
CCVS: Context-aware Controllable Video Synthesis

Guillaume Le Moing1, ∗ Jean Ponce1, 2 Cordelia Schmid1

1Inria and Department of Computer Science, ENS, CNRS, PSL Research University
2Center for Data Science, New York University

Abstract

This presentation introduces a self-supervised learning approach to the synthesis
of new video clips from old ones, with several new key elements for improved
spatial resolution and realism: It conditions the synthesis process on contextual
information for temporal continuity and ancillary information for fine control. The
prediction model is doubly autoregressive, in the latent space of an autoencoder
for forecasting, and in image space for updating contextual information, which
is also used to enforce spatio-temporal consistency through a learnable optical
flow module. Adversarial training of the autoencoder in the appearance and
temporal domains is used to further improve the realism of its output. A quantizer
inserted between the encoder and the transformer in charge of forecasting future
frames in latent space (and its inverse inserted between the transformer and the
decoder) adds even more flexibility by affording simple mechanisms for handling
multimodal ancillary information for controlling the synthesis process (e.g., a few
sample frames, an audio track, a trajectory in image space) and taking into account
the intrinsically uncertain nature of the future by allowing multiple predictions.
Experiments with an implementation of the proposed approach give very good
qualitative and quantitative results on multiple tasks and standard benchmarks.

1 Introduction

Feeding machines with extensive video content, and teaching them to create new samples on their own,
may deepen their understanding of both the physical and social worlds. Video synthesis has numerous
applications from content creation (e.g., deblurring, slow motion) to human-robot interaction (e.g.,
motion prediction). Despite the photo-realistic results of modern image synthesis models [38], video
synthesis is still lagging behind due to the increased complexity of the additional temporal dimension.

An emerging trend is to use autoregressive models, for example transformer architectures [68], for
their simplicity, and their ability to model long-range dependencies and learn from large volumes of
data [4, 16]. First introduced for natural language processing (NLP) and then succesfully applied
to visual data [18], the strength of transformers is grounded in a self-attention mechanism which
considers all pairwise interactions within the data. The price to pay is a computational complexity
which grows quadratically with the data size, which itself depends linearly on the temporal dimension
and quadratically on the spatial resolution in the image domain. Although there have been some efforts
to reduce the complexity of self-attention [11, 39, 50], using such methods directly on visual data is
still limited to low resolutions and impractical without considerable computational power [9, 79].

Some recent works [20, 53] address this problem by using an autoencoder to compress the visual data,
and apply the autoregressive model in the latent space. This greatly reduces the memory footprint and
computational cost, yet, the greater the compression, the harder it is to faithfully reconstruct frames.
The corresponding trade-offs may undermine the practical usability of these approaches. GANs [26]
mitigate this issue by “hallucinating” plausible local details in image synthesis [20]. But latent video

∗corresponding author: guillaume.le-moing@inria.fr

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



transformers [53] decode frames independently, which prevents local details from being temporally
coherent. Hence, using GANs in this setting may result in flickering effects in the synthesized videos.

We follow the problem decomposition from [20, 53], but introduce a more elaborate compression
strategy with CCVS (for Context-aware Controllable Video Synthesis), an approach that takes
advantage of “context” frames (i.e., both input images and previously synthesized ones) to faithfully
reconstruct new ones despite lossy compression. As shown in Figure 1, CCVS relies on optical flow
estimation between context and new frames, within temporal skip connections, to let information be
shared across timesteps. New content, which cannot be retrieved from context, is synthesized directly
from latent compressed features, and adversarial training [26] is used to make up realistic details.
Indeed, information propagates in CCVS to new frames as previously synthesized ones become part
of the context. Like other video synthesis architectures based on autoregressive models [53, 79],
CCVS can be used in many tasks besides future video prediction. Any data which can be expressed
in the form of a fixed-size sequence of elements from a finite set (aka, tokens) can be processed by
a transformer. This applies to video frames (here, via compression and quantization) and to other
types of data. Hence, one can easily fuse modalities without having to build complex or task-specific
architectures. This idea has been used to control image synthesis [20, 54], and we extend it to a
variety of video synthesis tasks by guiding the prediction with different annotations as illustrated in
Figure 2. Code, pretrained models, and video samples synthesized by our approach are available at
the url https://16lemoing.github.io/ccvs. Our main contributions are as follows:

1. an optical flow mechanism within an autoencoder to better reconstruct frames from context,
2. the use of ancillary information to control latent temporal dynamics when synthesizing videos,
3. a performance on par with or better than the state of the art, while being more memory-efficient.

2 Related Work

Video synthesis. In its simplest form, videos are produced without prior information about their
content. GAN-based approaches map Gaussian noise into a visually plausible succession of frames.
For example, VGAN [71] and ProgressiveVGAN [1], adapt the traditional GAN framework [26] from
image to video synthesis by simply using 3D instead of 2D convolutions. These approaches, including
recent attempts such as G3AN [76], are computationally expensive, and, by nature, restricted to
synthesizing a fixed number of frames due to the constraints of their architecture. Other approaches
predict latent motion vectors with a CNN [56], or a recurrent neural network (RNN) [12, 57, 65], and
generate frames with individual 2D operations. To avoid the shortcomings of information loss in
the sequential processing of RNNs, we use an attention-based autoregressive model instead. Since
we forecast temporal dynamics in a compressed space, a large temporal window can be used when
predicting new frames, without having to resort to expensive 3D computations. Previous works
have attempted to scale video synthesis to higher resolution by using progressive training [1], sub-
sampling [56, 57], reducing the dimension of the discriminator [36], or redefining the task as finding
a trajectory in the latent space of a pre-trained image generator [63]. Compression, together with
efficient context-aware reconstruction allows us to synthesize videos at high resolution.

