 concludes the paper.

1.1. Background and Notations

In this section, we introduce the definitions and notations
required to state our result in its most general form. Capi-
talized letters denote random variables. Sets are denoted by
calligraphic letters, and subsets by lower-case greek letters,
except for µ, γ, and π, which are well-established notations
for measures, discount factors, and policies respectively. If
not mentioned otherwise, any set X is equipped with a σ-
algebra ΣX and a measure µX . We will write P(ΣX ) for
the set of probability measures over ΣX .

Typically, for a countable set X , ΣX is the set of all subsets
of X , written 2X (also called its powerset), and µX is de-
fined as the counting measure, i.e., µX (ξ) is the number of
elements in ξ for any ξ ∈ ΣX . Typically, for X ⊂ Rn, ΣX
is the Lebesgue σ-algebra and µX (ξ) the Lebesgue measure.

A Markov Decision Process (MDP) is a tuple m =
⟨S,A, p0, p, r, γ⟩, where S is the state space, A the action
space, p0(·) ∈ P(ΣS × {∅, {sf}}) denotes the initial state
distribution, p(·|s, a) ∈ P(ΣS×{∅, {sf}}) is the transition
kernel, sf /∈ S denotes the final state where episode termina-
tion happens, r(s, a) ∈ [−r⊤, r⊤] is the bounded stochastic
reward function, and γ ∈ [0, 1] denotes the discount factor.

Definition 1 (Policy). A policy π represents

any function mapping its trajectory history
ht = ⟨s0, a0, r0 . . . , st−1, at−1, rt−1, st⟩ to a distri-
bution over actions: π(·|ht) ∈ P(ΣA). Let Π denote the
space of policies.

This functional definition considers the policy as a black
box: its inner workings do not matter as long as they do
not manifest in the environment. It is a compact, necessary
and sufficient, way of describing any policy3: either two
policies differ for some (accessible) history and they are
distinguishable, or they do not differ anywhere and they are
indistinguishable. Thus, this is a fully general definition4:
any behavior can be implemented by acting according to a
member of Π.
Definition 2 (Markovian policy). Policy π is said to be
Markovian if its action probabilities only depend on the
current state st: π(·|ht) = π(·|st) ∈ P(ΣA). Otherwise,
policy π is non-Markovian. We let ΠM denote the space
of Markovian policies. We let ΠDM denote the space of
deterministic Markovian policies, i.e., the set of Markovian
policies such that π(·|s) is a Dirac distribution in some
action as for any state s ∈ S.

Because of the Markovian property of the MDP environ-
ment, Markovian policies are often a sufficiently broad set
to solve the RL problem. In particular, there always exists
an optimal policy that is deterministic Markovian, and the
Markovian policy space happens to be convenient to navi-
gate smoothly between deterministic Markovian policies.

Next, we shall also need various basic measure theory con-
cepts that we recall here (Feller, 1968).
Definition 3 (σ-finiteness). A measure µ on a measurable
space (X ,ΣX ) is finite if µ(X ) < +∞. It is σ-finite if there
exists a sequence (ξn)n∈N ∈ ΣN

X such that X = ∪∞
n=0 ξn

and µ(ξn) < +∞ for all n ∈ N.

Intuitively, σ-finiteness states that the space can be decom-
posed into a countable union of finite measurable sets. For
instance, the Lebesgue measure on R is σ-finite.
Definition 4 (Radon-Nikodym derivative). Let µ and ν de-
note two σ-finite measures where ν is absolutely continuous
with respect to µ (i.e., µ(ξ) = 0 =⇒ ν(ξ) = 0). There
exists a function f : X → [0,+∞] such that for all ξ ∈ ΣX ,

ν(ξ) =

∫
ξ

f(x)µ(dx). (1)

Any function f verifying 1 is called a Radon-Nikodym
derivative and is denoted dν

dµ . Two functions f1, f2

3Although, it is arguably an inefficient way of design-
ing/implementing one.

4In order to have a well-defined occupancy measure, we must
restrict ourselves to policies that reset their memory at the start of
every trajectory. A thorough discussion is provided at the end of
Section 2.1 regarding this.
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that verify 1 are equal up to a µ-null set, i.e.,
µ ({x s.t. f1(x) ̸= f2(x)}) = 0.

1.2. Occupancy Measures

We now have the machinery required to introduce our main
object of study: the occupancy measure.

Definition 5 (Occupancy). Given measurable subsets of
the state and action spaces, σ ∈ ΣS , α ∈ ΣA, the oc-
cupancy µπ

γ (σ, α) of a policy π ∈ Π in an MDP m =
⟨S,A, p0, p, r, γ⟩ is the expected discounted number of vis-
its of a state-action pair (s, a) ∈ σ × α occurring during a
trajectory:

µπ
γ (σ, α) := E

[ ∞∑
t=0

γt1 (St ∈ σ)× 1 (At ∈ α)

∣∣∣∣
S0 ∼ p0(·), At ∼ π(·|Ht),
St+1 ∼ p(·|St, At)

]
. (2)

We will use the conventions that µπ
γ (σ)

.
= µπ

γ (σ,A), and
with finite state-action sets µπ

γ (s, a)
.
= µπ

γ ({s}, {a}). Note
that Definition 5 holds both for discrete and continuous state
and action spaces.

We start by establishing that the occupancy as defined in Eq.
(2) is well-defined and is a measure for any policy π and
any MDP m, this will allow us to leverage standard results
from measure theory.

Theorem 2 (Occupancy is a measure). Let π ∈ Π be any
policy as defined in 1, then, µπ

γ is well-defined on R+ ∪
{+∞} and is a measure.

We defer the proof of this result to Appendix B. The second
interesting property of µπ

γ concerns the discounted return
ρπγ of π:

ρπγ :=E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 ∼ p0(·), At ∼ π(·|Ht),
Rt ∼ r(St, At), St+1 ∼ p(·|St, At)

]
.

