
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE MODE-SEEKING PROPERTIES OF
LANGEVIN DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Langevin Dynamics framework, which aims to generate samples from the
score function of a probability distribution, is widely used for analyzing and in-
terpreting score-based generative modeling. While the convergence behavior of
Langevin Dynamics under unimodal distributions has been extensively studied in
the literature, in practice the data distribution could consist of multiple distinct
modes. In this work, we investigate Langevin Dynamics in producing samples
from multimodal distributions and theoretically study its mode-seeking properties.
We prove that under a variety of sub-Gaussian mixtures, Langevin Dynamics is
unlikely to find all mixture components within a sub-exponential number of steps
in the data dimension. To reduce the mode-seeking tendencies of Langevin Dy-
namics, we propose Chained Langevin Dynamics, which divides the data vector
into patches of constant size and generates every patch sequentially conditioned on
the previous patches. We perform a theoretical analysis of Chained Langevin Dy-
namics by reducing it to sampling from a constant-dimensional distribution. We
present the results of several numerical experiments on synthetic and real image
datasets, supporting our theoretical results on the iteration complexities of sam-
ple generation from mixture distributions using the chained and vanilla Langevin
Dynamics.

1 INTRODUCTION

Langevin dynamics, a.k.a. Langevin Monte Carlo, is a well-known Markov Chain Monte Carlo
(MCMC) sampling methodology that has been widely used to implement and interpret score-based
generative modeling. It can produce samples from the (Stein) score function of a probability density,
i.e., the gradient of the log probability density function with respect to data. It has been widely rec-
ognized that a pitfall of Langevin dynamics is its slow mixing rate (Wooddard et al., 2009; Raginsky
et al., 2017; Lee et al., 2018). Specifically, Song & Ermon (2019) shows that under a multi-modal
data distribution, the samples from Langevin dynamics may have an incorrect relative density across
the modes. Based on this finding, Song & Ermon (2019) proposes anneal Langevin dynamics, which
injects different levels of Gaussian noise into the data distribution and samples with Langevin dy-
namics on the perturbed distribution. While outputting the correct relative density across modes can
be challenging for Langevin dynamics, a natural question is whether Langevin dynamics would be
able to find all the modes of a multi-modal distribution.

In this work, we study this question by analyzing the mode-seeking properties of Langevin dynam-
ics. The notion of mode-seekingness (Bishop, 2006; Ke et al., 2021; Li & Farnia, 2023; Li et al.,
2024a) refers to the property that a generative model captures only a subset of the modes of a multi-
modal distribution. We note that a similar problem, known as metastability, has been studied in
the context of Langevin diffusion, a continuous-time version of Langevin dynamics described by
stochastic differential equation (SDE) (Bovier et al., 2002; 2004; Gayrard et al., 2005). Specifi-
cally, Bovier et al. (2002) gave a sharp bound on the mean hitting time of Langevin diffusion and
proved that it may require exponential (in the space dimensionality d) time for transition between
modes. Regarding discrete Langevin dynamics, Lee et al. (2018) constructed a probability distri-
bution whose density is close to a mixture of two well-separated isotropic Gaussians, and proved
that Langevin dynamics could not find one of the two modes within an exponential number of steps.
However, further exploration of the mode-seeking tendencies of Langevin dynamics and its variants
for general distributions is still lacking in the literature.
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(a) Traditional mixture model (b) Mixture model with in-between mode P (0)

Figure 1: Traditional mixture models studied in the literature vs. our analyzed mixture distribution
possessing the in-between mode P (0). P (0) is supposed to contain a minor probability mass, yet
with a significantly higher variance than the other modes P (1), . . . , P (k).

In this work, we study Langevin dynamics under multi-modal distributions in a slightly different
setting from the standard theory literature on sampling. As illustrated in Figure 1, the existing
theoretical literature commonly considers a mixture of well-separated modes with bounded variance.
On the other hand, in our analysis, we consider a low-density high-variance mode (referred to as
Mode 0 or P (0)) surrounding the other modes and filling up the space between the modes. Note
that Langevin dynamics relies on the score function (i.e., the gradient of log-pdf) to search for the
modes. For a mixture model with no in-between modes (Figure 1.a), Langevin dynamics could
carry information about the direction towards the closest mode, even if they are far from all the
modes. However, assuming an in-between mode P (0) with high variance (Figure 1.b), the gradient
information outside the support set of the low-variance modes will be dominated by P (0), despite the
minor overall mass of P (0). As a result, one can expect that the dynamics would randomly explore
a large volume in Rd until finding a low-variance mode, which can take a significant time.

To theoretically formulate and demonstrate the potential mode-seeking tendency of Langevin dy-
namics, we begin by analyzing the convergence for mixture distributions of Gaussian modes, under
which Langevin dynamics could fail to visit all the mixture components within sub-exponential
steps (in the data dimension). Subsequently, we generalize this result to mixture distributions of
sub-Gaussian modes. This generalization extends our earlier result on Gaussian mixtures to a sig-
nificantly larger family of mixture models, as the sub-Gaussian family includes any distribution over
an ℓ2-norm-bounded support set.

To reduce Langevin dynamics’ large iteration complexity shown under a high-dimensional input
vector, we propose Chained Langevin Dynamics (Chained-LD). Since Langevin dynamics could
suffer from the curse of dimensionality, we decompose the sample x ∈ Rd into d/Q patches
x(1), · · · ,x(d/Q), each of constant size Q, and sequentially generate every patch x(q) for all
q ∈ [d/Q] statistically conditioned on previous patches, i.e., P (x(q) | x(0), · · ·x(q−1)). The com-
bination of all patches generated from the conditional distribution faithfully follows the probability
density P (x) due to the chain rule, while drawing samples from each patch requires less cost due
to the reduced dimension. We also provide a theoretical analysis of Chained-LD by reducing the
convergence of a d-dimensional sample to the convergence of each patch.

Finally, we present the results of several numerical experiments to validate our theoretical find-
ings. For synthetic experiments, we consider moderately high-dimensional Gaussian mixture mod-
els, where the vanilla Langevin dynamics could not find all the components within a million steps,
while Chained-LD could capture all the components with correct frequencies in O(104) steps. For
experiments on real image datasets, we consider a mixture of two modes by using the original im-
ages from MNIST/Fashion-MNIST training dataset (black background and white digits/objects) as
the first mode and constructing the second mode by i.i.d. flipping the images (white background and
black digits/objects) with probability 0.5. Following from Song & Ermon (2019), we trained a Noise
Conditional Score Network (NCSN) to estimate the score function. Our numerical results indicate
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that Chained-LD was capable of finding both modes regardless of initialization. We summarize the
contributions of this work as follows:

• Theoretically studying the mode-seeking properties of vanilla Langevin dynamics,

• Proposing Chained Langevin Dynamics (Chained-LD), which decomposes the sample into
patches and sequentially generates each patch conditioned on previous patches,

• Providing a theoretical analysis of the convergence behavior of Chained-LD,

• Numerically comparing the mode-seeking properties of vanilla and chained Langevin dynamics.

Notations: We use [n] to denote the set {1, 2, · · · , n}. Also, in the paper, ∥·∥ refers to the ℓ2 norm.
We use 0n and 1n to denote a 0-vector and 1-vector of length n. We use In to denote the identity
matrix of size n× n. In the text, TV stands for the total variation distance.

2 RELATED WORKS

Langevin Dynamics: The convergence guarantees for Langevin diffusion, a continuous version of
Langevin dynamics, are classical results extensively studied in the literature (Bhattacharya, 1978;
Roberts & Tweedie, 1996; Bakry & Émery, 1983; Bakry et al., 2008). Langevin dynamics, also
known as Langevin Monte Carlo, is a discretization of Langevin diffusion typically modeled as a
Markov Chain Monte Carlo (Welling & Teh, 2011). For unimodal distributions, e.g., the probability
density function that is log-concave or satisfies log-Sobolev inequality, the convergence of Langevin
dynamics is provably fast (Dalalyan, 2017; Durmus & Moulines, 2017; Vempala & Wibisono, 2019).
However, for multimodal distributions, the non-asymptotic convergence analysis is much more chal-
lenging (Cheng et al., 2018). Raginsky et al. (2017) gave an upper bound on the convergence time of
Langevin dynamics for arbitrary non-log-concave distributions with certain regularity assumptions,
which, however, could be exponentially large without imposing more restrictive assumptions. Lee
et al. (2018) studied the special case of a mixture of Gaussians of equal variance and provided an
analysis of sampling from general non-log-concave distributions.

Mode-Seekingness of Langevin Dynamics: The investigation of the mode-seekingness of gener-
ative models starts with different generative adversarial network (GAN) (Goodfellow et al., 2014)
model formulations and divergence measures, from both the practical (Goodfellow, 2016; Poole
et al., 2016) and theoretical (Shannon et al., 2020; Li & Farnia, 2023; Li et al., 2024a) perspectives.
In the context of Langevin dynamics, mode-seekingness is closely related to a lower bound on the
transition time between two modes, e.g., two local maximums. Bovier et al. (2002; 2004); Gayrard
et al. (2005) studied the mean hitting time of the continuous Langevin diffusion. Lee et al. (2018)
proved the existence of a mixture of two Gaussian distributions whose covariance matrices differ by
a constant factor, Langevin dynamics cannot find both modes in polynomial time.

Score-based Generative Modeling: A central task in unsupervised learning involves learning the
underlying probability distribution of training data and efficiently generating new samples from the
distribution. Since Song et al. (2020a) proposed sliced score matching which can train deep models
to learn the score functions of implicit probability distributions on high-dimensional data, score-
based generative modeling (SGM) has been going through a spurt of growth. Annealed Langevin
dynamics (Song & Ermon, 2019) estimates the noise score of the probability density perturbed by
Gaussian noise and utilizes Langevin dynamics to generate samples from a sequence of decreasing
noise scales. Song & Ermon (2020) conducted an analysis of the effect of noise levels on the
performance of annealed Langevin dynamics. Denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020) incorporates a step-by-step introduction of random noise into data, followed by learning
to reverse this diffusion process in order to generate desired data samples from the noise. Song
et al. (2020b) unified anneal Langevin dynamics and DDPM via a stochastic differential equation.
A recent line of work focuses on the non-asymptotic convergence guarantees for SGM with an
imperfect score estimation under various assumptions on the data distribution (Block et al., 2020;
De Bortoli et al., 2021; Lee et al., 2022; Chen et al., 2023; Benton et al., 2023; Li et al., 2023;
2024b). Conforti et al. (2023) also investigated the KL convergence guarantees for score-based
diffusion models. We highlight that a key difference between SGM and our theoretical analysis is
that we assume the sampler has direct access to the true score function, whereas SGM typically
focuses on learning the score function from training data.
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3 PRELIMINARIES

3.1 LANGEVIN DYNAMICS

Generative modeling aims to produce samples such that their distribution is close to the underlying
true distribution P . For a continuously differentiable probability density P (x) on Rd, its score func-
tion is defined as the gradient of the log probability density function (PDF) ∇x logP (x). Langevin
diffusion is a stochastic process defined by the stochastic differential equation (SDE)

dxt = ∇x logP (xt) dt+
√
2 dwt,

where wt is the Wiener process on Rd. Langevin dynamics, a discretization of the SDE for T
iterations, is applied to generate samples. Each iteration of Langevin dynamics is defined as

xt = xt−1 +
δt
2
∇x logP (xt−1) +

√
δtϵt, (1)

where δt is the step size and ϵt ∼ N (0d, Id) is Gaussian noise. It has been widely recognized
that Langevin diffusion could take exponential time to mix without additional assumptions on the
probability density (Bovier et al., 2002; 2004; Gayrard et al., 2005; Raginsky et al., 2017; Lee et al.,
2018). To combat the slow mixing, Song & Ermon (2019) proposed annealed Langevin dynamics
by perturbing the probability density with Gaussian noise of variance σ2, i.e.,

Pσ(x) :=

∫
P (z)N (x | z, σ2Id) dz, (2)

and running Langevin dynamics on the perturbed data distribution Pσt(x) with gradually decreasing
noise levels {σt}t∈[T ], i.e.,

xt = xt−1 +
δt
2
∇x logPσt(xt−1) +

√
δtϵt, (3)

where δt is the step size and ϵt ∼ N (0d, Id) is Gaussian noise. When the noise level σ is vanishingly
small, the perturbed distribution is close to the true distribution, i.e., Pσ(x) ≈ P (x).
Remark 1. In our theoretical analysis, we assume the sampler has access to the true score function
∇x logPσ(x). In some realistic scenarios such as image datasets, since we do not have direct
access to the (perturbed) score function, Song & Ermon (2019) proposed the Noise Conditional
Score Network (NCSN) sθ(x, σ) to jointly estimate the scores of all perturbed data distributions,
i.e., ∀σ ∈ {σt}t∈[T ] , sθ(x, σ) ≈ ∇x logPσ(x).

