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ABSTRACT

The Langevin Dynamics framework, which aims to generate samples from the
score function of a probability distribution, is widely used for analyzing and in-
terpreting score-based generative modeling. While the convergence behavior of
Langevin Dynamics under unimodal distributions has been extensively studied in
the literature, in practice the data distribution could consist of multiple distinct
modes. In this work, we investigate Langevin Dynamics in producing samples
from multimodal distributions and theoretically study its mode-seeking properties.
We prove that under a variety of sub-Gaussian mixtures, Langevin Dynamics is
unlikely to find all mixture components within a sub-exponential number of steps
in the data dimension. To reduce the mode-seeking tendencies of Langevin Dy-
namics, we propose Chained Langevin Dynamics, which divides the data vector
into patches of constant size and generates every patch sequentially conditioned on
the previous patches. We perform a theoretical analysis of Chained Langevin Dy-
namics by reducing it to sampling from a constant-dimensional distribution. We
present the results of several numerical experiments on synthetic and real image
datasets, supporting our theoretical results on the iteration complexities of sam-
ple generation from mixture distributions using the chained and vanilla Langevin
Dynamics.

1 INTRODUCTION

Langevin dynamics, a.k.a. Langevin Monte Carlo, is a well-known Markov Chain Monte Carlo
(MCMC) sampling methodology that has been widely used to implement and interpret score-based
generative modeling. It can produce samples from the (Stein) score function of a probability density,
i.e., the gradient of the log probability density function with respect to data. It has been widely rec-
ognized that a pitfall of Langevin dynamics is its slow mixing rate (Wooddard et al., 2009} Raginsky
et al.,[2017; [Lee et al.| 2018)). Specifically, Song & Ermon| (2019) shows that under a multi-modal
data distribution, the samples from Langevin dynamics may have an incorrect relative density across
the modes. Based on this finding, |[Song & Ermon|(2019)) proposes anneal Langevin dynamics, which
injects different levels of Gaussian noise into the data distribution and samples with Langevin dy-
namics on the perturbed distribution. While outputting the correct relative density across modes can
be challenging for Langevin dynamics, a natural question is whether Langevin dynamics would be
able to find all the modes of a multi-modal distribution.

In this work, we study this question by analyzing the mode-seeking properties of Langevin dynam-
ics. The notion of mode-seekingness (Bishop, 2006} Ke et al., 2021} [Li & Farnia, 2023} |Li et al.,
2024a)) refers to the property that a generative model captures only a subset of the modes of a multi-
modal distribution. We note that a similar problem, known as metastability, has been studied in
the context of Langevin diffusion, a continuous-time version of Langevin dynamics described by
stochastic differential equation (SDE) (Bovier et al., |2002; 2004} |Gayrard et al.| 2005). Specifi-
cally, Bovier et al.| (2002) gave a sharp bound on the mean hitting time of Langevin diffusion and
proved that it may require exponential (in the space dimensionality d) time for transition between
modes. Regarding discrete Langevin dynamics, |[Lee et al.| (2018)) constructed a probability distri-
bution whose density is close to a mixture of two well-separated isotropic Gaussians, and proved
that Langevin dynamics could not find one of the two modes within an exponential number of steps.
However, further exploration of the mode-seeking tendencies of Langevin dynamics and its variants
for general distributions is still lacking in the literature.
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(a) Traditional mixture model (b) Mixture model with in-between mode PO

Figure 1: Traditional mixture models studied in the literature vs. our analyzed mixture distribution
possessing the in-between mode P(®). P(O) is supposed to contain a minor probability mass, yet
with a significantly higher variance than the other modes P(1), ... P(*),

In this work, we study Langevin dynamics under multi-modal distributions in a slightly different
setting from the standard theory literature on sampling. As illustrated in Figure [T} the existing
theoretical literature commonly considers a mixture of well-separated modes with bounded variance.
On the other hand, in our analysis, we consider a low-density high-variance mode (referred to as
Mode 0 or P(9) surrounding the other modes and filling up the space between the modes. Note
that Langevin dynamics relies on the score function (i.e., the gradient of log-pdf) to search for the
modes. For a mixture model with no in-between modes (Figure [T]a), Langevin dynamics could
carry information about the direction towards the closest mode, even if they are far from all the
modes. However, assuming an in-between mode P(°) with high variance (Figure b), the gradient
information outside the support set of the low-variance modes will be dominated by P(*), despite the
minor overall mass of P(%). As a result, one can expect that the dynamics would randomly explore
a large volume in R until finding a low-variance mode, which can take a significant time.

To theoretically formulate and demonstrate the potential mode-seeking tendency of Langevin dy-
namics, we begin by analyzing the convergence for mixture distributions of Gaussian modes, under
which Langevin dynamics could fail to visit all the mixture components within sub-exponential
steps (in the data dimension). Subsequently, we generalize this result to mixture distributions of
sub-Gaussian modes. This generalization extends our earlier result on Gaussian mixtures to a sig-
nificantly larger family of mixture models, as the sub-Gaussian family includes any distribution over
an />-norm-bounded support set.

To reduce Langevin dynamics’ large iteration complexity shown under a high-dimensional input
vector, we propose Chained Langevin Dynamics (Chained-LD). Since Langevin dynamics could
suffer from the curse of dimensionality, we decompose the sample x € R? into d/Q patches
x(M ... x(@/Q) " each of constant size Q, and sequentially generate every patch x(? for all
q € [d/Q)] statistically conditioned on previous patches, i.e., P(x(?) | x(®) ...x(@=1)) The com-
bination of all patches generated from the conditional distribution faithfully follows the probability
density P(x) due to the chain rule, while drawing samples from each patch requires less cost due
to the reduced dimension. We also provide a theoretical analysis of Chained-LD by reducing the
convergence of a d-dimensional sample to the convergence of each patch.

Finally, we present the results of several numerical experiments to validate our theoretical find-
ings. For synthetic experiments, we consider moderately high-dimensional Gaussian mixture mod-
els, where the vanilla Langevin dynamics could not find all the components within a million steps,
while Chained-LD could capture all the components with correct frequencies in O(10*) steps. For
experiments on real image datasets, we consider a mixture of two modes by using the original im-
ages from MNIST/Fashion-MNIST training dataset (black background and white digits/objects) as
the first mode and constructing the second mode by i.i.d. flipping the images (white background and
black digits/objects) with probability 0.5. Following from|Song & Ermon|(2019), we trained a Noise
Conditional Score Network (NCSN) to estimate the score function. Our numerical results indicate
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that Chained-LD was capable of finding both modes regardless of initialization. We summarize the
contributions of this work as follows:

* Theoretically studying the mode-seeking properties of vanilla Langevin dynamics,

* Proposing Chained Langevin Dynamics (Chained-LD), which decomposes the sample into
patches and sequentially generates each patch conditioned on previous patches,

* Providing a theoretical analysis of the convergence behavior of Chained-LD,

* Numerically comparing the mode-seeking properties of vanilla and chained Langevin dynamics.

Notations: We use [n] to denote the set {1,2,--- ,n}. Also, in the paper, ||-|| refers to the {2 norm.
We use 0,, and 1,, to denote a O-vector and 1-vector of length n. We use I,, to denote the identity
matrix of size n X n. In the text, TV stands for the total variation distance.

2 RELATED WORKS

Langevin Dynamics: The convergence guarantees for Langevin diffusion, a continuous version of
Langevin dynamics, are classical results extensively studied in the literature (Bhattacharya, [1978;
Roberts & Tweediel [1996; Bakry & Emery, [1983; Bakry et al., 2008). Langevin dynamics, also
known as Langevin Monte Carlo, is a discretization of Langevin diffusion typically modeled as a
Markov Chain Monte Carlo (Welling & Teh, 2011). For unimodal distributions, e.g., the probability
density function that is log-concave or satisfies log-Sobolev inequality, the convergence of Langevin
dynamics is provably fast (Dalalyan,[2017;|Durmus & Moulines,|2017;|Vempala & Wibisono,[2019).
However, for multimodal distributions, the non-asymptotic convergence analysis is much more chal-
lenging (Cheng et al.,|2018)). Raginsky et al.|(2017)) gave an upper bound on the convergence time of
Langevin dynamics for arbitrary non-log-concave distributions with certain regularity assumptions,
which, however, could be exponentially large without imposing more restrictive assumptions. |Lee
et al.| (2018)) studied the special case of a mixture of Gaussians of equal variance and provided an
analysis of sampling from general non-log-concave distributions.

Mode-Seekingness of Langevin Dynamics: The investigation of the mode-seekingness of gener-
ative models starts with different generative adversarial network (GAN) (Goodfellow et al., 2014)
model formulations and divergence measures, from both the practical (Goodfellow} [2016; [Poole
et al.,[2016)) and theoretical (Shannon et al., [2020; |L1 & Farnial 2023 |Li et al., |2024a)) perspectives.
In the context of Langevin dynamics, mode-seekingness is closely related to a lower bound on the
transition time between two modes, e.g., two local maximums. Bovier et al.| (20025 2004); Gayrard
et al.| (2005) studied the mean hitting time of the continuous Langevin diffusion. [Lee et al.| (2018])
proved the existence of a mixture of two Gaussian distributions whose covariance matrices differ by
a constant factor, Langevin dynamics cannot find both modes in polynomial time.

Score-based Generative Modeling: A central task in unsupervised learning involves learning the
underlying probability distribution of training data and efficiently generating new samples from the
distribution. Since Song et al.|(2020a)) proposed sliced score matching which can train deep models
to learn the score functions of implicit probability distributions on high-dimensional data, score-
based generative modeling (SGM) has been going through a spurt of growth. Annealed Langevin
dynamics (Song & Ermon| 2019)) estimates the noise score of the probability density perturbed by
Gaussian noise and utilizes Langevin dynamics to generate samples from a sequence of decreasing
noise scales. [Song & Ermon| (2020) conducted an analysis of the effect of noise levels on the
performance of annealed Langevin dynamics. Denoising diffusion probabilistic model (DDPM) (Ho
et al.,|2020) incorporates a step-by-step introduction of random noise into data, followed by learning
to reverse this diffusion process in order to generate desired data samples from the noise. [Song
et al.| (2020b)) unified anneal Langevin dynamics and DDPM via a stochastic differential equation.
A recent line of work focuses on the non-asymptotic convergence guarantees for SGM with an
imperfect score estimation under various assumptions on the data distribution (Block et al., 2020;
De Bortoli et al., 2021} [Lee et al., 2022 |Chen et al.| [2023; Benton et al., 2023 [Li et al., 2023}
2024b). |Conforti et al.| (2023)) also investigated the KL convergence guarantees for score-based
diffusion models. We highlight that a key difference between SGM and our theoretical analysis is
that we assume the sampler has direct access to the true score function, whereas SGM typically
focuses on learning the score function from training data.
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3 PRELIMINARIES

3.1 LANGEVIN DYNAMICS

Generative modeling aims to produce samples such that their distribution is close to the underlying
true distribution P. For a continuously differentiable probability density P(x) on R, its score func-
tion is defined as the gradient of the log probability density function (PDF) V4 log P(x). Langevin
diffusion is a stochastic process defined by the stochastic differential equation (SDE)

dx; = Vy log P(x;) dt + V2 dwy,

where w; is the Wiener process on RY. Langevin dynamics, a discretization of the SDE for T'
iterations, is applied to generate samples. Each iteration of Langevin dynamics is defined as

1)
Xt =X¢_1+ Etvx log P(x¢—1) + \/0s€4, (D

where §, is the step size and €, ~ AN (04, I) is Gaussian noise. It has been widely recognized
that Langevin diffusion could take exponential time to mix without additional assumptions on the
probability density (Bovier et al.,|2002; 2004; \Gayrard et al., |2005; [Raginsky et al.,[2017} |Lee et al.,
2018). To combat the slow mixing, Song & Ermon|(2019) proposed annealed Langevin dynamics
by perturbing the probability density with Gaussian noise of variance o2, i.e.,

P,y(x) := /P(Z)N(x | 2,0°1,) dz, ()

and running Langevin dynamics on the perturbed data distribution P,, (x) with gradually decreasing
noise levels {0}, (7. i€,

1)
Xp = Xy—1 + Etvx log Py, (x¢—1) + \/0r€s, 3)

where J; is the step size and €, ~ N (04, I;) is Gaussian noise. When the noise level o is vanishingly
small, the perturbed distribution is close to the true distribution, i.e., P, (x) ~ P(x).

