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Abstract

We present a novel framework for unsupervised object-centric 3D scene under-
standing that generalizes robustly to out-of-distribution images. To achieve this,
we design a causal generative model reflecting the physical process by which an
image is produced, when a camera captures a scene containing multiple objects.
This model is trained to reconstruct multi-view images via a latent representation
describing the shapes, colours and positions of the 3D objects they show. It ex-
plicitly represents object instances as separate neural radiance fields, placed into
a 3D scene. We then propose an inference algorithm that can infer this latent
representation given a single out-of-distribution image as input – even when it
shows an unseen combination of components, unseen spatial compositions or a
radically new viewpoint. We conduct extensive experiments applying our approach
to test datasets that have zero probability under the training distribution. These
show that it accurately reconstructs a scene’s geometry, segments objects and infers
their positions, despite not receiving any supervision. Our approach significantly
out-performs baselines that do not capture the true causal image generation process.

1 Introduction

Most machine learning approaches make the assumption that at test time, they are applied to data
drawn from the same distribution as seen during training [14, 91, 73, 21, 33]. This means the
generalization guarantees of statistical learning theory apply [127]. However, this does not apply
to images drawn from a different distribution – recent works have shown this for images taken
from unfamiliar viewpoints [4, 1, 8], shifted by few pixels [7], and showing scenes with an unseen
composition of objects [11, 110, 114, 36, 37, 26, 70]. It has been suggested that this is because they
learn spurious shortcuts [36] to achieve low training loss, but which do not capture the true causal
relationship. However, when deployed, machine learning methods often encounter observations
drawn from a previously unseen distribution.

In this work, we consider the task of transforming a single observed image into a detailed represen-
tation of the scene it depicts, providing explicit information about its 3D structure such as object
locations, shapes and appearances. We focus on the challenging setting where at test time, we see
images depicting scenes that have zero probability in the training distribution (Fig. 1). We adopt an
unsupervised approach to learning, avoiding the need for manual annotation of object masks, 3D
positions, and similar – we require only a dataset of posed multi-view images.

Our approach is to build a generative model (Sec. 3) jointly over image pixels and the 3D world
they depict, that can be robustly inverted to infer the latent factors that gave rise to an input image
[116, 129, 22]. If such a model is to support generalization to out-of-distribution (OOD) data, it
should reflect the underlying causal model of the environment from which the data arose [102, 116].
36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Our causal generative model learns to represent images from one probability distribution
P train but also allows interventions on the model to represent a set of different distributions. This
allows both (i) inference of object segmentations, depth-maps, and novel views (NVS) for input
images drawn from different distributions (e.g. taken from radically different camera viewpoints
POOD
views, containing unseen compositions of objects POOD

composition, or unseen number of objects POOD
count );

(ii) generating plausible 3D scenes containing multiple objects (‘Generation’, top center).

In practice this means the conditional distributions in the model should correspond (as far as possible)
to independent mechanisms [113, 56] in the world. Thus, when mechanisms or physical processes in
the environment change, we expect much of our model to remain applicable; this has been called
sparse mechanism shift [116]. For example, even if objects are no longer placed according to the
same patterns as at training time, we still expect the appearances of object types to remain consistent.

In general it is impossible to recover such a causal model purely from observational data [102, 116].
We therefore embed in our model the physical knowledge that the world is composed of 3D objects
of different shapes, which may appear at different locations, imaged by a camera subject to the
laws of 3D geometry and perspective projection. Each object has separate appearance and position
representations, ensuring disentanglement, so the same object can be represented invariantly in
different locations. The final image is synthesized by volumetric rendering of the latent 3D shapes
placed in a 3D scene space according to their latent positions. This structure means the model is
compositional: having learnt about one type of object in one context, it can also represent and perform
inference about a similar object in different contexts.

We perform inference on OOD data by intervening on our model [102, 105] – i.e. replacing certain
conditional distributions (or mechanisms) that are no longer appropriate and then doing posterior
inference. To ensure that the inference method itself supports OOD generalization we cannot employ
amortized variational inference [65, 109], as an encoder network is in general not robust to changes
of distribution [89, 36]. Instead, we develop a novel Markov chain Monte-Carlo (MCMC) inference
scheme, that finds posterior samples for a given test image without any encoder network.