(3)

Lemma 3. If ρπγ exists, then it is uniquely characterized by
µπ
γ : ρπγ =

∫
S
∫
A E [r(s, a)]µπ

γ (ds, da).

We defer the proof of this result to Appendix C. A general
equivalence in terms of value is harder to make as there is
no clear definition of a state marginalized value function for
non Markovian policies.

1.3. Illustrative Example

We consider the MDP m represented in Figure 1, with a
single state S = {s} two actions A = {a1, a2}, and such
that p(s|s, a1) = 1 and a2 terminates the episode. For a

s sf
a2

a1

Figure 1: Minimal MDP such that a1 loops and a2 is termi-
nal.

fixed n ≥ 1, we consider the following deterministic pol-
icy: π(a1|s, t < n) = 1 and π(a2|s, t = n) = 1. All its
trajectories are therefore the same: it performs a1 n times,
then a2 which terminates the trajectory. Fundamentally, π
is non-Markovian since its actions depends on the timestep
t. It is direct to observe that the occupancy measure, corre-
sponding to the expected discounted state and state-action
visits (denoted µπ

γ (s) and µπ
γ (s, a) respectively), verifies:

µπ
γ (s) =

n∑
t=0

γt µπ
γ (s, a1) =

n−1∑
t=0

γt µπ
γ (s, a2) = γn.

We define a Markovian policy π̃, equal to the expected
behavior of π in s over all possible trajectories:

π̃(a1|s)
.
=

µπ
γ (s, a1)

µπ
γ (s)

=

∑n−1
t=0 γt∑n
t=0 γ

t
(4)

π̃(a2|s)
.
=

µπ
γ (s, a2)

µπ
γ (s)

=
γn∑n
t=0 γ

t
. (5)

Given the MDP structure, we have:

µπ̃
γ (s, a1) = π̃(a1|s) + π̃(a1|s) γµπ̃

γ (s, a1). (6)

Therefore:

µπ̃
γ (s, a1) =

π̃(a1|s)
1− π̃(a1|s)γ

=

∑n−1
t=0 γt∑n

t=0 γ
t − γ

∑n−1
t=0 γt

=

n−1∑
t=0

γt = µπ
γ (s, a1). (7)

Similarly, µπ̃
γ (s, a2) = π̃(a2|s) + π̃(a1|s) γµπ̃

γ (s, a2),
which gives:

µπ̃
γ (s, a2) =

π̃(a2|s)
1− π̃(a1|s)γ

=
γn∑n

t=0 γ
t − γ

∑n−1
t=0 γt

= γn = µπ
γ (s, a2). (8)

We see that π̃ has exactly the same state-action visits as
π. Our main theorem states that, in any MDP and under
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mild assumptions, such a policy always exists. We wish
to emphasize, however, that their trajectories distributions
differ: all trajectories generated with π have the same length,
n + 1, while the length of trajectories generated with π̃
follows a geometric law. It is also worth noticing that π̃
depends on the choice of the discount factor, but that, for
any discount factor γ < 1, there will exist a Markovian
policy equivalent to π in terms of state-action occupancy.

2. Theory
We start by enunciating the main theorem, derive its corol-
laries, and explicate the occupancy equivalence relation in
Subsection 2.1. Then, we discuss the necessity of the σ-
finiteness in Subsection 2.2. Finally, we conclude the theory
with a series of additional remarks in Subsection 2.3.

2.1. Main Theorem and Occupancy Equivalence

Let us now state our main theorem and discuss its implica-
tions. Its proof can be found in Section 4.

Theorem 4 (State-action occupancy equivalence). Let π
be a policy with σ-finite occupancy measure µπ

γ . For any
measurable α ⊆ A, we define π̃ as the Radon-Nikodym
derivative:

π̃(α|s) :=
dµπ

γ (·, α)
dµπ

γ (·)
(s), (9)

where µπ
γ (·, α) and µπ

γ (·) are seen as measures on S. The
following statements hold.

• π̃(α|s) exists and is a probability measure on A for any
s ∈ S, i.e., a Markovian policy.

• π̃ admits a σ-finite occupancy measure and µπ̃
γ ≤ µπ

γ .

• Moreover, if µπ
γ is finite (i.e. µπ

γ (S) < ∞), then µπ̃
γ = µπ

γ .

Remark: Note that π̃ is uniquely defined up to a µπ
γ (·)-null

set. Further characterizing it is unimportant as a set of states
with null occupancy measure will almost surely never be
visited.

In two very generic settings, the Radon-Nikodym derivative
π̃ can be explicitly characterized.

Corollary 5. When S and A are finite, we let µπ
γ (s, a)

denote the σ-finite state-action occupancy measure of
(s, a) ∈ S × A under π. Then, π̃(a|s) :=

µπ
γ (s,a)

µπ
γ (s)

, and

µπ̃
γ (s, a) = µπ

γ (s, a).

Corollary 5 covers for instance the illustration provided
in Section 1.3. Importantly, the finiteness of S and the σ-
finiteness of µπ

γ imply µπ
γ (S) < ∞, and thus the equality of

occupancy measures.

Corollary 6. When S and/or A are continuous, let
dπγ (s, a) denote the state-action occupancy density of the
pair (s, a) ∈ S × A and assume its existence. Then,
π̃(α|s) :=

∫
α

dπ
γ (s,a)

dπ
γ (s)

da, and by abuse of notation π̃(a|s) :=
dπ
γ (s,a)

dπ
γ (s)

. Furthermore, dπ̃γ (s, a) ≤ dπγ (s, a) with equality if∫
S dπγ (s)ds < ∞.

Corollary 6 covers exclusively-continuous state and action
spaces such as certain robotic manipulation tasks and some
MuJoCo environments (Todorov et al., 2012). We note
that Theorem 4 is more general than Corollaries 5 and 6
combined as the state-action visitation density in infinite
state-action space is not always defined (there may be Dirac
points). We now discuss the theorem in details.

Policy performance: The first implication of Theorem 4,
combined with Lemma 3, is that for any policy π with finite
occupancy measure, there exists a Markovian policy with
the same performance (proof in Appendix C).

