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Abstract

Hallucinations generated by Large Language001
Models (LLMs) pose significant challenges for002
their application to low-resources languages.003
We present Multi-Hall-SA, a cross-lingual004
benchmark for hallucination detection span-005
ning English and four low-resource South006
African languages: isiZulu, isiXhosa, Sepedi,007
and Sesotho. Derived from government texts,008
this benchmark categorizes hallucinations into009
four types: temporal shifts, entity errors, numer-010
ical inaccuracies, and location mistakes. Our011
cross-lingual alignment methodology enables012
direct performance comparison between high-013
resource and low-resource languages, revealing014
significant gaps in detection capabilities. Evalu-015
ation across four state-of-the-art models shows016
they detect up to 23.6% fewer hallucinations in017
South African languages compared to English.018
Knowledge augmentation substantially reduces019
this disparity, decreasing cross-lingual perfor-020
mance gaps by 59.4% on average. Beyond021
introducing a new resource for low-resource022
languages, Multi-Hall-SA provides a system-023
atic framework for evaluating and improving024
factual reliability across linguistic boundaries,025
advancing more inclusive and equitable AI de-026
velopment.027

1 Introduction028

Large Language Models (LLMs) have transformed029

natural language processing, yet their tendency to030

generate hallucinations (false or unsupported infor-031

mation) poses significant challenges, particularly032

for low-resource languages (Maynez et al., 2020;033

Filippova, 2020; Zhou et al., 2021). This challenge034

is especially acute for African languages where035

limited training data and computational resources036

increase hallucination frequency and complicate037

detection efforts (Xu et al., 2023; Raunak et al.,038

2021). In critical domains such as healthcare, edu-039

cation, and public communication, these risks are040

amplified, as misinformation can have severe so-041

cietal consequences (Maynez et al., 2020; Falke 042

et al., 2019). 043

This challenge is particularly pressing for South 044

African languages which, despite serving millions 045

of speakers and holding official status, remain un- 046

derserved by current NLP technologies. To address 047

this critical gap, we present Multi-Hall-SA, a mul- 048

tilingual hallucination detection benchmark derived 049

from government sources across four major South 050

African languages: isiZulu, isiXhosa, Sepedi, and 051

Sesotho. 052

Multi-Hall-SA advances beyond existing halluci- 053

nation detection approaches through a novel taxon- 054

omy specifically designed for low-resource African 055

languages. Our framework identifies and catego- 056

rizes four distinct types of hallucinations: entity- 057

based, temporal, numerical, and location-based. 058

By leveraging these high-quality sources, we en- 059

sure the benchmark’s reliability while maintaining 060

cultural and linguistic appropriateness. A distinc- 061

tive feature of Multi-Hall-SA is its cross-lingual 062

alignment methodology, which enables direct 063

comparison of model performance between high- 064

resource (English) and low-resource languages. 065

This parallel structure across languages provides in- 066

sights into how hallucination detection capabilities 067

vary across linguistic boundaries, revealing system- 068

atic disparities that remain hidden in monolingual 069

benchmarks. 070

Our work contributes to both hallucination detec- 071

tion and low-resource language processing by: (1) 072

providing a structured framework for categorizing 073

and detecting multiple hallucination types, (2) cre- 074

ating a parallel dataset for English and four South 075

African languages, (3) establishing a methodology 076

for generating controlled hallucinations suitable 077

for cross-lingual evaluation, and (4) introducing 078

a knowledge-augmented evaluation approach that 079

substantially reduces cross-lingual performance 080

gaps. 081

Our extensive evaluations reveal significant 082
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cross-lingual performance gaps, with models de-083