Targeting OOD generalization requires important design choices in our model, that differ from other
generative models of 3D scenes [97, 122, 72]. First, we use a non-learnt rendering mechanism,
as this is guaranteed to generalise correctly to OOD data (e.g. novel viewpoints); it contrasts with
prior works that learn the rendering process (e.g. with a CNN mapping rendered features to pixels
[97, 94]). Second, we use an explicit disentangled representation of the assumed underlying causal
variables (e.g. object shapes and positions), which allows performing interventions and counterfactual
inference; this contrasts with works that model the scene without disentangling the proper causal
variables, such as spatial mixture models [33, 122]. Third, we separate the mechanisms (conditionals)
for per-object appearances and for scene layouts, so the latter can be intervened on without affecting
the former; this contrasts with methods that have a single global decoder [72, 94].

To evaluate our approach (Sec. 4) we create challenging test datasets that have zero probability
under the corresponding training distribution, yet share aspects of its structure. We show that our
model can generalize to unseen numbers of objects, unseen compositions, and radically new camera
viewpoints – all significantly better than existing works. It successfully localizes objects in the 3D
scene, reconstructs their 3D shapes, and hence predicts depth-maps and instance segmentation masks.
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To summarise, our core contribution is the first unsupervised framework for inference of explicit
object-centric 3D scene representations, that generalizes to out-of-distribution scenes. Our
secondary contributions are: (i) experimental evidence that current methods do not generalize
to images with a radically new camera viewpoint, a different number of objects, or an unseen
composition of objects; (ii) a novel generative model of 3D scenes based on multi-object radiance
fields with explicit object positions and volumetric rendering; and (iii) a novel MCMC inference
scheme exploiting the structure of our model, that allows inferring 3D scenes from a single OOD
image.

2 Related Work
Recently numerous works have observed that modern learning-based computer vision methods fail to
generalise on out-of-distribution data [4, 1, 46, 48, 51, 71, 7, 11, 110, 142, 114, 36, 37, 92, 87, 10,
123, 26, 141, 76] and constructed various benchmarks [68, 47, 8, 42, 62, 136, 131]. Others have tried
to improve OOD generalisation, the most relevant by aiming to learn relations that are invariant across
training domains [6, 119, 3, 2, 100, 74, 118, 104] or that maximize sparsity of interactions [39, 38].
These typically assume that multiple differently-distributed datasets are available during training,
and mainly address the supervised setting (e.g. image classification). Like the latter, our focus is
on enabling OOD generalisation, but in contrast to them, we address unsupervised object-centric
generative modelling. Moreover, we do not rely on multiple training datasets to discover causal
factors, but instead directly incorporate universal knowledge such as separation of the world into
objects.

Our work is also connected to the vision as inverse graphics paradigm [41, 9, 63, 140, 27, 111, 90].
In this setting, it is assumed that we have access to (maybe parametric) 3D models of objects, and
wish to find suitable pose and other parameters to explain an input image [83, 75, 53, 111, 112, 52].
Like our work, these typically use a test-time optimisation; unlike ours, they do not attempt to learn
priors on object layout nor shapes – instead assuming these are known a priori.

Neural implicit scene representations [124] learn a continuous representation of a 3D scene from
2D images using neural rendering, either by explicit volumetric rendering [88, 85, 132, 135, 98]
or with CNN post-processing of rendered features [121, 120]. These initial works fitted individual
scenes without learning common characteristics, therefore requiring many images as input. This
was addressed by sharing models across different scenes [138, 125, 77, 35, 103, 96, 55], allowing
inference of novel views from one or few images. All these methods model a scene as a single
entity without decomposing it into individual objects, meaning manipulating the scene (e.g. moving
single objects) is not possible. In contrast, [99] divides a scene into objects, but requires detailed
manual annotations to do so, and does not support inference from few images; [28] relies on weaker
supervision in the form of ground-truth object masks. [139, 122] discover such a decomposition
automatically (though with depth supervision for [122]), however they rely on spatial mixtures to
assign each point in space to an object, without any explicit, controllable representation of object
positions. This entanglement of latent position and appearance means they are not guaranteed to
generalise to OOD combinations of position and appearance [81]. Finally, [43] supports composition
of multi-object scenes using neural scattering functions – but these must be learnt from multiple
views of single objects (a form of weak supervision), with no probabilistic model over appearances
nor layouts.