Corollary 7. Under suitable existence assumptions, ρπγ =

ρπ̃γ .

Idempotence: Equation (9) may be interpreted as an opera-
tor over policies: π̃ = Rπ up to a µπ

γ (·)-null set. Proposi-
tion 8 proves that this operator is idempotent: RRπ = Rπ
(still up to a µπ

γ (·)-null set). In other words, R is a pro-
jection from the policy space Π to the Markovian policy
space ΠM. This can also be seen through the lens of the
following pseudo-metric on Π: d(π1, π2) = TV (µπ1

γ , µπ2
γ )

(where TV denotes the total variation). Furthermore, one
can define the occupancy equivalence relation: π1

OCC∼ π2

if policies π1 and π2 are occupancy equivalent, meaning
that µπ1

γ = µπ2
γ and implying that Rπ1 = Rπ2 up to a(

µπ1
γ (·) + µπ2

γ (·)
)
-null set (proof in Appendix D).

Proposition 8. If π is Markovian with a σ-finite occupancy
measure, then π̃ = π, where equality is up to a µπ

γ (·)-null
set.

Universality: Our result is universal: it applies to any MDP
m, any policy π, and any discount factor γ, as long as the
occupancy measure of π is σ-finite. The σ-finiteness condi-
tion is not an artifact of the proof technique, as illustrated in
the following subsection.

2.2. Necessity of the σ-finiteness of µπ
γ

Proposition 9. If π has a σ-infinite occupancy measure, π̃
may be undetermined and there may not be any Markovian
policy with the same occupancy measure as π.

We detail next, two counter-examples proving the Proposi-
tion 9.

Example 1 (Example where π̃ is undetermined). We use
the minimal undiscounted (γ = 1) MDP in Figure 2 with
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s a2a1

Figure 2: Minimal MDP such that p(s|s, a1) = 1 and
p(s|s, a2) = 1.

a single state S = {s} and two actions A = {a1, a2} that
loop: p(s|s, a1) = 1 and p(s|s, a2) = 1. We consider the
non-Markovian policy π that chooses its action as follows:
∀i ∈ N, if t ∈ [2i, 2i+1), then π(a1) =

(−1)i+1
2 , i.e. during

each epoch i, the policy plays deterministically a1 if i is
even otherwise a2 if i is odd.

Then, the ratio π̃
.
=

µπ
1 (s,a1)
µπ
1 (s)

is undetermined as the limit
of the action selection ratio does not converge as t goes to
infinity. We could argue that any non-determinisitic Marko-
vian policy would admit the same occupancy measure as
π: µπ

1 (s, a1) = µπ
1 (s, a2) = ∞, but the counter-example in

the next subsection shows that this is not always possible.

Example 2 (Example where no Markovian policy repro-
duces the occupancy). We use the minimal undiscounted
(γ = 1) MDP in Figure 1 with a single state S = {s} and
two actions A = {a1, a2}, such that p(s|s, a1) = 1 and
a2 is terminal. We consider the non-Markovian policy π
that chooses its action uniformly at timestep t = 0 and
deterministically a1 for t ≥ 1. Its occupancy measure is
therefore:

µπ
1 (s, a1) = ∞ µπ

1 (s, a2) =
1

2
. (10)

The set of Markovian policies πθ ∈ ΠM may be
parametrized with a single parameter πθ(a1|s)

.
= θ ∈ [0, 1]

and πθ(a2|s)
.
= 1 − θ ∈ [0, 1]. A Markovian policy πθ

admits the following occupancy measure:

if θ < 1, µπθ
1 (s, a1) =

1

1− θ
µπθ
1 (s, a2) = 1,

(11)

if θ = 1, µπθ
1 (s, a1) = ∞ µπθ

1 (s, a2) = 0,
(12)

none of which match the occupancy of π.

We additionally refer to Feinberg & Sonin (1996) for an
example where the inequality between measures is strict
if µπ

γ (S) = +∞ even when µπ
γ ({s}) < +∞ for all s ∈

S. We also note that in Altman (1999); Feinberg & Sonin

(1996), the notion of transience is introduced, and means
that the occupancy measure of any state is finite. This is
equivalent to the occupancy measure being sigma-finite.
Indeed, sigma-finiteness means that the state space is the
countable union of a set of finite-measured measurable sets.
In the discrete case, it is implied by the finiteness of the
measure of each singleton (aka transience), as the state
space is the countable union of the singletons it contains.

It is remarkable that in discrete undiscounted MDPs, tran-
sience can be characterized as states being visited a finite
number of times. In other words, for each state, there is a
timestep after which it is never visited again in the trajectory.
However, Example 3 hereafter shows that the same char-
acterization of transience does not imply sigma-finiteness
in continuous MDPs: in a given trajectory, a state is not
visited more than once, however, the constructed policy’s
occupancy measure is not sigma-finite.

Finiteness of the occupancy measure: Equality in The-
orem 4 applies only if the policy’s occupancy measure is
finite. It is trivially verified if γ < 1. We give now a tighter
sufficient condition.

Proposition 10. If all deterministic Markovian policies
have finite occupancy measures, any policy π admits a finite
occupancy measure and Theorem 4 applies.

Proof of this proposition can be found in Appendix E. When
the state space is countable (as assumed in previous works
studying these types of policy equivalences), finiteness can
be relaxed into σ-finiteness in the above proposition. How-
ever, as soon as the state space is continuous, this relaxation
fails. In other words, with continuous MDPs, even if all de-
terministic Markovian policies are σ-finite, there may exist
non-Markovian policies for which constructing an equiva-
lent Markovian policy using Equation (9) cannot be done.
We give below such a counter-example.

Example 3 (All deterministic Markovian policies have
σ-finite occupancy but there exists a σ-infinite occupancy
policy). We consider the deterministic continuous MDP m
where S = [0, 2], s0 = 0, A = (0, 1], p(s + a|s, a) = 1,
γ = 1, and the trajectory terminates when s+ a > 2.

