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Abstract

The reliable deployment of trustworthy Al sys-
tems hinges upon precise model calibration.
While LLM capabilities advance, a deeper em-
pirical understanding of their calibration under
diverse conditions and varying task demands,
subjected to multiple choice questions, remains
essential. This paper presents a comprehensive
analysis of LLM calibration across multiple ar-
chitectures and a spectrum of multiple choice
questions in different domains. Our systematic
investigation reveals that standard calibration
techniques, including widely used temperature
scaling and Platt Scaling, often show inconsis-
tent efficacy across different models and dif-
ferent knowledge domains, underscoring the
need for more adaptive calibration strategies.
As part of this broad investigation, we intro-
duce and evaluate Normalized Multiple Choice
Platt Scaling (NMPS). This lightweight, post-
processing technique is highly efficient, requir-
ing no LLM fine-tuning and adding negligible
computational overhead during inference. Our
experiments demonstrate that this approach of-
fers a substantial improvement over existing
methods; it reduces the mean calibration error
across our test suite by nearly 12%, whereas
standard Platt Scaling shows detrimental, in-
creasing the error to 145%. This work thus
provides two key contributions: an effective,
non-invasive calibration method and crucial in-
sights into domain-dependent model reliabil-
ity, offering a practical roadmap for developing
more trustworthy Al systems.

1 Introduction

The rapid advancements and increasing scale of
Large Language Models(LLMs) (Brown et al.,
2020) have marked a significant leap in artificial
intelligence, demonstrating remarkable capabili-
ties across a multitude of tasks. As these models
become increasingly integrated into real-world ap-
plications (Cheng et al., 2025), particularly in au-
tonomous agent systems (Guo et al., 2024), their re-

liability and trustworthiness are paramount. While
much of the recent research has centered on en-
hancing final accuracy, an often-overlooked aspect
in this pursuit of performance is calibration—the
alignment between a model’s predicted confidence
and its actual correctness (Dawid, 1982). Although
early pre-trained models were found to be rea-
sonably well-calibrated (Desai and Durrett, 2020),
this property has degraded in modern, scaled-up
LLMs, particularly after alignment tuning (Xie
et al., 2024). Consequently, while simple post-
hoc methods like temperature scaling (Guo et al.,
2017) are common, achieving robust calibration on
multiple-choice questions across diverse models
at the same time presents significant ongoing chal-
lenges. We believe that robust calibration is the
backbone of LLM reliability (Liu et al., 2025). It
serves as a primary mechanism for identifying and
mitigating unreliable outputs like hallucinations,
where a model’s confidence is a key signal of its
potential factuality (Kuhn et al., 2023; Manakul
et al., 2023). As such, it will inevitably become a
primary target for ensuring trustworthy Al in future
usage (Ali et al., 2024).

The need for better calibration methods is criti-
cal, as miscalibrated models can be deceptively con-
fident in incorrect predictions, leading to unreliable
behavior and exacerbating issues like hallucination,
which undermines user trust and operational safety
(Kalai and Vempala, 2024). The existing body of
work (Proskurina et al., 2024) highlights these is-
sues but often falls short of offering solutions that
are robustly generalizable. Many methods focus on
average calibration, which can conceal poor perfor-
mance on specific tasks or subgroups of data—a
phenomenon known as grouping loss (Chen et al.,
2024). This underscores the need for solutions
that are effective across the wide spectrum of tasks
LLMs are expected to handle. Our initial investi-
gations confirm this, revealing that the efficacy of
standard calibration techniques varies significantly
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Figure 1: Overview of the Calibration Framework and a Visual Summary of Results. (a) Our evaluation
pipeline uses the Im-evaluation-harness to extract raw logits from a base LLM. These logits are then grouped
by their assigned category to train and evaluate the calibration scalers. (b) The standard Platt Scaling process fits a
single, firm sigmoid function to the data. This approach lacks the flexibility for complex LLM outputs, resulting
in a poor final Mean CE of 0.390. (c) In contrast, our NMPS method learns a more flexible, domain-specific
transformation surface. This adaptability allows it to effectively calibrate the LLM’s outputs, achieving a superior

final Mean CE of 0.140.

with model architecture and knowledge domain,
motivating the need for more adaptive approaches.
This reveals a critical gap in existing evaluation
methodologies: the heterogeneity of calibration
performance across different domains has been
largely overlooked. Our work is the first to sys-
tematically address this challenge, demonstrating
that domain-specific analysis is essential for a true
understanding of model reliability.

To mitigate these challenges, we introduce Nor-
malized Multiple Choice Platt Scaling (NMPS),
a lightweight post-processing strategy to calibrate
LLM outputs without altering the base model.
NMPS obviates the need for costly re-training
or fine-tuning by training domain-specific scalers
on the model’s output logits. This process is highly
efficient, requiring only seconds of CPU time per
scaler. The NMPS framework offers significant
practical benefits. At inference, applying the ap-
propriate domain-specific scaler adds negligible
latency. The scalers are both generalizable and ro-
bust: they can be transferred between models of
varying sizes and can effectively calibrate outputs
for unseen questions within a domain. By decou-
pling the calibration mechanism from the model
itself, NMPS provides a scalable, efficient, and
non-invasive solution for improving the trust-
worthiness of deployed LLM systems.