Other approaches extend neural rendering to the generative setting [115, 97, 94, 95, 72, 19, 25, 24],
allowing sampling objects or scenes a priori. However, these do not allow us to perform inference in
the OOD setting, as they have components that do not reflect the causal, compositional structure of the
world (e.g. a monolithic latent space lacking object-centric representations, or a learnt neural renderer
that will not generalise to OOD viewpoints nor compositions). In contrast, there are object-centric
generative models that can sample plausible images and perform inference – but only in 2D, without
reasoning over a latent 3D scene representation, and therefore without supporting 3D tasks such
as depth prediction. Some use a full-image spatial mixture model [33, 93, 67, 31, 32, 60] or alpha
stacking [126, 128]; others model images as composed of smaller patches or sprites [34, 57, 5],
learning both the distribution of appearances and compositions; others use compositional energy-
based models [29, 80]. A 3D extension of these latter is proposed by [45], but requires videos
for inference at test time and does not support OOD generalisation. Other methods take purely
discriminative approaches to unsupervised segmentation [82, 61, 66]. In the supplementary, we
provide a table comparing the capabilities of our method to closely related works.
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3 Method

Our goal is to infer an explicit object-centric representation of a 3D scene from one or multiple
images, even when they show scenes lying outside the distribution observed during training. We
achieve this by learning a compositional generative causal model jointly over multi-view images
and the scenes they depict, as described in Sec. 3.1. For training (Sec. 3.2) we use only posed
multi-view images (x1,v1), ..., (xN ,vN ) drawn from a training distribution P train(x,v) without
any annotations such as depth-maps, bounding-boxes or segmentation masks. At test time, input
images are drawn from a distribution POOD(x,v) with support disjoint from the training distribution.
Performing inference over the generative model using our proposed framework (Sec. 3.3) yields an
explicit object-centric representation, including 3D object shapes, positions and appearances.

3.1 Compositional Generative Causal Model

We model a multi-view set of N images {x1 . . .xN} as caused by a single 3D scene S being rendered
from viewpoints {v1 . . .vN}, by a function C(S, v). We now describe this scene representation,
then the generative process by which it is sampled.

Scene representation. The scene S =
(
sbg, {(sappi , sposi )}Oi=1

)
is composed of a 3D background

component sbg describing the background’s shape and color, and 3D objects indexed i = 1 . . . O with
shape and color described by sappi and explicit 3D positions sposi . Each sappi explicitly represents the
3D appearance of an object as a neural radiance field (NeRF) [88] in a canonical space (e.g. with the
object centered at the origin). The positions sposi specify objects placement in the global 3D scene
space. While most prior work parametrizes 3D object positions as coordinates, we represent them by
1-hot vectors choosing from a set of plausible candidate locations to use as the center position of the
object. As we explain in Sec. 3.3, this makes gradient-based optimization easier.

Generative process for S. We first sample a high-level latent scene embedding zg ∼ N (0, I),
that will model correlations between objects and learn the typical composition of a scene [57, 5].
The individual object appearances are specified by Gaussian latent variables zshapei and zcoli that
respectively encode the shape and color of the ith object; they are conditioned on zg, with mean
and log-variance given by a fully-connected network ζθ(z

g) with weights θ. 1 The position zposi
is specified by a categorical variable, with logits given by ξθ(z

g). We similarly introduce latents
zshapebg and zcolbg to encode the shape and color of the background. For brevity, we will write
zs = {zshapebg , zcolbg , z

shape
1...O , zcol1...O, z

pos
1...O}. The latents zs are mapped to the scene S by a function

Sθ. This sets sposi equal to zposi , and derives the object NeRF representations sappi from zshapei and
zcoli as described in the next paragraph. The probability of an image xn given its camera viewpoint
vn is then

pθ(xn |vn) =

∫∫
fN (xn; C(Sθ(z

s), vn), σ
2) pθ(z

s |zg) pθ(zg) dzsdzg (1)

where C(S, v) renders the scene described by S from viewpoint v, and fN represents a factored
Gaussian likelihood over the H ×W × 3 pixels of the image, with fixed standard deviation σ. The
probability of a composition zs of objects and background in a scene is given by

pθ(z
s |zg) = pθ(z

shape
bg |zg)pθ(zcolbg |zg)

O∏
i=1

pθ(z
shape
i |zg) pθ(zcoli |zg) pθ(zposi |zg) (2)

We emphasise pθ(·) models different distributions for each object and variable; it does not assume
the different scene variables constituting zs are I.I.D. Hence, pθ(zs |zg) can model any relationship
among object locations, shapes and colors, which is necessary to sample scenes with plausible
relationships among scene components. The graphical model is illustrated in supplementary Fig. 9 in
Sec. 7.

