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Abstract001

The reliable deployment of trustworthy AI sys-002
tems hinges upon precise model calibration.003
While LLM capabilities advance, a deeper em-004
pirical understanding of their calibration under005
diverse conditions and varying task demands,006
subjected to multiple choice questions, remains007
essential. This paper presents a comprehensive008
analysis of LLM calibration across multiple ar-009
chitectures and a spectrum of multiple choice010
questions in different domains. Our systematic011
investigation reveals that standard calibration012
techniques, including widely used temperature013
scaling and Platt Scaling, often show inconsis-014
tent efficacy across different models and dif-015
ferent knowledge domains, underscoring the016
need for more adaptive calibration strategies.017
As part of this broad investigation, we intro-018
duce and evaluate Normalized Multiple Choice019
Platt Scaling (NMPS). This lightweight, post-020
processing technique is highly efficient, requir-021
ing no LLM fine-tuning and adding negligible022
computational overhead during inference. Our023
experiments demonstrate that this approach of-024
fers a substantial improvement over existing025
methods; it reduces the mean calibration error026
across our test suite by nearly 12%, whereas027
standard Platt Scaling shows detrimental, in-028
creasing the error to 145%. This work thus029
provides two key contributions: an effective,030
non-invasive calibration method and crucial in-031
sights into domain-dependent model reliabil-032
ity, offering a practical roadmap for developing033
more trustworthy AI systems.034

1 Introduction035

The rapid advancements and increasing scale of036

Large Language Models(LLMs) (Brown et al.,037

2020) have marked a significant leap in artificial038

intelligence, demonstrating remarkable capabili-039

ties across a multitude of tasks. As these models040

become increasingly integrated into real-world ap-041

plications (Cheng et al., 2025), particularly in au-042

tonomous agent systems (Guo et al., 2024), their re-043

liability and trustworthiness are paramount. While 044

much of the recent research has centered on en- 045

hancing final accuracy, an often-overlooked aspect 046

in this pursuit of performance is calibration—the 047

alignment between a model’s predicted confidence 048

and its actual correctness (Dawid, 1982). Although 049

early pre-trained models were found to be rea- 050

sonably well-calibrated (Desai and Durrett, 2020), 051

this property has degraded in modern, scaled-up 052

LLMs, particularly after alignment tuning (Xie 053

et al., 2024). Consequently, while simple post- 054

hoc methods like temperature scaling (Guo et al., 055

2017) are common, achieving robust calibration on 056

multiple-choice questions across diverse models 057

at the same time presents significant ongoing chal- 058

lenges. We believe that robust calibration is the 059

backbone of LLM reliability (Liu et al., 2025). It 060

serves as a primary mechanism for identifying and 061

mitigating unreliable outputs like hallucinations, 062

where a model’s confidence is a key signal of its 063

potential factuality (Kuhn et al., 2023; Manakul 064

et al., 2023). As such, it will inevitably become a 065

primary target for ensuring trustworthy AI in future 066

usage (Ali et al., 2024). 067

The need for better calibration methods is criti- 068

cal, as miscalibrated models can be deceptively con- 069

fident in incorrect predictions, leading to unreliable 070

behavior and exacerbating issues like hallucination, 071

which undermines user trust and operational safety 072

(Kalai and Vempala, 2024). The existing body of 073

work (Proskurina et al., 2024) highlights these is- 074

sues but often falls short of offering solutions that 075

are robustly generalizable. Many methods focus on 076

average calibration, which can conceal poor perfor- 077

mance on specific tasks or subgroups of data—a 078

phenomenon known as grouping loss (Chen et al., 079

2024). This underscores the need for solutions 080

that are effective across the wide spectrum of tasks 081

LLMs are expected to handle. Our initial investi- 082

gations confirm this, revealing that the efficacy of 083

standard calibration techniques varies significantly 084
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Figure 1: Overview of the Calibration Framework and a Visual Summary of Results. (a) Our evaluation
pipeline uses the lm-evaluation-harness to extract raw logits from a base LLM. These logits are then grouped
by their assigned category to train and evaluate the calibration scalers. (b) The standard Platt Scaling process fits a
single, firm sigmoid function to the data. This approach lacks the flexibility for complex LLM outputs, resulting
in a poor final Mean CE of 0.390. (c) In contrast, our NMPS method learns a more flexible, domain-specific
transformation surface. This adaptability allows it to effectively calibrate the LLM’s outputs, achieving a superior
final Mean CE of 0.140.