3.2 MULTI-MODAL DISTRIBUTIONS

Our work focuses on multi-modal distributions. We use P =
∑

i∈[k] wiP
(i) to represent a mixture

of k modes, where each mode P (i) is a probability density with frequency wi such that wi > 0
for all i ∈ [k] and

∑
i∈[k] wi = 1. In our theoretical analysis, we consider Gaussian mixtures and

sub-Gaussian mixtures, i.e., every component P (i) is a Gaussian or sub-Gaussian distribution. A
probability distribution p(z) of dimension d is defined as a sub-Gaussian distribution with parameter
ν2 if, given the mean vector µ := Ez∼p[z], the moment generating function (MGF) of p satisfies the
following inequality for every vector α ∈ Rd:

Ez∼p

[
exp

(
αT (z− µ

)]
≤ exp

(ν2 ∥α∥22
2

)
. (4)

We remark that sub-Gaussian distributions include a wide variety of distributions such as Gaussian
distributions and any distribution within a bounded ℓ2-norm distance from the mean µ.

4 THEORETICAL ANALYSIS OF THE MODE-SEEKING PROPERTIES OF
LANGEVIN DYNAMICS

In this section, we theoretically investigate the mode-seeking properties of vanilla Langevin dynam-
ics. We begin with analyzing Langevin dynamics in Gaussian mixtures, and further generalize the
results to sub-Gaussian mixtures. We again highlight that in our theoretical analysis, we assume the
sampler has access to the score function∇x logP (x) of the underlying distribution P .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 LANGEVIN DYNAMICS IN GAUSSIAN MIXTURES

Assumption 1. Consider a data distribution P :=
∑k

i=0 wiP
(i) as a mixture of Gaussian distribu-

tions, where 1 ≤ k = o(d) and wi > 0 is a positive constant such that
∑k

i=0 wi = 1. Suppose that
P (i) = N (µi, ν

2
i Id) is a Gaussian distribution over Rd for all i ∈ {0}∪ [k] such that for all i ∈ [k],

νi < ν0 and ∥µi − µ0∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d. Denote νmax := maxi∈[k] νi.

To intuitively understand Assumption 1, we first note that the probability density p(z) of a Gaussian
distribution N (µ, ν2Id) decays exponentially in terms of ∥z−µ∥2

ν2 . When a state z is sufficiently far
from one mode P (i), the probability density of P (i) is dominated by the high-variance component
P (0), which implies that the gradient information from P (i) will be masked by P (0). Hence, the
dynamics can only visit the universal mode unless the stochastic noise miraculously leads it to the
region of another mode. In addition, it can be verified that log

(
ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

is a positive constant

for νi < ν0, thus the last requirement of Assumption 1 essentially represents ∥µi − µ0∥2 ≤ O(d).
We formalize the intuition in Theorem 1 and defer the proof to Appendix A.1.

Theorem 1. Consider a data distribution P satisfying Assumption 1. We follow Langevin dynamics
for T = exp(O(d)) steps. Suppose the sample is initialized in P (0), then with probability at least
1− T · exp(−Ω(d)), we have ∥xt − µi∥2 >

ν2
0+ν2

max

2 d for all t ∈ {0} ∪ [T ] and i ∈ [k].

The constants in the notation Ω(d) are specified in Equations 6 and 7 in the Appendix. We note
that ∥xt − µi∥2 >

ν2
0+ν2

max

2 d is a strong notion of mode-seekingness, since the density of mode

P (i) = N (µi, ν
2
i Id) concentrates around the ℓ2-norm ball

{
z : ∥z− µi∥2 ≤ ν2i d

}
. This notion

can be translated into a lower bound in terms of other distance measures, e.g., total variation distance
in the following corollary, whose proof is deferred to Appendix A.2.

Corollary 1. Under the same assumptions as in Theorem 1, for all time steps t ∈ {0} ∪ [T ], the
distribution P̂t of the generated sample xt by Langevin dynamics at time t satisfies

TV(P̂t, P ) ≥ (1− w0)

(
1− T

exp(Ω(d))

)
.

4.2 LANGEVIN DYNAMICS IN SUB-GAUSSIAN MIXTURES

We further generalize our results to sub-Gaussian mixtures. We impose the following assumptions
on the mixture. It is worth noting that Assumptions 2.i.-iii. automatically hold for Gaussian mixtures
such that P (i) = N (µi, ν

2
i I), and Assumptions 2.iv. and v. are specific assumptions on the mean

and variance of P (i), similar to Assumption 1.

Assumption 2. Consider a data distribution P :=
∑k

i=0 wiP
(i) as a mixture of sub-Gaussian

distributions, where 1 ≤ k = o(d) and wi > 0 is a positive constant such that
∑k

i=0 wi = 1.
Suppose that P (0) = N (µ0, ν

2
0Id) is Gaussian and for all i ∈ [k], P (i) satisfies

i. P (i) is a sub-Gaussian distribution of mean µi with parameter ν2i ,

ii. P (i) is differentiable and∇P (i)(µi) = 0d,

iii. the score function of P (i) is Li-Lipschitz such that Li ≤ cL
ν2
i

for some constant cL > 0,

iv. ν20 > max
{
1,

4(c2L+cνcL)
cν(1−cν)

}
ν2
max

1−cν
for constant cν ∈ (0, 1), where νmax := maxi∈[k] νi,

v. ∥µi − µ0∥2 ≤ (1−cν)ν
2
0−ν2

i

2(1−cν)

(
log

cνν
2
i

(c2L+cνcL)ν2
0
− ν2

i

2(1−cν)ν2
0
+

(1−cν)ν
2
0

2ν2
i

)
d.

The feasibility of Assumption 2.v. is validated by Lemma 9 in Appendix A.3. With Assumption
2, we show the mode-seeking tendency of Langevin dynamics under sub-Gaussian distributions in
Theorem 2 and defer the proof to Appendix A.3.
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Algorithm 1 Chained Langevin Dynamics (Chained-LD)
Require: Patch size Q, dimension d, conditional score function ∇ logPσt

, number of iterations T ,
noise levels {σt}t∈[TQ/d], step size {δt}t∈[TQ/d].

1: Initialize x0, and divide x0 into d/Q patches x(1)
0 , · · ·x(d/Q)

0 of equal size Q

2: for q ← 1 to d/Q do
3: for t← 1 to TQ/d do

4: x
(q)
t ← x

(q)
t−1+

δt
2 ∇ logPσt

(
x
(q)
t−1 | x(1), · · · ,x(q−1)

)
+
√
δtϵt, where ϵt ∼ N (0Q, IQ)

5: end for
6: x(q) ← x

(q)
TQ/d

7: end for
8: return x

Theorem 2. Consider a data distribution P satisfying Assumption 2. We follow Langevin dynamics
for T = exp(O(d)) steps. Suppose the sample is initialized in P (0), then with probability at least

1− T · exp(−O(d)), we have ∥xt − µi∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d for all t ∈ {0} ∪ [T ] and i ∈ [k].

We remark that an implication of Theorem 2 is the potential difficulty of transition between low-
variance modes for Langevin dynamics. For instance, suppose P (1), · · · , P (k) have bounded support
sets with small radius and sufficiently distant means. If the sample is initialized in a low-variance
mode P (m) (for m ∈ [k]), either it stays in P (m) and cannot capture other modes, or it escapes
P (m) (due to the random noise ϵ) and is expected to need to explore the whole space until finding
the support sets of the other bounded modes.

Furthermore, in Appendix B we extend our theoretical analysis to annealed Langevin dynamics with
bounded noise levels, indicating the effect of annealing noise levels on the mode-seeking tendencies
of Langevin dynamics. Aligning with the empirical analysis in (Song & Ermon, 2020), we show that
bounded noise levels will have a limited impact on Langevin dynamics since they exhibit similar
mode-seeking tendencies. On the other hand, as suggested by Song & Ermon (2020), annealed
Langevin dynamics with a significantly larger initial noise level could capture more modes, which
is also confirmed by our numerical results in Section 6.

5 CHAINED LANGEVIN DYNAMICS

To reduce the mode-seeking tendencies of vanilla Langevin dynamics, we propose Chained
Langevin Dynamics (Chained-LD) in Algorithm 1. While vanilla Langevin dynamics apply gra-
dient updates to all coordinates of the sample in every step, we decompose the sample into patches
of constant size and generate each patch sequentially to alleviate the exponential dependency on the
dimensionality. More precisely, we divide a sample x into d/Q patches x(1), · · ·x(d/Q) of some
constant size Q, and apply Langevin dynamics to sample each patch x(q) (for q ∈ [d/Q]) from
the conditional distribution P (x(q) | x(1), · · ·x(q−1)). Intuitively, vanilla Langevin dynamics needs
to explore the entire space (of volume exponentially large in d) to find the missing modes, while
Chained-LD could significantly lower the volume by dimensionality reduction.

In practice, we can also apply annealed Langevin dynamics (Song & Ermon, 2019) to facilitate the
sampling of each patch, by perturbing it with a series of noise levels {σt}t∈[TQ/d]. Specifically,
we refer chained vanilla Langevin dynamics (Chained-VLD) to Algorithm 1 without noise injection
(i.e., σt = 0 for all t ∈ [TQ/d]), and chained annealed Langevin dynamics (Chained-ALD) oth-
erwise. Ideally, if a sampler perfectly generates every patch, combining all patches gives a sample
from the original distribution due to the chain rule P (x) =

∏
q∈[d/Q] P (x(q) | x(1), · · ·x(q−1)). In

Proposition 1 we give a linear reduction from producing samples of dimension d using Chained-LD
to learning the distribution of a Q-dimensional variable for constant Q. The proof of Proposition 1
is deferred to Appendix C.

6
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Proposition 1. Consider a sampler algorithm taking the first q − 1 patches x(1), · · · ,x(q−1) as
input and outputing a sample of the next patch x(q) with probability P̂

(
x(q) | x(1), · · · ,x(q−1)

)
for

all q ∈ [d/Q]. Suppose that for every q ∈ [d/Q] and any given previous patches x(1), · · · ,x(q−1),
the sampler algorithm can achieve

TV
(
P̂
(
x(q) | x(1), · · · ,x(q−1)

)
, P
(
x(q) | x(1), · · · ,x(q−1)

))
≤ ε · Q

d

in τ(ε/d) iterations for some ε > 0. Then, equipped with the sampler algorithm, the Chained-LD
algorithm in d

Q · τ(ε/d) iterations can achieve

TV
(
P̂ (x), P (x)

)
≤ ε.

With additional assumptions on the target distribution P , we can obtain upper bounds on the iter-
ation complexity of Chained-LD. If the conditional distribution p := P

(
x(q) | x(1), · · · ,x(q−1)

)
for all q ∈ [d/Q] satisfies the assumptions specified in Appendix A of Ma et al. (2019), i.e.,
log p is L-Lipschitz smooth for all x(q) and m-strongly concave for x(q) outside an ℓ2-norm
ball of radius R (i.e.,

∥∥x(q)
∥∥ > R), by Theorem 1 of Ma et al. (2019) we obtain τ(ε/d) =

O
(
exp(32LR2) L2

m2 · R
(ε/d)2 log

R
(ε/d)2

)
. In common settings, the radius R in Q–dimensional space

scales as R = Θ(
√
Q). Therefore, for constants L and m, the iteration complexity of Chained-LD is

a polynomialO
(
exp(O(LQ)) d3

ε2
√
Q
log d2√Q

ε2

)
in d, which takes its minimum valueO

(
d3

ε2 log d2

ε2

)
when the patch size Q is a constant not growing with d. For comparison, the iteration complexity of
vanilla Langevin dynamics could scale exponentially in d when R = Θ(

√
d) in common settings.

Remark 2. We highlight that Chained-LD is a sampling algorithm. In Algorithm 1, we assume the
sampler has direct access to the conditional score function. Also, the conditional densities used in
Chained-LD do not require any extra information compared to the target distribution assumed in
vanilla LD, since vanilla LD has access to the joint distribution and Chained-LD has access to con-
ditional distributions that, based on chain rule, have the same information as the joint distribution.

Remark 3. We note that similar combinations of autoregressive models and denoising diffusion
models have been studied in the generative modeling literature, in the context of text generation
(Hoogeboom et al., 2022; Wu et al., 2023) and time series forecasting (Rasul et al., 2021). At a
high level, the generative modeling literature focuses on the training and implementation of autore-
gressive diffusion models in time-dependent scenarios, while this work focuses on the theoretical
guarantees of Chained Langevin dynamics and its comparison with vanilla Langevin dynamics, mo-
tivated by their mode-seeking properties under sub-Gaussian mixture distribution.

6 NUMERICAL RESULTS

In this section, we empirically evaluated the mode-seeking tendencies of vanilla and chained
Langevin dynamics. We performed numerical experiments on synthetic Gaussian mixture models
and real image datasets including MNIST (LeCun, 1998) and Fashion-MNIST (Xiao et al., 2017).
Details on the experiment setup are deferred to Appendix D.