Controllable video synthesis. Some of the aforementioned works [12, 56, 57, 76] handle synthesis
conditioned on a class label. Another popular control is to use a few priming frames to set off
the generation process. This task, known as future video prediction, has received a lot of attention
recently. Methods based on variational autoencoders (VAE) [2, 15] have been proposed to account for
the stochastic nature of future forecasting, i.e., the plurality of possible continuations, disregarded in
deterministic predictive models [21, 47, 70]. Yet, their blurry predictions have motivated the incorpo-
ration of adversarial training [44], hierarchical architectures [7, 80], fully latent temporal models [22],
or normalizing flows [42]. Another line of work infers spatial transformation parameters (e.g., optical
flow), and predicts the future by warping past frames (i.e., grid sampling and interpolation as in [33])
in RGB space [21, 24, 28, 72, 81] or in feature space [45], typically using a refinement step to handle
occlusions. Lately, autoregressive methods [53, 79] leveraging a self-attention mechanism [68]
have also been applied to this task. Our method benefits from the context-efficiency of approaches
based on spatial transformation modules and the modeling power of autoregressive networks. In
the meantime, other forms of control with interesting applications have emerged. Point-to-point
generation [75], a variant of future video prediction, specifies both start and end frames. State or
action-conditioned synthesis [28, 48] guides the frame-by-frame evolution with high-level commands.

2

https://16lemoing.github.io/ccvs


Figure 1: Proposed architecture. Here Xc and Xs respectively stand for the (input) context and
(output) synthesized video. Learnable encoder and decoder modules E and D are linked by a learnable
flow estimation module F ensuring spatio-temporal consistency between context and synthesized
frames. The architecture is doubly autoregressive, with a transformer T responsible for predicting the
features Zs associated with future frames Xs from the features Zc associated with context frames Xc,
and a simple, parameterless, “shift-and-add” module S updating Xc as each new frame is generated.
The architecture is trained in two steps: The parameters of E , D and F are first estimated (without
any future forecasting from the transformer) in an adversarial manner using two discriminators ∆i

and ∆t to ensure that the frames synthesized are both realistic (∆i) and temporally coherent (∆t).
The two discriminators are then discarded, and the parameters of the transformer T are estimated
with E , F and D frozen. At inference time, the transformer is used only once, latter frames being
estimated in an autoregressive manner by the quadruple D S, E , F . See text for more details.

Additional works consider video synthesis based on one [51] or multiple layouts [46, 74], another
video [8], or sound [10, 34, 73]. To account for the variety of potential controls, we leverage the
flexibility of transformers, and propose an unifying approach to tackle all of these tasks.

3 Context-aware controllable video synthesis

3.1 Overview of the proposed approach

We consider video data, such that an individual frame x is natively an element of X = RH×W×3,
which can be encoded as some feature z in Z = Rh×w×F with reduced spatial resolution and
increased number of channels. We assume that we are given Xc in Xm corresponding to m successive
frames, and our goal is to synthesize a plausible representation of the following n frames Xs which
lies in Xn. Given Xc, we can compute the corresponding features Zc in Zm using some encoder
E : X → Z on each frame individually, then use an autoregressive model (a transformer coupled with
a quantization step in our case) to predict features Zs in Zn formed by the n features corresponding
to time ticks m + 1 to m + n. (Note that the values of m and n can be arbitrary, using [by now]
traditional masking and sliding window techniques.) These features can finally be converted one by
one into the corresponding frames Xs using some decoder D : Z → X .

The overall approach is illustrated by Figure 1. The use of a quantizer over a learned codebook in our
implementation complicates the architecture a bit, but has several advantages, including the reuse
of familiar NLP technology [68] and, perhaps more importantly, affording simple mechanisms for
handling different types of inputs (from images to sound for example [9, 31]) and the intrinsically
uncertain and multimodal nature of future prediction (by sampling different codebook elements
according to their likelihood [30]). Concretely, this choice simply amounts to inserting in our
architecture, right after the encoder E , a nearest-neighbor quantizer Q : RF → J1, qK parameterized
by an F × q codebook which, given the embedding z of a frame, returns a h × w matrix of
corresponding tokens, that is, the indices of the closest entry in the codebook for feature vector
zi,j for all spatial locations (i, j) in J1, hK × J1, wK. We abuse notation, and identify Q with its
parameterization by this codebook, so we can optimize over Q just as we optimize over E instead of
naming explicitly its parameters in the rest of this presentation. An “un-quantizer” U : J1, qK → RF ,
also parameterized (implicitly) by the codebook and associating with each token the corresponding
entry of the codebook, is also inserted right before the decoder D. In this setting, T : J1, qKm×h×w →
J1, qKn×h×w takes as input a sequence of tokens, and outputs the tokens for subsequent frames, each
one of them chosen among q possibilities as either the one with the highest score, or drawn randomly

3



from the top-k scores to account for the multimodal nature of future forecasting (here k ≤ q is some
predefined constant, see [30] for related approaches).