with model architecture and knowledge domain,085

motivating the need for more adaptive approaches.086

This reveals a critical gap in existing evaluation087

methodologies: the heterogeneity of calibration088

performance across different domains has been089

largely overlooked. Our work is the first to sys-090

tematically address this challenge, demonstrating091

that domain-specific analysis is essential for a true092

understanding of model reliability.093

To mitigate these challenges, we introduce Nor-094

malized Multiple Choice Platt Scaling (NMPS),095

a lightweight post-processing strategy to calibrate096

LLM outputs without altering the base model.097

NMPS obviates the need for costly re-training098

or fine-tuning by training domain-specific scalers099

on the model’s output logits. This process is highly100

efficient, requiring only seconds of CPU time per101

scaler. The NMPS framework offers significant102

practical benefits. At inference, applying the ap-103

propriate domain-specific scaler adds negligible104

latency. The scalers are both generalizable and ro-105

bust: they can be transferred between models of106

varying sizes and can effectively calibrate outputs107

for unseen questions within a domain. By decou-108

pling the calibration mechanism from the model109

itself, NMPS provides a scalable, efficient, and110

non-invasive solution for improving the trust-111

worthiness of deployed LLM systems.112

The contributions of our work are threefold: 113

1. We are the first to systematically analyze LLM 114

calibration on a domain-specific level. This 115

granular analysis reveals a critical finding: 116

classic calibration methods like Platt Scal- 117

ing are fundamentally unsuitable for LLMs. 118

We find that the simple sigmoid function, ef- 119

fective for traditional binary classifiers, is too 120

rigid to model the complex, high-dimensional 121

logit distributions of LLMs. As shown by 122

the degradation from Figure 2(a) to 2(b), this 123

method systematically increases calibration 124

error. 125

2. Our analysis further reveals that even sim- 126

pler methods like Temperature Scaling are 127

brittle and high-risk. We show that while 128

the optimal temperature is consistently low, 129

model-specific sensitivity creates “perfor- 130

mance cliffs,” making this approach unreliable 131

for practical deployment. 132

3. To address the failure of existing calibration 133

techniques, we propose Normalized Multiple 134

Choice Platt Scaling (NMPS). This novel, 135

lightweight, post-hoc method uses domain- 136

specific scalers to achieve robust calibration. 137

As shown in Figure 2(c), NMPS successfully 138
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Figure 2: NMPS Improves Model Calibration Without Affecting Accuracy. Panels (a), (b), and (c) represent
Raw, Platt Scaling, and NMPS calibration methods, respectively. Each filled circle indicates the mean performance
across all data points for a given model, with error bars representing±1 standard deviation (Table 4. The confidence
ellipses illustrate the 2-sigma confidence regions for each model. The inset in panel (c) shows the histogram of
calibration errors, visually confirming the leftward shift of the error distribution achieved by NMPS. Detailed
performance metrics are presented in Table 1 and Table 2.

reduces the mean calibration error by nearly139

12% where standard methods fail, all while140

adding negligible computational overhead.141

This advancement contributes significantly to the142

development of more dependable LLMs, paving143

the way for more robust autonomous agents and144

safer AI applications.145

2 Related Work146

Platt Scaling (Platt, 1999), a common and effective147

post-processing technique for improving the cali-148

bration of probabilistic classifiers, including those149

used in LLMs, involves fitting a logistic regres-150

sion model to the classifier’s output scores (logits)151

to map them to more calibrated probability esti-152

mates. While originally proposed for Support Vec-153

tor Machines (SVM), it has been widely adopted154

for various models to address issues of over- or155

under-confidence in their predictions (Gupta and156

Ramdas, 2023; Singh and Goshtasbpour, 2022).157

However, as our results show, its direct application158

to modern LLMs across diverse tasks can be detri-159

mental. The adaptation of scaling methods to be160

sensitive to varying task demands is a key research161

direction. Recent work has explored this adapta-162

tion at different levels of granularity. For instance,163

Adaptive Temperature Scaling (ATS) learns to pre-164

dict a unique temperature for each token based on165

model hidden states (Xie et al., 2024). Other work166

has focused on group-level adaptation to ensure167

fairness, calibrating models differently for distinct168

demographic subgroups to mitigate grouping loss169

(Chen et al., 2024). Our work contributes to this 170

direction by proposing an adaptation at the level 171

of semantic task categories, offering a balance be- 172

tween the flexibility of fine-grained methods and 173

the robustness of group-level approaches. 174

The inherent challenge of hallucination in 175

LLMs, as acknowledged by Kalai and Vempala 176

(Kalai and Vempala, 2024), underscores the persis- 177

tent need for robust calibration techniques. Their 178

work suggests that hallucination may be an intrinsic 179

property of these models, further emphasizing the 180

importance of well-calibrated confidence scores as 181

a means of identifying and potentially mitigating 182

unreliable outputs. 183

Post-hoc adaptation of output probabilities, 184

a broader body of research explores alternative 185

paradigms for improving LLM reliability. One 186

approach involves fine-tuning the model itself to 187

better express confidence, for instance, by us- 188

ing a multi-agent speaker-listener framework to 189

teach pragmatic confidence signaling (Stengel- 190

Eskin et al., 2024). Another paradigm involves 191

"white-box" probing, where lightweight classifiers 192

are trained on the LLM’s internal hidden states 193

to directly predict the truthfulness of a statement 194

(Azaria and Mitchell, 2023). Wei et al. (2024) fo- 195

cused on methods to measure and reduce halluci- 196

nation without gold-standard answers, and Nguyen 197

et al. (2025) explored distillation techniques to en- 198

hance factual consistency. While these approaches 199

offer valuable tools, they often require costly model 200

fine-tuning or direct access to internal model states. 201

In contrast, our work provides a distinct yet comple- 202
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mentary focus on a lightweight, post-hoc method203