Synthetic Gaussian mixture model: We consider the data distribution P as a mixture of three
Gaussian components in dimension d = 100, where mode 0 defined as P (0) = N (0d, 3Id) is the
in-between mode with high variance, and mode 1 and mode 2 are respectively defined as P (1) =
N (1d, Id) and P (2) = N (−1d, Id). The frequencies of the three modes are 0.2, 0.4 and 0.4, i.e.,

P = 0.2P (0) + 0.4P (1) + 0.4P (2) = 0.2N (0d, 3Id) + 0.4N (1d, Id) + 0.4N (−1d, Id).

In the synthetic experiments, we give the samplers access to the true score function calculated from
the target distribution. As shown in Figure 2, vanilla Langevin dynamics (VLD) cannot find mode
1 or 2 within 106 iterations if the sample is initialized in mode 0, while chained vanilla Langevin
dynamics (Chained-VLD) with patch size Q = 10 can find the other two modes in 1000 steps
and correctly recover their frequencies as gradually increasing the number of iterations. When
the sample is initialized in mode 1, as shown in Figure 5 in Appendix D.1, VLD is also likely to
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Figure 2: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dynamics
(VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q = 10. Three axes
are ℓ2 distance from samples to the mean of the three modes. The samples are initialized in mode 0.

be trapped by the high-variance mode 0 and cannot find mode 2, while Chained-VLD is capable
of finding all modes. Additional experiments on samples initialized in mode 2 are presented in
Appendix D.1, which also verify the mode-seeking tendencies of vanilla Langevin dynamics. We
also investigated the effect of different choices of patch size Q on the performance of Chained-LD.
As shown in Figures 7, 8, and 9 in Appendix D.1, the convergence of Chained-LD are insensitive to
moderate values of constant Q ∈ {1, 4, 10}; for large Q = 20, it takes more steps to find the other
modes; while for overly large Q = 50, Chained-LD has mode-seeking tendencies similar to LD.

Image datasets: We also perform experiments on generating samples from image datasets by
chained annealed Langevin dynamics (Chained-ALD). We construct the distribution as a mixture
of two modes by using the original images from MNIST/Fashion-MNIST training dataset (black
background and white digits/objects) as the first mode and constructing the second mode by i.i.d.
randomly flipping an image (white background and black digits/objects) with probability 0.5.

Since the target distribution of image datasets is unknown, following from Song & Ermon (2019),
we train an estimator to approximate the score function from training samples. More details are
deferred to Appendix D.2. We use Recurrent Neural Network (RNN) architectures to estimate the
perturbed conditional score function ∇x(q) logPσt

(x(q) | x(1), · · ·x(q−1)) for Chained-ALD. We
note that for a sequence of inputs, the output of RNN from the previous step is fed as input to the
current step. Therefore, in the scenario of chained Langevin dynamics, the hidden state of RNN
contains information about the previous patches and allows the network to estimate the conditional
score function of the next patch. More implementation details are deferred to Appendix D.3.

We numerically compare the performance of annealed Langevin dynamics (ALD) and Chained-
ALD with different noise levels. The experimental results are shown in Figures 3 and 4. For ALD
with bounded noise levels (i.e., the maximum noise σmax = 1), we observe that it tends to generate
the samples from the same mode as initialization, aligning with our theoretical analysis in Theorem
4 in Appendix B. Then, if we apply significantly larger noise levels (i.e., the maximum noise σmax =
50 as suggested by Technique 1 in Song & Ermon (2020)), ALD could generate samples from both
modes. On the other hand, Chained-ALD, even with bounded noise levels (i.e., σmax = 1), is
capable of finding both modes. Further experiments are deferred to Appendix D.3.

8
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Figure 3: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin dynamics
(Chained-ALD) with patch size Q = 14 for different numbers of iterations. The maximum noise
level σmax is set to be 1 or 50. The samples are initialized as flipped images from MNIST.

7 CONCLUSION

In this work, we theoretically and numerically studied the mode-seeking properties of Langevin
dynamics sampling methods under a multi-modal distribution. We characterized Gaussian and sub-
Gaussian mixture models under which vanilla Langevin dynamics are unlikely to find all the compo-
nents within a sub-exponential number of iterations. To reduce the mode-seeking tendency of vanilla
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Figure 4: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin
dynamics (Chained-ALD) with patch size Q = 14 for different numbers of iterations. The maximum
noise level σmax is set to be 1 or 50. The initialization is original images from Fashion-MNIST.

Langevin dynamics, we proposed Chained Langevin Dynamics (Chained-LD) and analyzed its con-
vergence behavior. Studying the connections between Chained-LD and denoising diffusion models
will be an interesting topic for future exploration. Our RNN-based implementation of Chained-LD
is currently limited to image data generation tasks. An interesting future direction is to extend the
application of Chained-LD to other domains such as audio and text data. Another future direction
could be to study the convergence of Chained-LD under an imperfect score estimation.
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A THEORETICAL ANALYSIS ON THE MODE-SEEKING TENDENCY OF
LANGEVIN DYNAMICS

We begin by introducing some well-established lemmas used in our proof. We use the following
lemma on the tail bound for multivariate Gaussian random variables.
Lemma 1 (Lemma 1, Laurent & Massart (2000)). Suppose that a random variable z ∼ N (0d, Id).
Then for any λ > 0,

P
(
∥z∥2 ≥ d+ 2

√
dλ+ 2λ

)
≤ exp(−λ),

P
(
∥z∥2 ≤ d− 2

√
dλ
)
≤ exp(−λ).

We also use a tail bound for one-dimensional Gaussian random variables and provide the proof here
for completeness.
Lemma 2. Suppose a random variable Z ∼ N (0, 1). Then for any t > 0,

P(Z ≥ t) = P(Z ≤ −t) ≤ exp(−t2/2)√
2πt

.

Proof of Lemma 2. Since z
t ≥ 1 for all z ∈ [t,∞), we have

P(Z ≥ t) =
1√
2π

∫ ∞

t

exp

(
−z2

2

)
dz ≤ 1√

2π

∫ ∞

t

z

t
exp

(
−z2

2

)
dz =

exp(−t2/2)√
2πt

.

Since the Gaussian distribution is symmetric, we have P(Z ≥ t) = P(Z ≤ −t). Hence we obtain
the desired bound.

A.1 PROOF OF THEOREM 1: LANGEVIN DYNAMICS UNDER GAUSSIAN MIXTURES

Without loss of generality, we assume that µ0 = 0d for simplicity. Let r and n respectively denote
the rank and nullity of the vector space {µi}i∈[k], then we have r + n = d and 0 ≤ r ≤ k = o(d).
Denote R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k], and denote N ∈ Rd×n an
orthonormal basis of the null space of {µi}i∈[k]. Now consider decomposing the sample xt by

rt := RTxt, and nt := NTxt,

where rt ∈ Rr, nt ∈ Rn. Then we have

xt = Rrt +Nnt.

Similarly, we decompose the noise ϵt into

ϵ
(r)
t := RT ϵt, and ϵ

(n)
t := NT ϵt,

where ϵ
(r)
t ∈ Rr, ϵ(n)t ∈ Rn. Then we have

ϵt = Rϵ
(r)
t +Nϵ

(n)
t .

Since a linear combination of a Gaussian random variable still follows Gaussian distribution, by
ϵt ∼ N (0d, Id), RTR = Ir, and NTN = In we obtain

ϵ
(r)
t ∼ N (0r, Ir), and ϵ

(n)
t ∼ N (0n, In).

By the definition of Langevin dynamics in equation 1, nt follow from the update rule:

nt = nt−1 +
δt
2
NT∇x logP (xt−1) +

√
δtϵ

(n)
t . (5)

It is worth noting that since NTµi = 0n. To show ∥xt − µi∥2 >
ν2
0+ν2

max

2 d, it suffices to prove

∥nt∥2 >
ν20 + ν2max

2
d.
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We start by proving that the initialization of the state x0 has a large norm on the null space with
high probability in the following proposition. Throughout the proof, the notation Ω(d) refers to
Ω(d) ≥ cd, for the constant c defined as

c = min

{
1

2

(
ν20 − ν2max

8ν20

)2

,
1

8

(
log

(
ν2max

ν20

)
− ν2max

2ν20
+

ν20
2ν2max

)
,
1

32
,

(ν20 − ν2max)
2

32ν20(ν
2
0 + ν2max)

}
,

(6)
when d satisfies

d ≥ max

{
8

(
log

(
ν2max

ν20

)
− ν2max

2ν20
+

ν20
2ν2max

)−1

log

(
3ν30

w0 mini∈[k] ν
2
i

)
,
8ν20(3ν

2
0 + ν2max)

π(ν20 − ν2max)
2

}
.

(7)

Proposition 2. Suppose that a sample x0 is initialized in the distribution P (0), i.e., x0 ∼ P (0), then
for any constant νmax < ν0, with probability at least 1−exp(−Ω(d)), we have ∥n0∥2 ≥ 3ν2

0+ν2
max

4 d.

Proof of Proposition 2. Since x0 ∼ P (0) = N (0d, ν
2
0Id) and NTN = In, we know n0 =

NTx0 ∼ N (0n, ν
2
0In). Therefore, by Lemma 1 we can bound

P
(
∥n0∥2 ≤

3ν20 + ν2max

4
d

)
= P

∥n0∥2

ν20
≤ d− 2

√
d ·
(
ν20 − ν2max

8ν20

)2

d


≤ P

∥n0∥2

ν20
≤ n− 2

√
n

(
ν20 − ν2max

8ν20

)2
d

2


≤ exp

(
−
(
ν20 − ν2max

8ν20

)2
d

2

)
,

where the second last step follows from the assumption d− n = r = o(d). Hence we complete the
proof of Proposition 2.

Then, with the assumption that the initialization satisfies ∥n0∥2 ≥ 3ν2
0+ν2

max

4 d, the following propo-
sition shows that ∥nt∥ remains large with high probability.

Proposition 3. Consider a data distribution P satisfies the constraints specified in Theorem 1. We
follow the Langevin dynamics for T = exp(O(d)) steps. Suppose that the initial sample satisfies
∥n0∥2 ≥ 3ν2

0+ν2
max

4 d, then with probability at least 1 − T · exp(−Ω(d)), we have that ∥nt∥2 >
ν2
0+ν2

max

2 d for all t ∈ {0} ∪ [T ].

Proof of Proposition 3. To establish a lower bound on ∥nt∥, we consider different cases of the step
size δt. Intuitively, when δt is large enough, nt will be too noisy due to the introduction of random
noise

√
δtϵ

(n)
t in equation 5. While for small δt, the update of nt is bounded and thus we can

iteratively analyze nt. We first handle the case of large δt in the following lemma.

Lemma 3. If δt > ν20 , with probability at least 1 − exp(−Ω(d)), for nt satisfying equation 5, we
have ∥nt∥2 ≥ 3ν2

0+ν2
max

4 d regardless of the previous state xt−1.

Proof of Lemma 3. Denote v := nt−1 +
δt
2 N

T∇x logP (xt−1) for simplicity. Note that v is fixed
for any given xt−1. We decompose ϵ(n)t into a vector aligning with v and another vector orthogonal
to v. Consider an orthonormal matrix M ∈ Rn×(n−1) such that MTv = 0n−1 and MTM = In−1.
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By denoting u := ϵ
(n)
t −MMT ϵ

(n)
t we have MTu = 0n−1, thus we obtain

∥nt∥2 =
∥∥∥v +

√
δtϵ

(n)
t

∥∥∥2
=
∥∥∥v +

√
δtu+

√
δtMMT ϵ

(n)
t

∥∥∥2
=
∥∥∥v +

√
δtu
∥∥∥2 + ∥∥∥√δtMMT ϵ

(n)
t

∥∥∥2
≥
∥∥∥√δtMMT ϵ

(n)
t

∥∥∥2
≥ ν20

∥∥∥MT ϵ
(n)
t

∥∥∥2 .
Since ϵ(n)t ∼ N (0n, In) and MTM = In−1, we obtain MT ϵ

(n)
t ∼ N (0n−1, In−1). Therefore, by

Lemma 1 we can bound

P
(
∥nt∥2 ≤

3ν20 + ν2max

4
d

)
≤ P

(∥∥∥MT ϵ
(n)
t

∥∥∥2 ≤ 3ν20 + ν2max

4ν20
d

)

= P

∥∥∥MT ϵ
(n)
t

∥∥∥2 ≤ d− 2

√
d ·
(
ν20 − ν2max

8ν20

)2

d


≤ P

∥∥∥MT ϵ
(n)
t

∥∥∥2 ≤ (n− 1)− 2

√
(n− 1)

(
ν20 − ν2max

8ν20

)2
d

2


≤ exp

(
−
(
ν20 − ν2max

8ν20

)2
d

2

)
,

where the second last step follows from the assumption d− n = r = o(d). Hence we complete the
proof of Lemma 3.