We start by establishing that any deterministic policy πd

(Markovian or non-Markovian) has a σ-finite occupancy
measure: since the environment and the policy are deter-
ministic, every trajectory is the same. Since A = (0, 1] and
p(s + a|s, a) = 1, the state st is strictly increasing with t.
This implies that either:

1. the trajectory terminates and the occupancy measure is
finite (and therefore σ-finite),

2. or the trajectory is upper bounded by 2 and by the
monotone convergence theorem, it must converge to

5



On the occupancy measure of non-Markovian policies in continuous MDPs

some state s∞ without ever reaching it (if st = s∞ for
some t, then st+1 > s∞, which is a contradiction).

Since case 1. proves our point, we focus on case 2. from
now on. Still from the strictly increasing property, we infer
that the occupancy measure of πd is 1 for the states st on the
deterministic trajectory and 0 everywhere else. We consider
the following partition of S:

σ0
.
= [s∞, 2] ∀i > 0, σi

.
= [si−1, si). (13)

By construction, µπd
γ (σ0) = 0, ∀i > 0, µπd

γ (σi) = 1, and
S =

⋃
i∈N σi, which proves the σ-finiteness of µπd

γ .

Now, we construct a policy π that is σ-infinite.

π(·|t = 0) = U([0, 1]) π(·|t > 0) =
1

t
− 1

t+ 1
(14)

Let A0 denote the first action, which is the only stochastic
one, then the state reached at time t is:

St+1 = St +
1

t
− 1

t+ 1
= A0 +

t∑
t′=1

1

t′
− 1

t′ + 1

= A0 + 1− 1

t+ 1
, (15)

which converges to A0 + 1 as t tends to infinity. For any
segment [b, c] ⊂ [0, 1] with b < c, P(A0 ∈ (b, c]) = c−b >
0. Then, we look at the measure of [b+ 1, c+ 1]:

µπ
γ ([b+ 1, c+ 1]) ≥

P (A0 ∈ (b, c])E

[ ∞∑
t=0

1(st ∈ [b+ 1, c+ 1])

∣∣∣∣ A0 ∈ (b, c]

]

= P (A0 ∈ (b, c])E

 ∞∑
t=⌈ 1

A0−b ⌉

1

∣∣∣∣ A0 ∈ (b, c]

 = ∞,

which concludes the proof that µπ
γ is σ-infinite.

2.3. Additional Remarks

Trajectory distribution: As already noted in Section 1.3,
the same occupancy measure does not imply the same tra-
jectory distribution, which may have a specific role in non-
bootstrapping algorithms. For instance, Decision Trans-
formers (Chen et al., 2021; Furuta et al., 2022; Emmons
et al., 2022) learn the return-conditional distribution of ac-
tions in each state, and then define a policy by sampling
from the distribution of actions that receive high return in
each state. It is therefore a trajectory-based algorithm as
opposed to more classical RL bootstrapping approaches that
are sample-based and can fully take advantage of Theorem 4.
Nevertheless, it is possible to prove the following result, stat-
ing that even though trajectory distributions are not equal,
any trajectory generated by π has a non-zero probability
under π̃ (proof in Appendix F).

Proposition 11. For any t ≥ 0, we let τπt denote the trajec-
tory distribution on (S×A)t induced by executing π t times
in the environment, starting from p0. Then, τπt is absolutely
continuous with respect to τ π̃t .

Policies with inter-episode non-stationarity: The non-
stationarity within a trajectory is already handled by the
non-Markovian-ness as the trajectory history includes the
timestamp information. While useful in practice, for in-
stance to deal with learning algorithms, the non-stationarity
across trajectories is trickier to handle because they have a
trajectory dependent occupancy measure, and even worse,
they may not have any “average occupancy measure”. For
instance, for a stateless MDP with 2 terminating actions,
the non-stationary policy πt(a1) = 1 − πt(a2) = 1 when
t ∈ [22k, 22k+1 − 1] and πt(a1) = 1 − πt(a2) = 0 when
t ∈ [22k+1, 22k+2 − 1] for all integers k, will not admit any
occupancy measure (nor an equivalent Markovian policy).

Thus, our occupancy measure theory does not concern
policies that carry memory from one episode to another.
Still, oftentimes datasets and replay buffers are collected
with a learning algorithm, i.e., a policy π that is updated
across time. Let us consider the recording of the N policies
{πi}i∈[N ] ∈ ΠN that were used in each individual episode:

πi(· | h)
.
= π

(
· | h ∪ hτi−1

∪ · · · ∪ hτ1

)
, (16)

where h is the current trajectory history and hτi denotes the
recorded history of the ith trajectory. Then, Theorem 4 may
be applied on the inter-episode-policy π̄

.
= U({πi}i∈[N ])

that uniformly samples at the start of each trajectory a policy
among the N policies, allowing us to conclude that the
occupancy in the dataset may still be reproduced by a single
Markovian policy. Nevertheless, we stress again the fact
that this occupancy is not connected to that of π, since the
latter is undetermined.

Non-Markovian policies usefulness: The occupancy equiv-
alence does not deny the algorithmic interest of non-
Markovian policies, as their existence may be entailed by
the problem setting (Offline RL or replay buffers), and as
they may prove their usefulness by allowing to inject induc-
tive bias, such as options, or by generating diverse behaviors
with an ensemble of agents. On the contrary, we view Theo-
rem 4 as a tool allowing to carry out theoretical grounding
usually restricted to Markovian policies to non-Markovian
policies. In the next section, we showcase various such
applications.

3. Applications
Many RL domains or algorithms may benefit from Theo-
rem 4 as they rely on the use of non-Markovian policies
(generally a collection of Markovian policies). In most of
these domains, the non-Markovian property of the policies

6



On the occupancy measure of non-Markovian policies in continuous MDPs

is a feature, not an issue: it allows one to break down and
better compound some conflicting objectives, to induce di-
versity, and/or to design new policies from elementary ones.
Theorem 4 may be a powerful tool for their respective con-
vergence guarantees by proving that their non-Markovian
policy admits a well-studied (i.e., Markovian) policy emu-
lating its occupancy measure.