that refines the confidence calibration of any model204

given only its output logits, making it a highly205

practical and scalable solution. The increasing at-206

tention to calibration and hallucination underscores207

the timeliness of our investigation.208

3 Preliminaries209

3.1 Calibration in Large Language Models210

In machine learning, a model is considered cali-
brated if its predicted probabilities accurately re-
flect the true likelihood of an event (Dawid, 1982).
For instance, if a calibrated model assigns an 80%
confidence to a set of predictions, then approxi-
mately 80% of those predictions should be correct.
Conceptually, the goal of calibration is to minimize
the difference between the model’s confidence and
its actual accuracy. This gap is often referred to
as the Calibration Error. For a set of predictions,
the error can be intuitively understood as:

Calibration Error = |confidence− accuracy|

While the Calibration Error is the absolute differ-211

ence between confidence and accuracy. A perfectly212

calibrated model would have a calibration error of213

zero. The various metrics used to evaluate calibra-214

tion, such as Adaptive Calibration Error (Pavlovic,215

2025), are essentially sophisticated methods for av-216

eraging this fundamental error across different con-217

fidence levels and classes. To quantitatively assess218

LLM calibration, researchers often employ tasks219

with verifiable ground truth, such as multi-choice220

Question Answering (MCQA). In such setups, the221

model’s confidence is typically derived from the222

probability it assigns to its chosen answer option.223

By comparing these confidence scores against the224

empirical accuracy of the predictions, we can eval-225

uate calibration using metrics like the Adaptive226

Calibration Error (CE).227

3.2 Standard Calibration Methods228

Temperature Scaling is a simple post-hoc method229

that uses a single parameter, the temperature T > 0,230

to rescale a model’s logits z before the softmax231

operation. Calibrated probabilities q̂ for each class232

c are given by:233

q̂c =
exp(zc/T )∑C
j=1 exp(zj/T )

. (1)234

The parameter T is optimized on a validation set to235

minimize Negative Log-Likelihood (NLL).236

Platt Scaling is another post-hoc method that 237

learns a logistic regression model. For a binary 238

problem with logit f , it computes a calibrated prob- 239

ability P (y = 1|f) = σ(Af +B), where σ is the 240

sigmoid function, f is the raw output before soft- 241

max from the last layer, and parameters A and B 242

are optimized on a validation set. While effective 243

for simple classifiers, our results show this standard 244

approach is counterproductive for modern LLMs 245

on diverse multi-choice questions. 246

4 Normalized Multiple Choice Platt 247

Scaling 248

To address the inconsistent performance of stan- 249

dard calibration techniques, we introduce Normal- 250

ized Multiple Choice Platt Scaling (NMPS), a 251

lightweight post-processing method designed to be 252

both parameter-efficient and adaptable to the di- 253

verse demands of modern LLMs. This section first 254

defines the core mathematical principles of NMPS 255

and then details the adaptive, domain-specific pro- 256

cess of training and inference. 257

4.1 Core Formulation 258

The formulation of NMPS is guided by a core 259

insight: a calibration method for modern, multi- 260

talented LLMs must be flexible enough to handle 261

varied multiple choice outputs but simple enough 262

to be learned robustly from limited calibration data. 263

Our design is based on two principles: 264

1. Parameter Efficiency: For multi-choice 265

tasks where the number of options can vary, 266

learning a separate parameter for each choice 267

position as in methods like vector scaling is 268

prone to overfitting. We enforce that our scaler 269

uses only two global parameters, A and B, 270

shared across all choices for a given instance. 271

This simplicity is a key advantage to prevent- 272

ing overfitting, making the method robust and 273

generalizable. 274

2. Coherent Distribution: The method must 275

output a valid probability distribution that 276

sums to one. Standard Platt Scaling, applied 277

independently to each choice, does not guar- 278

antee this. Our method includes an explicit 279

normalization step to ensure the final output 280

is a coherent distribution, making it directly 281

usable for downstream decision-making. 282

Based on these principles, the NMPS method maps 283

a model’s raw output logits for a given multi-choice 284
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instance to a calibrated probability distribution.285