Remark 1. In our theoretical analysis, we assume the sampler has access to the true score function
Vxlog P,(x). In some realistic scenarios such as image datasets, since we do not have direct
access to the (perturbed) score function, |Song & Ermon| (2019) proposed the Noise Conditional
Score Network (NCSN) sg(x,0) to jointly estimate the scores of all perturbed data distributions,
ie,Vo e {Ut}te[T] , so(x,0) &~ Vylog P,(x).

3.2 MULTI-MODAL DISTRIBUTIONS

Our work focuses on multi-modal distributions. We use P = Zie[k] w; P to represent a mixture
of k modes, where each mode P(¥) is a probability density with frequency w; such that w; > 0
forall i € [k] and }_,(;;wi = 1. In our theoretical analysis, we consider Gaussian mixtures and

sub-Gaussian mixtures, i.e., every component P() is a Gaussian or sub-Gaussian distribution. A
probability distribution p(z) of dimension d is defined as a sub-Gaussian distribution with parameter
v? if, given the mean vector p := E,~p[z], the moment generating function (MGF) of p satisfies the

following inequality for every vector o € R%:

2 2
Eyp [exp (a7 (2 — )] < exp(%) . (4)

We remark that sub-Gaussian distributions include a wide variety of distributions such as Gaussian
distributions and any distribution within a bounded ¢2-norm distance from the mean .

4 THEORETICAL ANALYSIS OF THE MODE-SEEKING PROPERTIES OF
LANGEVIN DYNAMICS

In this section, we theoretically investigate the mode-seeking properties of vanilla Langevin dynam-
ics. We begin with analyzing Langevin dynamics in Gaussian mixtures, and further generalize the
results to sub-Gaussian mixtures. We again highlight that in our theoretical analysis, we assume the
sampler has access to the score function V log P(x) of the underlying distribution P.
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4.1 LANGEVIN DYNAMICS IN GAUSSIAN MIXTURES

Assumption 1. Consider a data distribution P := Zf:o w; P9 as a mixture of Gaussian distribu-
tions, where 1 < k = o(d) and w; > 0 is a positive constant such that Zf:o w; = 1. Suppose that
PO = N (p;, v 1) isa Gaussian distribution over R? for all i € {0} U[k] such that for all i € [k,
v; < v and ||p; — u0||2 ”“ vi (log ( ) 2”58 + 3 22) d. Denote Viay = MaXe[k) Vi.

To intuitively understand Assumption l we first note that the probablllty density p(z) of a Gaussian
distribution A/ (u, v%21;) decays exponentially in terms of ll= V” [ . When a state z is sufficiently far

from one mode P(¥), the probability density of P(*) is dominated by the high-variance component
P©) which implies that the gradient information from P(?) will be masked by P(®). Hence, the
dynamics can only visit the universal mode unless the stochastic noise miraculously leads it to the

2 2
region of another mode. In addition, it can be verified that log (”—) 21/2 + 2 is a positive constant
(J

for v; < vy, thus the last requirement of Assumptlonlessentlally represents ||p; — u0|| < O(d).
We formalize the intuition in Theorem [I]and defer the proof to Appendix

Theorem 1. Consider a data distribution P satisfying Assumption[I| We follow Langevin dynamics
for T = exp(O(d)) steps. Suppose the sample is initialized in P(%), then with probability at least
2 2

1— T - exp(—Q(d)), we have ||x; — pi||” > 2t ¥mexd for all t € {0} U [T and i € [k].

The constants in the notation €2(d) are specified in Equations |§| and 7| I 7)in the Appendix. We note

md is a strong notion of mode-seekingness, since the density of mode

that [x, — pull® >
P® = N(u;,v?1,) concentrates around the £5-norm ball {z Nz — pil® < Vfd}. This notion

can be translated into a lower bound in terms of other distance measures, e.g., total variation distance
in the following corollary, whose proof is deferred to Appendix [A.2]

Corollary 1. Under the same assumptions as in Theorem || for all time steps t € {0} U [T, the
distribution P; of the generated sample x; by Langevin dynamics at time t satisfies

TV(P;, P) > (1 —wp) <1_exp(TQ(d))>'

4.2 LANGEVIN DYNAMICS IN SUB-GAUSSIAN MIXTURES

We further generalize our results to sub-Gaussian mixtures. We impose the following assumptions
on the mixture. It is worth noting that Assumptions %T—. automatically hold for Gaussian mixtures
such that P = N(u;, v2I), and Assumptions |Ziv. and are specific assumptions on the mean
and variance of P similar to Assumption

Assumption 2. Consider a data distribution P := Z?:O w; P as a mixture of sub-Gaussian
distributions, where 1 < k = o(d) and w; > 0 is a positive constant such that Zf:o w; = 1.
Suppose that P(0) = N (o, v31,) is Gaussian and for all i € [k], PO satisfies
i. P is a sub-Gaussian distribution of mean p; with parameter v?
ii. P is differentiable and V P (u;) = 0y,
iii. the score function of P\Y) is L;-Lipschitz such that L; < % for some constant cf, > 0,

iv. V3 > max {1 4(%&'70”;;)} 722 for constant ¢, € (0, 1), where Unax = maX;c[x) Vi,

(1—c,)v2—v? v;

_ 2 1 v ; (Aoei) g
v i = poll” < 2(1—cy) o8 (LL"FCUCL)VO 21— Cu)l’2 T v; '

The feasibility of Assumption is validated by Lemma [9]in Appendix [A.3] With Assumption
we show the mode-seeking tendency of Langevin dynamics under sub-Gaussian distributions in
Theorem [2] and defer the proof to Appendix [A.3]
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Algorithm 1 Chained Langevin Dynamics (Chained-LD)
Require: Patch size (), dimension d, conditional score function V log P,,, number of iterations 7,

noise levels {0}, (g, ap Step size {0t} (rq a)-
: Initialize xo, and divide x¢ into d/(Q) patches xél), e x(()d/ 2
: for ¢ + 1tod/Q do

fort + 1to TQ/d do

1

2

3

4: x{? xi‘i)l—&—%Vlog P, (xg'i)l | x(W) ... ,x(q_l))—&—\/aet, where €; ~ N'(0g, I()
5: end for
6

7

8

of equal size Q)

(9)

x(@) X1Q/d

: end for
. return x

Theorem 2. Consider a data distribution P satisfying Assumption[2) We follow Langevin dynamics
for T = exp(O(d)) steps. Suppose the sample is initialized in PO then with probability at least

1—T - exp(—O(d)), we have ||x; — ps||> > (%3 + 2(V1121"‘C"V)) dforallt € {0} U[T] andi € [k].

We remark that an implication of Theorem [2]is the potential difficulty of transition between low-
variance modes for Langevin dynamics. For instance, suppose P(1), - .. | P(*) have bounded support
sets with small radius and sufficiently distant means. If the sample is initialized in a low-variance
mode P("™) (for m € [k]), either it stays in P(™) and cannot capture other modes, or it escapes
P (due to the random noise €) and is expected to need to explore the whole space until finding
the support sets of the other bounded modes.

Furthermore, in Appendix [B]we extend our theoretical analysis to annealed Langevin dynamics with
bounded noise levels, indicating the effect of annealing noise levels on the mode-seeking tendencies
of Langevin dynamics. Aligning with the empirical analysis in (Song & Ermonl |2020), we show that
bounded noise levels will have a limited impact on Langevin dynamics since they exhibit similar
mode-seeking tendencies. On the other hand, as suggested by [Song & Ermon| (2020), annealed
Langevin dynamics with a significantly larger initial noise level could capture more modes, which
is also confirmed by our numerical results in Section [6]

5 CHAINED LANGEVIN DYNAMICS

To reduce the mode-seeking tendencies of vanilla Langevin dynamics, we propose Chained
Langevin Dynamics (Chained-LD) in Algorithm [I] While vanilla Langevin dynamics apply gra-
dient updates to all coordinates of the sample in every step, we decompose the sample into patches
of constant size and generate each patch sequentially to alleviate the exponential dependency on the
dimensionality. More precisely, we divide a sample x into d/Q patches x(1), ... x(#/@) of some
constant size @, and apply Langevin dynamics to sample each patch x(@) (for ¢ € [d/Q]) from
the conditional distribution P(x(® | x(1),...x(@=1)) Intuitively, vanilla Langevin dynamics needs
to explore the entire space (of volume exponentially large in d) to find the missing modes, while
Chained-LD could significantly lower the volume by dimensionality reduction.

In practice, we can also apply annealed Langevin dynamics (Song & Ermonl [2019) to facilitate the
sampling of each patch, by perturbing it with a series of noise levels {Ut}te[TQ Jd]- Specifically,
we refer chained vanilla Langevin dynamics (Chained-VLD) to Algorithm | without noise injection
(i.e., oy = 0 for all ¢t € [TQ/d]), and chained annealed Langevin dynamics (Chained-ALD) oth-
erwise. Ideally, if a sampler perfectly generates every patch, combining all patches gives a sample
from the original distribution due to the chain rule P(x) = [],c(4/0] P(x@ | xM ... x(@=1) 1n
Proposition[I|we give a linear reduction from producing samples of dimension d using Chained-LD

to learning the distribution of a )-dimensional variable for constant ). The proof of Proposition I]
is deferred to Appendix
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Proposition 1. Consider a sampler algorithm taking the first ¢ — 1 patches xV) ... x@=1) g
input and outputing a sample of the next patch x\9 with probability P (X(Q) \ xM o x(qfl)) for
all q € [d/Q). Suppose that for every q € [d/Q] and any given previous patches x) -  x(a=1),
the sampler algorithm can achieve

TV(P <X<q> X, ,X<q—1>) ,p(X(Q) <0, 7X<q—1>)) < 6.%

in 7(e/d) iterations for some € > 0. Then, equipped with the sampler algorithm, the Chained-LD

algorithm in % - 7(g/d) iterations can achieve

Tv(ﬁ(x),P(x)) <e.

With additional assumptions on the target distribution P, we can obtain upper bounds on the iter-
ation complexity of Chained-LD. If the conditional distribution p := P (X(Q) | x( ... ,x(q’l))
for all ¢ € [d/Q)] satisfies the assumptions specified in Appendix A of Ma et al. (2019), i.e.,
log p is L-Lipschitz smooth for all x(4) and m-strongly concave for x(?) outside an /5-norm
ball of radius R (i.e., |x(q)H > R), by Theorem 1 of [Ma et al| (2019) we obtain 7(e/d) =

o (exp(32LR2)% . ﬁ log ﬁ). In common settings, the radius R in ()—dimensional space

scales as R = O(1/Q). Therefore, for constants L and m, the iteration complexity of Chained-LD is

a polynomial O (exp((’)(LQ)) E;fj@ log d?{@) in d, which takes its minimum value O (g—; log Z—j)
when the patch size @ is a constant not growing with d. For comparison, the iteration complexity of

vanilla Langevin dynamics could scale exponentially in d when R = ©(1/d) in common settings.

Remark 2. We highlight that Chained-LD is a sampling algorithm. In Algorithm[I} we assume the
sampler has direct access to the conditional score function. Also, the conditional densities used in
Chained-LD do not require any extra information compared to the target distribution assumed in
vanilla LD, since vanilla LD has access to the joint distribution and Chained-LD has access to con-
ditional distributions that, based on chain rule, have the same information as the joint distribution.