The contributions of our work are threefold:

1. We are the first to systematically analyze LLM

calibration on a domain-specific level. This
granular analysis reveals a critical finding:
classic calibration methods like Platt Scal-
ing are fundamentally unsuitable for LLMs.
We find that the simple sigmoid function, ef-
fective for traditional binary classifiers, is too
rigid to model the complex, high-dimensional
logit distributions of LLMs. As shown by
the degradation from Figure 2(a) to 2(b), this
method systematically increases calibration
error.

. Our analysis further reveals that even sim-

pler methods like Temperature Scaling are
brittle and high-risk. We show that while
the optimal temperature is consistently low,
model-specific sensitivity creates “perfor-
mance cliffs,” making this approach unreliable
for practical deployment.

. To address the failure of existing calibration

techniques, we propose Normalized Multiple
Choice Platt Scaling (NMPS). This novel,
lightweight, post-hoc method uses domain-
specific scalers to achieve robust calibration.
As shown in Figure 2(c), NMPS successfully
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Figure 2: NMPS Improves Model Calibration Without Affecting Accuracy. Panels (a), (b), and (c) represent
Raw, Platt Scaling, and NMPS calibration methods, respectively. Each filled circle indicates the mean performance
across all data points for a given model, with error bars representing -1 standard deviation (Table 4. The confidence
ellipses illustrate the 2-sigma confidence regions for each model. The inset in panel (c) shows the histogram of
calibration errors, visually confirming the leftward shift of the error distribution achieved by NMPS. Detailed
performance metrics are presented in Table 1 and Table 2.

reduces the mean calibration error by nearly
12% where standard methods fail, all while
adding negligible computational overhead.

This advancement contributes significantly to the
development of more dependable LLMs, paving
the way for more robust autonomous agents and
safer Al applications.

2 Related Work

Platt Scaling (Platt, 1999), a common and effective
post-processing technique for improving the cali-
bration of probabilistic classifiers, including those
used in LLMs, involves fitting a logistic regres-
sion model to the classifier’s output scores (logits)
to map them to more calibrated probability esti-
mates. While originally proposed for Support Vec-
tor Machines (SVM), it has been widely adopted
for various models to address issues of over- or
under-confidence in their predictions (Gupta and
Ramdas, 2023; Singh and Goshtasbpour, 2022).
However, as our results show, its direct application
to modern LLMs across diverse tasks can be detri-
mental. The adaptation of scaling methods to be
sensitive to varying task demands is a key research
direction. Recent work has explored this adapta-
tion at different levels of granularity. For instance,
Adaptive Temperature Scaling (ATS) learns to pre-
dict a unique temperature for each token based on
model hidden states (Xie et al., 2024). Other work
has focused on group-level adaptation to ensure
fairness, calibrating models differently for distinct
demographic subgroups to mitigate grouping loss

(Chen et al., 2024). Our work contributes to this
direction by proposing an adaptation at the level
of semantic task categories, offering a balance be-
tween the flexibility of fine-grained methods and
the robustness of group-level approaches.

The inherent challenge of hallucination in
LLMs, as acknowledged by Kalai and Vempala
(Kalai and Vempala, 2024), underscores the persis-
tent need for robust calibration techniques. Their
work suggests that hallucination may be an intrinsic
property of these models, further emphasizing the
importance of well-calibrated confidence scores as
a means of identifying and potentially mitigating
unreliable outputs.

Post-hoc adaptation of output probabilities,
a broader body of research explores alternative
paradigms for improving LLM reliability. One
approach involves fine-tuning the model itself to
better express confidence, for instance, by us-
ing a multi-agent speaker-listener framework to
teach pragmatic confidence signaling (Stengel-
Eskin et al., 2024). Another paradigm involves
"white-box" probing, where lightweight classifiers
are trained on the LLM’s internal hidden states
to directly predict the truthfulness of a statement
(Azaria and Mitchell, 2023). Wei et al. (2024) fo-
cused on methods to measure and reduce halluci-
nation without gold-standard answers, and Nguyen
et al. (2025) explored distillation techniques to en-
hance factual consistency. While these approaches
offer valuable tools, they often require costly model
fine-tuning or direct access to internal model states.
In contrast, our work provides a distinct yet comple-



mentary focus on a lightweight, post-hoc method
that refines the confidence calibration of any model
given only its output logits, making it a highly
practical and scalable solution. The increasing at-
tention to calibration and hallucination underscores
the timeliness of our investigation.