Rendering the scene S . The rendering process C(S,v) outputs an image x for a camera viewpoint
v, given our explicit compositional representation of a scene S . Recall S contains a 3D background
component sbg and a set of object components {sappi , sposi }Oi=1; for brevity we will identify the

1See the supplementary for all network architectures
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background as component i = 0, with spos0 fixed to the origin. We extend multi-component neural
radiance fields (NeRF) [88, 85] to support explicit placement of objects in the 3D scene according to
the position variables sposi . Specifically, the latent codes zshapei and zcoli for the ith object parametrize
a learnt function f∗

θ (q
∗; zshapei , zcoli ), that maps points q∗ in the canonical space of the object to a

color c ∈ [0, 1]3 and density σ ∈ R+. We place each object at its 3D position sposi by convolving its
density and color functions with a one-hot location indicator:

fi(q) =

∫∫∫
q∗

sposi (q∗) · f∗
θ

(
q− q∗; zshapei , zcoli

)
dq∗ ≡

(
ci(q), σi(q)

)
(3)

where q is a position in scene space, and sposi (q) is an indicator function with a unit impulse if point
q is chosen as the object center position by the 1-hot indicator sposi . As in [139] we divide the scene
space into foreground/background regions and only render the corresponding components in each.

Given the placed object densities σi and colors ci, we calculate the color of each pixel in the image x
by casting a ray r(t) = x0 + td ∈ R3 from the pixel in direction d through a camera at position x0,
summing the contributions from different objects [85, 86]:

C(S, v)[r] =
∫ ∞

0

T (t)

O∑
i=0

σi(r(t)) ·ci(r(t))dt , where T (t) = exp

(
−
∫ t

0

O∑
i=0

σi(r(t
′))dt′

)
(4)

Continuous relaxation of object placement. To allow gradient-based training and inference, our
generative process must be differentiable. We therefore relax the categorical position variable to a
Gumbel-Softmax [54, 84]. This approach ensures we always receive non-zero gradients of the image
with respect to every possible object position, easing optimisation. This is in contrast to models based
on spatial transformers [97, 134, 78], which can get stuck in local minima if the model has a poor
initial prediction, as the gradient of pixels wrt position is zero if the predicted and true positions do
not overlap. Note that for a discretized representation (e.g. voxels [79] or triplanes [18]), the object
placement operation Eq. 3 can be efficiently implemented as a convolution operation in the Fourier
domain – exploiting the Fourier transform’s sifting property [16, 5].

3.2 Training

We train our generative model from a dataset of images containing K views for each of T scenes. The
model includes three learnable components, with parameters θ: (i) f∗

θ (q; z
shape, zcol) that represents

a 3D object as a function from position to color and density conditioned on the object appearance
embedding; (ii) f bg

θ (q; zshapebg , zcolorbg ) that similarly represents the 3D background; (iii) ζθ and ξθ,
that map the global scene latent zg to parameters of the object and background latents zs. We train the
model using autoencoding variational Bayes [65, 109]. The posteriors over Gaussian latent variables
are all diagonal Gaussians (parametrized by mean, and log-variance for zg), whilst for positions the
posterior is Gumbel-Softmax (parametrized by logits). We use two encoder networks to parametrize
these variational posteriors. encsϕ({xn,vn}Mn=1) parametrizes q(zs|{xn,vn}Mn=1); for efficiency, we
pass it only a subset of M < K images. It encodes each observed image and its viewpoint (xn,vn)
independently then sums the results (as in [35]) before outputting the posterior parameters; this
ensures the encoder is invariant to the ordering of images. encgϕ(z

s) parametrizes q(zg|zs), and takes
the lower-level latent code zs as input.

For stable training, we adopt a two-stage approach. We first train the model to reconstruct x1...K , via
the object-level latent space zs, ignoring the scene-level latent zg , i.e. maximizing the following loss:

Ls = Eqϕ(zs|{xn,vn}M
n=1)

[
K∑

n=1

log fN (xn; C(Sθ(z
s), vn), σ

2)

]
(5)

After this has converged, we learn the scene-level latent space by maximizing

Lg = Eqϕ(zg|zs)

[
Eqϕ(zs|{xn,vn}M

n=1)
log pθ(z

s | zg)
]
−DKL [qϕ(z

g | zs) ∥ pθ(z
g)] (6)