The elements of the architecture described so far are by now (individually) rather classical, with
learnable, parametric functions E , D, Q and T . Besides putting them all together, and as detailed
in the rest of this section, we add several original elements: (a) The encoding/decoding scheme is
improved by the use of two discriminators, ∆i and ∆t respectively, trained in an adversarial manner
to ensure that the predicted frames are realistic and temporally consistent. (b) The context frames Xc

are themselves updated each time a new frame is predicted in an autoregressive manner (iteratively
fill the sequence up to some predefined capacity, then shift to the left, forgetting the first frame
and adding the latest synthetic one on the right). (c) The encoder and decoder are linked through a
learnable flow module F , allowing the context frames to guide the prediction of the synthetic ones.
(d) Additional control variables, ranging from object trajectories to audio tracks, can be used in the
form of sequence- or frame-level annotations to drive the synthesis by adding the corresponding
tokens to the ones passed on to the autoregressive model T .

We detail in this section the concrete components of the approach sketched above, including the
autoencoder and quantizer architectures and their training procedure (Section 3.2), and the imple-
mentation of the autoregressive model by a transformer [68], illustrated in Figure 2, which we adapt
to account for outside control signals (Section 3.3), once again with the corresponding procedure.
Further architectural choices are also detailed in Appendix A.

3.2 First stage: training the context-aware autoencoder and the quantizer

Architecture. E and D respectively decreases and increases the spatial resolution by using convolu-
tional residual blocks [29], with (rk)k∈J1;KK the K corresponding resolution levels (rk = hk × wk).
It is common practice to augment, as in U-Net [55], the autoencoder with long skip connections
between E and D to share information across the two models at these intermediate levels and escape
the lossy compression bottleneck. Although we cannot apply this directly to our setting since infor-
mation only flows through D for predicted timesteps, such skip connections can be established from
the encoding stage of a context frame xc to the decoding stage of a new frame xs (resulting from
features zs). Similar mechanisms [15, 19] have been proposed in the past for video synthesis but
they are only copying static background features from a single context frame. We follow works on
semantic segmentation [23] and face frontalization [78] and use a flow module F to warp features
and produce temporally consistent outputs despite motion. We extend this to multi-frame contexts,
with significant performance gains and no additional parameter to be learned.

Concretely, let ekc be features being encoded from xc, and dks features being decoded from zs at a
given intermediate resolution rk. We first compute all intermediate context features ekc by applying
E to xc. We then progressively decode features dks for the new frame from low (k = 1) to high
resolution (k = K) by iterating over the following steps: (a) apply one decoding sub-module to get
dks from dk−1

s , (b) use F to refine the optical flow fk
c (in R2×rk ) which estimates the displacement

field from ekc to dks (as a proxy to the one from xc to xs), and a fusion mask mk
c (in R1×rk ) which

indicates the expected similarity between aligned features e′kc = W(ekc , f
k
c ) and dks (also as a proxy

for the one in image domain) with W corresponding to a standard warping operation, (c) use e′kc
and mk

c to update dks with context information (see update rule (1) below), (d) move to resolution
level rk+1 by going back to (a). We note that F estimates fk

c and mk
c in a coarse-to-fine fashion by

refining fk−1
c and mk−1

c (see Appendix A for further details). Temporal skip connections at a given
resolution level rk are defined as the following in-place modification of dks :

dks = σ(mk
c )⊗ dks + (1− σ(mk

c ))⊗ e′kc , (1)

where σ is the Sigmoid function, and ⊗ the element-wise product. We note that update rule (1) is
quite standard for warping and fusing two streams of spatial information [23, 28, 74]. For concrete
implementation of F , we build upon LiteFlowNet [32], an optical flow estimation model which also
combines pyramidal extraction and progressive warping of features. For simple integration into our
framework, we use features from E and D both in the mask and flow estimation, and in the update (1).
This process readily generalizes to multi-frame contextual information (see Appendix D for details).
Similar to spatial transformers [33], the warping operation W is differentiable. As a result, gradients
from the training losses can backpropagate from D to E through F . This allows end-to-end training
of the autoencoder even with information from different timesteps in E and D.

4



Training procedure. The global objective is the linear combination of four auxiliary ones:

L = λqLq + λrLr + λaLa + λcLc, (2)

namely a quantization loss (Lq), a reconstruction loss (Lr), an adversarial loss (La), and a contextual
loss (Lc), detailed in the next paragraphs.

The codebook is trained by minimizing the reconstruction error between encoded features z = E(x)
and quantized features zq = U(Q(z)) (with notations introduced in Section 3.1):

Lq(E ,Q) = ∥ sg(z)− zq∥22 + β∥ sg(zq)− z∥22, (3)

where sg(.) is the stop gradient operation which constrains its operand to remain constant during
backpropagation. The first part moves the codebook entries closer to the encoded features. The
second part, known as the commitment loss [67], reverses the roles played by the two variables.