Non-Markovian policy induced by the problem setting:
Behavioral Cloning (Urbancic, 1994; Torabi et al., 2018)
and Imitation Learning (Ross et al., 2011; Ho & Ermon,
2016; Hussein et al., 2017) consist in training an agent to
reproduce an expert behavior from demonstrations. Some-
times, the expert behavior collection is generated from sev-
eral near-optimal policies. Moreover, some approaches in-
volve interactive data collection processes in order to make
sure that the agent can recover from its own errors. In
both cases, the collected data does not come from a single
Markovian policy and Theorem 4 may prove to be useful.
In Imitation Learning, the goal is to “reproduce” a behavior
policy. However, it is generally modeled as a Markovian
policy. Our result proves that their approach is sound under
the mild assumption that γ < 1.

Offline RL consists in training a policy on a fixed set of
observations without access to the true environment (Lange
et al., 2012; Levine et al., 2020). Similarly to Imitation
Learning, most algorithms and analyses either implicitly
or explicitly make the assumption that the behavior pol-
icy β that was used to collect data is unique and Marko-
vian (Laroche et al., 2019; Fujimoto et al., 2019b; Buckman
et al., 2020; Kumar et al., 2020; Thomas et al., 2015; Yu
et al., 2021; Yin et al., 2021; Shi et al., 2022). However, this
is generally not true: in healthcare for instance, patients are
often followed by different doctors/health centers with dif-
ferent policies. Furthermore, typical benchmarks for offline
reinforcement learning are constructed from the experience
replay of DQN runs (Fujimoto et al., 2019a; Agarwal et al.,
2020b), or via an amalgamation of expert policies (Fu et al.,
2020).

We will further illustrate the impact of our result by look-
ing at a particular algorithm family called SPIBB for Safe
Policy Improvement with Baseline Bootstrapping (Laroche
et al., 2019; Nadjahi et al., 2019). It consists in allowing pol-
icy change only when the change is sufficiently supported
by the dataset. These algorithms rely on two components:
a state-action uncertainty and an estimate of the behavior
policy (Simao et al., 2020) Estimating a non-Markovian
policy faces the curse of dimensionality, thus such policies
are often not treated. Our theorem proves that the main
theoretical results in Simao et al. (2020) actually carry over
to non-Markovian behaviour policies. Indeed, since there
exists a Markovian policy that yields the same expected
performance and occupancy measure, one may simply con-

sider that the data was received from the induced Markovian
policy and obtain the same performance properties.

Non-Markovian policy induced by algorithmic family:
Multi-objective algorithms often combine several policies
to generate a behavior that matches the new objective trade-
offs (Shelton, 2001; Vamplew et al., 2009). Ensemble
RL (Wiering & Van Hasselt, 2008), algorithm selection
for RL (Laroche & Féraud, 2018), diversity-induced explo-
ration (Eysenbach et al., 2019), sets of policies based on
Generalized Policy Improvement (Barreto et al., 2017; Ale-
gre et al., 2022), and curriculum for RL (Czarnecki et al.,
2018) all rely on training a family of RL agents. Some more
theoretical papers focus on non-Markovian policies (Wu
et al., 2004; Scherrer & Lesner, 2012). More and more, pol-
icy gradient algorithms utilize and maintain several policies.
The PC-PG algorithm (Agarwal et al., 2020a) consists in
improving the global convergence guarantees of policy gra-
dient methods by implementing an initial state distribution
that covers the whole state space. To do so, they learn a pol-
icy cover that is made of multiple Markovian policies. Jekyll
& Hyde (Laroche & Tachet des Combes, 2021) is another
actor-critic algorithm improving convergence guarantees by
maintaining two Markovian policies: one dedicated to pure
exploration and the other to pure exploitation. Finally, it is
worth mentioning distributed agents which perform training
updates over several behavioral policies (Mnih et al., 2016;
Horgan et al., 2018; Schmitt et al., 2020).

4. Proof of Theorem 4
Proof of Theorem 4. Let us start with the first bullet point,
concerning the existence of π̃ and the fact that it is indeed a
Markovian policy.

Letting α ⊆ A be a measurable set in A. We see that for
any σ ⊆ S measurable, we have µπ

γ (σ, α) ≤ µπ
γ (σ). This

directly implies that µπ
γ (·, α) is absolutely continuous with

respect to µπ
γ (·) (both seen as measures on S). Since µπ

γ (·)
is σ-finite, the Radon-Nikodym theorem states that µπ

γ (·, α)
admits a density with respect to µπ

γ (·), we let π̃ denote that
Radon-Nikodym derivative.

We now prove that π̃ is a probability measure. The non-
negativity is directly inherited from that of measure µπ

γ .
The null-empty set comes from the fact that µπ

γ (σ, ∅) =
0 for all measurable sets σ. The countable additivity is
a consequence of the countable additivity of the Radon-
Nykodym derivative and of the measure µπ

γ . And finally, it
is clear from its definition that π̃(A|s) = 1 and that π̃ only
depends on the current state, which makes it a Markovian
policy.