We then consider the case when δt ≤ ν20 . Let r := RTx and n := NTx, then x = Rr +Nn. We
first show that when ∥n∥2 ≥ ν2

0+ν2
max

2 d, P (i)(x) is exponentially smaller than P (0)(x) for all i ∈ [k]
in the following lemma.

Lemma 4. Given that ∥n∥2 ≥ ν2
0+ν2

max

2 d and ∥µi∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d for all

i ∈ [k], we have P (i)(x)
P (0)(x)

≤ exp(−Ω(d)) for all i ∈ [k].

Proof of Lemma 4. For all i ∈ [k], define ρi(x) :=
P (i)(x)
P (0)(x)

, then

ρi(x) =
P (i)(x)

P (0)(x)
=

(2πν2i )
−d/2 exp

(
− 1

2ν2
i
∥x− µi∥2

)
(2πν20)

−d/2 exp
(
− 1

2ν2
0
∥x∥2

)
=

(
ν20
ν2i

)d/2

exp

(
1

2ν20
∥x∥2 − 1

2ν2i
∥x− µi∥2

)
=

(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
∥Nn∥2 +

(
∥Rr∥2

2ν20
− ∥Rr− µi∥2

2ν2i

))

=

(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
∥n∥2 +

(
∥r∥2

2ν20
−
∥∥r−RTµi

∥∥2
2ν2i

))
,

where the last step follows from the definition that R ∈ Rd×r an orthonormal basis of the vec-

tor space {µi}i∈[k] and NTN = In. Since ν20 > ν2i , the quadratic term ∥r∥2

2ν2
0
− ∥r−RTµi∥2

2ν2
i

is
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maximized at r =
ν2
0R

Tµi

ν2
0−ν2

i
. Therefore,

∥r∥2

2ν20
−
∥∥r−RTµi

∥∥2
2ν2i

≤
ν40
∥∥RTµi

∥∥2
2ν20(ν

2
0 − ν2i )

2
− 1

2ν2i

(
ν20

ν20 − ν2i
− 1

)2 ∥∥RTµi

∥∥2 =
∥µi∥2

2(ν20 − ν2i )
.

Hence, for ∥n∥2 ≥ ν2
0+ν2

max

2 d and ∥µi∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d, we have

ρi(x) =

(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
∥n∥2 +

(
∥r∥2

2ν20
−
∥∥r−RTµi

∥∥2
2ν2i

))

≤
(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
ν20 + ν2i

2
d+

∥µi∥2

2(ν20 − ν2i )

)

= exp

(
−
(
log

(
ν2i
ν20

)
− ν2i

2ν20
+

ν20
2ν2i

)
d

2
+

∥µi∥2

2(ν20 − ν2i )

)

≤ exp

(
−
(
log

(
ν2i
ν20

)
− ν2i

2ν20
+

ν20
2ν2i

)
d

4

)
.

Notice that for function f(z) = log z − z
2 + 1

2z , we have f(1) = 0 and d
dz f(z) =

1
z −

1
2 −

1
2z2 =

− 1
2

(
1
z − 1

)2
< 0 when z ∈ (0, 1). Thus, log

(
ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

is a positive constant for νi < ν0,
i.e., ρi(x) = exp(−Ω(d)). Therefore we finish the proof of Lemma 4.

Lemma 4 implies that when ∥n∥ is large, the Gaussian mode P (0) dominates other modes P (i). To
bound ∥nt∥, we first consider a simpler case that ∥nt−1∥ is large. Intuitively, the following lemma
proves that when the previous state nt−1 is far from a mode, a single step of Langevin dynamics
with bounded step size is not enough to find the mode.

Lemma 5. Suppose δt ≤ ν20 and ∥nt−1∥2 > 36ν20d, then for nt following from equation 5, we have
∥nt∥2 ≥ ν20d with probability at least 1− exp(−Ω(d)).

Proof of Lemma 5. From the recursion of nt in equation 5 we have

nt = nt−1 +
δt
2
NT∇x logP (xt−1) +

√
δtϵ

(n)
t

= nt−1 −
δt
2

k∑
i=0

P (i)(xt−1)

P (xt−1)
· N

T (xt−1 − µi)

ν2i
+
√
δtϵ

(n)
t

=

(
1− δt

2

k∑
i=0

P (i)(xt−1)

P (xt−1)
· 1
ν2i

)
nt−1 +

√
δtϵ

(n)
t . (8)

By Lemma 4, we have P (i)(xj−1)

P (0)(xj−1)
≤ exp(−Ω(d)) for all i ∈ [k], therefore

1− δt
2

k∑
i=0

P (i)(xt−1)

P (xt−1)
· 1
ν2i
≥ 1− δt

2
· 1
ν20
− δt

2

∑
i∈[k]

wiP
(i)(xt−1)

w0P (0)(xt−1)
· 1
ν2i
≥ 1− 1

2
−exp(−Ω(d)) > 1

3
.

(9)

On the other hand, from ϵ
(n)
t ∼ N (0n, In) we know ⟨nt−1,ϵ

(n)
t ⟩

∥nt−1∥ ∼ N (0, 1) for any fixed nt−1 ̸= 0n,
hence by Lemma 2 we have

P

(
⟨nt−1, ϵ

(n)
t ⟩

∥nt−1∥
≥
√
d

4

)
= P

(
⟨nt−1, ϵ

(n)
t ⟩

∥nt−1∥
≤ −
√
d

4

)
≤ 4√

2πd
exp

(
− d

32

)
(10)
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Combining equation 8, equation 9 and equation 10 gives that

∥nt∥2 ≥
(
1

3

)2

∥nt−1∥2 − 2ν0|⟨nt−1, ϵ
(n)
t ⟩|

≥ 1

9
∥nt−1∥2 −

ν0
√
d

2
∥nt−1∥

≥ 1

9
· 36ν20d−

ν0
√
d

2
· 6ν0
√
d

= ν20d

with probability at least 1− 8√
2πd

exp
(
− d

32

)
= 1− exp(−Ω(d)). This proves Lemma 5.

We then proceed to bound ∥nt∥ iteratively for ∥nt−1∥2 ≤ 36ν20d. Recall that equation 5 gives

nt = nt−1 +
δt
2
NT∇x logP (xt−1) +

√
δtϵ

(n)
t .

We notice that the difficulty of solving nt exhibits in the dependence of logP (xt−1) on rt−1. Since
P =

∑k
i=0 wiP

(i) =
∑k

i=0 wiN (µi, ν
2
i Id), we can rewrite the score function as

∇x logP (x) =
∇xP (x)

P (x)
= −

k∑
i=0

P (i)(x)

P (x)
· x− µi

ν2i
= − x

ν20
+
∑
i∈[k]

P (i)(x)

P (x)

(
x

ν20
− x− µi

ν2i

)
.

(11)

Now, instead of directly working with nt, we consider a surrogate recursion n̂t such that n̂0 = n0

and for all t ≥ 1,

n̂t = n̂t−1 −
δt
2ν20

n̂t−1 +
√

δtϵ
(n)
t . (12)

The advantage of the surrogate recursion is that n̂t is independent of r, thus we can obtain the
closed-form solution to n̂t. Before we proceed to bound n̂t, we first show that n̂t is sufficiently
close to the original recursion nt in the following lemma.

Lemma 6. For any t ≥ 1, given that δj ≤ ν20 and ν2
0+ν2

max

2 d ≤ ∥nj−1∥2 ≤ 36ν20d for all j ∈ [t]

and ∥µi∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d for all i ∈ [k], we have ∥n̂t − nt∥ ≤ t

exp(Ω(d))

√
d.

Proof of Lemma 6. Upon comparing equation 5 and equation 12, by equation 11 we have that for
all j ∈ [t],

∥n̂j − nj∥ =
∥∥∥∥n̂j−1 −

δj
2ν20

n̂j−1 − nj−1 −
δj
2
NT∇x logP (xj−1)

∥∥∥∥
=

∥∥∥∥∥∥
(
1− δj

2ν20

)
(n̂j−1 − nj−1) +

δj
2

∑
i∈[k]

P (i)(xj−1)

P (xj−1)

(
1

ν2i
− 1

ν20

)
nj−1

∥∥∥∥∥∥
≤
(
1− δj

2ν20

)
∥n̂j−1 − nj−1∥+

∑
i∈[k]

δj
2

P (i)(xj−1)

P (xj−1)

(
1

ν2i
− 1

ν20

)
∥nj−1∥

≤ ∥n̂j−1 − nj−1∥+
∑
i∈[k]

δj
2

P (i)(xj−1)

P (0)(xj−1)

(
1

ν2i
− 1

ν20

)
6ν0
√
d.

By Lemma 4, we have P (i)(xj−1)

P (0)(xj−1)
≤ exp(−Ω(d)) for all i ∈ [k], hence we obtain a recursive bound

∥n̂j − nj∥ ≤ ∥n̂j−1 − nj−1∥+
1

exp(Ω(d))

√
d.
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Finally, by n̂0 = n0, we have

∥n̂t − nt∥ =
∑
j∈[t]

(∥n̂j − nj∥ − ∥n̂j−1 − nj−1∥) ≤
t

exp(Ω(d))

√
d.

Hence we obtain Lemma 6.

We then proceed to analyze n̂t, The following lemma gives us the closed-form solution of n̂t. We
slightly abuse the notations here, e.g.,

∏c2
i=c1

(
1− δi

2ν2
0

)
= 1 and

∑c2
j=c1

δj = 0 for c1 > c2.

Lemma 7. For all t ≥ 0, n̂t ∼ N
(∏t

i=1

(
1− δi

2ν2
0

)
n0,

∑t
j=1

∏t
i=j+1

(
1− δi

2ν2
0

)2
δjIn

)
, where

the mean and covariance satisfy
∏t

i=1

(
1− δi

2ν2
0

)2
+ 1

ν2
0

∑t
j=1

∏t
i=j+1

(
1− δi

2ν2
0

)2
δj ≥ 1.

Proof of Lemma 7. We prove the two properties by induction. When t = 0, they are trivial. Suppose
they hold for t− 1, then for the distribution of n̂t, we have

n̂t = n̂t−1 −
δt
2ν20

n̂t−1 +
√
δtϵ

(n)
t

∼ N

(1− δt
2ν20

) t−1∏
i=1

(
1− δi

2ν20

)
n0,

(
1− δt

2ν20

)2 t−1∑
j=1

t−1∏
i=j+1

(
1− δi

2ν20

)2

δjIn + δtIn


= N

 t∏
i=1

(
1− δi

2ν20

)
n0,

t∑
j=1

t∏
i=j+1

(
1− δi

2ν20

)2

δjIn

 .

For the second property,

t∏
i=1

(
1− δi

2ν20

)2

+
1

ν20

t∑
j=1

t∏
i=j+1

(
1− δi

2ν20

)2

δj

=

(
1− δt

2ν20

)2
t−1∏

i=1

(
1− δi

2ν20

)2

+
1

ν20

t−1∑
j=1

t−1∏
i=j+1

(
1− δi

2ν20

)2

δj

+
1

ν20
δt

≥
(
1− δt

2ν20

)2

+
1

ν20
δt = 1 +

δ2t
4ν40
≥ 1.

Hence we finish the proof of Lemma 7.

Armed with Lemma 7, we are now ready to establish the lower bound on ∥n̂t∥. For simplicity,

denote α :=
∏t

i=1

(
1− δi

2ν2
0

)2
and β := 1

ν2
0

∑t
j=1

∏t
i=j+1

(
1− δi

2ν2
0

)2
δj . By Lemma 7 we know

n̂t ∼ N (αn0, βν
2
0In), so we can write n̂t = αn0 +

√
βν0ϵ, where ϵ ∼ N (0n, In).

Lemma 8. Given that ∥n̂0∥2 ≥ 3ν2
0+ν2

max

4 d, we have ∥n̂t∥2 ≥ 5ν2
0+3ν2

max

8 d with probability at least
1− exp (−Ω(d)).