In regions with complex textures and high frequency details, local patterns shifted by a few pixels
in x and its reconstruction x̂ = D(zq) may result in large pixel-to-pixel errors, while being visually
satisfactory. We thus define the recovery objective as the L1 loss in both RGB space and between
features from a VGG network [59] pretrained on ImageNet [14]:

Lr(E ,Q,F ,D) = ∥x− x̂∥1 + ∥VGG(x)−VGG(x̂)∥1. (4)

To tackle cases where information cannot be recovered from context due to occlusion, and the
compressed features are insufficient to create plausible reconstructions due to lossy compression,
we supplement our architecture with an image discriminator ∆i, made of downsampling residual
blocks [29], to encourage realistic outputs. ∆i tries to distinguish real images from reconstructed
ones (Ld), while E and D fools ∆i into assuming reconstructed images are as good as real ones (La):

Ld(∆i) = ln(1+e∆i(x))+ln(1+e−∆i(x̂)), (5) La(E ,Q,F ,D) = ln(1 + e∆i(x̂)). (6)

We employ a similar strategy on sequences of consecutive frames to improve the temporal consistency
using a 3D temporal discriminator ∆t, a direct extension of 2D image discriminator ∆i.

The success of our method relies on accurate motion estimation in F , a difficult task which benefits
from self-supervision [35]. Therefore, we train the autoencoder with augmented views of the
input frames as context. Custom augmentations functions A : X → X include: rotation, scaling,
translation, elastic deformation, and combinations of these. Augmented views are obtained by
warping x by the suitable flow ac: A(x) = W(x, ac), and the inverted flow fc from A(x) to x
can be approximated.1 We resort to flow inversion because directly reconstructing distorted views
may encourage similar defects during inference. Moreover, we balance between self-recovery and
context-recovery objectives by additionally applying a blurring function B : X → X and an occlusion
mask oc to the augmented frames xc = oc ⊗ B(A(x)). This augmentation strategy is illustrated in
Appendix F. We define the contextual loss as:

Lc(E ,Q,F ,D) = ∥fc − f̂c∥22 + ∥o′c − σ(m̂c)∥22, (7)

where o′c = W(oc, fc), and f̂c and m̂c are the flow and mask estimated by F . In practice, this loss is
applied at intermediate resolution levels rk for improved training.

3.3 Second stage: predicting temporal dynamics with transformers

Architecture. We follow [20] and adopt an architecture similar to Image-GPT [9] for T . Instead
of modeling a single annotated frame as in [54], we design our model to account for sequences of
N such frames to allow prediction of temporal dynamics controlled by ancillary information in the
form of video- and frame-level annotations. We have shown, in Section 3.2, how to represent a
frame as a sequence of h× w tokens (indices in J1, qK) through encoding and quantization. Similar
strategies can be applied to cater to other types of data, with or without compression depending on
their complexity, and, thereby, turn ancillary information into tokens as well. The capacity of the
transformer (the maximum sequence length it can process) is L = lv +N ∗ (lf + h ∗ w), where lv
and lf are the size of video- and frame-level annotations respectively. The final layer of the model
predicts, for every i in J1, L− 1K, a vector ôi (of size q, the number of possible tokens) which scores
the likelihood of the i+ 1th token given all preceding ones.

1Our implementation of flow inversion approximation is detailed in Appendix C.

5



Figure 2: Illustration of the transformer to predict latent temporal dynamics with control-related data.
For clarity, we omit the flow module F between E and D. Input video-level annotation, frame-level
annotations, and conditioning frames are encoded and quantized to form the initial token sequence,
and mapped to corresponding embeddings. Subsequent frame tokens are obtained autoregressively
with T , while the ones corresponding to video- and frame-level annotations guide the prediction.

Training procedure. To learn the parameters of T , we load a complete sequence (N frames
corresponding to L tokens), and try to predict the L − 1 last tokens based on the L − 1 first ones.
This is done by maximizing the log-likelihood of the data using the cross-entropy loss:

L(T ) = −
L∑

i=2

log

(
exp(⟨ ôi−1, eτ(i)⟩)∑

j exp(⟨ ôi−1, ej⟩)

)
, (8)

where τ(i) is the ith ground-truth token, and ej a vector of 0’s with a 1 in its jth coordinate.

Inference. During inference we use T to complete autoregressively an input sequence of tokens.
To avoid known pitfalls (e.g., repetitive synthesis) and allow diverse outcomes, we use top-k sampling
whereby the next token is randomly chosen among the k most likely ones, weighted by their scores ô.
Although T processes sequences of N annotated frames, we predict ones of arbitrary length by using
a temporal sliding window. Tokens corresponding to video- and frame-level annotations are given as
input to T (not predicted, even for future frames) to guide the synthesis. We show in the experiments
how this control can translates into a variety of interesting tasks.

4 Experiments

We assess the merits of CCVS in the light of extensive experiments on various video synthesis tasks.

Datasets. BAIR Robot Pushing [19] consists of 43k training and 256 test videos of a robotic arm
interacting with objects from a fixed viewpoint. A high-resolution version has recently been released.
We manually annotate, in 500 frames, the (x, y) location of the arm in image space to train a position
estimator, which we use for state-conditioned synthesis. To account for real world scenarios, we
evaluate on Kinetics-600 [5], a large and diverse action-recognition dataset with approximately 500K
videos. We also test our method on AudioSet-Drums [25] for sound-conditioned synthesis on music
performance, containing 6k and 1k video clips in train and test splits respectively. Other datasets and
tasks are covered in Appendix E.