Given an instance i with ki choices and a vector286

of logits li = (li,1, . . . , li,ki), NMPS computes the287

final calibrated probability vector p̂i as:288

p̂i,j =
σ(A · li,j +B)∑ki

m=1 σ(A · li,m +B)
, (2)289

where σ(z) = (1+e−z)−1 is the logistic (sigmoid)290

function, and A,B ∈ R are the learnable param-291

eters. This formulation allows NMPS to learn292

a flexible, two-dimensional transformation sur-293

face for the logits, as visualized in Figure 1(c),294

rather than the simple one-dimensional curve of295

standard Platt scaling.296

Parameter Learning. The optimal parameters297

(A,B) for a given domain category are learned by298

minimizing the Negative Log-Likelihood (NLL) on299

a dedicated calibration set, Dcalib:300

L(A,B) = − 1

|Dcalib|
∑

i∈Dcalib

log(p̂i,yi), (3)301

where yi is the index of the true class for instance i,302

and the optimization is performed using L-BFGS-B303

(Zhu et al., 1997).304

4.2 Adaptive Calibration Process305

Our key innovation is applying the NMPS formula-306

tion in a domain-category-dependent manner. In-307

stead of relying on manual labels, our framework308

uses an LLM itself to categorize domains, allowing309

the calibration to adapt to the unique error profile310

an LLM may exhibit in different knowledge areas311

(e.g., mathematics vs. history). This adaptive pro-312

cess, formalized in Algorithm 1 and Algorithm 2,313

makes the system more autonomous and scalable.314

The process operates in two phases. The first315

is a one-time, offline training phase (Algorithm 1).316

We begin with our calibration set, which consists317

of 80% of the MMLU benchmark data. To es-318

tablish a robust set of domains, we first utilized319

Google Gemini to analyze this data and determine320

ten distinct semantic categories (e.g., Mathematics,321

History & Geography, etc.). Once these ten do-322

mains were defined, each question in the MMLU323

calibration set was automatically assigned its cor-324

responding domain label.325

With this fully categorized data, the algorithm326

then proceeds to train a specialized NMPS scaler327

for each of the ten categories by minimizing the328

NLL loss (Equation 3) on the subset of data be-329

longing to that specific domain (Dc). This process330

Algorithm 1 Training Domain-Category NMPS
Scalers
Require: Base LLMM, Categorizer LLMMcat,

Training data Dtrain = {(qi, oi, yi)}Ni=1, Set of
categories C.

Ensure: A set of trained scalers Θ = {θc}c∈C .
// Step 1: Auto-Categorize Training Data

1: Dcategorized ← []
2: for each (qi, oi, yi) in Dtrain do
3: ci ←Mcat(prompt, qi) ▷ Assign category
4: Append (qi, oi, yi, ci) to Dcategorized
5: end for

// Step 2: Train Scalers on Categorized Data
6: Θ← {}
7: for each category c in C do
8: Dc ← FilterData(Dcategorized, c)
9: logits, labels← ExtractLogits(M, Dc)

10: θc ← TrainScaler(logits, labels) ▷
Minimize Eq. 3

11: Θ[c]← θc
12: end for
13: return Θ

Algorithm 2 Calibrated Inference with LLM-
driven NMPS
Require: Base LLMM, Categorizer LLMMcat,

Trained scalers Θ = {θc}c∈C .
Input: A new question qnew with options onew.
Output: Calibrated probability distribution
pcalibrated.

1: Lraw ←M(qnew, onew)
2: cnew ←Mcat(prompt, qnew)
3: θc ← Θ[cnew]
4: pcalibrated ← ApplyScaler(θc, Lraw) ▷ Uses

Eq. 2
5: return pcalibrated

results in a comprehensive toolkit of expert scalers, 331

Θ, ready for the inference phase. 332

The second phase is the lightweight online in- 333

ference process (Algorithm 2). For any new input 334

question qnew, the system first invokes the catego- 335

rizer LLM to determine its category, cnew. It then 336

retrieves the corresponding pre-trained scaler θc 337

from the dictionary Θ and applies it to the base 338

model’s raw logits. This dynamic selection ensures 339

that the most appropriate calibration is applied for 340

every query with negligible latency, removing any 341

need for manual intervention during deployment. 342

The inference process in Algorithm 2 is 343

lightweight with negligible overhead. For any new 344
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input question qnew, the system first obtains the raw345