Proof of Lemma 8. By n̂t = αn0 +
√
βν0ϵ we have

∥n̂t∥2 = α2 ∥n0∥2 + βν20 ∥ϵ∥
2
+ 2α

√
βν0⟨n0, ϵ⟩
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By Lemma 1 we can bound

P
(
∥ϵ∥2 ≤ 3ν20 + ν2max

4ν20
d

)
= P

∥ϵ∥2 ≤ d− 2

√
d ·
(
ν20 − ν2max

8ν20

)2

d


≤ P

∥ϵ∥2 ≤ (n− 1)− 2

√
(n− 1)

(
ν20 − ν2max

8ν20

)2
d

2


≤ exp

(
−
(
ν20 − ν2max

8ν20

)2
d

2

)
,

where the second last step follows from the assumption d − n = r = o(d). Since ϵ ∼ N (0n, In),
we know ⟨n0,ϵ⟩

∥n0∥ ∼ N (0, 1). Therefore by Lemma 2,

P

(
⟨n0, ϵ⟩
∥n0∥

≤ − ν20 − ν2max

4ν0
√
3ν20 + ν2max

√
d

)
≤ 4ν0

√
3ν20 + ν2max√

2π(ν20 − ν2max)
√
d
exp

(
− (ν20 − ν2max)

2d

32ν20(3ν
2
0 + ν2max)

)

Conditioned on ∥n̂0∥2 ≥ 3ν2
0+ν2

max

4 d, ∥ϵ∥2 >
3ν2

0+ν2
max

4ν2
0

d and 1
∥n0∥ ⟨n0, ϵ⟩ > − ν2

0−ν2
max

4ν0

√
3ν2

0+ν2
max

√
d,

since Lemma 7 gives α2 + β ≥ 1 we have

∥n̂t∥2 = α2 ∥n0∥2 + βν20 ∥ϵ∥
2
+ 2α

√
βν0⟨n0, ϵ⟩

≥ α2 ∥n0∥2 + βν20 ∥ϵ∥
2 − 2α

√
βν0 ∥n0∥

ν20 − ν2max

4ν0
√

3ν20 + ν2max

√
d

≥ α2 ∥n0∥2 + βν20 ∥ϵ∥
2 − 2α

√
βν0 ∥n0∥ ∥ϵ∥ ·

ν20 − ν2max

6ν20 + 2ν2max

≥
(
1− ν20 − ν2max

6ν20 + 2ν2max

)(
α2 ∥n0∥2 + βν20 ∥ϵ∥

2
)

≥ 5ν20 + 3ν2max

6ν20 + 2ν2max

(
α2 + β

)
· 3ν

2
0 + ν2max

4
d

≥ 5ν20 + 3ν2max

8
d.

Hence by union bound, we complete the proof of Lemma 8.

Upon having all the above lemmas, we are now ready to establish Proposition 3 by induction. Sup-
pose the theorem holds for all T values of 1, · · · , T − 1. We consider the following 3 cases:

• If there exists some t ∈ [T ] such that δt > ν20 , by Lemma 3 we know that with probability
at least 1 − exp(−Ω(d)), we have ∥nt∥2 ≥ 3ν2

0+ν2
max

4 d, thus the problem reduces to the
two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved by induction.

• Suppose δt ≤ ν20 for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 > 36ν20d,
by Lemma 5 we know that with probability at least 1 − exp(−Ω(d)), we have ∥nt∥2 ≥
ν20d >

3ν2
0+ν2

max

4 d, thus the problem similarly reduces to the two sub-arrays n0, · · · ,nt−1

and nt, · · · ,nT , which can be solved by induction.

• Suppose δt ≤ ν20 and ∥nt−1∥2 ≤ 36ν20d for all t ∈ [T ]. Conditioned on ∥nt−1∥2 >
ν2
0+ν2

max

2 d for all t ∈ [T ], by Lemma 6 we have that for T = exp(O(d)),

∥n̂T − nT ∥ <

(√
5ν20 + 3ν2max

8
−
√

ν20 + ν2max

2

)
√
d.
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By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),

∥n̂T ∥2 ≥
5ν20 + 3ν2max

8
d.

Combining the two inequalities implies the desired bound

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >
√

ν20 + ν2max

2
d.

Hence by induction we obtain ∥nt∥2 >
ν2
0+ν2

max

2 d for all t ∈ [T ] with probability at least

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 3.

Finally, combining Propositions 2 and 3 finishes the proof of Theorem 1.

A.2 PROOF OF COROLLARY 1

By the definition of total variation distance, we have

TV(P̂t, P ) = sup
A
|P̂t(A)− P (A)|.

Specifically, by choosing the event A as
{
x : ∀i ∈ [k], ∥x− µi∥2 ≥ ν2

0+ν2
max

2 d
}

, from Theorem 1

we know P̂t(A) ≥ 1− T · exp(−Ω(d)). On the other hand, by Lemma 1 we have

P (A) =

k∑
i=0

wiP
(i)(A)

≤ w0 +

k∑
i=0

wi exp

(
−
(
ν20 − ν2max

8ν2max

)
d

)
= w0 + (1− w0) exp

(
−
(
ν20 − ν2max

8ν2max

)
d

)
.

Combining the two bounds, we obtain a lower bound on the total variation distance

TV(P̂t, P ) ≥ P̂t(A)− P (A) ≥ (1− w0)

(
1− T

exp(Ω(d))

)
.

A.3 PROOF OF THEOREM 2: LANGEVIN DYNAMICS UNDER SUB-GAUSSIAN MIXTURES

The proof framework is similar to the proof of Theorem 1. To begin with, we validate Assumption
2.v. in the following lemma:
Lemma 9. For constants ν0, νi, cν , cL satisfying Assumptions 2.iii. and 2.iv., we have
(1−cν)ν

2
0−ν2

i

2(1−cν)
> 0 and log

cνν
2
i

(c2L+cνcL)ν2
0
− ν2

i

2(1−cν)ν2
0
+

(1−cν)ν
2
0

2ν2
i

> 0 are both positive constants.

Proof of Lemma 9. From Assumption 2.iv. that ν20 >
ν2
max

1−cν
≥ ν2

i

1−cν
, we easily obtain

(1−cν)ν
2
0−ν2

i

2(1−cν)
> 0 is a positive constant. For the second property, let f(z) := log

cνν
2
i

(c2L+cνcL)z
−

ν2
i

2(1−cν)z
+ (1−cν)z

2ν2
i

. For any z >
ν2
i

1−cν
, the derivative of f(z) satisfies

d

dz
f(z) = −1

z
+

ν2i
2(1− cν)z2

+
1− cν
2ν2i

=
ν2i

2(1− cν)

(
1− cν
ν2i

− 1

z

)2

> 0.

Therefore, when 4(c2L+cνcL)
cν(1−cν)

≤ 1, we have

f(ν20) > f

(
ν2i

1− cν

)
= log

cν(1− cν)

c2L + cνcL
≥ log 4 > 0.
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When 4(c2L+cνcL)
cν(1−cν)

> 1, we have

f(ν20) > f

(
4(c2L + cνcL)

cν(1− cν)

ν2i
1− cν

)
= 2 log

cν(1− cν)

2(c2L + cνcL)
− cν(1− cν)

8(c2L + cνcL)
+

2(c2L + cνcL)

cν(1− cν)

≥ 2− 2 log 2− 2(c2L + cνcL)

cν(1− cν)
− cν(1− cν)

8(c2L + cνcL)
+

2(c2L + cνcL)

cν(1− cν)
> 2− 2 log 2− 1

2
> 0.

Thus we obtain Lemma 9.

Without loss of generality, we assume µ0 = 0d. Similar to the proof of Theorem 1, we decompose

xt = Rrt +Nnt, and ϵt = Rϵ
(r)
t +Nϵ

(n)
t ,

where R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k] and N ∈ Rd×n an orthonormal

basis of the null space of {µi}i∈[k]. To show ∥xt − µi∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d, it suffices to prove

∥nt∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d. By Proposition 2, if x0 is initialized in the distribution P (0), i.e.,

x0 ∼ P (0), since ν20 > 1
1−cν

ν2max, with probability at least 1− exp(−Ω(d)) we have

∥n0∥2 ≥
(
3ν20
4

+
ν2max

4(1− cν)

)
d. (13)

Then, conditioned on ∥n0∥2 ≥
(

3ν2
0

4 +
ν2
max

4(1−cν)

)
d, the following proposition shows that ∥nt∥ re-

mains large with high probability.
Proposition 4. Consider a distribution P satisfying Assumption 2. We follow the Langevin dynamics
for T = exp(O(d)) steps. Suppose that the initial sample satisfies ∥n0∥2 ≥

(
3ν2

0

4 +
ν2
max

4(1−cν)

)
d,

then with probability at least 1− T · exp(−Ω(d)), we have that ∥nt∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d for all

t ∈ {0} ∪ [T ].

Proof of Proposition 4. Firstly, by Lemma 3, if δt > ν20 , since ν20 >
ν2
max

1−cν
, we similarly have that

∥nt∥2 ≥
(

3ν2
0

4 +
ν2
max

4(1−cν)

)
d with probability at least 1 − exp(−Ω(d)) regardless of the previous

state xt−1. We then consider the case when δt ≤ ν20 . Intuitively, we aim to prove that the score
function is close to − x

ν2
0

when ∥n∥2 ≥
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d. Towards this goal, we first show that

P (0)(x) is exponentially larger than P (i)(x) for all i ∈ [k] in the following lemma:

Lemma 10. Suppose P satisfies Assumption 2. Then for any ∥n∥2 ≥
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d, we have

P (i)(x)
P (0)(x)

≤ exp(−Ω(d)) and ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)) for all i ∈ [k].

Proof of Lemma 10. We first give an upper bound on the sub-Gaussian probability density. For any
vector v ∈ Rd, by considering some vector m ∈ Rd, from Markov’s inequality and the definition in
equation 4 we can bound

Pz∼P (i)

(
mT (z− µi) ≥mT (v − µi)

)
≤

Ez∼P (i)

[
exp

(
mT (z− µi)

)]
exp (mT (v − µi))

≤ exp

(
ν2i ∥m∥

2

2
−mT (v − µi)

)
.

Upon optimizing the last term at m = v−µi

ν2
i

, we obtain

Pz∼P (i)

(
(v − µi)

T (v − z) ≤ 0
)
≤ exp

(
−∥v − µi∥2

2ν2i

)
. (14)
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Denote B :=
{
z : (v − µi)

T (v − z) ≤ 0
}

. To bound Pz∼P (i)(z ∈ B), we first note that

logP (i)(v)− logP (i)(z)

=

∫ 1

0

⟨v − z,∇ logP (i)(v + λ(z− v))⟩dλ

= ⟨v − z,∇ logP (i)(v)⟩+
∫ 1

0

⟨v − z,∇ logP (i)(v + λ(z− v))−∇ logP (i)(v)⟩dλ

≤ ∥v − z∥
∥∥∥∇ logP (i)(v)

∥∥∥+ ∫ 1

0

∥v − z∥
∥∥∥∇ logP (i)(v + λ(z− v))−∇ logP (i)(v)

∥∥∥ dλ

≤ ∥v − z∥ · Li ∥v − µi∥+
∫ 1

0

∥v − z∥ · Li ∥λ(z− v)∥ dλ

≤ Licν
2cL

∥v − µi∥2 +
(
cL + cν
2cν

)
Li ∥v − z∥2 ,

where the second last inequality follows from Assumption 2.ii. that ∇ logP (i)(µi) = 0d and
Assumption 2.iii. that the score function∇ logP (i) is Li-Lipschitz. Therefore we obtain

Pz∼P (i)(z ∈ B) =
∫
z∈B

P (i)(z) dz

≥
∫
z∈B

P (i)(v) exp

(
−Licν

2cL
∥v − µi∥2 −

cL + cν
2cν

Li ∥v − z∥2
)

dz

= P (i)(v) exp

(
−Licν

2cL
∥v − µi∥2

)∫
z∈B

exp

(
−cL + cν

2cν
Li ∥v − z∥2

)
dz. (15)

By observing that g : B→
{
z : (v − µi)

T (v − z) ≥ 0
}

with g(z) = 2v−z is a bijection such that
∥v − z∥ = ∥v − g(z)∥ for any z ∈ B, we have

∫
z∈B

exp

(
−cL + cν

2cν
Li ∥v − z∥2

)
dz =

1

2

∫
z∈Rd

exp

(
−cL + cν

2cν
Li ∥v − z∥2

)
dz

=
1

2

(
2πcν

(cL + cν)Li

) d
2

. (16)

Hence, by combining equation 14, equation 15, and equation 16, we obtain

exp

(
−∥v − µi∥2

2ν2i

)
≥ Pz∼P (i)

(
(v − µi)

T (v − z) ≤ 0
)

≥ P (i)(v) exp

(
−Licν

2cL
∥v − µi∥2

)
· 1
2

(
2πcν

(cL + cν)Li

) d
2

.

By Assumption 2.iii. that Li ≤ cL
ν2
i

we obtain the following bound on the probability density:

P (i)(v) ≤ 2

(
2πcνν

2
i

(cL + cν)cL

)− d
2

exp

(
−1− cν

2ν2i
∥v − µi∥2

)
. (17)
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Then we can bound the ratio of P (i) and P (0). For all i ∈ [k], define ρi(x) :=
P (i)(x)
P (0)(x)

, then we have

ρi(x) =
P (i)(x)

P (0)(x)
≤

2(2πcνν
2
i /(c

2
L + cνcL))

−d/2 exp
(
−(1− cν) ∥x− µi∥2 /2ν2i

)
(2πν20)

−d/2 exp
(
−∥x∥2 /2ν20

)
= 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

(
∥x∥2

2ν20
− (1− cν) ∥x− µi∥2

2ν2i

)

= 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)
∥Nn∥2 +

(
∥Rr∥2

2ν20
− (1− cν) ∥Rr− µi∥2

2ν2i

))

= 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)
∥n∥2 +

(
∥r∥2

2ν20
−

(1− cν)
∥∥r−RTµi

∥∥2
2ν2i

))
,

where the last step follows from the definition that R ∈ Rd×r an orthogonal basis of the vector space

{µi}i∈[k] and NTN = In. Since ν2i < (1− cν)ν
2
0 , the quadratic term ∥r∥2

2ν2
0
− (1−cν)∥r−RTµi∥2

2ν2
i

is

maximized at r =
(1−cν)ν

2
0R

Tµi

(1−cν)ν2
0−ν2

i
. Therefore, we obtain

∥r∥2

2ν20
−

(1− cν)
∥∥r−RTµi

∥∥2
2ν2i

≤ (1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )
.