Remark 3. We note that similar combinations of autoregressive models and denoising diffusion
models have been studied in the generative modeling literature, in the context of text generation
(Hoogeboom et al.l 2022 \Wu et al.| 2023) and time series forecasting (Rasul et al., |2021)). At a
high level, the generative modeling literature focuses on the training and implementation of autore-
gressive diffusion models in time-dependent scenarios, while this work focuses on the theoretical
guarantees of Chained Langevin dynamics and its comparison with vanilla Langevin dynamics, mo-
tivated by their mode-seeking properties under sub-Gaussian mixture distribution.

6 NUMERICAL RESULTS

In this section, we empirically evaluated the mode-seeking tendencies of vanilla and chained
Langevin dynamics. We performed numerical experiments on synthetic Gaussian mixture models
and real image datasets including MNIST (LeCunl [1998) and Fashion-MNIST (Xiao et al., [2017).
Details on the experiment setup are deferred to Appendix D}

Synthetic Gaussian mixture model: We consider the data distribution P as a mixture of three
Gaussian components in dimension d = 100, where mode 0 defined as PO = N (04,31,) is the
in-between mode with high variance, and mode 1 and mode 2 are respectively defined as P(!) =
N(14,I;) and P® = N(—14, I,). The frequencies of the three modes are 0.2, 0.4 and 0.4, i.e.,

P =02P® 4+ 0.4PW 4+ 0.4P® = 02N (04,31;) + 0.4N (14, 1) + 0.4N (14, I).

In the synthetic experiments, we give the samplers access to the true score function calculated from
the target distribution. As shown in Figure 2] vanilla Langevin dynamics (VLD) cannot find mode
1 or 2 within 106 iterations if the sample is initialized in mode 0, while chained vanilla Langevin
dynamics (Chained-VLD) with patch size ¢ = 10 can find the other two modes in 1000 steps
and correctly recover their frequencies as gradually increasing the number of iterations. When
the sample is initialized in mode 1, as shown in Figure |§| in Appendix VLD is also likely to
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Figure 2: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dynamics
(VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size () = 10. Three axes
are {5 distance from samples to the mean of the three modes. The samples are initialized in mode 0.

be trapped by the high-variance mode 0 and cannot find mode 2, while Chained-VLD is capable
of finding all modes. Additional experiments on samples initialized in mode 2 are presented in
Appendix [D.I] which also verify the mode-seeking tendencies of vanilla Langevin dynamics. We
also investigated the effect of different choices of patch size ) on the performance of Chained-LD.
As shown in Figures[7} 8] and[0]in Appendix[D.]] the convergence of Chained-LD are insensitive to
moderate values of constant () € {1,4,10}; for large Q = 20, it takes more steps to find the other
modes; while for overly large @) = 50, Chained-LD has mode-seeking tendencies similar to LD.

Image datasets: We also perform experiments on generating samples from image datasets by
chained annealed Langevin dynamics (Chained-ALD). We construct the distribution as a mixture
of two modes by using the original images from MNIST/Fashion-MNIST training dataset (black
background and white digits/objects) as the first mode and constructing the second mode by i.i.d.
randomly flipping an image (white background and black digits/objects) with probability 0.5.

Since the target distribution of image datasets is unknown, following from Song & Ermon|(2019),
we train an estimator to approximate the score function from training samples. More details are
deferred to Appendix We use Recurrent Neural Network (RNN) architectures to estimate the
perturbed conditional score function V) log Py, (x(@ | x(1) ... x(@= 1)) for Chained-ALD. We
note that for a sequence of inputs, the output of RNN from the previous step is fed as input to the
current step. Therefore, in the scenario of chained Langevin dynamics, the hidden state of RNN
contains information about the previous patches and allows the network to estimate the conditional
score function of the next patch. More implementation details are deferred to Appendix [D.3]

We numerically compare the performance of annealed Langevin dynamics (ALD) and Chained-
ALD with different noise levels. The experimental results are shown in Figures [3]and [ For ALD
with bounded noise levels (i.e., the maximum noise o, = 1), we observe that it tends to generate
the samples from the same mode as initialization, aligning with our theoretical analysis in Theorem
M]in Appendix[B] Then, if we apply significantly larger noise levels (i.e., the maximum noise oyax =
50 as suggested by Technique 1 in|Song & Ermon|(2020)), ALD could generate samples from both
modes. On the other hand, Chained-ALD, even with bounded noise levels (i.e., omax = 1), is
capable of finding both modes. Further experiments are deferred to Appendix
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Figure 3: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin dynamics
(Chained-ALD) with patch size ) = 14 for different numbers of iterations. The maximum noise
level o, 1s set to be 1 or 50. The samples are initialized as flipped images from MNIST.

7 CONCLUSION

In this work, we theoretically and numerically studied the mode-seeking properties of Langevin
dynamics sampling methods under a multi-modal distribution. We characterized Gaussian and sub-
Gaussian mixture models under which vanilla Langevin dynamics are unlikely to find all the compo-
nents within a sub-exponential number of iterations. To reduce the mode-seeking tendency of vanilla

9
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ALD
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Figure 4: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin
dynamics (Chained-ALD) with patch size () = 14 for different numbers of iterations. The maximum
noise level o, s set to be 1 or 50. The initialization is original images from Fashion-MNIST.

Langevin dynamics, we proposed Chained Langevin Dynamics (Chained-LD) and analyzed its con-
vergence behavior. Studying the connections between Chained-LD and denoising diffusion models
will be an interesting topic for future exploration. Our RNN-based implementation of Chained-LD
is currently limited to image data generation tasks. An interesting future direction is to extend the
application of Chained-LD to other domains such as audio and text data. Another future direction
could be to study the convergence of Chained-LD under an imperfect score estimation.

10
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A THEORETICAL ANALYSIS ON THE MODE-SEEKING TENDENCY OF
LANGEVIN DYNAMICS

We begin by introducing some well-established lemmas used in our proof. We use the following
lemma on the tail bound for multivariate Gaussian random variables.

Lemma 1 (Lemma 1, Laurent & Massart (2000)). Suppose that a random variable z ~ N (04, I).
Then for any A > 0,
P (||z||2 > d+ 2Vd\ + 2/\> < exp(=N),

P (||z||2 <d— 2\/5) < exp(—\).

We also use a tail bound for one-dimensional Gaussian random variables and provide the proof here
for completeness.

Lemma 2. Suppose a random variable Z ~ N(0,1). Then for any t > 0,
exp(—#2/2)

P(Z > 1) =PB(Z< 1)< "

Proof of Lemmal[2] Since 2 > 1forall z € [t,00), we have

1 e 22 1 * z 22 exp(—t2/2)
P(Z>t) = — e —— ) dz < — e =) dz = ———.
(Z =) \/27r/t Xp< 2> - 27r/t t Xp< 2) V2t
(

Since the Gaussian distribution is symmetric, we have P(Z > t) = P(Z < —t). Hence we obtain
the desired bound. O

A.1 PROOF OF THEOREM[IE LANGEVIN DYNAMICS UNDER GAUSSIAN MIXTURES

Without loss of generality, we assume that pg = 04 for simplicity. Let r and n respectively denote
the rank and nullity of the vector space {g;};¢ ), then we have r + n = dand 0 < r < k = o(d).

Denote R € R**" an orthonormal basis of the vector space {4;};c4» and denote N € R¥™ an
orthonormal basis of the null space of {u;} iclk]® Now consider decomposing the sample x; by
ry = RTx,,, and n; := NTxt,
where r; € R", n; € R™. Then we have
x; = Rr; + Nn;.
Similarly, we decompose the noise €; into
egr) :=R%¢, and egn) = NT¢,,
where e§"> eR", egn) € R". Then we have
€ = Regr) + Negn).

Since a linear combination of a Gaussian random variable still follows Gaussian distribution, by
€ ~N(04,1;), RTR = I,,, and NTN = I,, we obtain

Egr) ~ N(O’(‘a I’f‘)’ and etn) ~ N(O"“ In)'

By the definition of Langevin dynamics in equation[I] n, follow from the update rule:

5
n, =n; ; + éNTvx log P(xi—1) + v/6e™. (5)

2 2
It is worth noting that since N7 p1; = 0,,. To show ||x; — p; ||2 > %d, it suffices to prove

2 2
V0+Vmaxd

Inel® > 2

14
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We start by proving that the initialization of the state x( has a large norm on the null space with
high probability in the following proposition. Throughout the proof, the notation Q(d) refers to
Q(d) > cd, for the constant ¢ defined as

2
_ . 1 Vg B Vrznax 1 Vr2nax . Vrznax Vg 1 (Vg B Vr2nax)2
¢ = min — ], log 5 5 T 53 ) 257 272 2 ’
2 8v§ 8 Vg 2§ v 327 3205 (V5 + V2ax)

(6)

when d satisfies

2 2 2 -1 3 2(9,,2 2
3 8vs (3
d > max-< 8 <log (Vm;x> - VmaQX + 1/20 ) log ( V0 2> 7 V0(2V0 +2Vma;() '
Vg 2u§ 202 .. wo Min; ey V; (Vg — V2 )
(7N

Proposition 2. Suppose that a sample X is initialized in the distribution P(0), i.e., xo ~ P9, then
U8+ Vi

for any constant .y < Vo, with probability at least 1 —exp(—(d)), we have ||ng H2 >

Proof of Proposition2] Since xo ~ P = N(04,121;) and N'N = I, we know n, =
NTxy ~ N(0,,,121,). Therefore, by Lemmawe can bound

312 2 2 2 o 2
P(||no||2<”°+”md>:p ”“g”<d_2\/d.<%%m> i
4 Yo v

2 2 _ .9 2
< p [ Il <n_2¢n(uo e )4
vh 8 2

where the second last step follows from the assumption d — n = r = o(d). Hence we complete the
proof of Proposition 2] O

2 2
Then, with the assumption that the initialization satisfies | no||*> > %d, the following propo-

sition shows that ||n;|| remains large with high probability.

Proposition 3. Consider a data distribution P satisfies the constraints specified in Theorem|[I] We
follow the Langevin dynamics for T = exp(O(d)) steps. Suppose that the initial sample satisfies
[nol® > %d, then with probability at least 1 — T - exp(—$2(d)), we have that |n¢||* >
YotV for all t € {0} U [T).

Proof of Proposition[3] To establish a lower bound on ||n;||, we consider different cases of the step
size d;. Intuitively, when §; is large enough, n; will be too noisy due to the introduction of random

noise \/574“) in equation || While for small &;, the update of n; is bounded and thus we can
iteratively analyze n;. We first handle the case of large ¢, in the following lemma.

Lemma 3. If§; > 12, with probability at least 1 — exp(—Q(d)), for n; satisfying equation|5| we

2 o 342 .
have ||n:||” > %d regardless of the previous state x;_1.

Proof of Lemma[3] Denote v :=n;_; + %NTVx log P(x;—1) for simplicity. Note that v is fixed

for any given x;_,. We decompose egn) into a vector aligning with v and another vector orthogonal

to v. Consider an orthonormal matrix M € R™* (=1 such that M?Tv = 0,,_; and MTM = I,,_;.
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By denoting u := €™ — MM €™ we have M7 u = 0,,_1, thus we obtain
2

v+ 5te§n)
2

=||v+ \/Eu + \/EMMTegn)
2 |12

— v+ 5tuH n H\/EMMTQ

2

VoMM ™

2
> 1/3 HMTegn)

2
[ ]

v

Since €™ ~ N(0,,, I,,) and M"M = I,,_, we obtain M7 e\™ ~ N(0,_1, T,
LemmaLT]we can bound

3 n
p(nt|2 ”Ozymaxd) <p(‘ M7 e

2 < 3”0 + I/maxd
- 41/0

=P | M7

2 2 _ .2 2
ng\/d.(VOV;naX) d
81

_1). Therefore, by

V(% — Vr?ﬂax ? d
S exXp | — 81/3 9 )

2
<P ‘MTeg‘” <

where the second last step follows from the assumption d — n = r = o(d). Hence we complete the

proof of Lemma 3]

O

We then consider the case when §; < v2. Letr := RTx and n := N”7x, then x = Rr + Nn. We
first show that when ||n||*> > “2*¥max g, P() (x) is exponentially smaller than P(*)(x) for all i € [k]

in the following lemma.