3 Preliminaries

3.1 Calibration in Large Language Models

In machine learning, a model is considered cali-
brated if its predicted probabilities accurately re-
flect the true likelihood of an event (Dawid, 1982).
For instance, if a calibrated model assigns an 80%
confidence to a set of predictions, then approxi-
mately 80% of those predictions should be correct.
Conceptually, the goal of calibration is to minimize
the difference between the model’s confidence and
its actual accuracy. This gap is often referred to
as the Calibration Error. For a set of predictions,
the error can be intuitively understood as:

Calibration Error = |confidence — accuracy]|

While the Calibration Error is the absolute differ-
ence between confidence and accuracy. A perfectly
calibrated model would have a calibration error of
zero. The various metrics used to evaluate calibra-
tion, such as Adaptive Calibration Error (Pavlovic,
2025), are essentially sophisticated methods for av-
eraging this fundamental error across different con-
fidence levels and classes. To quantitatively assess
LLM calibration, researchers often employ tasks
with verifiable ground truth, such as multi-choice
Question Answering (MCQA). In such setups, the
model’s confidence is typically derived from the
probability it assigns to its chosen answer option.
By comparing these confidence scores against the
empirical accuracy of the predictions, we can eval-
uate calibration using metrics like the Adaptive
Calibration Error (CE).

3.2 Standard Calibration Methods

Temperature Scaling is a simple post-hoc method
that uses a single parameter, the temperature 7' > 0,
to rescale a model’s logits z before the softmax
operation. Calibrated probabilities q for each class
c are given by:

R exp(ze/T

o= <2/ )__ (1)

Zj:l exp(z;/T)

The parameter 7" is optimized on a validation set to
minimize Negative Log-Likelihood (NLL).

Platt Scaling is another post-hoc method that
learns a logistic regression model. For a binary
problem with logit f, it computes a calibrated prob-
ability P(y = 1|f) = 0(Af + B), where o is the
sigmoid function, f is the raw output before soft-
max from the last layer, and parameters A and B
are optimized on a validation set. While effective
for simple classifiers, our results show this standard
approach is counterproductive for modern LLMs
on diverse multi-choice questions.

4 Normalized Multiple Choice Platt
Scaling

To address the inconsistent performance of stan-
dard calibration techniques, we introduce Normal-
ized Multiple Choice Platt Scaling (NMPS), a
lightweight post-processing method designed to be
both parameter-efficient and adaptable to the di-
verse demands of modern LLMs. This section first
defines the core mathematical principles of NMPS
and then details the adaptive, domain-specific pro-
cess of training and inference.

4.1 Core Formulation

The formulation of NMPS is guided by a core
insight: a calibration method for modern, multi-
talented LLMs must be flexible enough to handle
varied multiple choice outputs but simple enough
to be learned robustly from limited calibration data.
Our design is based on two principles:

1. Parameter Efficiency: For multi-choice
tasks where the number of options can vary,
learning a separate parameter for each choice
position as in methods like vector scaling is
prone to overfitting. We enforce that our scaler
uses only two global parameters, A and B,
shared across all choices for a given instance.
This simplicity is a key advantage to prevent-
ing overfitting, making the method robust and
generalizable.

2. Coherent Distribution: The method must
output a valid probability distribution that
sums to one. Standard Platt Scaling, applied
independently to each choice, does not guar-
antee this. Our method includes an explicit
normalization step to ensure the final output
is a coherent distribution, making it directly
usable for downstream decision-making.

Based on these principles, the NMPS method maps
a model’s raw output logits for a given multi-choice



instance to a calibrated probability distribution.
Given an instance ¢ with k; choices and a vector
of logits 1; = (I;1,. .., ik, ), NMPS computes the
final calibrated probability vector p; as:
O'(A . li,j + B)
Yt (A i + B)’

Dij = 2
where 0/(2) = (1+e7%)~ L is the logistic (sigmoid)
function, and A, B € R are the learnable param-
eters. This formulation allows NMPS to learn
a flexible, two-dimensional transformation sur-
face for the logits, as visualized in Figure 1(c),
rather than the simple one-dimensional curve of
standard Platt scaling.

Parameter Learning. The optimal parameters
(A, B) for a given domain category are learned by
minimizing the Negative Log-Likelihood (NLL) on
a dedicated calibration set, D¢ajip:

1
L(A,B)=——— log(piy,), (3
(4,B) ‘Dcaﬁbhe%ib gBin) )

where y; is the index of the true class for instance ¢,
and the optimization is performed using L-BFGS-B
(Zhu et al., 1997).

4.2 Adaptive Calibration Process

Our key innovation is applying the NMPS formula-
tion in a domain-category-dependent manner. In-
stead of relying on manual labels, our framework
uses an LLM itself to categorize domains, allowing
the calibration to adapt to the unique error profile
an LLM may exhibit in different knowledge areas
(e.g., mathematics vs. history). This adaptive pro-
cess, formalized in Algorithm 1 and Algorithm 2,
makes the system more autonomous and scalable.

The process operates in two phases. The first
is a one-time, offline training phase (Algorithm 1).
We begin with our calibration set, which consists
of 80% of the MMLU benchmark data. To es-
tablish a robust set of domains, we first utilized
Google Gemini to analyze this data and determine
ten distinct semantic categories (e.g., Mathematics,
History & Geography, etc.). Once these ten do-
mains were defined, each question in the MMLU
calibration set was automatically assigned its cor-
responding domain label.