tecting up to 23.6% fewer hallucinations in South084

African languages compared to English. Knowl-085

edge augmentation emerges as a useful mitigation086

strategy, reducing this gap by 59.4% on average087

across all languages and models. These findings088

highlight the importance of developing specialized089

techniques for low-resource languages to ensure090

reliable hallucination detection across diverse lin-091

guistic contexts.092

2 Related Work093

Recent advancements in natural language gener-094

ation have brought hallucination detection to the095

forefront of NLP research. We examine current096

approaches to hallucination detection, mitigation097

strategies, and their limitations in low-resource con-098

texts.099

2.1 Hallucination Detection Frameworks100

Hallucination detection methods have evolved101

from simple overlap metrics to sophisticated neu-102

ral approaches (Pagnoni et al., 2021; Dhingra103

et al., 2019). Reference-dependent methods uti-104

lize ground truth comparisons to identify inconsis-105

tencies, exemplified by PARENT and PARENT-T106

(Dhingra et al., 2019; Wang et al., 2020b), which107

evaluate faithfulness by measuring alignment with108

both source documents and references. In sum-109

marization, specialized metrics like FEQA (Dur-110

mus et al., 2020), QAGS (Wang et al., 2020a), and111

QuestEval (Scialom et al., 2021) use question gen-112

eration and answering techniques.113

Reference-free methods offer solutions when114

ground truth is unavailable, using uncertainty quan-115

tification (Huang et al., 2025b; Manakul et al.,116

2023) and internal consistency checks (Elaraby117

et al., 2023; Raj et al., 2022). Recent advance-118

ments include self-consistency approaches (Man-119

akul et al., 2023), fine-grained atomic evaluation120

(Min et al., 2023), task-specific benchmarks (Li121

et al., 2023), taxonomic frameworks (Huang et al.,122

2025a), and multimodal extensions (Gunjal et al.,123

2024).124

These approaches, while effective for high-125

resource languages, remain largely unevaluated in126

low-resource contexts. Our work addresses this gap127

by providing a benchmark specifically designed for128

cross-lingual evaluation with controlled hallucina-129

tion types.130

2.2 Mitigation Strategies and Applications 131

The field has developed various hallucination mit- 132

igation strategies across NLP applications. For 133

abstractive summarization, researchers have pro- 134

posed architectural modifications (Aralikatte et al., 135

2021; Cao et al., 2018; Li et al., 2018) and con- 136

trastive learning techniques (Cao and Wang, 2021). 137

Post-processing approaches (Cao et al., 2020; Dong 138

et al., 2020) have shown effectiveness, though their 139

computational requirements limit application in 140

resource-constrained environments. 141

Dialogue systems have benefited from knowl- 142

edge grounding (Shuster et al., 2021) and con- 143

trolled generation (Rashkin et al., 2021), while 144

machine translation has explored corpus filtering 145

(Raunak et al., 2021), factorized divergence (Bri- 146

akou and Carpuat, 2021), and specialized training 147

objectives (Wang and Sennrich, 2020). These ap- 148

proaches often rely on extensive data and compu- 149

tational resources, limiting their applicability in 150

low-resource settings. 151

2.3 Challenges in Low-Resource Contexts 152

The intersection of low-resource languages and 153

hallucination detection presents unique challenges 154

that remain largely unaddressed (Xu et al., 2023; 155

Raunak et al., 2021). Existing benchmarks predom- 156

inantly focus on high-resource languages, creating 157

a gap in understanding hallucination patterns in 158

low-resource contexts. This disparity is particu- 159

larly evident for African languages, where limited 160

NLP resources compound detection challenges. 161

Prior work has primarily focused on data aug- 162

mentation (Xu et al., 2023) and cross-lingual trans- 163

fer learning (Raunak et al., 2021) but lacks system- 164

atic evaluation frameworks. Recently proposed hal- 165

lucination detection benchmarks like HaluEval (Li 166

et al., 2023), FactScore (Min et al., 2023), and Self- 167

CheckGPT (Manakul et al., 2023) offer improved 168

evaluation capabilities but overlook cross-lingual 169

assessment, especially for low-resource languages. 170

Multi-Hall-SA addresses these limitations by in- 171

troducing specialized techniques for low-resource 172

African languages. Unlike previous approaches re- 173

quiring extensive training data (Feng et al., 2020; 174

Zhou et al., 2021), our framework operates ef- 175

fectively within low-resource constraints. By fo- 176

cusing on isiZulu, isiXhosa, Sepedi, and Sesotho, 177

we contribute to developing more inclusive NLP 178

technologies while introducing a structured tax- 179

onomy that enables precise identification of hal- 180
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lucination types most susceptible to cross-lingual181

performance gaps.182

3 Methodology183

3.1 Benchmark Overview184

We present Multi-Hall-SA, a novel multilingual185

benchmark for hallucination detection across En-186

glish and four South African languages: isiZulu,187

isiXhosa, Sepedi, and Sesotho. The benchmark en-188

ables rigorous evaluation of hallucination detection189

capabilities in cross-lingual, low-resource settings190

through two distinctive aspects: (1) cross-lingual191

alignment, where each hallucination instance ex-192

ists in parallel across language pairs, enabling di-193

rect comparison between high-resource and low-194

resource languages; and (2) controlled hallucina-195

tion typology across four distinct categories (tem-196

poral, entity, numerical, and location errors), en-197

abling fine-grained analysis of model performance.198

3.2 Data Sources and Model Verification199

We collect parallel documents from the South200

African government services portal,1 which pro-201

vides information across multiple domains includ-202

ing services for residents, organizations, foreign na-203

tionals, and online services. These domains cover204

topics from education and driving licenses to busi-205

ness procedures and citizenship requirements, pro-206

viding diverse content for our benchmark.207

Before implementing our benchmark creation208

pipeline, we conducted preliminary evaluations to209

verify the multilingual capabilities of candidate210

models. We tested Claude-3.7-Sonnet and GPT-211

4o on manually translated isiZulu and Sepedi ver-212

sions of CommonsenseQA and OpenBookQA ob-213

tained from Ralethe and Buys (2025). Both mod-214

els obtained perfect performance (100% accuracy)215

on both languages, confirming their suitability for216

benchmark generation. More details are given in217

Appendix A218

3.3 Benchmark Generation Pipeline219

The Multi-Hall-SA benchmark generation pipeline220

consists of two main phases: (1) aligned fact ex-221

traction and (2) controlled hallucination generation,222

as illustrated in Figure 1.223

3.3.1 Aligned Fact Extraction224

A key technical challenge is ensuring semantic225

alignment between facts across languages. Our226

1https://www.gov.za/services

Figure 1: Processing architecture for Multi-Hall-SA
benchmark generation

approach uses parallel processing to extract se- 227

mantically equivalent facts across language pairs 228

by simultaneously considering both languages dur- 229

ing extraction. The system processes English and 230

target-language texts with explicit instructions to 231

identify statements present in both texts. 232

This approach ensures semantic alignment 233

through three mechanisms: (1) explicit cross- 234

lingual verification, requiring that extracted facts 235

must be present in both languages; (2) structural 236

alignment, maintaining identical fact counts across 237

languages; and (3) preservation of original lan- 238

guage characteristics without translation artifacts. 239

The system outputs numbered fact pairs with each 240

English statement followed by its semantic equiv- 241

alent in the target language. Detailed prompt tem- 242

plates are provided in Appendix B. 243

3.3.2 Controlled Hallucination Generation 244

For hallucination generation, we implement a con- 245

trolled modification strategy that systematically al- 246

ters specific information types while preserving 247

overall statement structure. For each fact pair, we 248

generate four hallucinated versions corresponding 249

to our taxonomy: 250

1. Temporal modifications alter dates or time 251

periods while preserving event relationships 252

(e.g., changing “established in 2001” to “es- 253

tablished in 1989”) 254

2. Entity alterations replace organizations or 255

persons with plausible but incorrect alterna- 256

tives (e.g., substituting “Department of Home 257

Affairs” with “Department of Social Develop- 258

ment”) 259

3. Numerical adjustments modify quantities or 260

statistics while maintaining plausibility (e.g., 261

changing contribution rates from 2% to 5%) 262

4. Location substitutions replace geographical 263

references with incorrect locations within the 264
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Type Example (English / Target Language)
Temporal Original: The UIF must be claimed

within six months of becoming unem-
ployed.
Hallucinated: The UIF must be claimed
within two years of becoming unem-
ployed.
isiZulu Hallucinated: I-UIF kumele
ifakwe singakapheli iminyaka emibili
uthola ukungasebenzi.

Entity Original: The Department of Home Af-
fairs issues identity documents.
Hallucinated: The Department of So-
cial Development issues identity docu-
ments.
Sepedi Hallucinated: Kgoro ya Tl-
habollo ya Leago e ntšha dipampiri tša
boitsebišo.

Numerical Original: Employers and employees
each contribute 1% of the employee’s
salary to the UIF.
Hallucinated: Employers and employ-
ees each contribute 3.5% of the em-
ployee’s salary to the UIF.
isiXhosa Hallucinated: Abaqashi
nabasebenzi banikezela nge-3.5% nga-
banye kwimali yomvuzo womsebenzi
kwi-UIF.