2
Lemma 4. Given that 0> > 55 d and |ui]* < U5 (1og (%) - 25
0]

i € [k], we have g:o)(( )) < exp(—(d)) forall i € [k]

Proof of Lemma] For all i € [k], define p;(x) := %, then

Pix) (@) exp (—oks Ix — i)

(2m3) =2 exp (5% |xI1°)

1[1? — = 1% — gl
208 202

pi(x) =

|
N
o
C
=
”
RaJRe>

2
+ 2’%) d for all

d/2 2 2
1 1 2 (IRr[” R — pl
)N _
> xp ( 208 2V2) INa|”+ ( 203 202
d/2 2
(Y o (L LY g (1l =R
v? 208 22 208 202

)

where the last step follows from the definition that R € R?*" an orthonormal basis of the vec-

tor space {“i}z’e[k] and NTN = I,,. Since 12 > 1/2, the quadratic term ” H
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VQR l‘w

maximized at r = —2>—5*. Therefore,
9 i
2 2 2
xf* - RTHzH vo IR wa|” 1 (3 1) IR )’ = _eall”
208 202 2V0 (g —v2)? 202 \vg—v? ! 22 —v?)’
2 2 2
Hence, for ||n|* > V°+Vm“xdand ls]]* < <log (Z—g) — 2”;(2) + 2V ) d, we have

2\ 4/2 2 T, |2
(0 LN e (I = RT)
pilx) = (Vf) xp <(21/3 2yi2> I+ <21/2 2v2

B\ 11\ B+ sl

< 0 - 0 ld ?
- (> op (2v§ 2v§> TP
AT
= 1 _ = o U s T | e |
eXp( <g<) 2u3*2v2)2+2<u3—v3>
<exp|—|lo V2 — v + 1/3 d
=P & Ve w2 wk)4)

Notice that for function f(z) =logz — £ + 5=, we have fQ)=0and Lf(z)=1-1-3L =
2

2
_% (% - 1)2 < Owhen z € (0,1). Thus log ( ) — 21/2 + 35,2 2 is aposmve constant for v; < vy,

i.e., pi(x) = exp(—Q(d)). Therefore we finish the proof of Lemma O

Lemmaimplies that when ||n|| is large, the Gaussian mode P(®) dominates other modes P(*). To
bound ||n;||, we first consider a simpler case that ||n;_1|| is large. Intuitively, the following lemma
proves that when the previous state n,_; is far from a mode, a single step of Langevin dynamics
with bounded step size is not enough to find the mode.

Lemma 5. Suppose §; < v¢ and |n;_; 1? > 36v2d, then for ny following from equation we have
|ng||> > v2d with probability at least 1 — exp(—Q(d)).

Proof of Lemma[5] From the recursion of n; in equation [5|we have

) n
n; =mn;_1+ *tNTVx log P(x;—1) + 5t6( )

k
5t Xt 1 NT(Xt_l — /1,) ( )
§ : P(x ’ Vi2 =+ \/aﬁtn

2 =0 = 1
k
5t P( )(Xf_l) 1 (n)
S ST N P 5™, 8
( 5 ; Plx ) 12 ni_1+ Vo€ ®)

By Lemmal we have )(#:1) < exp(—£2(d)) for all ¢ € [k], therefore

9
(m)
On the other hand, from €™ ~ A/(0,,, I,,) we know @fiﬁ) ~ N(0,1) for any fixedn;_; # 0,,,
hence by Lemma 2] we have

P(“ﬁwzﬁ&)P(mg\/ﬁ

[y |
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Combining equation[8] equation [9]and equation [T0| gives that

2
2 1 2 n
N ) R
voVd

> el = 25
1
>~ 3602d — vovd. 6oV d
9 2
=12d
with probability at least 1 — \/T exp (—3 A£) =1 — exp(—€(d)). This proves Lemma O

We then proceed to bound ||n || iteratively for ||n,_1||* < 3612d. Recall that equation gives
0y n
n, =mn;_;+ NTV log P(x¢-1) +\Fe( ).

We notice that the difficulty of solving n; exhibits in the dependence of log P(x;_1) onr;_;. Since
P=YF wP® =% wN(u;,v21,), we can rewrite the score function as

2
)

k. pG : (@) —
V log P(x) — VPX Z (x) xX—p; e P (x)(x x /,I,Z>.

) ) 2

2 - 2
> 7T TR & PR

(1)

Now, instead of directly working with n;, we consider a surrogate recursion n; such that ny = ng
and forall t > 1,

. . o .. n
f, =1y g — ﬁnt_l + /6™, (12)
0

The advantage of the surrogate recursion is that n; is independent of r, thus we can obtain the
closed-form solution to n;. Before we proceed to bound n;, we first show that i is sufficiently
close to the original recursion n; in the following lemma.

Lemma 6. For anyt > 1, given thit 0 §2 V¢ and L;i‘“d < |lny_1||* < 3612d for all j € [t]
and ||p;||* < (log( ) - ;jg + ;7“3) d for all i € [k], we have ||, — n|| < W\/&

— exp

Proof of Lemmal6] Upon comparing equation [5| and equation [I2] by equation [IT| we have that for
all j € [t],

R J;
nj_q — 5, QnJ 1—nj_ 1——NTV log P(x;_1)

05 X 1 1 1
1= ) —n 95 2: P (2 ),
H< 21’3)(11] L) o)

[ —n,|| =

5 5 P (X 1) 1 1
< <1—2 >|nj R 1||+Z 2P(x7j) T -l
ze[k] J-1 v 0
X 1) 1 1
<|fj_1 —n_q|| + Z 9 7P(0) - ) (1/2 — l/2> 6V0\/&.
i€[k] 1 g 0

By Lemmal we have M < exp(—Q(d)) for all i € [k], hence we obtain a recursive bound

. . 1
[ — 0| < By — 1| + ——=— V.

exp(Q(d))
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Finally, by ng = ng, we have

t
N, —n :§ 1 — || = [[f-1 -0y []) € —5—=Vd.
b ¢l jE[t](” ’ il = o il < exp(§2(d))

Hence we obtain Lemmal[@ O

We then proceed to analyze n;, The following lemma gives us the closed-form solution of n;. We
slightly abuse the notations here, e.g., [];2 (1 — % ) =1land Z;"’:Cl d; = 0forci > co.

i=cy 203

2
Lemma?7. Forallt > 0,0y ~ N (Hf_l (1 - 2‘22) ny, 22:1 HZ:jJrl (1 - 2%) 571n), where
0 0 -

2 2
R R t S; 1 t t di
the mean and covariance satisfy [ [;_, (1 - 2,/3) + Dy | (1 - ﬁ) 9; > 1.

Proof of Lemmal7} We prove the two properties by induction. When ¢ = 0, they are trivial. Suppose
they hold for ¢ — 1, then for the distribution of n;, we have

N . o .
n; =n;_; — ﬁnt—l + 5t€£n)

(St t—1 6 (St 2t—1 t—1 6 2
~ 1-— 1-— 1-— 1-—= T I
N (g ) T ( g ) (1) 2 T1 (1 55g) oot

t 5 2 1t t 5 2
1- Z)Jr (1 ’>6
M(-gz) 7 I (1-3) o
51& 2 t—1 51 2 1 t—1 t—1 (5, 2 1
(1) (TT(-mz) +ia X T (1-53) o) + o
0 i=1 0 0]:112j+1 0 0

&\ 1 52
>(1-—= =5 =1+t >1.
_< 21/3) +y§ ¢ +41/§ -

Hence we finish the proof of Lemmal7} O

Armed with Lemma [7| we are now ready to establish the lower bound on ||fi;||. For simplicity,

2 2
t . ¢ ¢ .
denote v := [],_, (1 — 2573) and 3 := 713 = imj (1 — 2573) d;. By Lemmawe know
n; ~ N(ang, B121,,), so we can write fi; = ang + v/Broe, where € ~ N'(0,,, I,,).
2

2 | g
Lemma 8. Given that ||fg||* > 20 maxq we have ||y||* > %

1 —exp (—Q(d)).

aQ.,2 2
3vg t;j wax d with probability at least

Proof of Lemma(8] By i, = ang + /Broe we have

16]* = a® [Ino||* + B4 llel|” + 20y/Bro (mo, €)
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By Lemma[I] we can bound

2 3y, +I/max 2 VQ_Vrgﬂax 2
P (el < 28 g) —p (e <d—2\/d~(08V2 d
0
2 2 2
2 Y0 — Vmax d
<P el <<n—1>—2¢<n—1>(8yg Ik

2 2 2

Y0 — Vmax d
< _ (20 "max )} =
_eXp< ( 57 )2>

where the second last step follows from the assumption d — n = 7 = o(d). Since € ~ N'(0,, I,,),
we know |“°’ ~ N(0,1). Therefore by Lemma

P <n07 €> < _ Vg — Vr2nax \/& < 4VO 31/3 + Vr?nax exp (_ (I/g — Vrnax)2d )
[noll = 4wy /302 + 12 .. T V21— v2,)Vd 3205 (35 + Vax)

2 2 2 2
3”0—‘ijax d, ||6||2 3’/02;Vmaxd and ”n ” <1«107 €> > — Y0 —Vmax \/g’

dvo/3v3+1V2

Conditioned on ||fg||?

since Lemma gives o? + 8 > 1 we have

1,]|* = o [[no||* + 815 lle]|* + 2/ Bro(mo, €)

vg — Vr?ﬂax
> a” |[no|* + 8175 le]|* = 2a/Bro |[no|| —=22—/d
dvo+/3vg + V2 .k
, Vg — 12
> o |[no|* + v [lel|* — 2a/Byo o] [l€] - m
2 _ .2
L0 Viax 2 2 2 2
> (1- g pm ) (ol + 52 )
5U8 + 3V a0k [ o 305 + v
max m Xd
~6vp+2 ?nax( +5) 4
S 5v8 +3I/maXd
- 8
Hence by union bound, we complete the proof of Lemma §] O

Upon having all the above lemmas, we are now ready to establish Proposition 3| by induction. Sup-
pose the theorem holds for all 7" values of 1, --- ,T" — 1. We consider the following 3 cases:

« If there exists some ¢ € [T] such that §; > 13, by Lemmalwe know that with probability

at least 1 — exp(—Q(d)), we have ||n,|* > Md thus the problem reduces to the

two sub-arrays ng, - -+ ,n;_1 and ng, - -- ,nr, Wthh can be solved by induction.

« Suppose &; < v forall ¢ € [T). If there exists some ¢ € [T'] such that |n,_||* > 3612d,
by Lemma |5| we know that with probability at least 1 — exp(—£(d)), we have ||nt||2 >
vid > %d thus the problem similarly reduces to the two sub-arrays ng, - - - , ny_1

and ny, - - - , np, which can be solved by induction.

* Suppose 6 < v and ||n,_q|*> < 3602d for all t € [T]. Conditioned on |n,_ > >
Yo+ maxd for all t € [T, by Lemma|6|we have that for 7' = exp(O(d)),

5 32 2 2
|7 — nr| < (\/ i +8 Vmax _ \/VO +2V’“a"> V.
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By Lemma|8] we have that with probability at least 1 — exp(—£(d)),

la|? > 5u0 +831/maXd
Combining the two inequalities implies the desired bound
R R vg + 12
Il > ] = by — o >/ ==

Hence by induction we obtain ||n;||* > VUJ“’"“" d for all t € [T'] with probability at least

(1—=(T -1)exp(—Q(d))) - (1 — exp(—Q(d))) > 1—Texp(—0(d)).
Therefore we complete the proof of Proposition 3] O

Finally, combining Propositions [2]and 3| finishes the proof of Theorem |}

A.2  PROOF OF COROLLARY [T]
By the definition of total variation distance, we have

TV(P;, P) = sup |Pi(A) = P(A)].