Metrics. We use the Fréchet video distance (FVD) [66] which measures the distribution gap
between real and synthetic videos in the feature space of an Inception3D network [6] pretrained on
Kientics-400 [40]. It estimates the visual quality and temporal consistency of samples as well as
the diversity in unconditioned scenarios. In conditioned ones, we use another metric for diversity
(DIV) which is the mean pixel-wise distance among synthetic trajectories conditioned on the same
input. For near-deterministic motions (e.g., in reconstructions, or constrained tasks), there is a
one-to-one mapping between real video frames and synthetic ones, and we include pairwise image
quality assessments: the structural similarity index measure (SSIM) [77] which evaluates a per-frame

6



Table 1: Ablation study of the autoencoder on BAIR (256×256). We evaluate self- and context-
recovery modules in different scenarios: synthesizing 16-frame videos from known compressed
features (“Reconstruction”), by inferring compressed features with T given the real trajectory of the
robotic arm (“State-conditioned”), or without the trajectory (“Pred.” and “Unc.”). The first real frame
is used as initial context in all cases, except for “Unc.” where it is synthesized by StyleGAN2 [38].

Self-recovery Ctxt.-recovery Reconstruction State-conditioned Pred. Unc.
RGB VGG ∆i ∆t F Sup. Ctxt. FVD↓ PSNR↑ FVD↓ PSNR↑ FVD↓ FVD↓
✓ 0 1200±6 20.0 1238±24 17.8 1265±22 1321±10

✓ ✓ 0 700±11 17.9 714±5 17.4 704±7 765±12

✓ ✓ ✓ 0 323±3 17.8 355±5 16.6 377±11 566±22

✓ ✓ ✓ ✓ 0 389±12 18.2 401±4 16.9 407±10 627±9

✓ ✓ ✓ ✓ ✓ 1 98±2 22.7 106±2 22.2 142±6 350±11

✓ ✓ ✓ ✓ ✓ ✓ 1 87±3 24.4 97±4 22.1 128±4 301±10

✓ ✓ ✓ ✓ ✓ ✓ 8 62±1 25.4 76±3 22.7 109±6 299±4

✓ ✓ ✓ ✓ ✓ ✓ 15 60±1 25.6 75±2 22.8 110±3 297±7

Training longer (num. epochs×3) 45±1 26.8 67±1 22.3 100±2 293±7

“Sup.”: self-supervision of F ; “Ctxt.”: number of context frames taken into account (in F ) when decoding current frame (in D).

Table 2: Ablation study of the transformer on BAIR.
We adopt notations and evaluation setups from Table 1.

Architecture Top-k State-conditioned Pred. Unc.
Layer Head Dec. Frame State FVD↓ PSNR↑ FVD↓ FVD↓

6 4 1 1 73±2 23.0 281±7 474±17

12 8 1 1 73±3 23.1 262±7 435±8

24 16 1 1 70±3 23.3 331±9 521±19

24 16 ✓ 1 1 69±2 23.2 321±9 479±34

24 16 ✓ 10 1 65±2 22.4 127±7 308±19

24 16 ✓ 100 1 67±1 22.3 121±2 314±12

24 16 ✓ 100 10 67±1 22.3 100±2 293±7

“Dec.”: spatio-temporal decomposition of positional embeddings.

Figure 3: Quality and speed of synthesis
vs. compression on a Nvidia V100 GPU.

conformity (combination of luminance, contrast and structure), and the peak signal-to-noise ratio
(PSNR) which is directly related to the root mean squared error. For each metric, we compute the
mean and standard deviation (std) over 5 evaluation runs (2 for Kinetics due to its voluminous 50k
video test set). For clarity, the std value is shown only when it is greater than the reported precision.

Training details. All our models are trained on 4 Nvidia V100 GPUs (32GB VRAM each), using
ADAM [41] optimizer, for multiple 20 hour runs. We adapt the batch size to fill the memory available.
We use a learning rate of 0.02 to train the autoencoder, and exponential moving average [83] to
obtain its final parameters. We use weighting factors (1, 10, 1, 1) and 0.25 for (λq, λr, λa, λc) and β
in Equations (2) and (3) respectively. We use a learning rate of 10−5 to train the transformer.

4.1 Ablation study

We conduct an ablation study of CCVS to show the individual contribution of the key components of
the proposed autoencoder (Table 1), transformer (Table 2), and the effect of compression (Figure 3).

First, we fix the transformer and observe the incremental improvements in synthesis quality when
adding self- and context-recovery modules to the autoencoder (Table 1). In particular, L1 loss in the
feature space of a VGG net [59] produces sharper videos than using the same loss in the RGB space
alone. Predicted frames using image and temporal discriminators (∆i and ∆t) display greater realism
and temporal consistency. The flow module F significantly improves the performance on all metrics
by allowing context frames to guide the reconstruction of synthetic ones. The self-supervision of
F , the use of larger context windows, and longer training times, further improve the quality of the
synthesis. ∆t seems to deteriorate the FVD at first, but when all modules are combined it improves
FVD by almost a factor 2 as it encourages better temporal consistency in the presence of context.

7



Table 3: Future video prediction on BAIR (64×64), synthesizing 16-frame videos given a few
conditioning frames (“Cond.”). We include some extensions of our method at higher resolution.