With this fully categorized data, the algorithm
then proceeds to train a specialized NMPS scaler
for each of the ten categories by minimizing the
NLL loss (Equation 3) on the subset of data be-
longing to that specific domain (D). This process

Algorithm 1 Training Domain-Category NMPS

Scalers

Require: Base LLM M, Categorizer LLM M.,
Training data Dyain = { (i, 0i, y:) }2,, Set of
categories C.

Ensure: A set of trained scalers © = {0} cc.
// Step 1: Auto-Categorize Training Data

L: Dcategorized — H

2: for each (g;, 05, ¥;) in Dypin do

3: ¢i < Mqt(prompt, g;) > Assign category

4: Append (%’7 055 Yi, Ci) to Dcategorized

5: end for
// Step 2: Train Scalers on Categorized Data

6: O« {}

7: for each category c in C do

8: D.. < FilterData(Deategorized, C)

9: logits, labels + ExtractLogits(M, D,)

10: 0. < TrainScaler(logits, labels) >
Minimize Eq. 3

11: @[c] +— 0,

12: end for

13: return ©

Algorithm 2 Calibrated Inference with LLM-
driven NMPS

Require: Base LLM M, Categorizer LLM M.,
Trained scalers © = {0.}.cc.

Input: A new question gpey With options opey.
Output: Calibrated probability distribution
Pcalibrated-

Ly <+~ M (Qnewa Onew)

Cnew  Meat (Prompt, Qnew)

O < @[Cnew]

Pealibrated <— ApplyScaler(0c, Liaw)
Eq. 2

5: return pegiibrated

L N

> Uses

results in a comprehensive toolkit of expert scalers,
O, ready for the inference phase.

The second phase is the lightweight online in-
ference process (Algorithm 2). For any new input
question ¢new, the system first invokes the catego-
rizer LLM to determine its category, Cpew- It then
retrieves the corresponding pre-trained scaler 6,
from the dictionary © and applies it to the base
model’s raw logits. This dynamic selection ensures
that the most appropriate calibration is applied for
every query with negligible latency, removing any
need for manual intervention during deployment.

The inference process in Algorithm 2 is
lightweight with negligible overhead. For any new



input question gpew, the system first obtains the raw
logits from the base LLM. It then identifies the
question’s domain category and retrieves the corre-
sponding pre-trained scaler 6, from the dictionary
©. Finally, this specialized scaler is applied to the
raw logits using the transformation in Equation 2
to produce the final, calibrated probability distribu-
tion. This dynamic selection ensures that the most
appropriate calibration is applied for every query.

5 Experiment

5.1 Experimental Setup

We evaluate our method on a suite of contemporary
LLMs, including models from the Llama 3 series
(Llama-3) (Grattafiori et al., 2024), a strong rea-
soning model s1.1-32B (Muennighoff et al., 2025),
and other state-of-the-art models such as Phi4-14B
(Abdin et al., 2024) and Qwen3-32B. These mod-
els were chosen for their strong performance and
were accessed via the Huggingface Hub. To test
for generalizability, we leveraged a diverse suite
of MCQA benchmarks, including the 57 tasks of
MMLU (Hendrycks et al., 2021) and a selection
of tasks from BigBench (bench authors, 2023),
accessed via the Im-evaluation-harness (Gao
et al., 2023) tool from EleutherAl.

5.2 Baselines

We compare the performance of three approaches:

* Raw (Uncalibrated): The direct output of the
base LLMs without any calibration.

* Temperature Scaling: The standard method
where the logits is scaled with a single tem-
perature 1" before softmax.

e Platt Scaling: The standard Platt transfor-
mation applies a sigmoid function to each
logit independently, which does not produce a
valid probability distribution that sums to one.
For this baseline, we therefore implemented a
multi-choice adaptation where the transforma-
tion is applied to each of the k; choice logits,
and the resulting scores are then normalized
to form a coherent probability distribution.
A single, global set of parameters (A, B) is
trained on the entire calibration dataset.

5.3 Evaluation Metrics

To assess calibration, we use the Adaptive Cali-
bration Error (CE). Unlike standard Expected Cal-
ibration Error (ECE) (Naeini et al., 2015), which

uses equal-width bins, ACE uses quantile-based
binning to ensure a stable error estimate even when
high-confidence predictions are rare. For a given
sample ¢, let y; be its predicted class, y; its true
class, and confj; its predicted confidence. The met-
ric is computed class-wise: For each bin B,,, and
each true class k, we define the set of samples
Smk = {i | conf; € Bp,,y; = k}. We then
compute the accuracy, acc(.S, ), and average con-
fidence, conf(S,, 1), for this set. The final ACE is
computed as the unweighted mean of the absolute
differences over all M x C' class-bin pairs:

M C
lace (S, k) —conf(Sy, k)|,

“)
where the error for an empty set .S, 1 is set to zero.

5.4 Implementation Details

Data Handling for Calibration and Testing. To
ensure a fair and rigorous evaluation, we carefully
partitioned our datasets. We designated an 80%
split of the MMLU benchmark as our calibration
set. This set was used exclusively for training the
parameters of Platt Scaling, and our NMPS. The
remaining 20% of MMLU was held out as a vali-
dation set. All other benchmarks were used purely
as a test set to evaluate the generalization of the
trained calibrators on entirely unseen data. This
strict separation prevents any data leakage between
the calibration training process and the final perfor-
mance evaluation.