Specifically, by choosing the event A as {x Vi€ [K], |Ix — wl]® > V°+Vm‘“‘d} from Theoreml
we know P,(A) > 1 — T - exp(—Q(d)). On the other hand, by Lemmalwe have

k .
=0
k 2 9
< wp + Zwl exp (— <V082VM(> d)
i=0 Vhax

2 _ 2
= wp + (1 — wp) exp (— (1/()821/111“) d).

Combining the two bounds, we obtain a lower bound on the total variation distance

TV(P,, P) > Pi(A) — P(4) > (1 - wp) (1 - emp(TQ(d))) '

A.3 PROOF OF THEOREM Z LANGEVIN DYNAMICS UNDER SUB-GAUSSIAN MIXTURES

The proof framework is similar to the proof of Theorem[I} To begin with, we validate Assumption
v] in the following lemma:

Lemma 9. For constants 1/07 Vi, cy,cr satisfying Assumpttons 2liit]  and Piv] we have

(1—c,)v2—v? v? v? (1— c,)l/0 .. .
ey - > 0 and log €] +(4/CL)V0 T CU)VQ + 27 > 0 are both positive constants.

2

2
Proof of Lemmal[9] From Assumption that v3 > fmax > i we casily obtain

—cy - 1

2 2
ﬂ;?;)f'/co;”i > (0 is a positive constant. For the second property, let f(z) := log m
v i3 v
2

2(1?%)2 + (lgﬁig)z For any z > 7~ v , the derivative of f(z) satisfies
d 1 V2 1-c V2 1—c 1\?
—flz)=—- : Y= L - =) >o.
f(z) P 2(1 —¢,)22 + 2v? 2(1—e¢,) < v? z)

Therefore, when % < 1, we have

2
3 Vl_l/
f(vg)>f< & >:10g02(ccc)zlog4>0.

1—c,
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2
When % > 1, we have

o) > 1 (

4(c2 +cper) VP 5] ce(1—c) c(1—¢) 2(c2 +cyer)
= O —
cv(l—e) 1—c¢, J 2(¢2 +cper)  8(c2 4+ cuer) e(l=¢)

2(c2 +c,cp) (1 —¢)) 2(c2 +cyer) 1
>2—-2log2 - —L =% Y L v 2 —2log2 — = > 0.
= 8 (1 —¢) 8(c2 + cyer) * a(l—c) g % 2 g
Thus we obtain Lemmal[0] O

Without loss of generality, we assume g1y = 04. Similar to the proof of Theorem [I] we decompose
x; = Rr; + Nny, and €; = Regr) + Negn),

where R € R?*" an orthonormal basis of the vector space {y;}; e and N € R%*™ an orthonormal

l/2

basis of the null space of {44;},c(;;. To show ||x; — wil® > (%g + e ) d, it suffices to prove

2(1—cy)
g > (%g + 2(113115 )) d. By Proposition if x¢ is initialized in the distribution P(“), i.e.,
xo ~ P since v > 112, with probability at least 1 — exp(—€(d)) we have
2 3v8 V2
> | — + -2 )d 13
ol 2 (352 4 e 13

2 2
Then, conditioned on ||ng||> > (% + 4(”1“132‘/)) d, the following proposition shows that ||n|| re-
mains large with high probability.
Proposition 4. Consider a distribution P satisfying Assumption[2} We follow the Langevin dynamics

2

2
for T = exp(O(d)) steps. Suppose that the initial sample satisfies |nol|*> > (% + 4(111112)) d,

2

then with probability at least 1 — T - exp(—Q(d)), we have that |n,|* > (%g + z(yl‘iagy)) d for all
t e {0} U[T].

1—c,’

Ing))? > (% + %) d with probability at least 1 — exp(—£(d)) regardless of the previous

2
Proof of PropositionH] Firstly, by Lemma if §; > 12, since 1§ > === we similarly have that

state x;_1. We then consider the case when §; < 1/8. Intuitively, we aim to prove that the score

2 2
function is close to —>5 when [n|? > (”70 + %) d. Towards this goal, we first show that
0 v

P)(x) is exponentially larger than P(*) (x) for all i € [k] in the following lemma:

2 2
Lemma 10. Suppose P satisfies Assumption Then for any ||n||2 > (%" + %) d, we have
P(i)(x)”

PO o exp(—(d)) and [V

PO(x) = 26y < exp(—Q(d)) for all i € [k].

Proof of Lemmal[I0] We first give an upper bound on the sub-Gaussian probability density. For any
vector v € R?, by considering some vector m € R¢, from Markov’s inequality and the definition in
equation ] we can bound

E,.po [exp (m”"(z — ;)]
exp (mT (v — 1;))

v ml®
<exp | 2L —mT(v— i) ).

P,.pe (m”(z — p;) > m" (v — p;)) <

Upon optimizing the last term at m = Y—£*, we obtain

2
2v;

2
P, pw (v — )T (v —2) <0) <exp ("“”) : (14)
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Denote B := {z : (v — p;)T(v — z) < 0}. To bound P, p(:) (z € B), we first note that
log P (v) — log P\ (z)
= /01<v —2,Viog P9 (v 4+ Az — v)))dX
= (v —2,Viog PV (v)) + /01<v —2,V1og PY (v 4+ Az — v)) — Viog P (v)) dA
< |lv -1z HVIogP(i)(V)H + /01 v — 2] HVIogP(i)(V + Az —vV)) — VlogP(i)(v)H dA
<|v—zl-Lillv— pill + /01 v =zl - Li [A(z = v)[| dA

LiCy 2 cr +c¢, 2
< — L L _
< Gy =l () Ly -l

where the second last inequality follows from Assumption that Vlog P (u;) = 04 and
Assumption that the score function V log P is L;-Lipschitz. Therefore we obtain

P, pi(z €B) = PY(z)dz
zEB

i Ll v v
> /ZGB P(Z)(v) exp (— 2ch v — Ni||2 B CL2—;C Li|v - Z||2) dz

i L;c, cr, +c,
=P<><v>exp(— i ||v—m|2) / exp(— - Li||v—z|2) dz.  (15)
z€B v

By observing that g : B — {z : (v — p;)* (v — z) > 0} with g(z) = 2v —z is a bijection such that
||lv —z|| = ||v — g(z)|| for any z € B, we have

17 1 17
/ exp (—CL+C L; ||V—Z||2> dz = 7/ exp (—CL+C L; ||v—z||2> dz
z€B QCD 2 zcRd 261,
d
1 2me, 2
= — . 16
2 ((CL+CV)LZ') (16)

Hence, by combining equation T4} equation [I3] and equation[T6] we obtain

2
e
exp <_H2u‘;”> >P,opo ((v—p)' (v —2) <0)
[

d
; L;c, 9 1 2mwe, z
> PO(v) exp (—2CL|V—Hi|| )2<(CL+C)L> :

By Assumption that L; < “% we obtain the following bound on the probability density:

iR

9 N —
P (v) <2 ( 2reyy; )

(cr +ev)er

1—c,

K2
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(i)
P(X) then we have

Then we can bound the ratio of P() and P("). For all i € [k], define p;(x) := EOIER

Pix)  2@me/(6 + een) VP exp (—(1— ) Ix - il* /202)

pi(x) = <
PO)(x) (2713)~4/2 exp (— ||X|| /2V0)
d
o (et Il (=) lx— gl
CUV,L? 21/3 2

d
(cf +eve)rg\? IRrl®  (1—c) [ Rr — |
2 (c,,uf exp [Nn || 2w 2 2V2_2
2 2\ % 1—¢)|r = R7pl]?
:2(<CL+CV§L>VO) p<( ) al? +<|r|| (1 =) Ir —RTpu] >>
cyV; 2v;

where the last step follows from the definition that R € R%*" an orthogonal basis of the vector space

—Cy)||IT— T i 2 .
{1i}icppy and NN = I,,. Since 7 < (1 — ¢, )15, the quadratic term ” H - e ‘21/.2R Pl s
maximized at r = % Therefore, we obtain
2 2 2
Ie* A —e)fr —R7w|” (=) il
203 2v2 21 =g —vE)’
2 1—c, )vE—v? e, v? v? 1—cy)y
Hence, for ||p; — pol| < { 2(1) o (log (CL+C eDvE T 30 CV)VQ + 1) °> d and ||n|?
2
(';" + 2(1““‘;‘ )) d, we have

d
(¢} +even)vg\? I 1-q¢ 2 (1—cy) flil®
pilx) < < cyv? exp 208 2v? ™+ 2((1 = c,)vg —v?)

d
(¢ +cver) ) ? 1 1-a)\ (% v; (1 —c) |l
<2 — - — ! d
- ( e v? P 203 2v2 2 + 2(1 —¢) + 2((1 — cp)g — 1v2)

% (1—c)B\d | (1—c)lpl
:2 o 1 v¥y _ i v )P0 “ v 7
e""( ("g @ teed 20 —a)f )2*2((1—cu>v3—v3>
e, v? V2 (1—c,)vg\ d
<2exp (- (1 L : ) =)
= exP( (°g<c%+cycmu3 -y 2 )4)

From Lemma 9] we obtain p;(x) < exp(—Q(d)).

) (x
To show w < exp(—£2(d)), from Assumptions and ZHiii. we have

VPO (x Vy P V(x) VPO (u;) , ;
_rx Yl = () (x) — @ (1a:
H P ‘ H WP ‘ [P 108 P () — T log PO ()|
< Liflx— il <55 5 5l = g -
[VxPOe e , I = i
Therefore, we can bound "—5+=—" < Tkpi(x) lx — pi]]. When ||x — ;]| = exp(o(d)) is

) (x
small, by p;(x) < exp(—Q(d)) we directly have w < exp(—Q(d)). When ||x — ;]| =

exp(Q(d)) is exceedingly large, from equation[17] we have

. d
VPO _ 2en ((+evend)* o (IxIF (=) Jx =l
P(x) - 2 2 v,
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2
Vi
1—c,?’

when ||x — ;|| = exp(Q(d)) > ||| we have

exp <||x|| (A=) [lx = il ) = exp(—Q(||x — pi])?)).

Since v >

2 2
2y 2v;

() (x
Therefore w

) < exp(—£2(d)). Thus we complete the proof of Lemma O

Similar to Lemma [5] the following lemma proves that when the previous state n,_; is far from a
mode, a single step of Langevin dynamics with bounded step size is not enough to find the mode.

Lemma 11. Suppose 8, < v2 and ||n,_+||> > 3612d, then we have ||n,||* > v2d with probability
at least 1 — exp(—Q(d)).

Proof of Lemmal[I1] For simplicity, denote v := mn;_; + %NTVX log P(x¢—1). Since P =
Zf:o w; P4 and P(©) = N(po, V2 14), the score function can be written as

_ TPl TaunP ), - Ve PO

Vi« log P(x) = —
P(x) P(x) bart P(x)
_ PO x| 5 PO
= = Wi Vx 777 (X)
P(x) o i€[k] P(x)
X w; PM(x) x w; VP (x)
=——=+) —FH mT ) oo (18)
V5 iez[k] Px) 1 iez[k] P(x)
F 2 2 [V P (o) | . )
or |n;_1[|” > 36v5d by Lemma|10|we have *—5—~—" < exp(—€2(d)). Since §; < v, we
can bound the norm of v by
5
vl = |jn—1 + éNTVx log P(x;_1)
= ||n ﬁn Z %Mn Z w;6; NTV PO (x_1)
= t—1 2V§ t—1 2]/02 P(thl) t—1 2 P(Xtil)

i€lk) i€k

Y

1—

¢ w6 P9 (x4-1) widy || VP (x4-1) ]|
273 + Z 208 P(x¢-1) et ™ Z P(x¢_1)

1€ (K]

5 el = 37 = exp(—0(d))
i€ k]
> 2U0\/Zl.