Location Original: SASSA offices in Pretoria
process social grant applications.
Hallucinated: SASSA offices in Dur-
ban process social grant applications.
Sesotho Hallucinated: Diofisi tsa
SASSA tse Durban di sebetsa dikopo
tsa dithuso tsa mmuso.

Table 1: Example hallucinations from the Multi-Hall-
SA benchmark. Each row shows an original statement
in English, its hallucinated version, and the correspond-
ing hallucinated statement in one of the target languages,
demonstrating the parallel nature of hallucination gener-
ation.

same context (e.g., shifting from “Pretoria” to265

“Cape Town”)266

Detailed prompting strategies are provided in267

Appendix B.268

3.4 Dataset Structure269

Each entry in the Multi-Hall-SA benchmark con-270

tains a source fact index, and hallucination category,271

followed by the original and hallucinated versions272

in both English and the target language. This struc-273

ture enables both monolingual and cross-lingual274

evaluation across semantically equivalent content.275

Table 1 provides examples of each hallucination276

type from our benchmark, illustrating how con-277

trolled modifications preserve cross-lingual align-278

ment. This approach ensures both control over279

hallucination types and cross-lingual alignment, as280

each hallucination is generated in parallel across281

languages. 282

4 Experimental Setup 283

Our study systematically evaluates large language 284

models’ capabilities in detecting hallucinations 285

across multiple languages, specifically compar- 286

ing performance between English and four South 287

African languages. We aim to establish benchmark 288

metrics, investigate performance variations by hal- 289

lucination type, and analyze cross-lingual detection 290

discrepancies. 291

4.1 Evaluation Scenarios 292

We implement two distinct evaluation scenarios to 293

comprehensively assess cross-lingual hallucination 294

detection capabilities: 295

4.1.1 Zero-shot Hallucination Detection 296

The first scenario tests models’ inherent ability 297

to detect hallucinations across languages without 298

additional context. This approach uses zero-shot 299

prompting, where models receive only the state- 300

ment to be evaluated and instructions to determine 301

if it contains factual errors. For non-English state- 302

ments, minimal language context is provided to 303

inform the model about the language being pro- 304

cessed. This baseline evaluation establishes each 305

model’s core capability in cross-lingual hallucina- 306

tion detection without external support. 307

4.1.2 Knowledge-augmented Evaluation 308

The second scenario enhances models with relevant 309

factual information retrieved from a knowledge 310

base. This approach simulates real-world scenar- 311

ios where models have access to retrieval systems 312

that provide contextual knowledge. For each state- 313

ment, we retrieve relevant semantic triples from 314

existing multilingual knowledge bases, which are 315

provided in the same language as the statement be- 316

ing evaluated, enabling assessment of how external 317

knowledge affects hallucination detection across 318

languages. 319

4.2 Models and Implementation 320

We evaluate four state-of-the-art language models 321

with varying architectures and sizes: Gemma 3 322

(12B), Aya-101 (11B), Llama 3.1 (8B), and T0++ 323

(11B). The latter is an instruction-tuned model from 324

the BigScience project based on the T5 architec- 325

ture. 326
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4.3 Evaluation Metrics and Analysis327

Methodology328

We use a set of metrics to evaluate hallucination329

detection performance across languages. In addi-330

tion to per-language classification, we also use a331

number of cross-lingual discrepancy metrics.332

• Standard classification metrics: Accuracy,333

precision, recall, and F1 score provide base-334

line performance assessment for each model335

and language.336

• Missed hallucination rate: The percentage337

of actual hallucinations that the model cor-338

rectly identifies in English but fails to detect339

in the target language.340

• False hallucination rate: The percentage of341

factual statements that the model correctly342

identifies in English but incorrectly flags as343

hallucinations in the target language.344

• Overall discrepancy rate: The proportion of345

statements where a model’s prediction differs346

between English and the target language for347

the same semantic content.348

These metrics enable comprehensive analysis of349

how model performance varies across languages350

and hallucination types, with particular focus on351

identifying systematic disparities in detection capa-352

bilities.353

For cross-lingual performance analysis, we cal-354

culate the average performance gap between En-355

glish and each target language as the difference in356

F1 scores. This gap is reported both in absolute357

percentage points and as a relative percentage of358

the English performance to quantify the disparity359

magnitude.360

For knowledge augmentation experiments, we361

measure both absolute performance (F1 scores)362

and relative improvement (∆%), calculated as363

(F1augmented − F1base)/F1base × 100%. This364

enables quantification of the differential im-365

pact of knowledge augmentation across lan-366

guages. Similarly, we calculate reduction367

in missed hallucination rates as (Ratebase −368

Rateaugmented)/Ratebase × 100% to measure369

how effectively knowledge augmentation improves370

cross-lingual consistency.371

For hallucination type analysis, we separate the372

evaluation data into four subsets corresponding to373

our taxonomy (temporal, entity, numerical, and lo-374

cation). We calculate F1 scores for each model375

Model Acc. P R F1
Gemma 3 (12B) 78 81 73 76
Aya-101 74 76 68 71
T0++ 69 72 61 65
Llama 3.1 (8B) 64 67 54 59

Table 2: Overall hallucination detection performance
across models (averaged across all languages) reporting
accuracy, precision, recall, and F1 as percentages.

Model EN ZU XH NSO ST
Gemma 3 (12B) 86.4 75.1 78.1 71.3 73.2
Aya-101 78.1 70.3 73.2 67.2 69.1
T0++ 76.2 64.4 68.2 59.1 62.3
Llama 3.1 (8B) 72.3 55.4 59.2 51.2 53.4
Avg. Gap — -11.9 -8.5 -16.1 -13.7

Table 3: Hallucination detection F1 (%) scores perfor-
mance per language. The average gap in performance
between English and each of the other langauges are
also given.