Logit Extraction. We used EleutherAl’s
Im-evaluation-harness tool throughout our ex-
periments. For each multiple-choice question, we
configured the tool to record the raw, pre-softmax
logits for the tokens in every correct answer option.
Calibration Method Setup. All calibration meth-
ods were trained or optimized using the same 80%
MMLU validation set for fair comparison. For the
Temperature Scaling baseline, the optimal temper-
ature 1" was determined via a grid search over the
range [0.01, 2.0], selecting the value that yielded
the lowest CE on the validation set. For both Platt
Scaling and our NMPS, the parameters were opti-
mized using the L-BFGS-B algorithm to minimize
the NLL, as described in Section 4.
Experimental Pipeline and Environment. Our
entire experimental pipeline was automated with
Python scripts using the PyTorch and Hugging-
Face Transformers libraries. These scripts han-
dled model loading, evaluation via the harness tool,



—+— Qwen25-328-Instruct
51.1-328 .
—+— Uama-3.2-38 P
04— Qwen3:32B

Temperature (log scale)

Figure 3: Effect of Temperature on CE (]). The plot
shows the relationship between CE and temperature for
several foundation models, highlighting their drastically
different sensitivity profiles.

and the extraction of raw logits to JSON files.

A key step in our automated workflow is LLM-
driven domain categorization. We established
ten primary domains based on the MMLU bench-
mark. For any given question in our datasets,
a dedicated instruction-tuned model (Qwen1.5B-
Instruct) classifies it into one of these ten domains
by processing it through a zero-shot classification
prompt. This self-categorization step removes the
need for manual labeling and makes our approach
more scalable and generalized. Subsequent scripts
then use these categorized logits for the training
and evaluation of all calibration methods.

In addition to our primary analysis, we con-
ducted a secondary set of experiments to evalu-
ate how calibration is affected by quantization, a
common technique for model compression. The
detailed results for all experiments are provided in
Appendix 2. All experiments were conducted on a
system equipped with 2x NVIDIA A100 GPUs.

6 Results and Analysis

Our experiments are designed to rigorously eval-
uate the effectiveness of our proposed NMPS
method against standard calibration methods. We
analyze the results through 3 primary lenses: (1)
the aggregate performance across all models and
tasks; (2) the specific failure modes of common
baselines; (3) a detailed, per-model, per-category
breakdown that reveals the nuances of domain-
specific multiple choice questions calibration.

6.1 Quantitative Performance: NMPS
Achieves Superior Calibration

Our primary finding is that NMPS provides a sig-
nificant and consistent improvement over both the
uncalibrated baseline and standard Platt scaling, all

without affecting model accuracy. Figure 2 pro-
vides a powerful visualization of the result across
more than 300+ data points. The left panel shows
the wide distribution of performance for the raw,
uncalibrated models, which achieve a mean accu-
racy of 0.766 but exhibit a substantial mean CE
of 0.159, showing that the modern SoTA LLMs
perform a significantly high accuracy which lowers
the issue of over-confidence.

The center panel reveals the catastrophic failure
of the standard Platt Scaling baseline. Not only
does it fail to improve calibration, it is actively
detrimental, more than doubling the mean CE to a
staggering 0.390. This demonstrates even with cat-
egorized applying calibration methods the standard
calibration method designed for simple classifiers
to the complex, multi-choice outputs of modern
LLMs can systematically induce overconfidence
and degrade reliability (Xiao et al., 2025).

In stark contrast, NMPS shows the clear success
of our NMPS method. It reduces the mean CE to
0.140, a relative improvement of nearly 12% over
the raw baseline, while leaving the mean accuracy
entirely unchanged. This improvement is visual-
ized by the decisive leftward shift of the entire
data distribution, highlighted in the inset histogram.
This result confirms that a method designed with
the principles of parameter efficiency and coherent
distribution for multi-choice outputs is essential for
effective calibration.

6.2 The Brittle Nature of Temperature Scaling

A key motivation for our work is the unreliable
and model-specific behavior of temperature scal-
ing. While a visual inspection of Figure 3 suggests
complex behavior, a deeper quantitative analysis in
Table 5 reveals a more nuanced and critical prob-
lem: extreme sensitivity.

The data show that while all models achieve their
theoretical minimum CE at the lowest tested tem-
perature (1" = 0.01), their performance landscapes
dramatically. For example, Qwen3-32B is rela-
tively stable across the temperature range. In stark
contrast, Llama-3.2-3B is extremely brittle; its CE
increases to a peak of 0.435 at a low temperature
of just T' = 0.07. This creates a performance cliff
where a seemingly reasonable temperature setting
could result in catastrophic miscalibration. This
extreme, model-dependent sensitivity makes any
fixed temperature scaling strategy a high-risk, un-
reliable solution, providing strong evidence that
more adaptive, principled methods are required.



Table 1: Quantitative Model Performance. Average performance across all ten subject categories. The final row
shows the mean performance across all models, highlighting the aggregate improvement of our method (NMPS).