(m)
On the other hand, from €™ ~ A/(0,,I,,) we know <v"|fj” L~ N(0,1) for any fixed v # O,
hence by Lemma 2] we have

(v.e) _Va\ _ (v Vd 4 d
P( i >4>‘P< M= Ta) S zwde’(p<‘32>

Combining the above inequalities gives

1€ k]

Y

n 2 n 14 \/&
Inel® = [|v + Va2 VI = 200)(v, ™) = IvI® = 22 vi] > vd
with probability at least 1 — —2— exp (=) =1 — exp(—€(d)). This proves Lemma O
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When ||n,_;||*> < 3612d, similar to Theorem [1} we consider a surrogate recursion fi; such that
Nng = ng and forall ¢t > 1,
I ot
fy, =1fy_; — 2—2nt71 + /6,6, (19)
Yo
The following Lemma shows that 1, is sufficiently close to the original recursion n;.

2 2
Lemma 12. Foranyt > 1, given that for all j € [t], 6; < vg and (”70 + 2(11"1“2‘ )) d< ||nj_1||2 <

3612d, if ; satisfies Assumption for all i € [k], we have ||y — ny|| < m\/&

Proof of LemmalI2] By equation |18|we have that for all j € [t],

R R 0; . 0;
[0 —n| = |[A;—1 —n; 1 — 27]211.7'—1 - INTv, log P(x;_1) ’
Vs 2

N sz(l) (Xj,1) wiNTVxP(i)(xj,l)
= ([ - 2 BP(g_1) T 2 P(x;-1)

ie[k] i€k

quP(i)(xl_l) w; HVXP(Z) (Xj,]_)”
0y —mny ]+ ) —55 =0y + :
! ’ iez[,;] viP(xj1) iez[,;] P(xj-1)

IN

() (x . P X
By Lemma we have % < exp(—Q(d)) and w < exp(—Q(d)) for all
j—1 X

i € [K], hence from |[n;_; || < 6v9\/d we obtain a recursive bound

1
n: — < |1 — - — \/d.
||n] n]H — Hn] 1 n] 1” + eXp(Q(d))f

Finally, by ny = ng, we have

t
[ — ng| je[t](ll 3=l = g1 =gl exp(Q(d))

Hence we obtain Lemma[12] O

Armed with the above lemmas, we are now ready to establish Proposition ] by induction. Please

2
note that we also apply some lemmas from the proof of Theorem|l|by substituting 2, with ;’ max

Suppose the theorem holds for all 7" values of 1, --- , 7" — 1. We consider the following 3 cases:

o If there exists some ¢ € [T such that §; > 1, by Lemmawe know that with probability

1/2

at least 1 — exp(—$(d)), we have ||n¢||> > (% + 4(1'22"”)) d, thus the problem reduces

to the two sub-arrays ng, - - - ,ny—; and ny, - - - , np, which can be solved by induction.

« Suppose §; < v2 for all ¢ € [T]. If there exists some ¢ € [T such that ||n,_¢|> >

361v2d, by Lemma [11] we know that with probability at least 1 — exp(—(d)), we have
P 2

Ing||> > v2d > (3% + %) d, thus the problem similarly reduces to the two sub-

arrays ng, - - - ,1;_1 and ny, - - - , np, which can be solved by induction.

« Suppose & < v and ||n,_y||> < 3612d for all t € [T]. Conditioned on |jn,_y|° >
2 2
<V70 4 Vmax ) dforallt € [T], by Lemmawe have that for T = exp(O(d)),

2(1—cy)

N 5v2 3v2 Vg v2
_ 2% o OYmax [P0 Pmax | /g
[y — nr| < <\/ 5 TR \/2 T e Vd

By Lemma 8] we have that with probability at least 1 — exp(—(d)),

. 2 5y§ 3V]2ﬂax
n > _—F — .
b = ( 8 8(1—1c¢y) d
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Combining the two inequalities implies the desired bound

2 2
[nr| > |ar| - [ar —nr| > Y% + _ Vimax d.
- 2 T 21-c)

2
Yo

Hence by induction we obtain ||ng||> > (— 4 Vina ) d for all t € [T'] with probability

2 2(1—cy)
at least

(1 (T = 1) exp(—2(d)) - (1 — exp(—Q(d))) = 1 — Texp(~(d)).
Therefore we complete the proof of Proposition [

Finally, combining equation [I3]and Proposition 4 finishes the proof of Theorem [2]

B THEORETICAL ANALYSIS ON ANNEALED LANGEVIN DYNAMICS

B.1 ANNEALED LANGEVIN DYNAMICS IN GAUSSIAN MIXTURES

In the following Theorem 3] we extend the result in Theorem [I]to annealed Langevin dynamics with
bounded noise levels.

Theorem 3. Consider a data distribution P satisfying Assumption|l| We follow annealed Langevin

dynamics for T = exp(O(d)) steps with noise levels ¢, > og > -+ > op > 0 for constant ¢, > 0.
2 2 2 2 2 2 2 2

i — pol® < B (log (Vi +c”) L ) d.

In addition, assume for all i € [k],

vi+c2 ) T 2wd+c2 2w+c2
Suppose that the sample is initialized in Pég), then with probability at least 1 — T - exp(—§2(d)), we
have ||x; — p||> > 0t mest2% g for ail ¢ € {0} U [T) and i € [k].

Proof of Theorem 5] From equation [2] we note that the perturbed distribution is the convolution of
the original distribution and a Gaussian random variable, i.e., for random variables z ~ p and
t ~ N (04, 1), their sum z + t ~ p, follows the perturbed distribution with noise level o. There-
fore, a perturbed (sub)Gaussian distribution remains (sub)Gaussian. We formalize this property in
Proposition [5

Proposition 5. Suppose the perturbed distribution of a d-dimensional probability distribution p
with noise level o is p,, then the mean of the perturbed distribution is the same as the original
distribution, i.e., B, (2] = Ezp(z]. If p = N (1, X) is a Gaussian distribution, p, = N (p, X +
021,) is also a Gaussian distribution. If p is a sub-Gaussian distribution with parameter v?, p, is
a sub-Gaussian distribution with parameter (v* + o).

Proof of Proposition 5] By the definition in equation 2] we have
po(z) = /p(t)./\/(z | t,0%1,)dt = /p(t)N(z —t|04,0%1,)dt.

For random variables t ~ p and y ~ N(0g4, I), their sum z = t +y ~ p, follows the perturbed
distribution with noise level o. Therefore,
Eznp, [Z] = IE(ter)Npa [t + Y] = E¢p [t] + EyNN(Od,Id) [y] = Eth[t}-

Ift ~ p= N(u, X) follows a Gaussian distribution, we have z = t +y ~ py, = N(p, X + 021,).
If p is a sub-Gaussian distribution with parameter 2, we have z = t +y ~ p, is a sub-Gaussian
distribution with parameter (2 + o). Hence we obtain Proposition O

To establish Theorem [3] we first note from Proposition [5] that perturbing a Gaussian distribution
N (p, v?1;) with noise level o results in a Gaussian distribution A" (p, (v + 02)I;). Therefore, for

a Gaussian mixture P = Z?:o w; P = Zf:o w;N (p;, v21,), the perturbed distribution of noise
level o is

k
Pg = Zwi/\/(ui, (1/12 + 02)Id).
=0
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Similar to the proof of Theorem|[I} we decompose

x: = Rr; + Nny, and €; = Regr) + Negn),
where R € R4*" an orthonormal basis of the vector space { ,ul} (k] and N € R4*™ an orthonormal
basis of the null space of { ,ul} c[k]- Now, we prove Theoremlby applying the techniques developed
in Appendlxmwa substituting v? with 12 + o2 at time step .

First, by Proposition |2| suppose that the sample is initialized in the distribution Pég), then with
probability at least 1 — exp(—$2(d)), we have

2 o 304 +08) + (Minax +98) | _ 3¥0 + Vinax + 493

4 4 (20)

[[mol

Then, with the assumption that the initialization satisfies |[no||*> > Wd the following

proposition similar to Proposition [3|shows that ||n,|| remains large with high probability.

Proposition 6. Consider a data distribution P satisfies the constraints specified in Theorem
We follow annealed Langevin dynamics for T = exp(O(d)) steps with noise level ¢, > o¢ >
o1 > 09 2> -0 2> or > 0 for some constant ¢, > 0. Suppose that the initial sample satisfies

[nol|® > wd then with probability at least 1 — T - exp(—(d)), we have that ||n; ||

M%%tdforallt e {0} U [T].

Proof of Proposition[] We prove Proposition [] by induction. Suppose the theorem holds for all T’
values of 1,--- ;7" — 1. We consider the following 3 cases:

o If there exists some ¢ € [T such that §; > 1§ + o7, by Lemmawe know that with proba-

2 2 2 2 2 2 2
bility at least 1 — exp(—Q(d)), we have |n, ||* > 2ot )Z(”maXJ“’f’ )q = +”ﬂrx+4‘7t d,
thus the problem reduces to the two sub-arrays ng, - -- ,n;_1 and ng, - -- , np, which can
be solved by induction.

« Suppose 6, < 12 + o2 for all t € [T7]. If there exists some ¢ € [T'] such that [[n,_, > >
36(v3 + o7 1)d > 36(12 + o?)d, by Lemma [5| we know that with probability at least
1 — exp(—Q(d)), we have ||n||> > (12 + 02)d > wd’ thus the problem
similarly reduces to the two sub-arrays ng, - - - ,n;_1 and nq, - - - , np, which can be solved
by induction.

« Suppose §; < 2402 and |[n;_1|* < 36(v2+02_,)d forall ¢ € [T]. Consider a surrogate
sequence n; such that ny = ng and for all ¢ > 1,

~ ~ 5 n)
n; = n;_ n €, .
t t—1 — 202 + 202 t— 1+\/>tt
2 2 2
Since vg > v; and ¢, > oy forallt € {0} U [T, we have giig > ZQIzg Notice that for
“o 0 t
function f(z) =logz — % + 5=, we have L f(z) = 1 — 1 — -1, :—%(%—1)2 <0.

Thus, by the assumption

2 2 2, 2 2 2, .2
o _Vy—V; Vi + ¢ vi+c2 vy + ¢
;- < 1 d
liss = poll” < =5 (°g<v3+c§> w3t wiie)”
we have that for all ¢ € [T,
H . ||2 < V(% - Vi2 lo l/,L-2 +0'152 _ l/,L-2 +0't2 n 1/3 +Ut2 d
i ol = =9 B\ to?) 22+ Wt ol

Conditioned on ||jn,_y ||* > V°+l’m++2a"‘ld forall t € [T], by Lemma@we have that for
T = exp(O(d)).

BUZ + 312, + 802 202t 203
A7 — np| < (\/ Y0 Winax T UT\/VO+UmaX+ 7T ) V.

8 2
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By Lemma 8] we have that with probability at least 1 — exp(—(d)),

. 58 + 3v2,. + 802
Jaag? > 20 inax T208 g

Combining the two inequalities implies the desired bound

Y3 + Vinax + 207

[nr| > |ar| - ar —nr| > \/ 5

Hence by induction we obtain ||n,|* > Wd forall t € {0}U[T] with probability
at least

(1= (T = Dexp(=02(d))) - (1 —exp(=Q2(d))) = 1 — T exp(—Q2(d)).