on each subset, both for English and target lan- 376

guages (reported as the average across all four 377

South African languages). This enables identifi- 378

cation of which hallucination types are most chal- 379

lenging across languages and which benefit most 380

from knowledge augmentation. 381

4.4 Experimental Conditions 382

We implement two experimental conditions: 383

Baseline Evaluation (Zero-shot): Models are 384

provided only with the statement to evaluate and 385

minimal language context for non-English state- 386

ments. This establishes each model’s inherent 387

cross-lingual hallucination detection capabilities 388

without external support. 389

Knowledge-augmented Evaluation: Models 390

are provided with relevant factual information re- 391

trieved from a knowledge base before evaluating 392

each statement. We utilize the cross-lingual knowl- 393

edge bases developed by Ralethe and Buys (2025), 394

which provide parallel semantic triples across En- 395

glish and South African languages projected us- 396

ing their LeNS-Align methodology. These knowl- 397

edge bases, derived from ConceptNet and DBpedia, 398

were specifically designed for low-resource South 399

African languages. For each statement, we retrieve 400

up to 5 relevant triples using a two-hop retrieval 401

process detailed in Appendix C. 402

4.5 Prompting and Evaluation Protocol 403

We implement zero-shot prompting approaches to 404

evaluate models’ ability to detect hallucinations 405

without specific examples. The prompt template 406
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Model ZU XH NSO ST Avg
Gemma 3 (12b) 4.3 3.9 5.1 4.7 4.5
Aya-101 3.8 3.5 4.6 4.2 4.0
T0++ 4.6 4.2 5.4 5.0 4.8
Llama 3.1 (8B) 5.3 4.8 6.1 5.7 5.5
Avg 4.5 4.1 5.3 4.9 4.7

Table 4: False hallucination rates by model and lan-
guage.

Model ZU XH NSO ST Avg
Gemma 3 (12b) 16.7 14.5 21.6 18.4 17.8
Aya-101 12.8 11.3 19.7 16.9 15.2
T0++ 19.3 17.8 25.2 23.6 21.5
Llama 3.1 (8B) 22.5 21.3 27.8 25.2 24.2
Avg 17.8 16.2 23.6 21.0 19.7

Table 5: Overall cross-lingual discrepancy rates by
model and language.

includes a system message defining the assistant’s407

role as an expert at identifying factual errors, fol-408

lowed by instructions to determine if the statement409

contains hallucinations.410

For knowledge-augmented evaluations, we mod-411

ify this template to include retrieved knowledge412

triples in the same language as the statement being413

evaluated. Full prompt templates are detailed in414

Appendix D.415

For each model, language, and condition, we416

evaluate the complete benchmark dataset of 3,500417

statements, comprising both factual statements (to418

test for false positives) and statements with intro-419

duced errors across all four hallucination types (to420

test for true positives). All evaluations use deter-421

ministic generation settings (temperature = 0.0) for422

reproducibility. Model responses are constrained to423

binary classifications ("FACTUAL" or "HALLU-424

CINATION"), enabling automated evaluation and425

analysis of cross-lingual discrepancies. The com-426

plete evaluation implementation details, including427

API configurations and processing architecture, are428

documented in Appendix E.429

5 Results430

We present an analysis of hallucination detection431

performance across models, languages, and exper-432

imental conditions, examining four key aspects:433

overall model performance, cross-lingual detection434

disparities, knowledge augmentation impact, and435

performance variations by hallucination type.436

5.1 Overall Performance Across Models437

In our baseline evaluation (Table 2), we observe438

significant variation in hallucination detection per-439

Model ZU XH NSO ST Avg
Gemma 3 (12B) 17.2 15.9 21.3 18.7 18.3
Aya-101 13.8 12.5 17.9 15.3 14.9
T0++ 21.4 19.7 29.8 25.1 24.0
Llama 3.1 (8B) 26.8 24.3 35.7 31.2 29.5
Avg 19.8 18.1 26.2 22.6 21.7

Table 6: Missed hallucination rates by model and lan-
guage

formance across models. Gemma 3 demonstrates 440

the strongest overall performance with an average 441

F1 score of 76.0% across all languages, followed 442

by Aya-101 (71.0%), T0++ (65.0%), and Llama 3.1 443

(59.0%). Precision scores consistently exceed re- 444

call across all models, indicating models are more 445

likely to miss hallucinations (false negatives) than 446

to incorrectly flag factual statements (false posi- 447

tives). 448

5.2 Cross-Lingual Performance Analysis 449

The cross-lingual analysis (Table 3) reveals a con- 450

sistent performance gap between English and tar- 451

get languages across all models. English detection 452

performance significantly exceeds that of all tar- 453

get languages, with isiXhosa showing the smallest 454

gap (average of 8 percentage points) and Sepedi 455

exhibiting the largest (average of 15 percentage 456

points). This suggests that linguistic proximity to 457

high-resource languages may influence hallucina- 458

tion detection capabilities. 459

To understand the nature of these performance 460

gaps, we examine cross-lingual discrepancies 461

(cases where models make different predictions 462

between English and the target language for the 463

same semantic content). Table 5 shows that overall 464

discrepancy rates range from 11.3% (Aya-101 on 465

isiXhosa) to 27.8% (Llama 3.1 on Sepedi), with an 466

average of 19.7% across all models and languages. 467

Aya-101 demonstrates the most cross-lingual con- 468

sistency with the lowest average discrepancy rate 469

(15.2%), while Llama 3.1 shows the highest incon- 470

sistency (24.2%). 471

Further analysis reveals a striking asymmetry in 472

the direction of these discrepancies. As shown in 473

Table 4, the false hallucination rate (cases where 474

models classify factual statements as hallucina- 475

tions in the target language but correctly as factual 476

in English) is relatively rare, averaging just 4.7% 477

across all models and languages. In contrast, Ta- 478

ble 6 demonstrates that the missed hallucination 479

rate (cases where models correctly identify hallu- 480

cinations in English but miss them in the target 481
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Model Setup EN (%) ZU (%) XH (%) NSO (%) ST (%)

Gemma 3
Base 86 75 78 71 73
+Know 91 87 89 85 86

Aya-101
Base 78 70 73 67 69
+Know 83 79 81 77 78

T0++
Base 76 64 68 59 62
+Know 82 77 80 74 76

Llama 3.1
Base 72 55 59 51 53
+Know 76 64 68 62 63

Avg
Base 78 66 70 62 64
+Know 83 77 80 75 76

Table 7: Impact of knowledge augmentation on hallucination detection (F1 scores)

Model/Setup English Target Language Avg

Temp Entity Num Loc Temp Entity Num Loc

Gemma 3 0.85 0.84 0.89 0.83 0.72 0.68 0.83 0.71
Gemma 3+Know 0.89 0.93 0.93 0.91 0.85 0.87 0.89 0.86