We use Adam for optimization [64], β-weighting of KL terms [50], and approximate each of the
above expectations by a single sample. We also further approximate Ls by rendering only a random
subset of pixels per minibatch. More implementation details are in the supplementary material.
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3.3 Inference for out-of-distribution (OOD) images

At test time, we assume images are sampled from a distribution disjoint from the training distribution.
This means that directly performing posterior inference under our model (which has learnt the training
distribution, and ideally assigns zero probability to OOD test images) is not sound. We therefore make
appropriate interventions on our model [102], taking advantage of its causal nature. For example,
when the distribution of object arrangements is different at test time, we replace the learnt prior pθ(zs)
on object arrangements with an uninformative uniform prior. 2 Moreover, the variational encoder
networks encsϕ and encgϕ used during training are not suitable for use at test time, due to domain shift
in their inputs. Therefore, our framework instead directly samples the posterior distribution of latent
variables given an observed image, using Markov chain Monte-Carlo (MCMC) inference [69].3

Our novel MCMC scheme alternates Langevin dynamics (LD) [12, 130] and Metropolis-Hastings
(MH) [44] steps, to infer the latent scene variables (zs, zg) from a single observed image x∗ with
viewpoint v∗. The MH steps encourage the Markov chain to make large jumps between modes of the
posterior, while the LD steps generate high-probability samples with less exploration. Each LD step
ascends the gradient of

log fN (x∗; C(Sθ(z
s), v∗), σ2) + log pθ(z

s | zg) + log p(zg) ∝ log p(zg, zs | x∗, v∗) (7)

Each MH step first picks an object slot i uniformly at random, then samples a new latents for that
object from a proposal distribution p̃(zshapei , zcoli ), accepting/rejecting it according to the usual MH
criterion [44]. The proposal distribution p̃ approximates 1

J

∑J
i=1 p(z

shape
i , zcoli ) using a Gaussian

mixture model fitted by expectation-maximisation [23]; it thus captures the distribution of object
latent codes while disregarding the ordering of object indices. Note that the compositionality of
our model increases efficiency of the chain, as it allows MH proposals that affect only one object
while keeping other variables fixed – in contrast to a monolithic latent embedding, which would
require accepting or rejecting global modifications to the entire scene. Thus, each MH step need
not revert progress made on other variables: e.g. if the background is perfectly inferred but objects
are not, then an MH proposal may change only an object, leaving the background intact. Also, it
allows caching computation and only re-rendering parts of the scene that need to be considered for a
proposed change (e.g. just background). In contrast, MCMC on non-structured models must render
the entire scene from scratch.

4 Experiments

We conduct experiments on two synthetic datasets, using our model and three baselines. We also
include ablations of our model, without MCMC inference, and with an unstructured latent space. We
first evaluate performance in the standard setting where the test-set distribution matches the training
distribution. Then, we evaluate generalisation to OOD data, by using several OOD test splits for each
dataset, which have zero probability under the training distribution. We first describe these datasets
and test splits (Sec. 4.1), the tasks, metrics and baselines used for evaluation (Sec. 4.2), and finally the
performance of our proposed model, the baselines and ablations (Sec. 4.3). Implementation details
for all models (hyperparameters, hardware, etc.) are given in the supplementary material.

4.1 Datasets

GQN. We render images of rooms containing several objects (cubes, cylinders, spheres), based on the
‘rooms ring camera’ dataset of [35]; similar datasets were used in [45, 33], but in all cases without
OOD test splits. In the training split, the camera viewpoints are on a circular path around the center
of the room, with the camera pointed at the center at fixed elevation angle. Textures for the walls and
colors for the objects are selected randomly from a finite set, with some combinations held out. Three
walls have the same texture as each other, with the fourth different. There are 3–4 objects present;
these are placed near the side of the room identified by the odd texture. We define the following OOD
test splits: (i) position: the 3–4 objects are now placed near a different wall; (ii) composition: unseen
combinations of background and object textures; (iii) number of objects: 1/5/6 objects instead of