Hence, for ∥µi − µ0∥2 ≤ (1−cν)ν
2
0−ν2

i

2(1−cν)

(
log

cνν
2
i

(c2L+cνcL)ν2
0
− ν2

i

2(1−cν)ν2
0
+

(1−cν)ν
2
0

2ν2
i

)
d and ∥n∥2 ≥(

ν2
0

2 +
ν2
max

2(1−cν)

)
d, we have

ρi(x) ≤ 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)
∥n∥2 + (1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )

)

≤ 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)(
ν20
2

+
ν2i

2(1− cν)

)
d+

(1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )

)

= 2 exp

(
−
(
log

cνν
2
i

(c2L + cνcL)ν20
− ν2i

2(1− cν)ν20
+

(1− cν)ν
2
0

2ν2i

)
d

2
+

(1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )

)

≤ 2 exp

(
−
(
log

cνν
2
i

(c2L + cνcL)ν20
− ν2i

2(1− cν)ν20
+

(1− cν)ν
2
0

2ν2i

)
d

4

)
.

From Lemma 9, we obtain ρi(x) ≤ exp(−Ω(d)).

To show ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)), from Assumptions 2.ii. and 2.iii. we have∥∥∥∥∇xP
(i)(x)

P (i)(x)

∥∥∥∥ =

∥∥∥∥∇xP
(i)(x)

P (i)(x)
− ∇xP

(i)(µi)

P (i)(µi)

∥∥∥∥ =
∥∥∥∇x logP

(i)(x)−∇x logP
(i)(µi)

∥∥∥
≤ Li ∥x− µi∥ ≤

cL
ν2i
∥x− µi∥ .

Therefore, we can bound ∥∇xP
(i)(x)∥

P (x) ≤ cL
ν2
i
ρi(x) ∥x− µi∥. When ∥x− µi∥ = exp(o(d)) is

small, by ρi(x) ≤ exp(−Ω(d)) we directly have ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)). When ∥x− µi∥ =
exp(Ω(d)) is exceedingly large, from equation 17 we have∥∥∇xP

(i)(x)
∥∥

P (x)
≤ 2cL

ν2i

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

(
∥x∥2

2ν20
− (1− cν) ∥x− µi∥2

2ν2i

)
∥x− µi∥ .
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Since ν20 >
ν2
i

1−cν
, when ∥x− µi∥ = exp(Ω(d))≫ ∥µi∥ we have

exp

(
∥x∥2

2ν20
− (1− cν) ∥x− µi∥2

2ν2i

)
= exp(−Ω(∥x− µi∥2)).

Therefore ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)). Thus we complete the proof of Lemma 10.

Similar to Lemma 5, the following lemma proves that when the previous state nt−1 is far from a
mode, a single step of Langevin dynamics with bounded step size is not enough to find the mode.

Lemma 11. Suppose δt ≤ ν20 and ∥nt−1∥2 > 36ν20d, then we have ∥nt∥2 ≥ ν20d with probability
at least 1− exp(−Ω(d)).

Proof of Lemma 11. For simplicity, denote v := nt−1 + δt
2 N

T∇x logP (xt−1). Since P =∑k
i=0 wiP

(i) and P (0) = N (µ0, ν
2
0Id), the score function can be written as

∇x logP (x) =
∇xP (x)

P (x)
=
∇xw0P

(0)(x)

P (x)
+
∑
i∈[k]

∇xwiP
(i)(x)

P (x)

= −w0P
(0)(x)

P (x)
· x
ν20

+
∑
i∈[k]

wi∇xP
(i)(x)

P (x)

= − x

ν20
+
∑
i∈[k]

wiP
(i)(x)

P (x)
· x
ν20

+
∑
i∈[k]

wi∇xP
(i)(x)

P (x)
. (18)

For ∥nt−1∥2 > 36ν20d by Lemma 10 we have ∥∇xP
(i)(xt−1)∥

P (xt−1)
≤ exp(−Ω(d)). Since δt ≤ ν20 , we

can bound the norm of v by

∥v∥ =
∥∥∥∥nt−1 +

δt
2
NT∇x logP (xt−1)

∥∥∥∥
=

∥∥∥∥∥∥nt−1 −
δt
2ν20

nt−1 +
∑
i∈[k]

wiδt
2ν20

P (i)(xt−1)

P (xt−1)
nt−1 +

∑
i∈[k]

wiδt
2

NT∇xP
(i)(xt−1)

P (xt−1)

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
1− δt

2ν20
+
∑
i∈[k]

wiδt
2ν20

P (i)(xt−1)

P (xt−1)

nt−1

∥∥∥∥∥∥−
∑
i∈[k]

wiδt
2

∥∥∇xP
(i)(xt−1)

∥∥
P (xt−1)

≥ 1

2
∥nt−1∥ −

∑
i∈[k]

wiδt
2

exp(−Ω(d))

> 2ν0
√
d.

On the other hand, from ϵ
(n)
t ∼ N (0n, In) we know ⟨v,ϵ(n)

t ⟩
∥v∥ ∼ N (0, 1) for any fixed v ̸= 0n,

hence by Lemma 2 we have

P

(
⟨v, ϵ(n)t ⟩
∥v∥

≥
√
d

4

)
= P

(
⟨v, ϵ(n)t ⟩
∥v∥

≤ −
√
d

4

)
≤ 4√

2πd
exp

(
− d

32

)
Combining the above inequalities gives

∥nt∥2 =
∥∥∥v +

√
δtϵ

(n)
t

∥∥∥2 ≥ ∥v∥2 − 2ν0|⟨v, ϵ(n)t ⟩| ≥ ∥v∥
2 − ν0

√
d

2
∥v∥ > ν20d

with probability at least 1− 8√
2πd

exp
(
− d

32

)
= 1− exp(−Ω(d)). This proves Lemma 11.
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When ∥nt−1∥2 ≤ 36ν20d, similar to Theorem 1, we consider a surrogate recursion n̂t such that
n̂0 = n0 and for all t ≥ 1,

n̂t = n̂t−1 −
δt
2ν20

n̂t−1 +
√

δtϵ
(n)
t . (19)

The following Lemma shows that n̂t is sufficiently close to the original recursion nt.

Lemma 12. For any t ≥ 1, given that for all j ∈ [t], δj ≤ ν20 and
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d ≤ ∥nj−1∥2 ≤

36ν20d, if µi satisfies Assumption 2.v. for all i ∈ [k], we have ∥n̂t − nt∥ ≤ t
exp(Ω(d))

√
d.

Proof of Lemma 12. By equation 18 we have that for all j ∈ [t],

∥n̂j − nj∥ =
∥∥∥∥n̂j−1 − nj−1 −

δj
2ν20

n̂j−1 −
δj
2
NT∇x logP (xj−1)

∥∥∥∥
=

∥∥∥∥∥∥n̂j−1 − nj−1 −
∑
i∈[k]

wiP
(i)(xj−1)

ν20P (xj−1)
nj−1 −

∑
i∈[k]

wiN
T∇xP

(i)(xj−1)

P (xj−1)

∥∥∥∥∥∥
≤ ∥n̂j−1 − nj−1∥+

∑
i∈[k]

wiP
(i)(xj−1)

ν20P (xj−1)
∥nj−1∥+

∑
i∈[k]

wi

∥∥∇xP
(i)(xj−1)

∥∥
P (xj−1)

.

By Lemma 10, we have P (i)(xj−1)

P (0)(xj−1)
≤ exp(−Ω(d)) and ∥∇xP

(i)(xj−1)∥
P (xj−1)

≤ exp(−Ω(d)) for all

i ∈ [k], hence from ∥nj−1∥ ≤ 6ν0
√
d we obtain a recursive bound

∥n̂j − nj∥ ≤ ∥n̂j−1 − nj−1∥+
1

exp(Ω(d))

√
d.

Finally, by n̂0 = n0, we have

∥n̂t − nt∥ =
∑
j∈[t]

(∥n̂j − nj∥ − ∥n̂j−1 − nj−1∥) ≤
t

exp(Ω(d))

√
d.

Hence we obtain Lemma 12.

Armed with the above lemmas, we are now ready to establish Proposition 4 by induction. Please
note that we also apply some lemmas from the proof of Theorem 1 by substituting ν2max with ν2

max

1−cν
.

Suppose the theorem holds for all T values of 1, · · · , T − 1. We consider the following 3 cases:

• If there exists some t ∈ [T ] such that δt > ν20 , by Lemma 3 we know that with probability
at least 1 − exp(−Ω(d)), we have ∥nt∥2 ≥

(
3ν2

0

4 +
ν2
max

4(1−cν)

)
d, thus the problem reduces

to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved by induction.

• Suppose δt ≤ ν20 for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 >
36ν20d, by Lemma 11 we know that with probability at least 1 − exp(−Ω(d)), we have
∥nt∥2 ≥ ν20d >

(
3ν2

0

4 +
ν2
max

4(1−cν)

)
d, thus the problem similarly reduces to the two sub-

arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved by induction.

• Suppose δt ≤ ν20 and ∥nt−1∥2 ≤ 36ν20d for all t ∈ [T ]. Conditioned on ∥nt−1∥2 >(
ν2
0

2 +
ν2
max

2(1−cν)

)
d for all t ∈ [T ], by Lemma 12 we have that for T = exp(O(d)),

∥n̂T − nT ∥ <

(√
5ν20
8

+
3ν2max

8(1− cν)
−

√
ν20
2

+
ν2max

2(1− cν)

)
√
d.

By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),

∥n̂T ∥2 ≥
(
5ν20
8

+
3ν2max

8(1− cν)

)
d.
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Combining the two inequalities implies the desired bound

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >

√(
ν20
2

+
ν2max

2(1− cν)

)
d.

Hence by induction we obtain ∥nt∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d for all t ∈ [T ] with probability

at least

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 4.

Finally, combining equation 13 and Proposition 4 finishes the proof of Theorem 2.

B THEORETICAL ANALYSIS ON ANNEALED LANGEVIN DYNAMICS

B.1 ANNEALED LANGEVIN DYNAMICS IN GAUSSIAN MIXTURES

In the following Theorem 3 we extend the result in Theorem 1 to annealed Langevin dynamics with
bounded noise levels.
Theorem 3. Consider a data distribution P satisfying Assumption 1. We follow annealed Langevin
dynamics for T = exp(O(d)) steps with noise levels cσ ≥ σ0 ≥ · · · ≥ σT ≥ 0 for constant cσ > 0.

In addition, assume for all i ∈ [k], ∥µi − µ0∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i +c2σ

ν2
0+c2σ

)
− ν2

i +c2σ
2ν2

0+c2σ
+

ν2
0+c2σ

2ν2
i +c2σ

)
d.

Suppose that the sample is initialized in P
(0)
σ0 , then with probability at least 1−T · exp(−Ω(d)), we

have ∥xt − µi∥2 >
ν2
0+ν2

max+2σ2
t

2 d for all t ∈ {0} ∪ [T ] and i ∈ [k].

Proof of Theorem 3. From equation 2 we note that the perturbed distribution is the convolution of
the original distribution and a Gaussian random variable, i.e., for random variables z ∼ p and
t ∼ N (0d, Id), their sum z + t ∼ pσ follows the perturbed distribution with noise level σ. There-
fore, a perturbed (sub)Gaussian distribution remains (sub)Gaussian. We formalize this property in
Proposition 5.

Proposition 5. Suppose the perturbed distribution of a d-dimensional probability distribution p
with noise level σ is pσ , then the mean of the perturbed distribution is the same as the original
distribution, i.e., Ez∼pσ

[z] = Ez∼p[z]. If p = N (µ,Σ) is a Gaussian distribution, pσ = N (µ,Σ+
σ2Id) is also a Gaussian distribution. If p is a sub-Gaussian distribution with parameter ν2, pσ is
a sub-Gaussian distribution with parameter (ν2 + σ2).

Proof of Proposition 5. By the definition in equation 2, we have

pσ(z) =

∫
p(t)N (z | t, σ2Id) dt =

∫
p(t)N (z− t | 0d, σ

2Id) dt.

For random variables t ∼ p and y ∼ N (0d, Id), their sum z = t + y ∼ pσ follows the perturbed
distribution with noise level σ. Therefore,

Ez∼pσ [z] = E(t+y)∼pσ
[t+ y] = Et∼p[t] + Ey∼N (0d,Id)[y] = Et∼p[t].