Aya-101 0.77 0.76 0.83 0.75 0.69 0.64 0.76 0.67
Aya-101+Know 0.81 0.86 0.87 0.84 0.77 0.78 0.82 0.78

T0++ 0.75 0.74 0.82 0.73 0.63 0.57 0.72 0.60
T0++ +Know 0.80 0.85 0.86 0.83 0.76 0.79 0.80 0.77

Llama 3.1 0.71 0.70 0.77 0.69 0.55 0.49 0.64 0.52
Llama 3.1+Know 0.74 0.78 0.79 0.76 0.64 0.64 0.71 0.65

Table 8: Hallucination detection F1 scores by hallucination type for English and target language average, with and
without knowledge augmentation.

language) is substantially higher, averaging 21.7%.482

This 4.6:1 ratio between missed hallucinations483

and false hallucinations indicates a systematic bias484

in cross-lingual reliability. Gemma 3 misses 18.3%485

of hallucinations across South African languages486

that it correctly identifies in English, with this pat-487

tern more pronounced for T0++ (24.0%) and Llama488

3.1 (29.5%). Aya-101 shows the greatest cross-489

lingual consistency with the lowest missed halluci-490

nation rate (14.9%), though the disparity remains491

substantial.492

These findings highlight a concerning reliability493

gap in multilingual contexts, where models that494

appear capable in English may fail to maintain that495

capability in other languages. The asymmetric pat-496

tern suggests models exhibit greater skepticism in497

English, potentially reflecting the English-centric498

nature of their training data. Appendix F provides499

additional analysis of these cross-lingual discrepan-500

cies, including language-specific patterns and more501

detailed error distributions.502

5.3 Impact of Knowledge Augmentation503

Knowledge augmentation substantially improves504

hallucination detection performance across all mod-505

els and languages (Table 7), with significantly506

larger gains for South African languages (rang-507

ing from +11.0% to +25.4%) compared to En- 508

glish (+5.6% to +7.9%). This disparity suggests 509

knowledge augmentation particularly benefits low- 510

resource languages, potentially compensating for 511

the inherent English-centric biases in models’ pre- 512

trained parameters. 513

Sepedi consistently shows the greatest improve- 514

ment with knowledge augmentation across all mod- 515

els (average F1 score increase of 21.0%). This is 516

particularly significant as Sepedi has the lowest 517

baseline performance, suggesting knowledge aug- 518

mentation is most beneficial for the most challeng- 519

ing languages. T0++ demonstrates the most im- 520

provement with knowledge augmentation (average 521

increase of 18.2% across all languages), suggesting 522

it may have reasoning capabilities that effectively 523

leverage external knowledge despite weaker base- 524

line multilingual performance. 525

The impact on missed hallucination rates (Ta- 526

ble 9) is even more notable. T0++ shows the 527

most transformation, with its average missed hal- 528

lucination rate dropping from 24.0% to just 5.0% 529

(a 79.2% relative reduction). For Sepedi, T0++’s 530

missed hallucination rate falls from 29.8% to 5.7% 531

(an 80.9% reduction). All models show substantial 532

improvements across all languages, with Sepedi 533

experiencing the largest absolute reductions. 534
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Model Setup ZU (%) XH (%) NSO (%) ST (%)

Gemma 3
Base 17.2 15.9 21.3 18.7
+Know 5.1 4.3 7.2 6.4
∆% -70.3 -73.0 -66.2 -65.8

Aya-101
Base 13.8 12.5 17.9 15.3
+Know 4.7 3.9 6.7 5.8
∆% -65.9 -68.8 -62.6 -62.1

T0++
Base 21.4 19.7 29.8 25.1
+Know 4.9 4.1 5.7 5.2
∆% -77.1 -79.2 -80.9 -79.3

Llama 3.1
Base 26.8 24.3 35.7 31.2
+Know 11.3 9.8 13.2 12.5
∆% -57.8 -59.7 -63.0 -59.9

Table 9: Impact of knowledge augmentation on missed hallucination rates

5.4 Performance by Hallucination Type535

Table 8 reveals patterns in how models handle var-536

ious hallucination forms across languages. Nu-537

merical inaccuracies are the most successfully de-538

tected category, with F1 scores approximately 5.0-539

13.0 percentage points higher than other categories.540

This suggests stronger representations of numerical541

relationships that generalize well across languages,542

possibly because numbers follow more consistent543

patterns transcending linguistic boundaries.544

Entity errors present the greatest challenge, par-545

ticularly in non-English languages. The cross-546

lingual detection gap for entity errors (up to 23%547

for some models) likely reflects models’ stronger548

grounding in English-language entities compared549

to entities in South African contexts.550

Knowledge augmentation has particularly strong551

effects on the most challenging hallucination types,552

with entity errors seeing the most substantial553

improvements (F1 score increases ranging from554

21.9% to 38.6% in target languages). This dispro-555

portionate improvement suggests entity-based hal-556

lucinations are especially amenable to correction557

through explicit factual contextualization.558

These results demonstrate that knowledge aug-559

mentation serves as an effective intervention for560

improving cross-lingual reliability in hallucination561

detection. By providing explicit factual informa-562

tion in both languages, knowledge augmentation563

creates a more level playing field that substantially564

mitigates cross-lingual biases in models’ paramet-565

ric knowledge. A more detailed analysis of dis-566

crepancy patterns and error types is available in567

Appendix F.3.568

6 Conclusion569

Multi-Hall-SA is a cross-lingual benchmark for570

hallucination detection spanning English and four571

low-resource South African languages. Our eval- 572

uation reveals significant cross-lingual reliability 573

gaps, with models detecting up to 23.6% fewer hal- 574

lucinations in South African languages compared 575

to English. This disparity varies by hallucination 576

type: entity-based errors present the greatest cross- 577

lingual challenge, while numerical hallucinations 578

remain more consistently detected. Knowledge 579

augmentation emerges as a powerful mitigation 580

strategy, reducing performance gaps by 59.4% on 581

average and demonstrating that explicit factual con- 582

textualization effectively compensates for inherent 583

model biases. 584

These findings have significant implications for 585

deploying language models in multilingual con- 586

texts. Models evaluated only in high-resource lan- 587

guages may fail to maintain reliability when serv- 588

ing diverse linguistic communities, creating poten- 589

tial harms through uncaught hallucinations. The 590

improvement from knowledge augmentation sug- 591

gests retrieval-augmented generation approaches 592

should be prioritized for low-resource languages, 593

where parametric knowledge appears substantially 594

less robust than for English. 595

Limitations 596

While Multi-Hall-SA makes significant contribu- 597

tions to cross-lingual hallucination detection, sev- 598

eral limitations should be acknowledged. The 599

benchmark currently encompasses four South 600

African languages, which represents only a sub- 601

set of Africa’s linguistic diversity. Though these 602

languages were carefully selected to include repre- 603

sentatives from major language families, findings 604

may not generalize to all low-resource languages. 605

The benchmark’s current scope focuses primar- 606

ily on administrative and governmental domains. 607

While this ensures factual accuracy through author- 608

itative sources, it means the benchmark may not 609
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fully represent hallucination patterns in other do-610