Let us now move the second bullet point, which is our
core result. Recalling that µπ

γ (ds) =
∫
A µπ

γ (ds, da), and
µπ̃
γ (ds) =

∫
A µπ̃

γ (ds, da), we wish to prove that for all σ ∈
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ΣS : µπ̃
γ (σ) ≤ µπ

γ (σ), with equality if µπ
γ (S) < ∞. Letting

σ ∈ ΣS denote a measurable set such that µπ
γ (σ) < ∞, we

know from the conservation of mass of σ-finite occupancy
measures (Proposition 12 in Appendix A) that:

µπ
γ (σ) = p0(σ) + γ

∫
S

∫
A
µπ
γ (ds−1, da) p(σ|s−1, a),

(17)

where p(σ|s−1, a) denotes the probability of transitioning
to σ when taking action a in state s−1. Now, by definition
of the Radon-Nikodym derivative, we have µπ

γ (ds, da) =

µπ
γ (ds)

dµπ
γ (·×da)

dµπ
γ (·×A) (s) = µπ

γ (ds)π̃(da|s). Using that prop-
erty, we see that:

µπ
γ (σ) = p0(σ) + γ

∫
S

∫
A
µπ
γ (ds−1)π̃(da|s−1) p(σ|s−1, a)

(18)

= p0(σ) + γ

∫
S
µπ
γ (ds−1) p

π̃(s−1, σ), (19)

where pπ̃(s−1, ds) is the Markov kernel on S × S obtained
by composition of p and π̃, and pπ̃(s−1, σ) is the probability
of transitioning to σ when acting according to π̃ in state s−1.
Applying the above conservation equality recursively t times
gives:

µπ
γ (σ) = p0(σ) + γ

∫
S
p0(ds−1)p

π̃(s−1, σ) + · · ·

+ γt

∫
S
p0(ds−t) p

π̃
t (s−t, σ) (20)

+ γt+1

∫
S
µπ
γ (ds−t−1) p

π̃
t+1(s−t−1, σ),

where pπ̃t denotes the composition of pπ̃ with itself t times.
The equality can easily be shown by induction and Fubini’s
theorem. Given the finiteness of µπ

γ (σ) and the positiv-
ity of all the terms involved, there exists l ≥ 0 such that
γt+1

∫
S µπ

γ (ds−t−1) p
π̃
t+1(s−t−1, σ) →t→∞ l. We obtain:

µπ
γ (σ) = p0(σ) +

∞∑
t=1

γt

∫
S
p0(ds−t) p

π̃
t (s−t, σ) + l.

(21)

Now, by the very definition of occupancy mea-
sures and Markov policies, we see that p0(σ) +∑T

t=1 γ
t
∫
S p0(ds−t) pπ̃t (s−t, σ) is the partial sum of

µπ̃
γ (σ) in Equation 2:5

µπ̃
γ (σ,A) = lim

T→+∞
E

[
T∑

t=0

γt1 (St ∈ σ)× 1 (At ∈ A)

∣∣∣∣
S0 ∼ p0(·), At ∼ π̃(·|St),
St+1 ∼ p(·|St, At)

]
. (22)

5Note that in the general case, it is not the partial sum of µπ
γ (σ)

due to π’s non-Markovian character.

The convergence of this partial sum is guaranteed by the
finiteness of µπ

γ (σ). In other words, we get:

µπ̃
γ (σ) = p0(σ) +

∞∑
t=1

γt

∫
S
p0(ds−t) p

π̃
t (s−t, σ) (23)

= µπ
γ (σ) − l ≤ µπ

γ (σ) < +∞. (24)

Now, for σ ∈ ΣS (possibly of infinite µπ
γ -measure), the

σ-finiteness of µπ
γ implies there exists a sequence (σn)n∈N

of disjoint sets such that ∀n ∈ N, µπ
γ (σn) < +∞ and

σ = ∪∞
n=0σn. We compute:

µπ̃
γ (σ) =

∞∑
n=0

µπ̃
γ (σn) ≤

∞∑
n=0

µπ
γ (σn) = µπ

γ (σ). (25)

Combining this equality with the policy definition (9) gives
the final result: µπ̃

γ (ds, da) ≤ µπ
γ (ds, da).

We are left with proving that
limt→∞ γt+1

∫
S µπ

γ (ds−t−1) pπ̃t+1(s−t−1, σ) = 0
when µπ

γ (S) < +∞. It is obvious when γ < 1, since the
integral term is bounded. The case γ = 1 is somewhat more
involved (as is customary with undiscounted MDPs).

We start by noticing that∫
S µπ̃

γ (ds−t−1) pπ̃t+1(s−t−1, σ) →t→∞ 0. This
stems directly from applying Eq. (21) to π̃ and
then leveraging the first equality in (24) . Now,
we let L = {s ∈ S | pπ̃t (s, σ) →t→∞ 0}. From∫
LC µπ̃

γ (ds−t−1) pπ̃t+1(s−t−1, σ) →t→∞ 0 and by the
definition of L, we infer that µπ̃

γ (L
C) = 0. It also stems

directly from Proposition 11 that µπ
γ is absolutely contin-

uous with respect to µπ̃
γ , which implies that µπ

γ (L
C) = 0.

Finally, by the dominated convergence theorem, applicable
since µπ

γ (S) < +∞ and pπ̃t+1 ≤ 1, we get:∫
S
µπ
γ (ds−t−1) p

π̃
t+1(s−t−1, σ) (26)

=

∫
L

µπ
γ (ds−t−1) p

π̃
t+1(s−t−1, σ) →t→∞ 0,

which concludes the proof.

5. Conclusion
In this paper, we developed a general theory of the occu-
pancy measure in MDPs, and extended to continuous state
spaces the result stating that, for any non-Markovian pol-
icy admitting a finite occupancy, there exists a Markovian
policy with the same occupancy. We also provided a vari-
ety of auxiliary results analyzing the equivalence and the
conditions under which it is feasible.
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A. Auxiliary Result
For the sake of completeness, we include the following very standard result.