2Detection of the distribution shift could be done automatically with the generative model [13, 108]
3We also conducted early experiments with black-box variational inference [107], but this performed poorly

due to becoming trapped in local minima. MCMC is more able to explore diverse modes of the posterior
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GQN ARROW

per-image per-scene per-image per-scene

PSNR ↑ D.MRE ↓ ARI ↑ mSC ↑ PSNR ↑ D.MRE ↓ PSNR ↑ D.MRE ↓ ARI ↑ mSC ↑ PSNR ↑ D.MRE ↓
Test
Ours 24.1 0.031 0.81 0.88 20.8 0.058 27.1 0.100 0.71 0.82 26.8 0.107
Ours (w/o MCMC) † 24.5 0.031 0.82 0.91 24.7 0.031 27.0 0.101 0.70 0.82 27.0 0.102
Ours (w/o structure) 32.1 0.016 - - 27.8 0.030 22.2 0.990 - - 20.1 0.990
β-VAE 20.6 – – – – – 24.3 – – – – –
IODINE 26.2 – 0.50 0.54 – – 27.7 – 0.63 0.55 – –
Slot Att. 30.5 – 0.94 0.67 – – 28.3 – 0.48 0.17 – –
Slot Att. (MCMC) 27.8 – 0.83 0.56 – – 29.6 – 0.35 0.14 – –
uORF* 27.0 0.027 0.74 0.59 24.2 0.049 35.1 0.176 0.64 0.44 33.8 0.202
NeRF-VAE* 32.0 0.016 – – 27.8 0.033 25.3 0.991 – – 25.3 0.991

OOD
Ours 21.8 0.034 0.68 0.89 18.3 0.069 26.7 0.139 0.57 0.81 26.2 0.137
Ours (w/o MCMC) † 11.4 0.170 0.44 0.55 11.5 0.176 21.0 0.160 0.40 0.61 21.0 0.159
Ours (w/o structure) 17.1 0.221 - - 15.4 0.280 20.6 0.992 - - 19.2 0.990
β-VAE 15.6 – – – – – 21.1 – – – – –
IODINE 19.7 – 0.44 0.53 – – 25.0 – 0.42 0.42 – –
Slot Att. 20.3 – 0.66 0.56 – – 22.8 – 0.26 0.14 – –
Slot Att. (MCMC) 23.7 – 0.68 0.54 – – 27.2 – 0.32 0.17 – –
uORF* 14.7 0.287 0.45 0.45 14.1 0.308 22.7 0.132 0.38 0.41 22.6 0.131
NeRF-VAE* 15.9 0.271 – – 14.9 0.301 19.4 0.992 – – 19.4 0.992

Table 1: Quantitative results on discriminative tasks, comparing performance for different methods
on an in-distribution test set and OOD data. Dashes indicate the method does not support the task.
Best results are shown in bold.

3–4; (iv) viewpoint: camera positions and elevations are randomly sampled. Exact details of the data
generation process are given in the supplementary material.

ARROW. We render images using a modified version of the CLEVR dataset [59], similar to those
in [57]. These have four objects, of which one is always an arrow, two of which are the same as
each other, and a fourth that is different. The arrow always points at the odd (fourth) object. Object
colors are randomly sampled. The camera has a random azimuth and shallow elevation. We define
the following OOD test splits: (i) position: the four objects are positioned in a line, and the arrow no
longer points to the odd object; (ii) composition: all objects are the same shape and color, with no
arrow present; (iii) number of objects: 1/5/6 objects instead of four; the arrow still points at one odd
object; (iv) viewpoint: camera looks down steeply on the objects.

4.2 Evaluation

Tasks & metrics. We consider the following discriminative tasks, all taking a single image as input:
instance segmentation, measured by adjusted Rand index (ARI) and mean segmentation covering
(mSC) [33], which in the PER-SCENE setting measures how well the model infers segmentation maps
for novel viewpoints; depth prediction, measured by the mean relative error between predicted and
true depths (D.MRE); and pixel reconstruction, measured by peak signal-noise ratio (PSNR), which
in the PER-IMAGE setting measures how faithfully our latent representation can autoencode OOD
images, and in the PER-SCENE setting how well the model performs novel view synthesis (NVS)
We report these metrics according to two different protocols: (i) PER-IMAGE, where we calculate
the metrics only on the input image passed to the model; and (ii) PER-SCENE, where we calculate
the metrics jointly over 10 images of the scene, taken from different viewpoints, but still having
received only one of these as input. Thus, the latter setting measures how well the model predicts
appearance, depth and segmentation from novel viewpoints. Finally, we evaluate a priori image
generation, measured by the Fréchet Inception distance (FID) [49] and kernel Inception distance
(KID) [15] between sampled and ground-truth image distributions.