mains.611

Our knowledge bases, though carefully con-612

structed, show coverage variations across lan-613

guages (ranging from 86.2% to 92.9% as detailed in614

Appendix C.2). These differences in coverage may615

influence the comparative effectiveness of knowl-616

edge augmentation across languages.617

The controlled hallucination generation ap-618

proach focuses on four specific hallucination types.619

Although this taxonomy enables structured anal-620

ysis, it may not capture the full spectrum of hal-621

lucination patterns that occur in natural language622

generation contexts.623

Finally, our evaluation is limited to four com-624

mercial language models selected for their mul-625

tilingual capabilities. The performance patterns626

observed may not be representative of all language627

models, particularly those specifically designed or628

fine-tuned for individual African languages.629
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A Model Selection and Verification875

We conducted preliminary testing to ensure that876

foundation models possessed sufficient capabili-877

ties in the target South African languages. We878

tested Claude-3.7-Sonnet and GPT-4o on manually879

translated isiZulu and Sepedi versions of Common-880

senseQA and OpenBookQA obtained from Ralethe881

and Buys (2025). Both models obtained perfect882

performance (100% accuracy) on both languages,883

confirming their suitability for benchmark genera-884

tion.885

To ensure models were genuinely processing886

content in these languages rather than relying on887

English instruction understanding, all instructions888

were given exclusively in the target language:889

[ In i s i Z u l u / Se pe d i ] 890
Phendu la umbuzo o l a n d e l a y o : { Q u e s t i o n i n 891

i s i Z u l u / Se ped i } 892
{ Answer c h o i c e s i n i s i Z u l u / Sep ed i } 893

B Benchmark Generation Prompts 894

B.1 Aligned Fact Extraction 895

The parallel fact extraction process used carefully 896

designed prompts that ensured semantic alignment 897

across languages: 898

You a r e an e x p e r t i n bo th E n g l i s h and 899
i s i Z u l u . Your t a s k i s t o i d e n t i f y 900
key f a c t u a l s t a t e m e n t s t h a t a p p e a r 901
i n bo th t h e E n g l i s h and i s i Z u l u 902
t e x t s p r o v i d e d below . 903

904
INSTRUCTIONS : 905
1 . Read bo th t h e E n g l i s h and i s i Z u l u 906

t e x t s c a r e f u l l y . 907
2 . I d e n t i f y 5−7 c l e a r f a c t u a l s t a t e m e n t s 908

t h a t a p p e a r i n BOTH t e x t s . 909
3 . For each f a c t , p r o v i d e t h e e x a c t 910

s e n t e n c e from t h e E n g l i s h t e x t and 911
i t s c o r r e s p o n d i n g s e n t e n c e from t h e 912
i s i Z u l u t e x t . 913

4 . Focus on s t a t e m e n t s t h a t c o n t a i n 914
s p e c i f i c i n f o r m a t i o n ( d a t e s , numbers 915
, o r g a n i z a t i o n s , p r o c e d u r e s , 916
r e q u i r e m e n t s ) . 917

5 . Ensure t h e f a c t s you s e l e c t a p p e a r i n 918
BOTH l a n g u a g e s . 919

6 . Format your r e s p o n s e as a numbered 920
l i s t w i th t h e E n g l i s h s t a t e m e n t 921
f o l l o w e d by i t s i s i Z u l u e q u i v a l e n t . 922

923
ENGLISH TEXT : 924
{ e n g l i s h _ t e x t } 925

926
ISIZULU TEXT : 927
{ i s i z u l u _ t e x t } 928

929
P l e a s e p r o v i d e t h e 5−7 a l i g n e d f a c t u a l 930

s t a t e m e n t s i n t h i s f o r m a t : 931
1 . E n g l i s h : [ E n g l i s h f a c t u a l s t a t e m e n t ] 932

I s i Z u l u : [ C o r r e s p o n d i n g i s i Z u l u 933
s t a t e m e n t ] 934

The key design elements enabling successful 935

cross-lingual alignment include: 936

• Explicit instruction to process both languages 937

simultaneously 938

• Parallel context windows providing both texts 939

• Structured output format ensuring clear corre- 940

spondence 941

• Information-type guidance focusing on verifi- 942

able content 943

• Exact sentence requirement maintaining lin- 944

guistic authenticity 945
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B.2 Controlled Hallucination Generation946

For hallucination generation, we implemented947

structured prompts for creating specific types of948

hallucinations while maintaining semantic align-949

ment:950

You a r e an e x p e r t i n c r e a t i n g c o n t r o l l e d951
h a l l u c i n a t i o n s f o r NLP benchmark952

deve lopment . Your t a s k i s t o modify953
t h e f a c t u a l s t a t e m e n t s below by954
i n t r o d u c i n g s p e c i f i c t y p e s o f e r r o r s955

w h i l e m a i n t a i n i n g g r a m m a t i c a l956
c o r r e c t n e s s and p l a u s i b i l i t y .957

958
ORIGINAL FACT PAIR :959
E n g l i s h : { e n g l i s h _ f a c t u a l _ s t a t e m e n t }960
{ t a r g e t _ l a n g u a g e } : {961

t a r g e t _ l a n g u a g e _ f a c t u a l _ s t a t e m e n t }962
963

INSTRUCTIONS :964
C r e a t e FOUR v a r i a t i o n s o f t h i s f a c t p a i r965

, each c o n t a i n i n g a d i f f e r e n t t y p e966
of h a l l u c i n a t i o n :967