Proposition 12 (Conservation of mass). For any policy π whose occupancy measure is σ-finite, we have:

µπ
γ (ds) = p0(ds) + γ

∫
S

∫
A
µπ
γ (ds−1, da) p(ds|s−1, a). (27)

Proof. Note that the equality is meant in the sense of measures, that is, for any σ ∈ ΣS :

µπ
γ (σ) = p0(σ) + γ

∫
S

∫
A
µπ
γ (ds−1, da) p(σ|s−1, a). (28)

Let us start by proving that this equality holds for any σ such that µπ
γ (σ) < +∞:

µπ
γ (σ, α) :=E

[ ∞∑
t=0

γt1 (St ∈ σ)× 1 (At ∈ α)

∣∣∣∣S0 ∼ p0(·), At ∼ π(·|Ht),
St+1 ∼ p(·|St, At)

]
(29)

=

∞∑
t=0

γt

∫
σ

∫
α

pt(ds, da), (30)

where the second line is a direct application of Fubini’s theorem (valid since µπ
γ (σ) < +∞), and pt(ds, da) denotes the

measure on S × A induced by (St, At) when both evolve according to p0, π and p. Note in particular that p0(ds, da) =
p0(ds)π(da|s) where p0(ds) is the initial state distribution in the MDP. Naturally, pt(ds) denotes the marginal of pt(ds, da)
on S. Focusing on α = A, we see that:

µπ
γ (σ) =

∞∑
t=0

γt

∫
σ

pt(ds) = p0(σ) +

∞∑
t=1

γt

∫
σ

pt(ds) (31)

= p0(σ) +

∞∑
t=1

γt

∫
σ

∫
S

∫
A
pt−1(ds−1, da) p(ds|s−1, a) (32)

= p0(σ) + γ

∫
σ

[ ∞∑
t=1

γt−1

∫
S

∫
A
pt−1(ds−1, da)

]
p(ds|s−1, a) (33)

= p0(σ) + γ

∫
σ

∫
S

∫
A
µπ
γ (ds−1, da) p(ds|s−1, a), (34)

where all integrals on σ are with respect to s, Fubini was applied again, and we used the equality pt(ds) =∫
S
∫
A pt−1(ds−1, da) p(ds|s−1, a) that stems directly from the definition of a Markov Decision Process.

Finally, for any σ ∈ ΣS , we know from the σ-finiteness of µπ
γ that there exists a sequence (σn)n∈N of disjoint measurable

sets such that ∀n ∈ N, µπ
γ (σn) < +∞ and σ = ∪∞

n=0σn. Applying Eq. 28 to σn and summing over n ∈ N concludes the
proof.

B. Proof of Theorem 2
Theorem 2 (Occupancy is a measure). Let π ∈ Π be any policy as defined in 1, then, µπ

γ is well-defined on R+ ∪ {+∞}
and is a measure.

Proof of Theorem 2. Fixing σ ∈ ΣS and α ∈ ΣA, we notice that the following sequence is increasing with T :

UT :=E

[
T∑

t=0

γt1 (St ∈ σ)× 1 (At ∈ α)

∣∣∣∣S0 ∼ p0(·), At ∼ π(·|Ht),
St+1 ∼ p(·|St, At)

]
.
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Therefore, the monotone convergence theorem guarantees that UT converges on R+ ∪ {+∞} when T tends to infinity and
its limit is by construction the occupancy measure of π, which is therefore defined for every state set σ and action set α.

In order to establish that µπ
γ is a measure over the algebra product ΣS × ΣA, we need to check (i) its positivity, (ii) that

µπ
γ (∅) = 0, and (iii) its countable additivity with respect to disjoint sets. (i) has been established right before, (ii) is a direct

consequence that 1 (St ∈ ∅)× 1 (At ∈ ∅) = 0, and (iii) is a simple summation order change, justified by the positivity of
all quantities involved.

C. Characterization of Performance
Lemma 3. If ρπγ exists, then it is uniquely characterized by µπ

γ : ρπγ =
∫
S
∫
A E [r(s, a)]µπ

γ (ds, da).

Proof. We recall the definition of the performance ρπγ :

ρπγ :=E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 ∼ p0(·), At ∼ π(·|Ht),
Rt ∼ r(St, At), St+1 ∼ p(·|St, At)

]
. (35)

We start by noting that the existence of ρπγ is not guaranteed in the case of γ = 1 and µπ
γ (S) = +∞ (see Example 4).

Assuming it does exist (or that any of those two conditions is not verified), the law of total expectation gives:

ρπγ :=E

[ ∞∑
t=0

γtE[r(St, At)]

∣∣∣∣S0 ∼ p0(·), At ∼ π(·|Ht),
St+1 ∼ p(·|St, At)

]
. (36)

Applying the law of total expectation a second time, and Fubini-Tonelli’s theorem allows to conclude.

Example 4 (Indeterminate performance). We consider the MDP depicted in Figure 2 with r(s, a1) = 1, r(s, a2) = −1,
π(a1|t = 0) = 1 and π(·|t > 0) = 1 − π(·|t − 1): the trajectory is deterministically looping over state s, performing
alternatively a1 and a2. If γ = 1, ρπ1 = limT→∞

∑T
t=0 Rt, but

∑T
t=0 Rt does not have any limit as T tends to infinity,

since it equals 1 if T is even, and 0 otherwise.

Corollary 7. Under suitable existence assumptions, ρπγ = ρπ̃γ .

Proof. Since µπ
γ = µπ̃

γ , we get from Lemma 3:

ρπγ =

∫
S

∫
A

E [r(s, a)]µπ
γ (ds, da) =

∫
S

∫
A

E [r(s, a)]µπ̃
γ (ds, da) = ρπ̃γ ,

which concludes the proof.

D. Idempotence and Projection
Proposition 8. If π is Markovian with a σ-finite occupancy measure, then π̃ = π, where equality is up to a µπ

γ (·)-null set.

Proof. Given the definition of π̃(α|s) = dµπ
γ (·,α)

dµπ
γ (·,A) (s), to show that π̃ = π, we simply need to prove that for any σ ∈ ΣS and

α ∈ ΣA:

µπ
γ (σ, α) =

∫
σ

µπ
γ (ds,A)π(α|s). (37)

From the definition 2 of µπ
γ (σ, α), we have:

µπ
γ (σ, α) =E

[ ∞∑
t=0

γt1 (St ∈ σ)× 1 (At ∈ α)

∣∣∣∣S0 ∼ p0(·), At ∼ π(·|Ht),
St+1 ∼ p(·|St, At)

]
(38)

=

∞∑
t=0

γt

∫
σ

∫
α

pt(ds, da) (39)
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where we reused the notations from the proof of Proposition 12. Given the Markovian nature of π, we see that: pt(ds, da) =
pt(ds)π(da|s). Reintroducing this into 39, we get:

µπ
γ (σ, α) =

∞∑
t=0

γt

∫
σ

∫
α

pt(ds)π(da|s) =
∫
σ

∞∑
t=0

γtpt(ds)π(α|s) =
∫
σ

µπ
γ (ds)π(α|s), (40)

which proves that π is indeed the Radon-Nikodym derivative
dµπ

γ (·,α)
dµπ

γ (·,A) (s) and shows the equality to π̃ up to a µπ
γ (·,A)-null

set.