Therefore we complete the proof of Proposition [6] O
Finally, combining equation [20]and Proposition [§] finishes the proof of Theorem 3] O

B.2 ANNEALED LANGEVIN DYNAMICS IN SUB-GAUSSIAN MIXTURES

Finally, we slightly modify Assumption [2] and extend our results to annealed Langevin dynamics
(with bounded noise levels) under sub-Gaussian mixtures in Theorem 4]

Assumption 3. Consider a data distribution P := Zf:o w;PY as a mixture of sub-Gaussian

distributions, where 1 < k = o(d) and w; > 0 is a positive constant such that Z?:o w; = 1.
Suppose that P(0) = N (o, v314) is Gaussian and for all i € [k], P(") satisfies
i. P is a sub-Gaussian distribution of mean p; with parameter vZ,
ii. P is differentiable and VPéf)(,ui) = 0gforallt € {0} U[T),
iii. forallt € {0} U [T, the score function of chf) is L; -Lipschitz such that L; ; < #LU? for

some constant cy, > 0,
4(6i+CuCL)} Vmaxtco

iv. V3 > max {1, —c2 for constant ¢, € (0, 1), where Vpax := maX;e (k] Vi»

c,(1—cy) 1—c,
2 (17@,)”27,}?76”63 cu(l/iz+c§) (111-2+c§ (lfcu)(l/2+c§)
v i = poll” < === (e mreenetven ~ meoedrn T suree - ) @

Theorem 4. Consider a data distribution P satisfying Assumption[3] We follow annealed Langevin
dynamics for T = exp(O(d)) steps with noise levels c, > oo > +-+ > or > 0. Suppose the sample
is initialized in P;g), then with probability at least 1 — T - exp(—O(d)), we have ||x; — p|* >

V2+0'2 V2 +z72 .
( Brot | ﬁ) dforallt € {0} U[T] and i € [K].

Proof of Theorem@ The feasibility of Assumption can be validated by substituting 2 in

Lemma E] with % + ¢2. To establish Theorem |4, we first note from Proposition [5| that for a
sub-Gaussian mixture P = Ef:o w; P@, the perturbed distribution of noise level o is P, =
S, w; PV, where P©) = N (po, (v? + 02)I,) and PO is a sub-Gaussian distribution with

mean ; and sub-Gaussian parameter (2 + ¢2). Similar to the proof of Theorem we decompose
x; = Rr; + Nny, and €, = Regr) + Nel(t")7
where R € R%*" an orthonormal basis of the vector space {f1; } e and N € R%*™ an orthonormal

basis of the null space of {fs;},. k- Now, we prove TheoremEIby applying the techniques developed

2 2
in Appendix and via substituting /2 and ~°_ with % at time step ¢. Note that for all

1-ev 2 Y 2 2
d(cptever) | viaxtog
cv(l—cy) 1—c,

t € {0}U[T], Assumption 3Miv. implies 13 + 07 > max {1, because ¢, > 0y.
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First, by Proposition |2} suppose that the sample is initialized in the distribution Pég), then with

probability at least 1 — exp(—$2(d)), we have

2 2 2 2
||n0||2 > <3(V0 +UO) + Vmax +UO) d. Q1)

4 11—

Then, with the assumption that the initialization satisfies ||no||* > (V°+U°) + ﬂf"t”i’) d, the

following proposition similar to Proposition 4] shows that ||n, || remains large with high probability.

Proposition 7. Consider a distribution P satisfying Assumption[3] We follow annealed Langevin
dynamics for T = exp(O(d)) steps with noise level ¢, > 09 > o1 > --- > o > 0 for some

constant ¢, > 0. Suppose that the initial sample satisfies ||n0||2 > (3(”0 i) + i‘(“i‘xtag’) d, then

with probability at least 1 — T - exp(—Q(d)), we have that |n||” > ( OJQFUf "(‘f" ™) ) d for all
te {0} U[T].

Proof of Proposition[/] We prove Proposition [7]by induction. Suppose the theorem holds for all T’
values of 1,--- ;7" — 1. We consider the following 3 cases:

o If there exists some ¢ € [T such that §; > 1§ + o, by Lemma [3| we know that with

o 25 (305+0]) | Vaaxto}
probability at least 1 — exp(—£2(d)), we have ||n¢||” > 1 + 4=, ) d. thus the
problem reduces to the two sub-arrays ng, - - - ,n;_1 and ny, - - - , np, which can be solved

by induction.

« Suppose &, < 12 + o2 for all t € [T7]. If there exists some ¢ € [T'] such that [[n,_,|° >
36(v2 + 02_1)d > 36(v3 + o?)d, by Lemma [11| we know that with probability at least

1 — exp(=Q(d)), we have ||n;||*> > (2 + o2)d > (3(”°+0‘) + i’(‘i"‘to)‘ ) d, thus the

problem similarly reduces to the two sub-arrays ng, - -+ ,n;—1 and ny, - - - , ny, which can
be solved by induction.

« Suppose §; < 2 +02 and |[n;_1|* < 36(v2+02_,)d forall ¢ € [T]. Consider a surrogate
sequence N, such that ny = ng and for all ¢ > 1,

. d¢ (n)
Ny =0 1 — 5550 ore; .
t t—1 — 502 + 202 t—1 + \/7 t
: 2+c§ u?+af .
Since vy > v; and ¢, > oy forall t € {0} U [T], we have = pa i v Notice that for
0 t
function f(z) =logz — 2+ &, wehave L f(z) =1 -1 - L =1 (1_ 1)2 <0.

Thus, by Assumption we have that for all ¢ € [T,
2 _ (1 =) g —v?:—c,c2 (10 : e, (V2 +c2)

[l ei — NOH

2(1—¢,) 2 +cpep) (Vg + c2)
W) (-a)B+d),
201 = ¢,) (v +c2) 27 +c2)

(1—c ) —v? —c,o7 (1 ey (V2 + 0?)
< 08 75 2 2
2(1-c) (cf +cver)(vg + o)
B v} +a7) (1—c)5 +07)
2(1 — ) (1§ + o7) 27 +0?)

C .. 2 V§+0"f_1 anax+f’3_1
onditioned on |n;_1|" > ( 5 T Sy ) d for all t € [T], by Lemma [12] we
have that for T' = exp(O(d)),

Iz — o] < (\/5<u3+o—%> | 30t 0}) \/ugw%gamo—%)@

8 8(1—cy) 2 21— )
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By Lemma 8] we have that with probability at least 1 — exp(—(d)),

L2 58 +0%) | 3(Vhax +97)
>
[ar|” > ( 3 + 8(1—0)

Combining the two inequalities implies the desired bound

2 2
R . V0+JT

> — — >
Inzl| > az] - a7 — o] \/( 2 2(1_@)

+

Hence by induction we obtain ||n, > > (VO ok ;E‘ixtg)T) d for all t € [T] with proba-

bility at least

(1= (T = 1) exp(=9(d))) - (1 — exp(=(d))) = 1 — T'exp(-(d)).

Therefore we complete the proof of Proposition O
Finally, combining equation 21 and Proposition|[7] finishes the proof of Theorem [4] O

C CONVERGENCE ANALYSIS OF CHAINED LANGEVIN DYNAMICS

Proof of Proposition[I] For simplicity, denote x4/ = {x(*),... x(9}. By the definition of total
variation distance, for all ¢ € [d/Q] we have

)
P () < (<)

P (<) £ (5)
( (@) | xla— 1) ( la~ 1])

x (@) |X[q 1)p xla— 1])’

(oo
/ <q>|xq 1])P(X[f1—1]) _ ( @ | xla- 1]) ( )‘ dxcll
/ ( | Xl 1 dx(q)/’p = 1]) (X[q—u)’ dxcla—1]
%/ X | xlo- 11) _p (X 2 |X[q711)’ dX(Q)/P(X[Q*l]) dxclr—1]
T ). () 7 0 e 1) 5
P

1y () ) oo
S

Upon summing up the above inequality for all ¢

| /\

P
P

[d/Q)], we obtain

a/Q
2 — D ( xld] la)) — P (xla—1] l[a—1]
v (P(x), P(x)) ;(TV(P(Xq),P(Xq)) v (P (x1) P (x71)))
d/Q
@
gq:15 4 3
Thus we finish the proof of Proposition I} O
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D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

Algorithm Setup: Our choices of algorithm hyperparameters are based on (Song & Ermon, 2019)
and (Song & Ermonl 2020). For op,,x = 1, following from [Song & Ermon! (2019), we consider
L = 10 different standard deviations such that {A;},. 7, is a geometric sequence with A\; = 1
and A\1g = 0.01. For annealed Langevin dynamics with T iterations, we choose the noise levels
{ot}ieir by repeating every element of {A;}; ;) for T'/L times and we set the step size as &, =

2 x 1075 - 02 /o2 for every t € [T]. For vanilla Langevin dynamics with 7 iterations, we use the
same step size as annealed Langevin dynamics. For Chained-VLD and Chained-ALD, the patch size
@ is chosen depending on different tasks. For every patch of Chained-ALD, we choose the noise
levels {04 }c(1q /4 DY repeating every element of {A;};(;; for T'Q/dL times and we set the step

sizeas §; =2 x 107° - 02/ U%Q sa forevery t € [TQ/d]. The step size of Chained-VLD is the same
as Chained-ALD.

We would like to highlight that the inference time of Chained-LD is significantly lower than vanilla
LD in practice. Our theoretical comparison between Chained-LD and vanilla LD is based on itera-
tion complexity, i.e., the number of queries to the score function V log P (z(%) |:c(1), e ,x(‘1_1>) or
Vlog P(x). Since Chained-LD only updates one patch at every iteration while vanilla LD updates
the whole image, Chained-LD will be significantly faster than vanilla LD.

D.1 SYNTHETIC GAUSSIAN MIXTURE MODEL

We choose the data distribution P as a mixture of three Gaussian components in dimension d = 100:
P =02P® 4 0.4PW +0.4P® = 02N (04,31,) + 0.4N (14, 1) + 0.4N (14, I).

Since the distribution is given, we assume that the sampling algorithms have access to the ground-
truth score function. We set the batch size as 1000 and patch size Q = 10 for chained Langevin
dynamics. We use 7' € {10%,10%,10°,10°} iterations for vanilla and chained Langevin dynamics.
A sample x is clustered in mode 1 if it satisfies ||x — pe1||> < 5d and ||x — || < [|x — po|*:
in mode 2 if ||x — po||> < 5d and ||x — p1|® > |x — p2|*; and in mode O otherwise. The
initial samples are i.i.d. chosen from P(O), P(l), or P(z), and the results are presented in Figures
2l 3l and [f respectively. The two subfigures above the dashed line illustrate the samples from the
initial distribution and target distribution, and the subfigures below the dashed line are the samples
generated by different algorithms. Furthermore, in Figures [7} [§]and 0] we demonstrate the effect of
different values of ) € {1,4,10,20,50} on the mode-seeking tendencies of Chained-LD. We can
observe that for dimension d = 100, a moderate patch size @ € {1, 4,10} has similar performance,
a large patch size (Q = 20 needs more steps to find the other two modes, while an overly-large patch
size () = 50 almost cannot find other modes.

D.2 ScCORE FUNCTION ESTIMATOR

In realistic scenarios, since we do not have direct access to the (perturbed) score function, Song &
Ermon| (2019) proposed the Noise Conditional Score Network (NCSN) sg(x, o) to jointly estimate
the scores of all perturbed data distributions, i.e.,

Vo € {oi},e(7) > so(x,0) = Vxlog Py(x).

To train the NCSN, Song & Ermon|(2019) adopted denoising score matching, which minimizes the
following loss
]

Assuming the NCSN has enough capacity and sufficient training samples, Sg+ (X, o) minimizes the
loss £ (0; {Ut}te[T}> if and only if sg~ (x, 0¢) = Vy log P,, (x) almost surely for all ¢ € [T.

- X—X
se(X,0¢) — =
t

1
L (93 {Ut}te[T]) = ﬁ Z U?ExNPEiNN(x’U?Id){
te(T]
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In Chained Langevin dynamics, an ideal conditional score function estimator sg could jointly esti-
mate the scores of all perturbed conditional patch distribution, i.e., Vo € {o¢},c (7,4 ¢ € [d/Q),

Sg (x<q> | o,xM ... ,X<q71>) ~ Voo log Py (x@ | xD ... x(@= D),

Following from [Song & Ermon| (2019)), we use the denoising score matching to train the estimator.
For a given o, the denoising score matching objective is
T

%@ _ x(9)

1 _
00:0) = JExePExon(xot1y) D [ So (X('J) o x W  xl U) B

q€ld/Q]

Then, combining the objectives gives the following loss

d
L (0; {Ut}te[TQ/d]) = 70 Z o20(0;0;).
te[TQ/d|

As shown in|Vincent| (2011)), an estimator sg with enough capacity and sufficient training samples
minimizes the loss L if and only if sg outputs the scores of all perturbed conditional patch distribu-
tion almost surely.