logits from the base LLM. It then identifies the346

question’s domain category and retrieves the corre-347

sponding pre-trained scaler θc from the dictionary348

Θ. Finally, this specialized scaler is applied to the349

raw logits using the transformation in Equation 2350

to produce the final, calibrated probability distribu-351

tion. This dynamic selection ensures that the most352

appropriate calibration is applied for every query.353

5 Experiment354

5.1 Experimental Setup355

We evaluate our method on a suite of contemporary356

LLMs, including models from the Llama 3 series357

(Llama-3) (Grattafiori et al., 2024), a strong rea-358

soning model s1.1-32B (Muennighoff et al., 2025),359

and other state-of-the-art models such as Phi4-14B360

(Abdin et al., 2024) and Qwen3-32B. These mod-361

els were chosen for their strong performance and362

were accessed via the Huggingface Hub. To test363

for generalizability, we leveraged a diverse suite364

of MCQA benchmarks, including the 57 tasks of365

MMLU (Hendrycks et al., 2021) and a selection366

of tasks from BigBench (bench authors, 2023),367

accessed via the lm-evaluation-harness (Gao368

et al., 2023) tool from EleutherAI.369

5.2 Baselines370

We compare the performance of three approaches:371

• Raw (Uncalibrated): The direct output of the372

base LLMs without any calibration.373

• Temperature Scaling: The standard method374

where the logits is scaled with a single tem-375

perature T before softmax.376

• Platt Scaling: The standard Platt transfor-377

mation applies a sigmoid function to each378

logit independently, which does not produce a379

valid probability distribution that sums to one.380

For this baseline, we therefore implemented a381

multi-choice adaptation where the transforma-382

tion is applied to each of the ki choice logits,383

and the resulting scores are then normalized384

to form a coherent probability distribution.385

A single, global set of parameters (A,B) is386

trained on the entire calibration dataset.387

5.3 Evaluation Metrics388

To assess calibration, we use the Adaptive Cali-389

bration Error (CE). Unlike standard Expected Cal-390

ibration Error (ECE) (Naeini et al., 2015), which391

uses equal-width bins, ACE uses quantile-based 392

binning to ensure a stable error estimate even when 393

high-confidence predictions are rare. For a given 394

sample i, let ŷi be its predicted class, yi its true 395

class, and confi its predicted confidence. The met- 396

ric is computed class-wise: For each bin Bm and 397

each true class k, we define the set of samples 398

Sm,k = {i | confi ∈ Bm, yi = k}. We then 399

compute the accuracy, acc(Sm,k), and average con- 400

fidence, conf(Sm,k), for this set. The final ACE is 401

computed as the unweighted mean of the absolute 402

differences over all M × C class-bin pairs: 403

ACE =
1

M · C

M∑
m=1

C∑
k=1

|acc(Sm,k)−conf(Sm,k)|,

(4) 404

where the error for an empty set Sm,k is set to zero. 405

5.4 Implementation Details 406

Data Handling for Calibration and Testing. To 407

ensure a fair and rigorous evaluation, we carefully 408

partitioned our datasets. We designated an 80% 409

split of the MMLU benchmark as our calibration 410

set. This set was used exclusively for training the 411

parameters of Platt Scaling, and our NMPS. The 412

remaining 20% of MMLU was held out as a vali- 413

dation set. All other benchmarks were used purely 414

as a test set to evaluate the generalization of the 415

trained calibrators on entirely unseen data. This 416

strict separation prevents any data leakage between 417

the calibration training process and the final perfor- 418

mance evaluation. 419

Logit Extraction. We used EleutherAI’s 420

lm-evaluation-harness tool throughout our ex- 421

periments. For each multiple-choice question, we 422

configured the tool to record the raw, pre-softmax 423

logits for the tokens in every correct answer option. 424

Calibration Method Setup. All calibration meth- 425

ods were trained or optimized using the same 80% 426

MMLU validation set for fair comparison. For the 427

Temperature Scaling baseline, the optimal temper- 428

ature T was determined via a grid search over the 429

range [0.01, 2.0], selecting the value that yielded 430

the lowest CE on the validation set. For both Platt 431

Scaling and our NMPS, the parameters were opti- 432

mized using the L-BFGS-B algorithm to minimize 433

the NLL, as described in Section 4. 434

Experimental Pipeline and Environment. Our 435

entire experimental pipeline was automated with 436

Python scripts using the PyTorch and Hugging- 437

Face Transformers libraries. These scripts han- 438

dled model loading, evaluation via the harness tool, 439
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Figure 3: Effect of Temperature on CE (↓). The plot
shows the relationship between CE and temperature for
several foundation models, highlighting their drastically
different sensitivity profiles.