E. Finiteness and σ-finiteness
The (σ-)finiteness of the occupancy measure is an interesting property as it will be required to avoid encountering
indeterminate formulas. We note that γ < 1 suffices to guarantee that all Markovian policies have a finite occupancy
measure for any policy. Below, we derive a more general characterisation of MDPs that admit only policies with finite
occupancy measures.

Proposition 10. If all deterministic Markovian policies have finite occupancy measures, any policy π admits a finite
occupancy measure and Theorem 4 applies.

Proof. We notice that the expected performance under reward r(s, a) = 1 ∀s, a is equal to the occupancy measure µπ
γ (S)

over the full state-action pair set. We use the well known theoretical result (Sutton & Barto, 1998) that there exists a
deterministic Markovian policy that optimises any MDP. We let π∗ denote one such optimal policy. If the occupancy
measure is finite for any deterministic Markovian policies then it is for π∗, and we have for all π:

µπ
γ (S) ≤ µπ∗

γ (S) < ∞, (41)

which establishes the finiteness of the occupancy measure of π.

If we additionally consider a countable state space, the above reasoning can be extended to the σ-finite case. Let us
assume that all deterministic Markovian policies are σ-finite, and consider a fixed s ∈ S. We define the reward function
r(s, a) = 1 ∀a and r(s′, a) = 0 ∀s′ ̸= s, a. There exists a deterministic Markovian policy π∗ maximizing that reward
function. Since π∗ has a σ-finite occupancy measure, its performance is finite. We obtain for any policy π:

µπ
γ ({s}) ≤ µπ∗

γ ({s}) < ∞. (42)

Since this holds for any state s, and since the state space is countable, we conclude that µπ
γ is σ-finite.

F. Absolute Continuity of Finite Trajectory Distribution
Proposition 11. For any t ≥ 0, we let τπt denote the trajectory distribution on (S ×A)t induced by executing π t times in
the environment, starting from p0. Then, τπt is absolutely continuous with respect to τ π̃t .

Proof. We prove this result by induction on t ≥ 0. For t = 0, let us consider (σ, α) ∈ ΣS × ΣA such that τ π̃0 (σ, α) = 0.
This implies that: ∫

σ

∫
α

p0(ds)π̃(da|s) =
∫
σ

p0(ds)
dµπ

γ (·, α)
dµπ

γ (·)
(s) = 0. (43)

Letting Nα = {s ∈ S | dµπ
γ (·,α)

dµπ
γ (·)

(s) = 0}, we see that necessarily p0(Nα ∩ σ) = p0(σ) (otherwise the above integrals
would not be 0). Now, by definition of the Radon-Nikodym derivative, we have:

µπ
γ (Nα, α) =

∫
Nα

µπ
γ (ds)

dµπ
γ (·, α)

dµπ
γ (·)

(s) = 0. (44)

Since p0(Nα ∩ σ) = p0(σ), we know that: τπ0 (σ, α) = τπ0 (Nα ∩ σ, α) ≤ µπ
γ (Nα, α) = 0, which concludes the base case.
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Let us proceed to the induction step. We consider (σ, α) ∈ (ΣS × ΣA)
t+1, with τ π̃t+1(σ, α) = 0, and aim to prove that

τπt+1(σ, α) = 0. We let σ|t and α|t denote the first t components of σ and α, and σt+1 and αt+1 their t+ 1-th. From the
Markov property of the various objects involved, we have:

τ π̃t+1(σ, α) =

∫
αt+1

∫
σt+1

∫
σ|t,α|t

π̃(dat+1 | st+1)p(dst+1 | st, at)τ π̃t (ds|t, da|t). (45)

As far as π is concerned, we have:

τπt+1(σ, α) =

∫
αt+1

∫
σt+1

∫
σ|t,α|t

π(dat+1 | s|t+1, a|t)p(dst+1 | st, at)τπt (ds|t, da|t). (46)

Since τ π̃t+1(σ, α) = 0, three cases are possible (corresponding to the measure of the three integrals from right to left being
null):

(i). τ π̃t (σ|t, α|t) = 0. In this case, the induction hypothesis implies τπt (σ|t, α|t) = 0, and thus τπt+1(σ, α) = 0.

(ii).
∫
σ|t,α|t

p(σt+1 | st, at)τ π̃t (ds|t, da|t) = 0. We define N1 = {(s, a) | p(σt+1 | s, a) ̸= 0}, and see that necessarily

τ π̃t (N1) = 0, implying that τπt (N1) = 0 by the induction hypothesis, and thus that τπt+1(σ, α) = 0.

(iii).
∫
σt+1

τ π̃t+1(dst+1)π̃(αt+1|st+1) = 0, where we overloaded the notations by letting τ π̃t+1(dst+1) be the distribution
of the t + 1-th state in the trajectory when following π̃. Similarly as above, this implies that: τ π̃t+1(Nα ∩ σt+1) =
τ π̃t+1(σt+1). In addition, using the same argument as in (ii), the induction hypothesis can be applied to get τπt+1(σ|t ×
(Nα ∩ σt+1), α) = τπt+1(σ, α). Finally, τπt+1(σ|t × (Nα ∩ σt+1), α) ≤ µπ

γ (Nα, α) = 0.

This concludes the induction step, and with it the proof of the proposition.
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