Method Cond. FVD ↓ Code Avail. Memory, compute
MoCoGAN [65] 4 503 ✓ 16GB, 23h∗

SVG-FP [15] 2 315 ✓ 12GB, 6 to 24h∗

CDNA [21] 2 297 ✓ 10GB, 20h∗

SV2P [2] 2 263 ✓ 16GB, 24 to 48h∗

SRVP [22] 2 181 ✓ 36GB, 168h∗

VideoFlow [42] 3 131 128GB, 336h∗

LVT [53] 1 126±3 ✓ 128GB, 48h
SAVP [44] 2 116 ✓ 32GB, 144h
DVD-GAN-FP [12] 1 110 2TB, 24h∗

Video Transformer (S) [79] 1 106±3 256GB, 33h∗

TriVD-GAN-FP [45] 1 103 1TB, 280h∗

Low res. CCVS (ours) 1 99±2 ✓ 128GB, 40h
Video Transformer (L) [79] 1 94±2 512GB, 336h∗

SSIM ↑ (t = 8) SSIM ↑ (t = 15)
High res.∗∗ CCVS (ours) 1 80±3 0.729 0.683

+ end frame 2 81±2 0.766 0.839
+ state 1 50±1 0.885 0.863

∗: value confirmed by authors; ∗∗: training / inference / SSIM at 256×256, FVD at 64×64.

t = 1 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16

Fu
tu

re
pr

ed
ic

tio
n

Po
in

t-
to

-
po

in
t

St
at

e-
co

nd
iti

on
ed

R
ea

l
vi

de
o

Figure 4: Qualitative samples for different types of control on BAIR (256× 256). Zoom in for details.

We fix the autoencoder, and compare different architectures and sampling strategies for the transformer
(Table 2). Increasing the model capacity by adding layers and increasing expressivity (number of
attention heads) along with a spatio-temporal decomposition of positional embeddings (shown in
Figure 2, detailed in supplementary material) yields small improvements. Top-k sampling is beneficial
for stochastic tasks (video prediction and unconditional synthesis), whereas always selecting the most
probable tokens results in little to no motion. Guiding temporal dynamics with state-conditioned
synthesis reduces the advantage of sampling by narrowing down possible outcomes.

Finally, we explore the effect of compression (in terms of the number of tokens for each frame) on
synthesis speed (FPS) and quality (FVD) of reconstructed and predicted videos (Figure 3). We use a
compression of 64 tokens in our default setup since it gives the best FVD while retaining a reasonable
speed. The critical drop of FPS for low compression ratios is due to the pairwise consideration of all
input tokens in T . Note that using a smaller temporal window in T may allow additional speed-ups.

8



Table 4: Future video prediction on Kinetics (64×64)
of 16-frame videos from 5 consecutive input frames.

Method FVD ↓ GPU/TPU Mem.
LVT [53] 225 128GB, 48h
Video Transformer [79] 170±5 2TB, 336h∗

DVD-GAN-FP [12] 69±1 2TB, 144h∗

CCVS (ours) 55±1 128GB, 300h
TriVD-GAN-FP [45] 26±1 16TB, 160h∗

∗: value confirmed by authors.

Table 5: Codebook size on Kinetics.

Size Reconstruction Pred.
FVD ↓ SSIM ↑ PSNR ↑ FVD ↓

1024 58±1 0.907 31.2 66±2

4096 54±1 0.917 31.6 64±1

16384 49±1 0.923 32.0 55±1

65536 45±1 0.928 32.2 61±1

∞ 12±1 0.963 34.5 229±1

Table 6: Sound-conditional video synthesis on AudioSet-Drums (64×64).

Method Cond. Audio SSIM↑ PSNR↑
t = 16 t = 30 t = 45 t = 16 t = 30 t = 45

SVG-LP [15] 15 0.971±0.017 0.661±0.010 0.510±0.008 30.0±1.1 16.6±0.3 13.5±0.1

Vougioukas et al. [73] 15 ✓ 0.940±0.017 0.904±0.007 0.896±0.015 26.2±1.0 23.8±0.2 23.3±0.3

Sound2Sight [10] 15 ✓ 0.984±0.009 0.954±0.007 0.947±0.007 33.2±0.1 27.9±0.5 27.0±0.3

CCVS (ours) 15 ✓ 0.987±0.001 0.956±0.006 0.945±0.008 33.7±0.4 28.4±0.6 27.3±0.5

4.2 Quantitative and qualitative studies

BAIR. For future video prediction on BAIR (Table 3), CCVS trained at 64×64 resolution (low res.)
is on par with the best method (L-size version of [79]), but requires much less computing resources,
and outperforms [79] under similar resources. We also propose high res. CCVS which is not strictly
comparable to the prior arts as we use 256×256 image resolution for training and test, and resize
the synthesized frames to 64×64 for computing FVD. However, using this variant demonstrates the
performance gains that can arise by scaling CCVS. We additionally address point-to-point synthesis
(with the end frame as a video-level annotation) and state-conditioned synthesis (with the estimated
2D position of the arm as a frame-level annotation). Point-to-point synthesis is more difficult than
video prediction: Not only does it requires realistic video continuations, but also ones which explain
the end position of all visible objects. Hence, FVD score is constant despite the additional input.
Still, this yields better SSIM for mid-point and one-before-last frames. State-conditioned synthesis
improves on FVD and mid-synthesis SSIM as motion becomes near-deterministic. Some synthetic
frames for these tasks are shown in Figure 4. CCVS creates plausible high-quality videos in various
settings, and true interactions with objects compared to previous attempts [48] at the same resolution.

t = 4 t = 8 t = 12 t = 16 t = 4 t = 8 t = 12 t = 16

Figure 5: Qualitative samples on future video prediction on Kinetics (64× 64). Zoom in for details.