968
1 . TEMPORAL SHIFT : Change d a t e s , t ime969

p e r i o d s , o r c h r o n o l o g i c a l970
i n f o r m a t i o n971

2 . ENTITY ERROR: Rep lace o r g a n i z a t i o n s ,972
d e p a r t m e n t s , o r named e n t i t i e s wi th973
i n c o r r e c t ones974

3 . NUMERICAL INACCURACY: A l t e r numbers ,975
p e r c e n t a g e s , o r q u a n t i t i e s976

4 . LOCATION MISTAKE : Change g e o g r a p h i c a l977
r e f e r e n c e s o r s p a t i a l i n f o r m a t i o n978

979
IMPORTANT:980
− Ensure t h e same t y p e o f e r r o r i s made981

i n BOTH l a n g u a g e v e r s i o n s982
− Keep t h e s t a t e m e n t s g r a m m a t i c a l l y983

c o r r e c t and p l a u s i b l e984
− P r e s e r v e t h e o v e r a l l s t r u c t u r e and985

c o n t e x t o f t h e o r i g i n a l s t a t e m e n t s986
− Make on ly ONE t y p e o f change p e r987

v a r i a t i o n988

C Knowledge Base Structure and989

Retrieval990

C.1 Triple Structure991

The knowledge bases used for knowledge-992

augmented evaluation were structured as semantic993

triples in multiple languages, following the for-994

mat (subject, predicate, object). These knowledge995

bases were derived from the work of Ralethe and996

Buys (2025), who projected English knowledge997

from ConceptNet and DBpedia to South African998

languages.999

The knowledge graph contains approximately1000

127,000 triples in English and 98,000, 94,000,1001

76,000, and 72,000 triples in isiZulu, isiXhosa,1002

Sepedi, and Sesotho, respectively. Coverage anal-1003

ysis indicated that approximately 88% of entities1004

mentioned in the benchmark statements had corre- 1005

sponding entries in the knowledge graph. 1006

# E n g l i s h t r i p l e s 1007
( Depar tment o f Home A f f a i r s , i s s u e s , 1008

i d e n t i t y documents ) 1009
( i d e n t i t y documents , r e q u i r e d f o r , 1010

p a s s p o r t a p p l i c a t i o n s ) 1011
( i d e n t i t y documents , c o n t a i n , b i o m e t r i c 1012

i n f o r m a t i o n ) 1013
1014

# i s i Z u l u t r i p l e s 1015
( UMnyango Wezasekhaya , ukhipha , 1016

amadokhumenti e s i n t u ) 1017
( amadokhumenti e s i n t u , a d i n g e k a ukuze , 1018

u f a k e i s i c e l o s e p h a s i p o t i ) 1019
( amadokhumenti e s i n t u , aquke the , u l w a z i 1020

lwe − b i o m e t r i c ) 1021

C.2 Knowledge Coverage Analysis 1022

We conducted a detailed coverage analysis, com- 1023

paring the entities and relations in the benchmark 1024

statements with those available in the knowledge 1025

graph: 1026

D Evaluation Prompt Details 1027

D.1 Zero-shot Evaluation Prompts 1028

For the baseline evaluation, we used this prompt 1029

template: 1030

System : You a r e an e x p e r t a t i d e n t i f y i n g 1031
f a c t u a l e r r o r s and h a l l u c i n a t i o n s 1032

i n s t a t e m e n t s . Your j o b i s t o 1033
d e t e r m i n e i f a g i v e n s t a t e m e n t 1034
c o n t a i n s f a l s e i n f o r m a t i o n . 1035

1036
User : [ For non − E n g l i s h s t a t e m e n t s on ly ] 1037

The f o l l o w i n g s t a t e m e n t i s i n { 1038
LANGUAGE} , which i s spoken i n South 1039
A f r i c a . P l e a s e examine i t f o r 1040
f a c t u a l a c c u r a c y . 1041

1042
S t a t e m e n t : "{STATEMENT}" 1043

1044
I s t h i s s t a t e m e n t f a c t u a l l y a c c u r a t e o r 1045

does i t c o n t a i n h a l l u c i n a t i o n s o r 1046
e r r o r s ? Respond wi th e x a c t l y one 1047
word − e i t h e r "FACTUAL" i f t h e 1048
s t a t e m e n t i s a c c u r a t e , o r " 1049
HALLUCINATION" i f i t c o n t a i n s f a l s e 1050
i n f o r m a t i o n . 1051

D.2 Knowledge-augmented Evaluation 1052

Prompts 1053

For knowledge-augmented evaluations, we modi- 1054

fied the template to include retrieved knowledge 1055

triples: 1056

System : You a r e an e x p e r t a t i d e n t i f y i n g 1057
f a c t u a l e r r o r s and h a l l u c i n a t i o n s 1058

i n s t a t e m e n t s . Your j o b i s t o 1059
d e t e r m i n e i f a g i v e n s t a t e m e n t 1060
c o n t a i n s f a l s e i n f o r m a t i o n . 1061
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Entity Type EN (%) ZU (%) XH (%) NSO (%) ST (%)
Organizations 94.3 91.7 90.5 87.2 88.4
Locations 96.8 94.2 93.7 90.1 91.3
Temporal Terms 89.6 85.3 86.9 82.4 83.7
Numerical Concepts 98.2 97.5 96.8 94.3 94.8
Procedures 85.7 80.4 81.2 76.9 77.5
Overall 92.9 89.8 89.8 86.2 87.1

Table 10: Knowledge graph coverage by language and entity type

Model Size English Target Gap Gap %
(B) (%) Avg. (%) (%)

Gemma 3 12 86.0 74.0 12.0 14.0
Aya-101 11 78.0 70.0 8.0 10.3
T0++ 11 76.0 63.0 13.0 17.1
Llama 3.1 8 72.0 55.0 17.0 23.6

Table 11: Hallucination detection performance by model size (F1 scores)

1062
User : [ For non − E n g l i s h s t a t e m e n t s on ly ]1063

The f o l l o w i n g s t a t e m e n t i s i n {1064
LANGUAGE} , which i s spoken i n South1065
A f r i c a . P l e a s e examine i t f o r1066
f a c t u a l a c c u r a c y .1067