Full results are in Table 2.

Calibration Error |

Model Accuracy

Raw Platt NMPS
DeepSeek-R1-Distill-Qwen-32B  0.8045 0.1360 0.4156  0.1241
Gemma3-27B 0.7680 0.2015 0.3628 0.1531
Llama-3.2-3B 0.5518 0.2167  0.3135 0.2101
Phi-4 0.7744 0.1529 0.4023 0.1378
Qwen2.5-32B-Instruct 0.8225 0.1356 0.4092 0.1141
Qwen3-32B 0.8229 0.1346 0.4064 0.1201
S1.1-32B 0.8208 0.1319 0.4190 0.1218
Mean 0.7664 0.1585 0.3898 0.1402

6.3 Detailed Analysis: A Deeper Look at
Per-Category Performance

To systematically assess model calibration across
diverse domains, we present a detailed breakdown
of performance in Table 1 and Table 2. These
tables report accuracy and CE across ten subject
categories for each model under our three test con-
ditions: Raw (uncalibrated), standard Platt Scaling,
and our proposed NMPS. This granular view re-
veals several key trends.

First, the detailed data confirms that even strong
foundation models suffer from significant miscali-
bration. While raw model outputs often yield high
accuracy, they exhibit a consistent mismatch be-
tween confidence and correctness. For instance,
Gemma3-27B shows a very high raw CE of 0.3020
on the challenging mathematics domain. Even in
a comparatively strong area like psychology & so-
ciology, its raw CE of 0.1308 indicates a notable
level of miscalibration.

Second, the standard Platt Scaling baseline
proves almost universally ineffective and frequently
detrimental. Its global parameterization (a single
set of A and B parameters applied to all choices)
fails to adapt to domain-specific error profiles.
With models like DeepSeek-R1, Platt Scaling de-
grades calibration in nearly every domain, causing
the CE to balloon to over 0.40 in many cases, far
worse than the uncalibrated baseline.

In contrast, our NMPS method demonstrates ro-
bust and consistent improvements across all mod-
els and domains. By incorporating domain-aware
calibration, NMPS adapts flexibly to each cate-
gory’s unique data distribution. For Llama-3.2-3B
in philosophy & ethics, NMPS lowers the CE from
a detrimental 0.3310 (Platt) to 0.2219. A more
striking example is seen with Qwen2.5-32B in psy-

chology & sociology," where NMPS produces an
exceptionally low CE of just 0.0587, a dramatic im-
provement over both the raw model (0.0679) and
the failed Platt baseline (0.4682).

In summary, this detailed analysis confirms our
central claims: 1) Modern LLMs exhibit signif-
icant and widespread miscalibration; 2) Generic,
non-adaptive methods like standard Platt Scaling
are insufficient and can actively harm performance;
and 3) Our domain-aware NMPS method provides
a consistent and significant reduction in CE, demon-
strating that adaptive strategies are essential for
building trustworthy LLM systems.

7 Discussion and Conclusion

Our investigation reveals that LLM calibration is a
nuanced challenge where standard post-hoc meth-
ods are often inconsistent or even actively harmful.
We find that Temperature Scaling is a brittle, high-
risk strategy due to its extreme model-dependent
sensitivity, while standard Platt Scaling catastroph-
ically fails by inducing severe overconfidence. Our
proposed NMPS method directly addresses these
failures. By adapting its parameters to domain
categories, NMPS achieves what simpler meth-
ods cannot: a consistent and significant improve-
ment in calibration across a diverse suite of mod-
els without sacrificing accuracy. Its lightweight
and non-invasive nature—requiring no LLM fine-
tuning—makes it a practical and scalable tool.

In conclusion, by being the first to systematically
analyze LLM calibration at a domain-specific level,
this work uncovers the fundamental limitations of
standard techniques. Our findings provide not only
an effective tool for practitioners but also reinforce
the critical insight that domain-awareness is an
essential principle for building trustworthy and re-
liable Al systems.



Limitations

The primary limitation of our work is that the task
categorization is manually predefined. While this
provides a strong proof-of-concept for domain-
specific multiple choice questions calibration, a
natural next step is to explore methods for learn-
ing these categories automatically. To this end,
a sensitivity analysis showing how performance
changes with different category groupings would
also strengthen the findings. Additionally, our
study focused on multi-choice question answer-
ing; extending and evaluating NMPS for generative
tasks and open-ended outputs remains an important
avenue for future research (Liu et al., 2024).
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A Acknowledgement of Artifacts

Our work prioritizes reproducibility. All mod-
els used are publicly available through the Hug-
gingFace Hub, with specific model identifiers
listed in the Experimental Setup. All datasets
are standard public benchmarks accessed via the
1lm-evaluation-harness v0.4.1. Our experimen-
tal pipeline was fully automated using custom
Python scripts to ensure consistency. These scripts
handled model loading, execution of tasks via the
harness, extraction of raw logits to CSV files for
all predictions, and the subsequent application and
evaluation of all calibration methods (Raw, Temper-
ature Scaling, Platt Scaling, and NMPS). The code
for our proposed NMPS method and the scripts to
reproduce the main findings reported in this paper
will be made publicly available upon publication.