Kinetics. CCVS ranks second on Kinetics video prediction benchmark. Kinetics contains more
diversity than BAIR, and the reconstruction is thus more difficult. A solution [54] is to increase the
codebook size (Table 5) but it stops translating into better prediction FVD at some point. We also try
removing the quantization step (equivalent to an infinite codebook), and directly regressing latent
features with T (instead of ranking the likelihood of possible tokens). It allows better reconstructions,
yet the prediction FVD is high. Figure 5 shows examples of synthetic continuations conditioned on

9



DIV∗ ↑ Input Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6
t = 1 t = 15 t = 15 t = 15 t = 15 t = 15 t = 15

B
A

IR

Whole frames
19.53±2.60

Moving parts
136.88±12.27

K
in

et
ic

s Whole frames
20.85±2.90

Moving parts
48.16±13.83

A
ud

io
Se

t-
D

ru
m

s Whole frames
2.25±0.26

Moving parts
65.45±6.00

∗: the pixel-wise distances are obtained by applying a 1.0 × 10−3 factor (omitted for clarity).

Figure 6: Diversity results for conditioned scenarios. The diversity metric (DIV) measures the mean
pixel-wise distance among 10 15-frame synthetic trajectories conditioned on the same frame. We
report the mean and std over 100 runs: on whole frames as in [82], or moving parts only by masking
static regions (optical flow magnitude between consecutive frames < 20% of the max magnitude) as
in [69]. We show, for the same input, the 15th frame of various randomly seeded synthetic trajectories.

5-frame unseen test sequences. CCVS produces realistic and temporally coherent outputs which
display various types of motion (e.g., body, hand, camera).

AudioSet-Drums. CCVS achieves top performance on sound-conditioned video synthesis on Au-
dioSet Drums (Table 6). Figure 6 shows quantitative and qualitative insights on the diversity of the
synthetic trajectories conditioned on the same input for the three datasets. The diversity metrics
(DIV) computed on whole frames is lower on AudioSet Drums than on the other two datasets. This is
explained by the fact that motion is quite repetitive and involves a limited portion of the frame. The
same metric on moving parts only, and the end position of the drummer’s hand and upper left cymbal
in qualitative samples, show the diversity of synthetic trajectories. An ablation of CCVS with/without
audio guidance as well as more qualitative results on diversity can be found in Appendix E.

5 Discussion

CCVS is on par or better than the state-of-the-art on standard benchmarks, uses less computational
resources, and scales to high resolution. Training neural networks is environmentally costly, due to
the carbon footprint to power processing hardware [17, 61]. Methods sparing GPU-hours like ours
are crucial to make AI less polluting [43, 61], and move from a “Red” to a “Green” AI [58]. Future
work will include exploring new codebook strategies and synthesis guided by textual information.

Limitations. CCVS uses a complex architecture and a two-stage training strategy. Simplification of
both is an interesting direction for improving the method. Moreover, CCVS lacks global regularization
of motion (flow computed on pairs of timesteps), and its efficiency relies on recycling context
information such that synthesizing content from scratch (i.e., no input frame given) remains difficult.

Broader impact. The increased accessibility and the many controls CCVS offers could accelerate
the emergence of questionable applications, such as “deepfakes” (e.g., a video created from someone’s
picture and an arbitrary audio) which could lead to harassment, defamation, or dissemination of
fake news. On top of current efforts to automate their detection [49], it remains our responsibility
to grow awareness of these possible misuses. Despite these worrying aspects, our contribution has
plenty of positive applications which outweigh the potential ethical harms. Our efficient compression
scheme is a step in the direction of real-time solutions: e.g., enhancing human-robot interactions, or
improving the safety of self-driving cars by predicting the trajectories of people and vehicles nearby.

10



Acknowledgements

This work was granted access to the HPC resources of IDRIS under the allocation 2020-AD011012227
made by GENCI. It was funded in part by the French government under management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-
P3IA-0001 (PRAIRIE 3IA Institute). JP was supported in part by the Louis Vuitton/ENS chair in
artificial intelligence and the Inria/NYU collaboration. We thank the reviewers for useful comments.

References
[1] Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and Luc Van Gool. Towards high resolution video

generation with progressive growing of sliced wasserstein GANs. arXiv preprint, 2018.

[2] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey Levine. Stochastic
variational video prediction. In ICLR, 2018.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint, 2013.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, 2020.

[5] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short note
about Kinetics-600. arXiv preprint, 2018.

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In CVPR, 2017.

[7] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional VRNNs for video prediction.
In ICCV, 2019.

[8] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A. Efros. Everybody dance now. In ICCV, 2019.

[9] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020.

[10] Anoop Cherian, Moitreya Chatterjee, and Narendra Ahuja. Sound2Sight: Generating visual dynamics
from sound and context. In ECCV, 2020.

[11] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, and Adrian
Weller. Rethinking attention with performers. In ICLR, 2021.

[12] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets. arXiv
preprint, 2019.

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

[15] Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In ICML, 2018.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In ACL, 2019.

[17] Payal Dhar. The carbon impact of artificial intelligence. Nature Machine Intelligence, 2020.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR,
2021.

11



[19] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. In CoRL, 2017.

[20] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis.
In CVPR, 2021.

[21] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. In NeurIPS, 2016.

[22] Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen, Sylvain Lamprier, and Patrick Gallinari. Stochas-
tic latent residual video prediction. In ICML, 2020.

[23] Raghudeep Gadde, Varun Jampani, and Peter V. Gehler. Semantic video cnns through representation
warping. In ICCV, 2017.