D.3 IMAGE DATASETS

Our implementation and hyperparameter selection are based on (Song & Ermon, [2019) and (Song
& Ermonl, 2020). During training, we i.i.d. randomly flip an image with probability 0.5 to construct
the two modes (i.e., original and flipped images). All models are optimized by Adam with learning
rate 0.001 and batch size 128 for a total of 200000 training steps, and we use the model at the last
iteration to generate the samples. We perform experiments on MNIST (LeCun, [1998) (CC BY-SA
3.0 License) and Fashion-MNIST (Xiao et al., 2017) (MIT License) datasets and we set the patch
size as () = 14.

For the score networks of chained annealed Langevin dynamics (Chained-ALD), we use the official
PyTorch implementation of an LSTM network (Sak et al., 2014) followed by a linear layer. For
MNIST and Fashion-MNIST datasets, we set the input size of the LSTM as ) = 14, the number of
features in the hidden state as 1024, and the number of recurrent layers as 2. The inputs of LSTM
include inputting tensor, hidden state, and cell state, and the outputs of LSTM include the next
hidden state and cell state, which can be fed to the next input. To estimate the noisy score function,
we first input the noise level o (repeated for () times to match the input size of LSTM) and all-0
hidden and cell states to obtain an initialization of the hidden and cell states. Then, we divide a
sample into d/@ patches and input the sequence of patches to the LSTM. For every output hidden
state corresponding to one patch, we apply a linear layer of size 1024 x @) to estimate the noisy score
function of the patch.

To generate samples, we use 7' € {10000, 30000, 100000} iterations for annealed Langevin dynam-
ics (ALD) and Chained-ALD. The initial samples are chosen as either original or flipped images
from the dataset, and the results for MNIST and Fashion-MNIST datasets are presented in Figures
[TT1 B [ and[I2]respectively. The two subfigures above the dashed line illustrate the samples from the
initial distribution and target distribution, and the subfigures below the dashed line are the samples
generated by different algorithms.

All experiments were run with one RTX3090 GPU. It is worth noting that the training and infer-
ence time of chained Langevin dynamics using LSTM is considerably faster than vanilla/annealed
Langevin dynamics using RefineNet. For a course of 200000 training steps on MNIST/Fashion-
MNIST, due to the different network architectures, LSTM takes around 2.3 hours while RefineNet
takes around 9.2 hours. Concerning image generation, chained Langevin dynamics is significantly
faster than vanilla/annealed Langevin dynamics since every iteration of chained Langevin dynamics
only updates a patch of constant size, while every iteration of vanilla/annealed Langevin dynamics
requires computing all coordinates of the sample. One iteration of chained Langevin dynamics us-
ing LSTM takes around 1.97 ms, while one iteration of vanilla/annealed Langevin dynamics using
RefineNet takes around 43.7 ms.
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Figure 5: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dynamics
(VLD) and chained vanilla Langevin dynamics (Chained-VLD). Three axes are /> distance from
samples to the mean of the three modes. The samples are initialized in mode 1.
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Figure 6: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dynamics
(VLD) and chained vanilla Langevin dynamics (Chained-VLD). Three axes are /> distance from
samples to the mean of the three modes. The samples are initialized in mode 2.

34



Under review as a conference paper at ICLR 2025

e Mode 0: 100.0% e Mode 0: 19.8%

e Mode 1:40.3%
e Mode 2:39.9%

Samples
from target
distribution

Samples
from initial
distribution

11X = o[
11x = o2

T = 1000 T =10000 T = 100000 T = 1000000

#Iterations
e Mode 0: 100.0% e Mode 0: 100.0% e Mode 0: 100.0% e Mode 0: 100.0%
1500 o 1500 o 1500 o 1500 o
3 3 o 3 3
1000 ’1 1000 ‘1 1000 ‘1 1000 ‘1
VLD 500 = 500 = 500 = 500 =
0 0 0 0
1500 1500 1500 1500
1000 & 1000 & 1000 & 1000 &
* s P * s 0 * s 0 B * s 0
I 1000 ° \( P 1000 ° \{ P 1000 - \$/ //’ 1000 - \*’
*\”1//" 1500 0 N *\”1//2 1500 0 N *\"1//2 1500 0 N *\“1//9 1500 0 N
e Mode 0:97.5% e Mode 0: 30.9% e Mode 0:23.3% e Mode 0: 20.6%
e Mode 1: 1.4% B e  Mode 1:35.2% e Mode 1:37.1% e Mode 1: 38.0%
Chained B o Mode2:339% o || "% o Mode2:39.6% 1500 o Mode2:414% Lo || %
T 1000 T 1000 T o 1000
VLD = 500 = 500 = d 500 =
0 o
(Q_ 1 ) 1500 1500
- '3 1000 &
0 0 NS 0 NS
500 1000 500 . 500 ¥ 1000 /@ 500 1000 500 /@
< e 50 [ IZS e 50 o < e 50 o < e 1500 N
e Mode 0: 89.1% e Mode 0: 24.6% e Mode 0: 21.5% e Mode 0: 19.4%
e Mode 1:4.5% o Mode 1: 40.6% o Mode 1:40.4% e Mode 1:40.7%
Chained o Mode2:64% oo || 0% o Mode2:34.8% 1500 o Mode2:38.1% . , || "% ;
1000 3 1000 F
VLD 500 = 500 =
0 0
(Q _4) 1500 1500
1000 & ¥
! 1000 ’\W\\ 1000 s ! 0 1000 0 /\W\\ 1000
; ¢ ; ¢ &
//*\M//Z 1500 0 N //*\"x//? 1500 0 NV //*“1//2 150 0 N //*WX//? 1500 0 W
o Mode 0: 94.1% o Mode 0: 41.3% o Mode 0: 21.0% ®  Mode 0:20.1%
1 Mode 1: 3.8% o Mode 1:30.7% e Mode 1: 38.6%
hain : . .
Chained o Mode2:21% cae o Mode2:40.4% go || PO L 1500 =
VLD i i
o 500 = 500 =
.
(Q — 1 0) s 0 0
- - 1500 1500
0 NS 0 NS
00 1000 0 ¥ 00 1000 0 ¥ 00 1000 00 /Qb ; 1000 o0 /\\’}
¢ S S S
//)(‘uz//a 150 0 N /*\M//2 150 0 N ”*“‘1//9 150 0 N //*“‘1//9 150 0 N
o Mode 0: 99.8% o Mode 0: 89.1% e Mode 0: 42.4% e Mode 0: 22.4%
Chained e Mode1:0.1% e Mode 1:52% e Mode 1:27.4% o Mode 1:37.2%
o Mode2:0.1% g o] "% o Mode2:5.7% 1500 o o Mode2:30.2% 1500 o o Mode2:40.4% 1500 &
VLD 1000 1000 F 2 T
500 = 500 = =
Q=20 _° ' ‘- '
- 1500
1000 &
0 X
1000 0 1000 e ’\“\ 1000 s 1000
¢ B & B & &
Ik e B0 0 N Ik e w0 N Ik e w0 N Ik e w0 0 N
e Mode 0: 100.0% e Mode 0: 100.0% e Mode 0: 100.0% e Mode 0: 99.8%
. e  Mode 1:0.2%
Chained . 150 o
’5 1000 ‘5
VLD = 500 =
0
(Q=50)
1000 &
0 NS
1000 o ¥ o 1000 N /\“\ 1000 S 1000 s
¢ S S S
//*\"’1//2 s 0 W //*\"1//2 1500 0 N //*\“1//2 1500 0 N //*\,4//2 1500 0 N

Figure 7: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dy-
namics (VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q) €
{1,4,10,20,50}. Three axes are {5 distance from samples to the mean of the three modes. The

samples are initialized in mode 0.
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Figure 8: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dy-
namics (VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q) €
{1,4,10,20,50}. Three axes are {5 distance from samples to the mean of the three modes. The

samples are initialized in mode 1.
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Figure 9: Samples from a mixture of three Gaussian modes generated by vanilla Langevin dy-
namics (VLD) and chained vanilla Langevin dynamics (Chained-VLD) with patch size Q €
{1,4,10,20,50}. Three axes are 5 distance from samples to the mean of the three modes. The

samples are initialized in mode 2.

37



Under review as a conference paper at ICLR 2025

e Mode 0: 100.0% e Mode0: 19.8%
. Mode 1: 40.3% 1500
Samples Samples o] Moda2:3,5% o H
from initial from target ’ o w =
0
distribution distribution 1500
0 0 <
500 1000 S o 500 N
//*7, e 1500 N //*\"1//? so0 0

T = 1000

Mode 0: 100.0%

#lterations

T = 10000

Mode 0:

T = 1000000

Mode 0: 100.0%

T = 100000

Mode 0: 100.0%

100.0%

Vanilla 100 e 00 1500
000 % 000 ¥ o0 % 1000
Langevin so0 = s00 = s00 = s00 =
0 < 0 0 0
Dynamlcs 1500 1500 1500 1500
& 1000 g 3 o
NS [ & & NS
00 B o0 s ¥ R 1000 ¢
e < o Ix o
M 150 N M fpa 15 N
®  Mode 0: 94.1% e Mode 0:41.3% e Mode 0: 21.0% ®  Mode 0: 20.1%
. * Mode 1: 3.8% ®  Mode 1:30.7% ®  Mode I: 38.6% *  Mode 1:39.9%
Chained o Mode2i21% gae | 0% o Mode2:28.0% B0y Mode2id04% g |1 0% e Mode2400% 1500
, 1000 3 i 1000 3 f 0o 3
s x x x
so0 X s X s00 X
VLD 5 ¢
r 4 0 Y 4 0 0
- 1500 - 1500 1500
1000 & 1000 g &
0 NS o N 0 N
500 \)b 00 500 Q"} »)“b
P 0 & e ! 0 & o ! 0 &
e T § tye 150 N e 1 N
e Mode0: 100.0% e Mode 0: 100.0° e Mode 0: 100.0%
1500 e 1500 oo
o % 1000 &
(o'ma,x — 1) s00 X 2 s00 X
‘ 0
1500 1500
1000 000 &
500 5m \W 500 ¥ 500 500
2 1500 //-n oo 0 & e, im0 0 B, is0 0
“ /P “ /f? “ajj #afpz
e Mode0: 73.9% e Mode 0: 29.9% e Mode 0: 23.0% e Mode 0: 20.9%
. ®  Mode 1: 12.8% o Mode 1: 36.8% e Mode I: 38.7% &  Mode 1:39.5%
Chained o Mode2: 13.3% B0 e Mode2i333% 4, | MO0 Mode2:383% 3o || % Mode 2: 30.6% 1500 o
oo A oo T LR R 1000 3
ALD s00 £ s00 £ s00 2 s00 £
0 0 5 0 0
(amax —_ 1) 1500 1500 1500 1500
1000 & a 1000 &
0 N 0 < 0 N <
50 0 8 o0 w8 50 0 500 ¢
e, 0 e, '™ 0 e, " PN le, '™ o
e 10 R g 1500 o e 1500 N e 15 D

Figure 10: Samples from a mixture of three Gaussian modes generated by Langevin dynamics and
chained Langevin dynamics with patch size () = 10. Three axes are ¢ distance from samples to the
mean of the three modes. The samples are initialized in mode 0.
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Figure 11: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin dynamics

(Chained-ALD) for different numbers of iterations. The maximum noise level o,,, is set to be 1 or

50. The samples are initialized as original images from MNIST.
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Figure 12: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by annealed Langevin dynamics (ALD) and chained annealed Langevin
dynamics (Chained-ALD) for different numbers of iterations. The maximum noise level o, 1S set
to be 1 or 50. The samples are initialized as flipped images from FashionMNIST.
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