If t ∼ p = N (µ,Σ) follows a Gaussian distribution, we have z = t+y ∼ pσ = N (µ,Σ+ σ2Id).
If p is a sub-Gaussian distribution with parameter ν2, we have z = t + y ∼ pσ is a sub-Gaussian
distribution with parameter (ν2 + σ2). Hence we obtain Proposition 5.

To establish Theorem 3, we first note from Proposition 5 that perturbing a Gaussian distribution
N (µ, ν2Id) with noise level σ results in a Gaussian distributionN (µ, (ν2 + σ2)Id). Therefore, for
a Gaussian mixture P =

∑k
i=0 wiP

(i) =
∑k

i=0 wiN (µi, ν
2
i Id), the perturbed distribution of noise

level σ is

Pσ =

k∑
i=0

wiN (µi, (ν
2
i + σ2)Id).
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Similar to the proof of Theorem 1, we decompose

xt = Rrt +Nnt, and ϵt = Rϵ
(r)
t +Nϵ

(n)
t ,

where R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k] and N ∈ Rd×n an orthonormal
basis of the null space of {µi}i∈[k]. Now, we prove Theorem 3 by applying the techniques developed
in Appendix A.1 via substituting ν2 with ν2 + σ2

t at time step t.

First, by Proposition 2, suppose that the sample is initialized in the distribution P
(0)
σ0 , then with

probability at least 1− exp(−Ω(d)), we have

∥n0∥2 ≥
3(ν20 + σ2

0) + (ν2max + σ2
0)

4
d =

3ν20 + ν2max + 4σ2
0

4
d. (20)

Then, with the assumption that the initialization satisfies ∥n0∥2 ≥ 3ν2
0+ν2

max+4σ2
0

4 d, the following
proposition similar to Proposition 3 shows that ∥nt∥ remains large with high probability.

Proposition 6. Consider a data distribution P satisfies the constraints specified in Theorem 3.
We follow annealed Langevin dynamics for T = exp(O(d)) steps with noise level cσ ≥ σ0 ≥
σ1 ≥ σ2 ≥ · · · ≥ σT ≥ 0 for some constant cσ > 0. Suppose that the initial sample satisfies
∥n0∥2 ≥ 3ν2

0+ν2
max+4σ2

0

4 d, then with probability at least 1− T · exp(−Ω(d)), we have that ∥nt∥2 >
ν2
0+ν2

max+2σ2
t

2 d for all t ∈ {0} ∪ [T ].

Proof of Proposition 6. We prove Proposition 6 by induction. Suppose the theorem holds for all T
values of 1, · · · , T − 1. We consider the following 3 cases:

• If there exists some t ∈ [T ] such that δt > ν20 +σ2
t , by Lemma 3 we know that with proba-

bility at least 1− exp(−Ω(d)), we have ∥nt∥2 ≥ 3(ν2
0+σ2

t )+(ν2
max+σ2

t )
4 d =

3ν2
0+ν2

max+4σ2
t

4 d,
thus the problem reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can
be solved by induction.

• Suppose δt ≤ ν20 + σ2
t for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 >

36(ν20 + σ2
t−1)d ≥ 36(ν20 + σ2

t )d, by Lemma 5 we know that with probability at least

1 − exp(−Ω(d)), we have ∥nt∥2 ≥ (ν20 + σ2
t )d >

3ν2
0+ν2

max+4σ2
t

4 d, thus the problem
similarly reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved
by induction.

• Suppose δt ≤ ν20 +σ2
t and ∥nt−1∥2 ≤ 36(ν20 +σ2

t−1)d for all t ∈ [T ]. Consider a surrogate
sequence n̂t such that n̂0 = n0 and for all t ≥ 1,

n̂t = n̂t−1 −
δt

2ν20 + 2σ2
t

n̂t−1 +
√

δtϵ
(n)
t .

Since ν0 > νi and cσ ≥ σt for all t ∈ {0} ∪ [T ], we have ν2
i +c2σ

ν2
0+c2σ

≥ ν2
i +σ2

t

ν2
0+σ2

t
. Notice that for

function f(z) = log z − z
2 + 1

2z , we have d
dz f(z) =

1
z −

1
2 −

1
2z2 = − 1

2

(
1
z − 1

)2 ≤ 0.
Thus, by the assumption

∥µi − µ0∥2 ≤
ν20 − ν2i

2

(
log

(
ν2i + c2σ
ν20 + c2σ

)
− ν2i + c2σ

2ν20 + c2σ
+

ν20 + c2σ
2ν2i + c2σ

)
d,

we have that for all t ∈ [T ],

∥µi − µ0∥2 ≤
ν20 − ν2i

2

(
log

(
ν2i + σ2

t

ν20 + σ2
t

)
− ν2i + σ2

t

2ν20 + σ2
t

+
ν20 + σ2

t

2ν2i + σ2
t

)
d.

Conditioned on ∥nt−1∥2 >
ν2
0+ν2

max+2σ2
t−1

2 d for all t ∈ [T ], by Lemma 6 we have that for
T = exp(O(d)),

∥n̂T − nT ∥ <

(√
5ν20 + 3ν2max + 8σ2

T

8
−
√

ν20 + ν2max + 2σ2
T

2

)
√
d.
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By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),

∥n̂T ∥2 ≥
5ν20 + 3ν2max + 8σ2

T

8
d.

Combining the two inequalities implies the desired bound

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >
√

ν20 + ν2max + 2σ2
T

2
d.

Hence by induction we obtain ∥nt∥2 >
ν2
0+ν2

max+2σ2
t

2 d for all t ∈ {0}∪[T ] with probability
at least

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 6.

Finally, combining equation 20 and Proposition 6 finishes the proof of Theorem 3.

B.2 ANNEALED LANGEVIN DYNAMICS IN SUB-GAUSSIAN MIXTURES

Finally, we slightly modify Assumption 2 and extend our results to annealed Langevin dynamics
(with bounded noise levels) under sub-Gaussian mixtures in Theorem 4.

Assumption 3. Consider a data distribution P :=
∑k

i=0 wiP
(i) as a mixture of sub-Gaussian

distributions, where 1 ≤ k = o(d) and wi > 0 is a positive constant such that
∑k

i=0 wi = 1.
Suppose that P (0) = N (µ0, ν

2
0Id) is Gaussian and for all i ∈ [k], P (i) satisfies

i. P (i) is a sub-Gaussian distribution of mean µi with parameter ν2i ,

ii. P (i) is differentiable and∇P (i)
σt (µi) = 0d for all t ∈ {0} ∪ [T ],

iii. for all t ∈ {0} ∪ [T ], the score function of P (i)
σt is Li,t-Lipschitz such that Li,t ≤ cL

ν2
i +σ2

t
for

some constant cL > 0,

iv. ν20 > max
{
1,

4(c2L+cνcL)
cν(1−cν)

}
ν2
max+c2σ
1−cν

−c2σ for constant cν ∈ (0, 1), where νmax := maxi∈[k] νi,

v. ∥µi − µ0∥2 ≤ (1−cν)ν
2
0−ν2

i −cνc
2
σ

2(1−cν)

(
log

cν(ν
2
i +c2σ)

(c2L+cνcL)(ν2
0+c2σ)

− (ν2
i +c2σ)

2(1−cν)(ν2
0+c2σ)

+
(1−cν)(ν

2
0+c2σ)

2(ν2
i +c2σ)

)
d.

Theorem 4. Consider a data distribution P satisfying Assumption 3. We follow annealed Langevin
dynamics for T = exp(O(d)) steps with noise levels cσ ≥ σ0 ≥ · · · ≥ σT ≥ 0. Suppose the sample
is initialized in P

(0)
σ0 , then with probability at least 1 − T · exp(−O(d)), we have ∥xt − µi∥2 >(

ν2
0+σ2

t

2 +
ν2
max+σ2

t

2(1−cν)

)
d for all t ∈ {0} ∪ [T ] and i ∈ [k].

Proof of Theorem 4. The feasibility of Assumption 3.v. can be validated by substituting ν2 in
Lemma 9 with ν2 + c2σ . To establish Theorem 4, we first note from Proposition 5 that for a
sub-Gaussian mixture P =

∑k
i=0 wiP

(i), the perturbed distribution of noise level σ is Pσ =∑k
i=0 wiP

(i)
σ , where P (0) = N (µ0, (ν

2
i + σ2)Id) and P (i) is a sub-Gaussian distribution with

mean µi and sub-Gaussian parameter (ν2i + σ2). Similar to the proof of Theorem 1, we decompose

xt = Rrt +Nnt, and ϵt = Rϵ
(r)
t +Nϵ

(n)
t ,

where R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k] and N ∈ Rd×n an orthonormal
basis of the null space of {µi}i∈[k]. Now, we prove Theorem 4 by applying the techniques developed

in Appendix A.1 and A.3 via substituting ν2 and ν2

1−cν
with ν2+σ2

t

1−cν
at time step t. Note that for all

t ∈ {0}∪ [T ], Assumption 3.iv. implies ν20 +σ2
t > max

{
1,

4(c2L+cνcL)
cν(1−cν)

}
ν2
max+σ2

t

1−cν
because cσ ≥ σt.
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First, by Proposition 2, suppose that the sample is initialized in the distribution P
(0)
σ0 , then with

probability at least 1− exp(−Ω(d)), we have

∥n0∥2 ≥
(
3(ν20 + σ2

0)

4
+

ν2max + σ2
0

4(1− cν)

)
d. (21)

Then, with the assumption that the initialization satisfies ∥n0∥2 ≥
(

3(ν2
0+σ2

0)
4 +

ν2
max+σ2

0

4(1−cν)

)
d, the

following proposition similar to Proposition 4 shows that ∥nt∥ remains large with high probability.

Proposition 7. Consider a distribution P satisfying Assumption 3. We follow annealed Langevin
dynamics for T = exp(O(d)) steps with noise level cσ ≥ σ0 ≥ σ1 ≥ · · · ≥ σT ≥ 0 for some

constant cσ > 0. Suppose that the initial sample satisfies ∥n0∥2 ≥
(

3(ν2
0+σ2

0)
4 +

ν2
max+σ2

0

4(1−cν)

)
d, then

with probability at least 1 − T · exp(−Ω(d)), we have that ∥nt∥2 >
(

ν2
0+σ2

t

2 +
ν2
max+σ2

t

2(1−cν)

)
d for all

t ∈ {0} ∪ [T ].

Proof of Proposition 7. We prove Proposition 7 by induction. Suppose the theorem holds for all T
values of 1, · · · , T − 1. We consider the following 3 cases:

• If there exists some t ∈ [T ] such that δt > ν20 + σ2
t , by Lemma 3 we know that with

probability at least 1− exp(−Ω(d)), we have ∥nt∥2 ≥
(

3(ν2
0+σ2

t )
4 +

ν2
max+σ2

t

4(1−cν)

)
d, thus the

problem reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved
by induction.

• Suppose δt ≤ ν20 + σ2
t for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 >

36(ν20 + σ2
t−1)d ≥ 36(ν20 + σ2

t )d, by Lemma 11 we know that with probability at least

1 − exp(−Ω(d)), we have ∥nt∥2 ≥ (ν20 + σ2
t )d >

(
3(ν2

0+σ2
t )

4 +
ν2
max+σ2

t

4(1−cν)

)
d, thus the

problem similarly reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can
be solved by induction.

• Suppose δt ≤ ν20 +σ2
t and ∥nt−1∥2 ≤ 36(ν20 +σ2

t−1)d for all t ∈ [T ]. Consider a surrogate
sequence n̂t such that n̂0 = n0 and for all t ≥ 1,

n̂t = n̂t−1 −
δt

2ν20 + 2σ2
t

n̂t−1 +
√

δtϵ
(n)
t .

Since ν0 > νi and cσ ≥ σt for all t ∈ {0} ∪ [T ], we have ν2
i +c2σ

ν2
0+c2σ

>
ν2
i +σ2

t

ν2
0+σ2

t
. Notice that for

function f(z) = log z − z
2 + 1

2z , we have d
dz f(z) =

1
z −

1
2 −

1
2z2 = − 1

2

(
1
z − 1

)2 ≤ 0.

Thus, by Assumption 3.v. we have that for all t ∈ [T ],

∥µi − µ0∥2 ≤
(1− cν)ν

2
0 − ν2i − cνc

2
σ

2(1− cν)

(
log

cν(ν
2
i + c2σ)

(c2L + cνcL)(ν20 + c2σ)

− (ν2i + c2σ)

2(1− cν)(ν20 + c2σ)
+

(1− cν)(ν
2
0 + c2σ)

2(ν2i + c2σ)

)
d

≤ (1− cν)ν
2
0 − ν2i − cνσ

2
t

2(1− cν)

(
log

cν(ν
2
i + σ2

t )

(c2L + cνcL)(ν20 + σ2
t )

− (ν2i + σ2
t )

2(1− cν)(ν20 + σ2
t )

+
(1− cν)(ν

2
0 + σ2

t )

2(ν2i + σ2
t )

)
d

Conditioned on ∥nt−1∥2 >
(

ν2
0+σ2

t−1

2 +
ν2
max+σ2

t−1

2(1−cν)

)
d for all t ∈ [T ], by Lemma 12 we

have that for T = exp(O(d)),

∥n̂T − nT ∥ <

(√
5(ν20 + σ2

T )

8
+

3(ν2max + σ2
T )

8(1− cν)
−

√
ν20 + σ2

T

2
+

ν2max + σ2
T

2(1− cν)

)
√
d.
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By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),

∥n̂T ∥2 ≥
(
5(ν20 + σ2

T )

8
+

3(ν2max + σ2
T )

8(1− cν)

)
d.