[24] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu, and Trevor Darrell. Disentangling propagation
and generation for video prediction. In ICCV, 2019.

[25] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing Moore,
Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for audio events. In
ICASSP, 2017.

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

[27] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri. Actions as space-time shapes.
TPAMI, 2007.

[28] Zekun Hao, Xun Huang, and Serge Belongie. Controllable video generation with sparse trajectories. In
CVPR, 2018.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[30] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In ICLR, 2020.

[31] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam Shazeer,
Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music transformer. In ICLR,
2019.

[32] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. LiteFlowNet: A lightweight convolutional neural
network for optical flow estimation. In CVPR, 2018.

[33] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In NeurIPS, 2015.

[34] Amir Jamaludin, Joon Son Chung, and Andrew Zisserman. You said that?: Synthesising talking faces from
audio. IJCV, 2019.

[35] Rico Jonschkowski, Austin Stone, Jonathan T. Barron, Ariel Gordon, Kurt Konolige, and Anelia Angelova.
What matters in unsupervised optical flow. In ECCV, 2020.

[36] Emmanuel Kahembwe and Subramanian Ramamoorthy. Lower dimensional kernels for video discrimina-
tors. Neural Networks, 2020.

[37] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
Large-scale video classification with convolutional neural networks. In CVPR, 2014.

[38] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In CVPR, 2020.

[39] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs:
Fast autoregressive transformers with linear attention. In ICML, 2020.

[40] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The
kinetics human action video dataset. arXiv preprint, 2017.

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

12



[42] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh,
and Durk Kingma. VideoFlow: A conditional flow-based model for stochastic video generation. In ICLR,
2020.

[43] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon
emissions of machine learning. In NeurIPS workshop, 2019.

[44] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine. Stochastic
adversarial video prediction. arXiv preprint, 2018.

[45] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin Cassirer, and Karen
Simonyan. Transformation-based adversarial video prediction on large-scale data. arXiv preprint, 2020.

[46] Arun Mallya, Ting-Chun Wang, Karan Sapra, and Ming-Yu Liu. World-consistent video-to-video synthesis.
In ECCV, 2020.

[47] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean
square error. In ICLR, 2016.

[48] Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa Ricci. Playable
video generation. In CVPR, 2021.

[49] Thanh Thi Nguyen, Quoc Viet Hung Nguyen, Cuong M. Nguyen, Dung Nguyen, Duc Thanh Nguyen, and
Saeid Nahavandi. Deep learning for deepfakes creation and detection: A survey. arXiv preprint, 2019.

[50] Anselm Levskaya Nikita Kitaev, Lukasz Kaiser. Reformer: The efficient transformer. In ICLR, 2020.

[51] Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng, Junjie Yan, and Xiaogang Wang. Video
generation from single semantic label map. In CVPR, 2019.

[52] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-
adaptive normalization. In CVPR, 2019.

[53] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. Latent video
transformer. arXiv preprint, 2020.

[54] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

[56] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with singular
value clipping. In ICCV, 2017.

[57] Masaki Saito, Shunta Saito, Masanori Koyama, and Sosuke Kobayashi. Train sparsely, generate densely:
Memory-efficient unsupervised training of high-resolution temporal GAN. IJCV, 2020.

[58] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. ACM, 2020.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In ICLR, 2015.

[60] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint, 2012.

[61] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In ACL, 2019.

[62] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for semantic segmenta-
tion. arXiv preprint, 2020.

[63] Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, and Sergey Tulyakov. A
good image generator is what you need for high-resolution video synthesis. In ICLR, 2021.

[64] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, , and Manohar Paluri. Learning spatiotemporal
features with 3d convolutional networks. In ICCV, 2015.

[65] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGAN: Decomposing motion and
content for video generation. In CVPR, 2018.

13



[66] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv preprint,
2018.

[67] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
NeurIPS, 2017.

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[69] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing motion and
content for natural video sequence prediction. In ICLR, 2017.

[70] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations from unlabeled
video. In CVPR, 2016.

[71] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In
NeurIPS, 2016.

[72] Carl Vondrick and Antonio Torralba. Generating the future with adversarial transformers. In CVPR, 2017.

[73] Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. End-to-end speech-driven facial animation
with temporal GANs. In BMVC, 2018.

[74] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
Video-to-video synthesis. In NeurIPS, 2018.

[75] Tsun-Hsuan Wang, Yen-Chi Cheng, Chieh Hubert Lin, Hwann-Tzong Chen, and Min Sun. Point-to-point
video generation. In ICCV, 2019.

[76] Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. G3AN: Disentangling appearance
and motion for video generation. In CVPR, 2020.

[77] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. TIP, 2004.

[78] Yuxiang Wei, Ming Liu, Haolin Wang, Ruifeng Zhu, Guosheng Hu, and Wangmeng Zuo. Learning
flow-based feature warping for face frontalization with illumination inconsistent supervision. In ECCV,
2020.

[79] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive video models. In ICLR,
2020.

[80] Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, and Chelsea Finn. Greedy hierarchical
variational autoencoders for large-scale video prediction. In CVPR, 2021.

[81] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. Future video synthesis with object motion
prediction. In CVPR, 2020.

[82] Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tianchen Zhao, and Honglak Lee. Diversity-sensitive
conditional generative adversarial networks. In ICLR, 2019.

[83] Yasin Yaz, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, and Vijay Chandrasekhar.
The unusual effectiveness of averaging in GAN training. In ICLR, 2019.

14