A Additional Results and Analysis

This appendix provides supplementary data and
analyses that support the main findings of our pa-
per. We include detailed per-category results, a
quantitative breakdown of our temperature scaling
experiments, and a secondary analysis of quantiza-
tion effects.

A.1 Detailed Per-Category Performance

Tables 2 and 3 contain the detailed numerical data
for accuracy and Adaptive Calibration Error (CE)
that are aggregated and visualized in Figure 2 and
summarized in Table 1 of the main paper. These
tables list the performance for each of the seven pri-
mary models on each of the ten subject categories
under the three conditions: Raw (uncalibrated),
standard Platt Scaling, and our proposed NMPS
method. This granular data provides the full evi-
dence for our claims regarding the widespread mis-
calibration of raw models, the detrimental effect of
standard Platt Scaling, and the consistent, robust
improvements provided by NMPS across diverse
domains.

A.2 Temperature Scaling Analysis

Table 5 lists the maximum and minimum Calibra-
tion Error values and their corresponding temper-
atures for each model, obtained by sweeping the
temperature parameter from 0.01 to 2.0. This ta-
ble provides the quantitative data that supports the
analysis in Section 6.2, particularly the finding that
while all models achieve their minimum CE at a
low temperature, their sensitivity profiles and peak
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error values (Max CE) differ dramatically, making
temperature scaling a brittle strategy.

A.3 Secondary Analysis: The Effect of
Quantization

In addition to our primary analysis, we conducted
a secondary set of experiments to evaluate how
calibration is affected by quantization. Figure 4
shows the calibration performance for the Llama-
3.2-1B model and its 8-bit and 4-bit quantized ver-
sions. The results demonstrate that while quanti-
zation can alter a model’s calibration profile, our
NMPS method remains an effective post-hoc so-
lution for improving the reliability of these com-
pressed models. Figure 5 further explores this by
showing the temperature scaling curves for these
quantized models. The results indicate that the
general sensitivity profile to temperature remains
largely consistent across different levels of model
compression.



Table 2: Comparative Analysis of Model Calibration Techniques. A summary of performance metrics for various
models across ten subject categories. We compare the raw model outputs (Raw), Platt Scaling, and our proposed
method (NMPS). This comprehensive comparison demonstrates the efficacy of NMPS across diverse models and
domains.

Calibration Error |
Raw  Platt Scaling NMPS

Biological & Medical Sciences 0.8406 0.1210 0.4362 0.1136
Computer Science & Engineering  0.7977 0.1457 0.3850 0.1369

Model Category Accuracy

Economics & Business 0.8273 0.1167 0.4183 0.0996

General Knowledge & Misc. 0.7595 0.1424 0.3907 0.1465

. e History & Geography 0.8973 0.0793 0.4574 0.0765
DeepSeek-R1-Distill-Qwen-32B . 0 ¢’ Governance 0.8379  0.1145 04285  0.0953
Mathematics 0.6931 0.2035 0.3703 0.1846

Philosophy & Ethics 0.7839 0.1631 0.4248 0.1492

Physical Sciences 0.7364 0.1700 0.3819 0.1485

Psychology & Sociology 0.8838 0.0731 0.4643 0.0650

Biological & Medical Sciences 0.7897 0.1893 0.3739 0.1547
Computer Science & Engineering  0.7325 0.2288 0.3434 0.1875

Economics & Business 0.7952 0.1826 0.3673 0.1358
General Knowledge & Misc. 0.7438 0.1930 0.3572 0.1519
History & Geography 0.8959 0.1051 0.4151 0.0890
Gemma3-278 Law & Governance 08116 01706  0.3655  0.0900
Mathematics 0.6368 0.3020 0.3159 0.2070
Philosophy & Ethics 0.7523 0.2230 0.3671 0.1673
Physical Sciences 0.7110 0.2386 0.3407 0.1973
Psychology & Sociology 0.8538 0.1308 0.3896 0.0928
Biological & Medical Sciences 0.6233 0.2061 0.3357 0.2088
Computer Science & Engineering  0.5560 0.2764 0.3276 0.2702
Economics & Business 0.5734 0.2100 0.3188 0.2042
General Knowledge & Misc. 0.5333 0.1989 0.3087 0.1749
History & Geography 0.6957 0.1807 0.3593 0.1741
Llama-3.2-38 Law & Governance 06339 01804 03243  0.1900
Mathematics 0.3121 0.2602 0.2440 0.2408
Philosophy & Ethics 0.5281 0.2264 0.3310 0.2219
Physical Sciences 0.4254 0.2450 0.2507 0.2248
Psychology & Sociology 0.6879 0.1319 0.3413 0.1333
Biological & Medical Sciences 0.8187 0.1334 0.4239 0.1214
Computer Science & Engineering  0.7497 0.1739 0.3651 0.1739
Economics & Business 0.8313 0.1138 0.4284 0.1085
General Knowledge & Misc. 0.7168 0.2026 0.3890 0.1480
Phi-4 History & Geography 0.8883 0.0843 0.4494 0.0823
Law & Governance 0.8241 0.0949 0.4116 0.0743
Mathematics 0.5769 0.2587 0.3248 0.2319
Philosophy & Ethics 0.7462 0.1805 0.4132 0.1612
Physical Sciences 0.6959 0.2017 0.3522 0.1826
Psychology & Sociology 0.8823 0.0809 0.4624 0.0700