and the extraction of raw logits to JSON files.440

A key step in our automated workflow is LLM-441

driven domain categorization. We established442

ten primary domains based on the MMLU bench-443

mark. For any given question in our datasets,444

a dedicated instruction-tuned model (Qwen1.5B-445

Instruct) classifies it into one of these ten domains446

by processing it through a zero-shot classification447

prompt. This self-categorization step removes the448

need for manual labeling and makes our approach449

more scalable and generalized. Subsequent scripts450

then use these categorized logits for the training451

and evaluation of all calibration methods.452

In addition to our primary analysis, we con-453

ducted a secondary set of experiments to evalu-454

ate how calibration is affected by quantization, a455

common technique for model compression. The456

detailed results for all experiments are provided in457

Appendix 2. All experiments were conducted on a458

system equipped with 2x NVIDIA A100 GPUs.459

6 Results and Analysis460

Our experiments are designed to rigorously eval-461

uate the effectiveness of our proposed NMPS462

method against standard calibration methods. We463

analyze the results through 3 primary lenses: (1)464

the aggregate performance across all models and465

tasks; (2) the specific failure modes of common466

baselines; (3) a detailed, per-model, per-category467

breakdown that reveals the nuances of domain-468

specific multiple choice questions calibration.469

6.1 Quantitative Performance: NMPS470

Achieves Superior Calibration471

Our primary finding is that NMPS provides a sig-472

nificant and consistent improvement over both the473

uncalibrated baseline and standard Platt scaling, all474

without affecting model accuracy. Figure 2 pro- 475

vides a powerful visualization of the result across 476

more than 300+ data points. The left panel shows 477

the wide distribution of performance for the raw, 478

uncalibrated models, which achieve a mean accu- 479

racy of 0.766 but exhibit a substantial mean CE 480

of 0.159, showing that the modern SoTA LLMs 481

perform a significantly high accuracy which lowers 482

the issue of over-confidence. 483

The center panel reveals the catastrophic failure 484

of the standard Platt Scaling baseline. Not only 485

does it fail to improve calibration, it is actively 486

detrimental, more than doubling the mean CE to a 487

staggering 0.390. This demonstrates even with cat- 488

egorized applying calibration methods the standard 489

calibration method designed for simple classifiers 490

to the complex, multi-choice outputs of modern 491

LLMs can systematically induce overconfidence 492

and degrade reliability (Xiao et al., 2025). 493

In stark contrast, NMPS shows the clear success 494

of our NMPS method. It reduces the mean CE to 495

0.140, a relative improvement of nearly 12% over 496

the raw baseline, while leaving the mean accuracy 497

entirely unchanged. This improvement is visual- 498

ized by the decisive leftward shift of the entire 499

data distribution, highlighted in the inset histogram. 500

This result confirms that a method designed with 501

the principles of parameter efficiency and coherent 502

distribution for multi-choice outputs is essential for 503

effective calibration. 504

6.2 The Brittle Nature of Temperature Scaling 505

A key motivation for our work is the unreliable 506

and model-specific behavior of temperature scal- 507

ing. While a visual inspection of Figure 3 suggests 508

complex behavior, a deeper quantitative analysis in 509

Table 5 reveals a more nuanced and critical prob- 510

lem: extreme sensitivity. 511

The data show that while all models achieve their 512

theoretical minimum CE at the lowest tested tem- 513

perature (T = 0.01), their performance landscapes 514

dramatically. For example, Qwen3-32B is rela- 515

tively stable across the temperature range. In stark 516

contrast, Llama-3.2-3B is extremely brittle; its CE 517

increases to a peak of 0.435 at a low temperature 518

of just T = 0.07. This creates a performance cliff 519

where a seemingly reasonable temperature setting 520

could result in catastrophic miscalibration. This 521

extreme, model-dependent sensitivity makes any 522

fixed temperature scaling strategy a high-risk, un- 523

reliable solution, providing strong evidence that 524

more adaptive, principled methods are required. 525
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Table 1: Quantitative Model Performance. Average performance across all ten subject categories. The final row
shows the mean performance across all models, highlighting the aggregate improvement of our method (NMPS).
Full results are in Table 2.

Model Accuracy
Calibration Error ↓

Raw Platt NMPS
DeepSeek-R1-Distill-Qwen-32B 0.8045 0.1360 0.4156 0.1241
Gemma3-27B 0.7680 0.2015 0.3628 0.1531
Llama-3.2-3B 0.5518 0.2167 0.3135 0.2101
Phi-4 0.7744 0.1529 0.4023 0.1378
Qwen2.5-32B-Instruct 0.8225 0.1356 0.4092 0.1141
Qwen3-32B 0.8229 0.1346 0.4064 0.1201
S1.1-32B 0.8208 0.1319 0.4190 0.1218