1068
Here i s some f a c t u a l c o n t e x t t h a t may be1069

r e l e v a n t :1070
{RETRIEVED_KNOWLEDGE_TRIPLES}1071

1072
S t a t e m e n t : "{STATEMENT}"1073

1074
I s t h i s s t a t e m e n t f a c t u a l l y a c c u r a t e o r1075

does i t c o n t a i n h a l l u c i n a t i o n s o r1076
e r r o r s ? Respond wi th e x a c t l y one1077
word − e i t h e r "FACTUAL" i f t h e1078
s t a t e m e n t i s a c c u r a t e , o r "1079
HALLUCINATION" i f i t c o n t a i n s f a l s e1080
i n f o r m a t i o n .1081

E Implementation Details1082

All evaluations were conducted using the following1083

implementation specifications:1084

• API endpoints: All models were accessed1085

through Vertex AI endpoints, specifically ver-1086

sion 2023-06-011087

• Generation parameters: Temperature=0.0,1088

TopP=1.0, MaxTokens=101089

• Error handling: Exponential backoff retry1090

logic for API failures (max 5 retries)1091

• Parallel processing: Evaluations distributed1092

across 8 concurrent processes1093

• Response validation: Automatic verification1094

of correct response format1095

• Reproducibility: Fixed random seeds (42)1096

for all randomized processes1097

F Additional Results 1098

F.1 Cross-lingual Discrepancy Direction 1099

Analysis 1100

Table 13 provides a detailed breakdown of cross- 1101

lingual discrepancies by direction, showing the pro- 1102

portion of statements where models made different 1103

predictions between English and target languages. 1104

The data shows a strong asymmetry in the direc- 1105

tion of discrepancies. Cases where models classi- 1106

fied statements as hallucinations in the target lan- 1107

guage but as factual in English (E=F, T=H) were 1108

relatively rare (4.7% on average), while the reverse 1109

scenario (E=H, T=F) was much more common 1110

(14.6% on average). This asymmetry suggests that 1111

models have stronger skepticism in English, possi- 1112

bly reflecting their training data distribution. 1113

F.2 Performance by Model Size 1114

We analyzed the relationship between model size 1115

and cross-lingual hallucination detection perfor- 1116

mance: 1117

The results suggest model architecture and train- 1118

ing objective influence cross-lingual consistency 1119

beyond raw parameter count. 1120

F.3 Error Analysis 1121

We conducted detailed error analysis on randomly 1122

sampled detection failures: 1123

In target languages, cultural context misalign- 1124

ment and entity confusion represent a larger pro- 1125

portion of errors, while temporal ambiguity is more 1126

prevalent in English errors. 1127
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Error Type English (%) Target Lang. (%)
Entity confusion 29 36
Numeric reasoning errors 8 11
Location inconsistency 18 23
Temporal ambiguity 31 19

Table 12: Distribution of error types in hallucination detection failures

Language Overall E=F, T=H E=H, T=F Missed
Discrep. Hall. Rate

isiZulu 17.8% 4.5% 13.3% 19.1%
isiXhosa 16.2% 4.1% 12.1% 17.3%
Sepedi 23.6% 5.3% 17.4% 24.9%
Sesotho 21.0% 4.9% 15.6% 22.4%
Average 19.3% 4.7% 14.6% 21.4%
E=F, T=H: English=FACTUAL, Target=HALLUCINATION
E=H, T=F: English=HALLUCINATION, Target=FACTUAL
Missed Hall. Rate: Rate of hallucinations detected in English but missed in target language

Table 13: Cross-lingual discrepancy direction analysis (baseline evaluation)

G Sample Hallucinations1128

Below are representative examples of each hallu-1129

cination type from the benchmark across different1130

languages:1131

G.1 Temporal Hallucination Example1132

English Original: The UIF must be claimed within1133

six months of becoming unemployed.1134

English Hallucinated: The UIF must be claimed1135

within two years of becoming unemployed.1136

isiZulu Hallucinated: I-UIF kumele ifakwe sin-1137

gakapheli iminyaka emibili uthola ukungasebenzi.1138

G.2 Entity Hallucination Example1139

English Original: The Department of Home Affairs1140

issues identity documents.1141

English Hallucinated: The Department of Social1142

Development issues identity documents.1143

Sepedi Hallucinated: Kgoro ya Tlhabollo ya Leago1144

e ntšha dipampiri tša boitsebišo.1145

G.3 Numerical Hallucination Example1146

English Original: Employers and employees each1147

contribute 1% of the employee’s salary to the UIF.1148

English Hallucinated: Employers and employees1149

each contribute 3.5% of the employee’s salary to1150

the UIF.1151

isiXhosa Hallucinated: Abaqashi nabasebenzi1152

banikezela nge-3.5% ngabanye kwimali yomvuzo1153

womsebenzi kwi-UIF.1154

G.4 Location Hallucination Example1155

English Original: SASSA offices in Pretoria pro-1156

cess social grant applications.1157

English Hallucinated: SASSA offices in Durban1158

process social grant applications. 1159

Sesotho Hallucinated: Diofisi tsa SASSA tse Dur- 1160

ban di sebetsa dikopo tsa dithuso tsa mmuso. 1161

14


	Introduction
	Related Work
	Hallucination Detection Frameworks
	Mitigation Strategies and Applications
	Challenges in Low-Resource Contexts

	Methodology
	Benchmark Overview
	Data Sources and Model Verification
	Benchmark Generation Pipeline
	Aligned Fact Extraction
	Controlled Hallucination Generation

	Dataset Structure

	Experimental Setup
	Evaluation Scenarios
	Zero-shot Hallucination Detection
	Knowledge-augmented Evaluation

	Models and Implementation
	Evaluation Metrics and Analysis Methodology
	Experimental Conditions
	Prompting and Evaluation Protocol

	Results
	Overall Performance Across Models
	Cross-Lingual Performance Analysis
	Impact of Knowledge Augmentation
	Performance by Hallucination Type

	Conclusion
	Model Selection and Verification
	Benchmark Generation Prompts
	Aligned Fact Extraction
	Controlled Hallucination Generation

	Knowledge Base Structure and Retrieval
	Triple Structure
	Knowledge Coverage Analysis

	Evaluation Prompt Details
	Zero-shot Evaluation Prompts
	Knowledge-augmented Evaluation Prompts

	Implementation Details
	Additional Results
	Cross-lingual Discrepancy Direction Analysis
	Performance by Model Size
	Error Analysis

	Sample Hallucinations
	Temporal Hallucination Example
	Entity Hallucination Example
	Numerical Hallucination Example
	Location Hallucination Example