Biological & Medical Sciences 0.8461 0.1228 0.4272 0.1043
Computer Science & Engineering  0.8245 0.1498 0.3747 0.1468

Economics & Business 0.8387 0.1184 0.4173 0.0996
General Knowledge & Misc. 0.7897 0.1506 0.3933 0.1265
History & Geograph 0.9152 0.0696 0.4554 0.0647
Qwen2.5-32B-Instruct Law & Governance 0.8548  0.1040  0.4267  0.0629
Mathematics 0.7084 0.2181 0.3668 0.1818
Philosophy & Ethics 0.8199 0.1447 0.4111 0.1187
Physical Sciences 0.7526 0.1750 0.3654 0.1441
Psychology & Sociology 0.9082 0.0679 0.4682 0.0587
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Table 3: Comparative Analysis of Model Calibration Techniques (Part 2 of 2). Performance metrics for the
remaining models.

Calibration Error |
Raw  Platt Scaling NMPS

Biological & Medical Sciences 0.8490 0.1228 0.4221 0.1148
Computer Science & Engineering  0.8347 0.1406 0.3903 0.1364

Model Category Accuracy

Economics & Business 0.8285 0.1256 0.4082 0.1079

General Knowledge & Misc. 0.7743 0.1690 0.3803 0.1398

History & Geograph 0.8981 0.0891 0.4287 0.0886

Qwen3-32B 1 % Governance 08126 01306 03943  0.0862
Mathematics 0.7268 0.1879 0.3836 0.1786

Philosophy & Ethics 0.7851 0.1566 0.3911 0.1345

Physical Sciences 0.8209 0.1393 0.4052 0.1249

Psychology & Sociology 0.9050 0.0730 0.4550 0.0595

Biological & Medical Sciences 0.8380 0.1226 0.4333 0.1082

Computer Science & Engineering  0.8200 0.1562 0.3919 0.1561

Economics & Business 0.8324 0.1190 0.4303 0.1026

General Knowledge & Misc. 0.7856 0.1476 0.3965 0.1360

S1.1-32B History & Geography 0.9122 0.0709 0.4503 0.0687
: Law & Governance 0.8420 0.1138 0.4029 0.0809
Mathematics 0.7376 0.1767 0.3990 0.1685

Philosophy & Ethics 0.7956 0.1657 0.4220 0.1560

Physical Sciences 0.7610 0.1514 0.3936 0.1511

Psychology & Sociology 0.8987 0.0806 0.4588 0.0765

Table 4: Quantitative Model Performance. This variance and standard deviation is representing for Table 1.

Variance Standard Deviation
Raw Platt NMPS Raw Platt NMPS
DeepSeek-R1-Distill-Qwen-32B  0.0059 0.0046 0.0042 0.0769 0.0681 0.0645

Model

Gemma3-27B 0.0101  0.0039 0.0049 0.1003 0.0627 0.0700
Llama-3.2-3B 0.0042 0.0041 0.0032 0.0646 0.0642 0.0568
Phi-4 0.0078 0.0052 0.0053 0.0886 0.0720 0.0729
Qwen2.5-32B-Instruct 0.0070  0.0043 0.0044 0.0840 0.0654 0.0664
Qwen3-32B 0.0054 0.0039 0.0035 0.0733 0.0628 0.0590
S1.1-32B 0.0060 0.0044 0.0042 0.0775 0.0664 0.0651

Table 5: Temperature Scaling Min Max Result. Performance showing from sweeping through 0.01 to 2.0 per 0.01
temperature changing.

Model MaxCE|l MaxTemp MinCE| Min Temp
Qwen2.5-32B-Instruct 0.162080 0.270000  0.027387  0.010000
s1.1-32B 0.262212 0.180000  0.139237  0.010000
Llama-3.2-3B 0.434978 0.070000  0.246408  0.010000
DeepSeek-R1-Distill-Qwen-32B  0.177493 0.170000  0.036425  0.010000
Qwen3-32B 0.161016 0.210000  0.029547  0.010000
microsoft 0.294479 0.170000  0.147911  0.010000
google 0.222729 0.310000  0.026073  0.010000
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Figure 4: Quantization Effect on Calibration. This figure demonstrate our NMPS method on Llama 3.2-1B. This
demonstrates that domain-agnostic can still work even on less parameter models, but not as useful.
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Figure 5: The Influence of Quantization on the Efficacy of Temperature Scaling. This plot illustrates the
CE as a function of temperature, applied post-hoc to different model versions. The results indicate that across
different levels of model compression through quantization, the optimal temperature for minimizing calibration

error remains largely consistent. This suggests that the effectiveness of temperature scaling as a calibration method
is not significantly impacted by the quantization of the model.
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