Mean 0.7664 0.1585 0.3898 0.1402

6.3 Detailed Analysis: A Deeper Look at526

Per-Category Performance527

To systematically assess model calibration across528

diverse domains, we present a detailed breakdown529

of performance in Table 1 and Table 2. These530

tables report accuracy and CE across ten subject531

categories for each model under our three test con-532

ditions: Raw (uncalibrated), standard Platt Scaling,533

and our proposed NMPS. This granular view re-534

veals several key trends.535

First, the detailed data confirms that even strong536

foundation models suffer from significant miscali-537

bration. While raw model outputs often yield high538

accuracy, they exhibit a consistent mismatch be-539

tween confidence and correctness. For instance,540

Gemma3-27B shows a very high raw CE of 0.3020541

on the challenging mathematics domain. Even in542

a comparatively strong area like psychology & so-543

ciology, its raw CE of 0.1308 indicates a notable544

level of miscalibration.545

Second, the standard Platt Scaling baseline546

proves almost universally ineffective and frequently547

detrimental. Its global parameterization (a single548

set of A and B parameters applied to all choices)549

fails to adapt to domain-specific error profiles.550

With models like DeepSeek-R1, Platt Scaling de-551

grades calibration in nearly every domain, causing552

the CE to balloon to over 0.40 in many cases, far553

worse than the uncalibrated baseline.554

In contrast, our NMPS method demonstrates ro-555

bust and consistent improvements across all mod-556

els and domains. By incorporating domain-aware557

calibration, NMPS adapts flexibly to each cate-558

gory’s unique data distribution. For Llama-3.2-3B559

in philosophy & ethics, NMPS lowers the CE from560

a detrimental 0.3310 (Platt) to 0.2219. A more561

striking example is seen with Qwen2.5-32B in psy-562

chology & sociology," where NMPS produces an 563

exceptionally low CE of just 0.0587, a dramatic im- 564

provement over both the raw model (0.0679) and 565

the failed Platt baseline (0.4682). 566

In summary, this detailed analysis confirms our 567

central claims: 1) Modern LLMs exhibit signif- 568

icant and widespread miscalibration; 2) Generic, 569

non-adaptive methods like standard Platt Scaling 570

are insufficient and can actively harm performance; 571

and 3) Our domain-aware NMPS method provides 572

a consistent and significant reduction in CE, demon- 573

strating that adaptive strategies are essential for 574

building trustworthy LLM systems. 575

7 Discussion and Conclusion 576

Our investigation reveals that LLM calibration is a 577

nuanced challenge where standard post-hoc meth- 578

ods are often inconsistent or even actively harmful. 579

We find that Temperature Scaling is a brittle, high- 580

risk strategy due to its extreme model-dependent 581

sensitivity, while standard Platt Scaling catastroph- 582

ically fails by inducing severe overconfidence. Our 583

proposed NMPS method directly addresses these 584

failures. By adapting its parameters to domain 585

categories, NMPS achieves what simpler meth- 586

ods cannot: a consistent and significant improve- 587

ment in calibration across a diverse suite of mod- 588

els without sacrificing accuracy. Its lightweight 589

and non-invasive nature—requiring no LLM fine- 590

tuning—makes it a practical and scalable tool. 591

In conclusion, by being the first to systematically 592

analyze LLM calibration at a domain-specific level, 593

this work uncovers the fundamental limitations of 594

standard techniques. Our findings provide not only 595

an effective tool for practitioners but also reinforce 596

the critical insight that domain-awareness is an 597

essential principle for building trustworthy and re- 598

liable AI systems. 599
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Limitations600

The primary limitation of our work is that the task601

categorization is manually predefined. While this602

provides a strong proof-of-concept for domain-603

specific multiple choice questions calibration, a604

natural next step is to explore methods for learn-605

ing these categories automatically. To this end,606

a sensitivity analysis showing how performance607

changes with different category groupings would608

also strengthen the findings. Additionally, our609

study focused on multi-choice question answer-610

ing; extending and evaluating NMPS for generative611

tasks and open-ended outputs remains an important612

avenue for future research (Liu et al., 2024).613
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A Acknowledgement of Artifacts776