Baselines. We compare our approach to five existing works. Slot Attention[82] is a recent
unsupervised object segmentation model, with a spatial mixture representation. It is purely 2D and
not generative. We additionally experiment with MCMC inference on the trained Slot-Attention
decoder (instead of using their encoder), to see whether the decoder generalises to OOD data.
uORF[139] decomposes 2D images into 3D components represented as NeRFs. Unlike ours, it is
not generative, and does not explicitly represent position separate from appearance. NeRF-VAE[72]

† The setting for this experiment is different, as at test-time the encoder requires the same number of images
as used during training, whereas every other experiment inputs just one image
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Figure 2: Qualitative results on various tasks, using our model and the baselines, on OOD data. Each
row shows the input image, then (col. 2–6) outputs from our model: the reconstruction, instance
segmentation, depth map, and two novel viewpoints. We see that our model predicts high-quality
segmentations and depth-maps, and that the new viewpoints are plausible and consistent with the
input. The final three columns show reconstructions (the easiest task) by the baselines. Here we see
that they fail to generalise to OOD data – they have specialised to their training dataset, and learnt
shortcuts [36] that interpret the input images as if they were drawn from it. Thus, they fail to map
objects in unfamiliar viewpoints or contexts to appropriate latent representations.

is a generative method over 3D NeRFs, but which does not separate individual objects in its latent
space. IODINE[40] is a discriminative 2D method which performs iterative amortized inference
over a spatial mixture model. β-VAE[50] is an unstructured VAE aiming to learn disentangled
representations, which has been hypothesized to help with OOD generalization. Note that the
baselines are either discriminative approaches that do not support accounting for distribution shifts,
or model the scene with one latent variable which cannot be intervened on to model a different
distribution of scenes. Full details are in the supplementary Sec. 10.

4.3 Results

In-distribution data. We first evaluate how each model performs on the distribution of images
it was trained on. Results on the discriminative tasks are given in Tab. 1; the top four rows show
performance on the test split, which is drawn from the same distribution as the training data (all
standard deviations are in the supplementary). Qualitative results are displayed in Fig. 2. We see that
all methods successfully reconstruct input images (high per-image PSNR). The 3D-aware methods
predict depths with a small relative error (low per-image D.MRE), with NeRF-VAE* slightly better
on GQN, and ours on ARROW. Our method performs similarly to uORF*, with ours slightly better on
segmentation but slightly worse for novel view synthesis. For GQN, Slot Attention performs best on
segmentation under ARI scores, with ours better according to mSC and for both metrics on ARROW.
Results for image generation are given in Tab. 2 and Fig. 3 (see the supplementary for images from
NeRF-VAE*). Note that Slot Attention, IODINE and uORF* are excluded, as they cannot generate
images a priori. Our model has clearly learnt the distribution of both datasets, including the space of
likely object and background appearances. Quantitatively, ours performs similarly to NeRF-VAE*
on GQN (with FID slightly better and KID slightly worse), and out-performs it on both metrics for
ARROW. In Fig. 4, we also show that our semantically-interpretable latent space allows users to edit
the scene shown in an image, by counterfactual inference over the model.
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GQN ARROW

FID KID FID KID

Ours 80.3 0.053 141.4 0.167
Ours w/o pθ(z

s |zg) 200.4 0.180 275.7 0.365
NeRF-VAE* 84.2 0.047 182.7 0.190

Table 2: Quantitative results on image genera-
tion for our method, ablation, and baseline.

Figure 3: Examples of images sampled from our
model for GQN (top) and ARROW (bottom)

Figure 4: Editing scenes using our model, by counterfactual inference. We condition on the input
scene, then modify (intervene on) certain latent variables and re-render the result

OOD data. We now consider the more challenging setting where test data is drawn from a different
distribution than the training set. Quantitative results in this setting are given in the bottom half of
Tab. 1. This shows the mean over all OOD splits; a full breakdown is given in the supplementary.
We see that in general, our method significantly out-performs the baselines on these splits – showing
the benefit of our causal model and inference scheme. In particular, our method performs best
on all combinations of vision tasks and datasets, except for depth estimation on ARROW where
uORF* is slightly better. Slot-Attention with MCMC and IODINE with iterative amortized inference
successfully reconstruct input images during their test-time optimization, but this comes at the cost
of lower segmentation performance. In contrast, our method performs well on both reconstruction
and segmentation. Thus, the best methods on the in-distribution test split are not the best on OOD
data. They leverage features that are predictive of the output in the training set [36] and easy to learn
[133, 117, 106], but which are not reliable across different distributions [91]. Our qualitative results
(Fig. 2) reinforce this interpretation – we see that our method still predicts accurate segmentations and
depth-maps for OOD data, and novel viewpoints look plausible. Notably, in all cases, it successfully
reconstructs the input image via its latent space and synthesises new viewpoints, in spite of never
having seen such an image during training. In contrast, the baselines struggle with images that
are different to their training distribution – e.g. mispredicting object colors (1st row, uORF* and
NeRF-VAE*), predicting an over-smoothed average scene (3rd row, NeRF-VAE*), or failing to
separate walls and ceiling when they are in an unfamiliar pose (5th row, Slot Attention).