Combining the two inequalities implies the desired bound

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >

√(
ν20 + σ2

T

2
+

ν2max + σ2
T

2(1− cν)

)
d.

Hence by induction we obtain ∥nt∥2 >
(

ν2
0+σ2

T

2 +
ν2
max+σ2

T

2(1−cν)

)
d for all t ∈ [T ] with proba-

bility at least

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 7.

Finally, combining equation 21 and Proposition 7 finishes the proof of Theorem 4.

C CONVERGENCE ANALYSIS OF CHAINED LANGEVIN DYNAMICS

Proof of Proposition 1. For simplicity, denote x[q] =
{
x(1), · · · ,x(q)

}
. By the definition of total

variation distance, for all q ∈ [d/Q] we have

TV
(
P̂
(
x[q]
)
, P
(
x[q]
))

=
1

2

∫ ∣∣∣P̂ (x[q]
)
− P

(
x[q]
)∣∣∣ dx[q]

=
1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
P̂
(
x[q−1]

)
− P

(
x(q) | x[q−1]

)
P
(
x[q−1]

)∣∣∣ dx[q]

≤ 1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
P̂
(
x[q−1]

)
− P̂

(
x(q) | x[q−1]

)
P
(
x[q−1]

)∣∣∣ dx[q]

+
1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
P
(
x[q−1]

)
− P

(
x(q) | x[q−1]

)
P
(
x[q−1]

)∣∣∣ dx[q]

=
1

2

∫
P̂
(
x(q) | x[q−1]

)
dx(q)

∫ ∣∣∣P̂ (x[q−1]
)
− P

(
x[q−1]

)∣∣∣ dx[q−1]

+
1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
− P

(
x(q) | x[q−1]

)∣∣∣ dx(q)

∫
P
(
x[q−1]

)
dx[q−1]

= TV
(
P̂
(
x[q−1]

)
, P
(
x[q−1]

))
+ TV

(
P̂
(
x(q) | x[q−1]

)
, P
(
x(q) | x[q−1]

))
≤ TV

(
P̂
(
x[q−1]

)
, P
(
x[q−1]

))
+ ε · Q

d
.

Upon summing up the above inequality for all q ∈ [d/Q], we obtain

TV
(
P̂ (x), P (x)

)
=

d/Q∑
q=1

(
TV
(
P̂
(
x[q]
)
, P
(
x[q]
))
− TV

(
P̂
(
x[q−1]

)
, P
(
x[q−1]

)))

≤
d/Q∑
q=1

ε · Q
d

= ε

Thus we finish the proof of Proposition 1.
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D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

Algorithm Setup: Our choices of algorithm hyperparameters are based on (Song & Ermon, 2019)
and (Song & Ermon, 2020). For σmax = 1, following from Song & Ermon (2019), we consider
L = 10 different standard deviations such that {λi}i∈[L] is a geometric sequence with λ1 = 1

and λ10 = 0.01. For annealed Langevin dynamics with T iterations, we choose the noise levels
{σt}t∈[T ] by repeating every element of {λi}i∈[L] for T/L times and we set the step size as δt =

2 × 10−5 · σ2
t /σ

2
T for every t ∈ [T ]. For vanilla Langevin dynamics with T iterations, we use the

same step size as annealed Langevin dynamics. For Chained-VLD and Chained-ALD, the patch size
Q is chosen depending on different tasks. For every patch of Chained-ALD, we choose the noise
levels {σt}t∈[TQ/d] by repeating every element of {λi}i∈[L] for TQ/dL times and we set the step
size as δt = 2× 10−5 · σ2

t /σ
2
TQ/d for every t ∈ [TQ/d]. The step size of Chained-VLD is the same

as Chained-ALD.

We would like to highlight that the inference time of Chained-LD is significantly lower than vanilla
LD in practice. Our theoretical comparison between Chained-LD and vanilla LD is based on itera-
tion complexity, i.e., the number of queries to the score function ∇ logP (x(q)|x(1), · · · , x(q−1)) or
∇ logP (x). Since Chained-LD only updates one patch at every iteration while vanilla LD updates
the whole image, Chained-LD will be significantly faster than vanilla LD.

D.1 SYNTHETIC GAUSSIAN MIXTURE MODEL

We choose the data distribution P as a mixture of three Gaussian components in dimension d = 100:

P = 0.2P (0) + 0.4P (1) + 0.4P (2) = 0.2N (0d, 3Id) + 0.4N (1d, Id) + 0.4N (−1d, Id).

Since the distribution is given, we assume that the sampling algorithms have access to the ground-
truth score function. We set the batch size as 1000 and patch size Q = 10 for chained Langevin
dynamics. We use T ∈

{
103, 104, 105, 106

}
iterations for vanilla and chained Langevin dynamics.

A sample x is clustered in mode 1 if it satisfies ∥x− µ1∥2 ≤ 5d and ∥x− µ1∥2 ≤ ∥x− µ2∥2;
in mode 2 if ∥x− µ2∥2 ≤ 5d and ∥x− µ1∥2 > ∥x− µ2∥2; and in mode 0 otherwise. The
initial samples are i.i.d. chosen from P (0), P (1), or P (2), and the results are presented in Figures
2, 5, and 6 respectively. The two subfigures above the dashed line illustrate the samples from the
initial distribution and target distribution, and the subfigures below the dashed line are the samples
generated by different algorithms. Furthermore, in Figures 7, 8 and 9 we demonstrate the effect of
different values of Q ∈ {1, 4, 10, 20, 50} on the mode-seeking tendencies of Chained-LD. We can
observe that for dimension d = 100, a moderate patch size Q ∈ {1, 4, 10} has similar performance,
a large patch size Q = 20 needs more steps to find the other two modes, while an overly-large patch
size Q = 50 almost cannot find other modes.

D.2 SCORE FUNCTION ESTIMATOR

In realistic scenarios, since we do not have direct access to the (perturbed) score function, Song &
Ermon (2019) proposed the Noise Conditional Score Network (NCSN) sθ(x, σ) to jointly estimate
the scores of all perturbed data distributions, i.e.,

∀σ ∈ {σt}t∈[T ] , sθ(x, σ) ≈ ∇x logPσ(x).

To train the NCSN, Song & Ermon (2019) adopted denoising score matching, which minimizes the
following loss

L
(
θ; {σt}t∈[T ]

)
:=

1

2T

∑
t∈[T ]

σ2
tEx∼PEx̃∼N (x,σ2

t Id)

[∥∥∥∥sθ(x̃, σt)−
x̃− x

σ2
t

∥∥∥∥2].
Assuming the NCSN has enough capacity and sufficient training samples, sθ∗(x, σ) minimizes the
loss L

(
θ; {σt}t∈[T ]

)
if and only if sθ∗(x, σt) = ∇x logPσt

(x) almost surely for all t ∈ [T ].
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In Chained Langevin dynamics, an ideal conditional score function estimator sθ could jointly esti-
mate the scores of all perturbed conditional patch distribution, i.e., ∀σ ∈ {σt}t∈[TQ/d] , q ∈ [d/Q],

sθ

(
x(q) | σ,x(1), · · · ,x(q−1)

)
≈ ∇x(q) logPσ(x

(q) | x(1), · · ·x(q−1)).

Following from Song & Ermon (2019), we use the denoising score matching to train the estimator.
For a given σ, the denoising score matching objective is

ℓ(θ;σ) :=
1

2
Ex∼PEx̃∼N (x,σ2Id)

∑
q∈[d/Q]

[∥∥∥∥sθ (x(q) | σ,x(1), · · · ,x(q−1)
)
− x̃(q) − x(q)

σ2

∥∥∥∥2
]
.

Then, combining the objectives gives the following loss

L
(
θ; {σt}t∈[TQ/d]

)
:=

d

TQ

∑
t∈[TQ/d]

σ2
t ℓ(θ;σt).

As shown in Vincent (2011), an estimator sθ with enough capacity and sufficient training samples
minimizes the loss L if and only if sθ outputs the scores of all perturbed conditional patch distribu-
tion almost surely.

D.3 IMAGE DATASETS

Our implementation and hyperparameter selection are based on (Song & Ermon, 2019) and (Song
& Ermon, 2020). During training, we i.i.d. randomly flip an image with probability 0.5 to construct
the two modes (i.e., original and flipped images). All models are optimized by Adam with learning
rate 0.001 and batch size 128 for a total of 200000 training steps, and we use the model at the last
iteration to generate the samples. We perform experiments on MNIST (LeCun, 1998) (CC BY-SA
3.0 License) and Fashion-MNIST (Xiao et al., 2017) (MIT License) datasets and we set the patch
size as Q = 14.

For the score networks of chained annealed Langevin dynamics (Chained-ALD), we use the official
PyTorch implementation of an LSTM network (Sak et al., 2014) followed by a linear layer. For
MNIST and Fashion-MNIST datasets, we set the input size of the LSTM as Q = 14, the number of
features in the hidden state as 1024, and the number of recurrent layers as 2. The inputs of LSTM
include inputting tensor, hidden state, and cell state, and the outputs of LSTM include the next
hidden state and cell state, which can be fed to the next input. To estimate the noisy score function,
we first input the noise level σ (repeated for Q times to match the input size of LSTM) and all-0
hidden and cell states to obtain an initialization of the hidden and cell states. Then, we divide a
sample into d/Q patches and input the sequence of patches to the LSTM. For every output hidden
state corresponding to one patch, we apply a linear layer of size 1024×Q to estimate the noisy score
function of the patch.

To generate samples, we use T ∈ {10000, 30000, 100000} iterations for annealed Langevin dynam-
ics (ALD) and Chained-ALD. The initial samples are chosen as either original or flipped images
from the dataset, and the results for MNIST and Fashion-MNIST datasets are presented in Figures
11, 3, 4, and 12 respectively. The two subfigures above the dashed line illustrate the samples from the
initial distribution and target distribution, and the subfigures below the dashed line are the samples
generated by different algorithms.

All experiments were run with one RTX3090 GPU. It is worth noting that the training and infer-
ence time of chained Langevin dynamics using LSTM is considerably faster than vanilla/annealed
Langevin dynamics using RefineNet. For a course of 200000 training steps on MNIST/Fashion-
MNIST, due to the different network architectures, LSTM takes around 2.3 hours while RefineNet
takes around 9.2 hours. Concerning image generation, chained Langevin dynamics is significantly
faster than vanilla/annealed Langevin dynamics since every iteration of chained Langevin dynamics
only updates a patch of constant size, while every iteration of vanilla/annealed Langevin dynamics
requires computing all coordinates of the sample. One iteration of chained Langevin dynamics us-
ing LSTM takes around 1.97 ms, while one iteration of vanilla/annealed Langevin dynamics using
RefineNet takes around 43.7 ms.
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Figure 5: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dynamics
(VLD) and chained vanilla Langevin dynamics (Chained-VLD). Three axes are ℓ2 distance from
samples to the mean of the three modes. The samples are initialized in mode 1.

Figure 6: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dynamics
(VLD) and chained vanilla Langevin dynamics (Chained-VLD). Three axes are ℓ2 distance from
samples to the mean of the three modes. The samples are initialized in mode 2.
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Figure 7: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dy-
namics (VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q ∈
{1, 4, 10, 20, 50}. Three axes are ℓ2 distance from samples to the mean of the three modes. The
samples are initialized in mode 0.
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Figure 8: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dy-
namics (VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q ∈
{1, 4, 10, 20, 50}. Three axes are ℓ2 distance from samples to the mean of the three modes. The
samples are initialized in mode 1.
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Figure 9: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dy-
namics (VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q ∈
{1, 4, 10, 20, 50}. Three axes are ℓ2 distance from samples to the mean of the three modes. The
samples are initialized in mode 2.
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Figure 10: Samples from a mixture of three Gaussian modes generated by Langevin dynamics and
chained Langevin dynamics with patch size Q = 10. Three axes are ℓ2 distance from samples to the
mean of the three modes. The samples are initialized in mode 0.
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Figure 11: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin dynamics
(Chained-ALD) for different numbers of iterations. The maximum noise level σmax is set to be 1 or
50. The samples are initialized as original images from MNIST.
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Figure 12: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin
dynamics (Chained-ALD) for different numbers of iterations. The maximum noise level σmax is set
to be 1 or 50. The samples are initialized as flipped images from FashionMNIST.
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