In the supplementary material (Sec. 6), we provide a more detailed analysis of how model performance
generalizes on various axes of out-of-distribution images. Particularly noteworthy is that the 2D
baseline Slot Attention [82] has the most significant drop in reconstruction performance (measured
by PSNR) on images taken from out-of-distribution camera viewpoints (Tab. 3) In contrast, our
3D-aware model has a much smaller drop in performance. Similarly important are the qualitative
results in Fig. 5, showing that the non-compositional baseline model NeRF-VAE [72] fails on the
straightforward task of reconstructing the input image – it predicts scenes similar to ones seen in the
training dataset even when the OOD images are clearly different (e.g. still predicting the same object
positions as in the training set despite objects being at the opposite side of the room). In contrast, our
method which uses test-time optimization accurately reconstructs out-of-distribution input images.

4.4 Ablation Study

Ablating MCMC inference. We perform an ablation study on the effects of our novel MCMC
scheme. We compare it with the common approach of amortised inference (i.e. an encoder network
predicts the posterior parameters). This is denoted in Tab. 1 as Ours (w/o MCMC). We see that
amortised inference is indeed a critical bottleneck for out-of-distribution generalization: though it
performs well when the test distribution is identical to the training distribution, its performance drops
significantly on out-of-distribution images, while MCMC holds up.

Ablating generative model structure. We analyse the effects of using our compositional model
compared to a non-compositional model, which has one global latent variable rather than one per
object (similar to NeRF-VAE), but otherwise with the same architecture and inference as ours. This
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is denoted in Tab. 1 as Ours (w/o structure). We see that our proposed compositional generative
model significantly improves out-of-distribution generalization over the unstructured ablation: though
both perform similarly on IID test data, the unstructured model performs significantly worse on
out-of-distribution images.

Ablating pθ(z
s |zg). We analyse the effects of our high-level prior over scene variables. In Tab. 2,

we evaluate samples generated by the model, comparing FID and KID with an ablated model that
samples zs from a fixed prior. The poorer scores from the ablated model demonstrate that our
hierarchical approach with a high-level prior is necessary to correctly model the density of scenes:
our model samples plausible scenes as it can model relationships between objects, while the ablated
model performs much worse.

4.5 Limitations and Societal Impacts

Currently our method has several limitations.

• The scene-level prior distribution pθ(z
s | zg) uses an unstructured latent space and decoder

– thus, this particular component of the model is not interpretable. It would be worthwhile to
use a structured prior, that explicitly models sparse relations among objects.

• We have only tested it on synthetic data; it would be interesting to conduct experiments on
natural images. This would require modelling the image-formation process more faithfully,
e.g. by modelling light transport and non-Lambertian materials.

• Our MCMC inference scheme is computationally expensive, as we render a complete image
at each step. The efficiency could be increased by using a stochastic gradient for the LD
transitions.

• Our model lacks variables to explicitly model object presence – if an object slot is unused, it
learns a latent representation of an empty, zero-density object.

• It would be preferable to use less dataset-specific prior information, e.g. candidate cells for
objects.

• Optimizing the model required multiple stages of training, and optimising Eq. 5 was unstable.
It would be worthwhile to investigate joint training as in [57].

We do not anticipate any negative societal impacts from this work. While all generative models have
the potential to be used for creating fake content, our method requires further development to work on
realistic images. On discriminative tasks, support for OOD inference should reduce the susceptibility
of models to dataset bias; thus, we see a significant long-term benefit to such methods.

5 Conclusion

We have presented a new object-centric generative model that captures the causal process by which
images are produced, and incorporates universal physical knowledge such as 3D geometry. We have
shown that it is possible to intervene on our model then perform Monte-Carlo inference, in order to
process OOD images. On instance segmentation and novel view synthesis in this OOD setting, it
significantly out-performs three state-of-the-art approaches.
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