Our work prioritizes reproducibility. All mod-777

els used are publicly available through the Hug-778

gingFace Hub, with specific model identifiers779

listed in the Experimental Setup. All datasets780

are standard public benchmarks accessed via the781

lm-evaluation-harness v0.4.1. Our experimen-782

tal pipeline was fully automated using custom783

Python scripts to ensure consistency. These scripts784

handled model loading, execution of tasks via the785

harness, extraction of raw logits to CSV files for786

all predictions, and the subsequent application and787

evaluation of all calibration methods (Raw, Temper-788

ature Scaling, Platt Scaling, and NMPS). The code789

for our proposed NMPS method and the scripts to790

reproduce the main findings reported in this paper791

will be made publicly available upon publication.792

A Additional Results and Analysis793

This appendix provides supplementary data and794

analyses that support the main findings of our pa-795

per. We include detailed per-category results, a796

quantitative breakdown of our temperature scaling797

experiments, and a secondary analysis of quantiza-798

tion effects.799

A.1 Detailed Per-Category Performance800

Tables 2 and 3 contain the detailed numerical data801

for accuracy and Adaptive Calibration Error (CE)802

that are aggregated and visualized in Figure 2 and803

summarized in Table 1 of the main paper. These804

tables list the performance for each of the seven pri-805

mary models on each of the ten subject categories806

under the three conditions: Raw (uncalibrated),807

standard Platt Scaling, and our proposed NMPS808

method. This granular data provides the full evi-809

dence for our claims regarding the widespread mis-810

calibration of raw models, the detrimental effect of811

standard Platt Scaling, and the consistent, robust812

improvements provided by NMPS across diverse813

domains.814

A.2 Temperature Scaling Analysis815

Table 5 lists the maximum and minimum Calibra-816

tion Error values and their corresponding temper-817

atures for each model, obtained by sweeping the818

temperature parameter from 0.01 to 2.0. This ta-819

ble provides the quantitative data that supports the820

analysis in Section 6.2, particularly the finding that821

while all models achieve their minimum CE at a822

low temperature, their sensitivity profiles and peak823

error values (Max CE) differ dramatically, making 824

temperature scaling a brittle strategy. 825

A.3 Secondary Analysis: The Effect of 826

Quantization 827

In addition to our primary analysis, we conducted 828

a secondary set of experiments to evaluate how 829

calibration is affected by quantization. Figure 4 830

shows the calibration performance for the Llama- 831

3.2-1B model and its 8-bit and 4-bit quantized ver- 832

sions. The results demonstrate that while quanti- 833

zation can alter a model’s calibration profile, our 834

NMPS method remains an effective post-hoc so- 835

lution for improving the reliability of these com- 836

pressed models. Figure 5 further explores this by 837

showing the temperature scaling curves for these 838

quantized models. The results indicate that the 839

general sensitivity profile to temperature remains 840

largely consistent across different levels of model 841

compression. 842
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Table 2: Comparative Analysis of Model Calibration Techniques. A summary of performance metrics for various
models across ten subject categories. We compare the raw model outputs (Raw), Platt Scaling, and our proposed
method (NMPS). This comprehensive comparison demonstrates the efficacy of NMPS across diverse models and
domains.

Model Category Accuracy
Calibration Error ↓

Raw Platt Scaling NMPS

DeepSeek-R1-Distill-Qwen-32B

Biological & Medical Sciences 0.8406 0.1210 0.4362 0.1136
Computer Science & Engineering 0.7977 0.1457 0.3850 0.1369
Economics & Business 0.8273 0.1167 0.4183 0.0996
General Knowledge & Misc. 0.7595 0.1424 0.3907 0.1465
History & Geography 0.8973 0.0793 0.4574 0.0765
Law & Governance 0.8379 0.1145 0.4285 0.0953
Mathematics 0.6931 0.2035 0.3703 0.1846
Philosophy & Ethics 0.7839 0.1631 0.4248 0.1492
Physical Sciences 0.7364 0.1700 0.3819 0.1485
Psychology & Sociology 0.8838 0.0731 0.4643 0.0650

Gemma3-27B

Biological & Medical Sciences 0.7897 0.1893 0.3739 0.1547
Computer Science & Engineering 0.7325 0.2288 0.3434 0.1875
Economics & Business 0.7952 0.1826 0.3673 0.1358
General Knowledge & Misc. 0.7438 0.1930 0.3572 0.1519
History & Geography 0.8959 0.1051 0.4151 0.0890
Law & Governance 0.8116 0.1706 0.3655 0.0900
Mathematics 0.6368 0.3020 0.3159 0.2070
Philosophy & Ethics 0.7523 0.2230 0.3671 0.1673
Physical Sciences 0.7110 0.2386 0.3407 0.1973
Psychology & Sociology 0.8538 0.1308 0.3896 0.0928

Llama-3.2-3B

Biological & Medical Sciences 0.6233 0.2061 0.3357 0.2088
Computer Science & Engineering 0.5560 0.2764 0.3276 0.2702
Economics & Business 0.5734 0.2100 0.3188 0.2042
General Knowledge & Misc. 0.5333 0.1989 0.3087 0.1749
History & Geography 0.6957 0.1807 0.3593 0.1741
Law & Governance 0.6339 0.1804 0.3243 0.1900
Mathematics 0.3121 0.2602 0.2440 0.2408
Philosophy & Ethics 0.5281 0.2264 0.3310 0.2219
Physical Sciences 0.4254 0.2450 0.2507 0.2248
Psychology & Sociology 0.6879 0.1319 0.3413 0.1333

Phi-4

Biological & Medical Sciences 0.8187 0.1334 0.4239 0.1214
Computer Science & Engineering 0.7497 0.1739 0.3651 0.1739
Economics & Business 0.8313 0.1138 0.4284 0.1085
General Knowledge & Misc. 0.7168 0.2026 0.3890 0.1480
History & Geography 0.8883 0.0843 0.4494 0.0823
Law & Governance 0.8241 0.0949 0.4116 0.0743
Mathematics 0.5769 0.2587 0.3248 0.2319
Philosophy & Ethics 0.7462 0.1805 0.4132 0.1612
Physical Sciences 0.6959 0.2017 0.3522 0.1826
Psychology & Sociology 0.8823 0.0809 0.4624 0.0700

Qwen2.5-32B-Instruct

Biological & Medical Sciences 0.8461 0.1228 0.4272 0.1043
Computer Science & Engineering 0.8245 0.1498 0.3747 0.1468
Economics & Business 0.8387 0.1184 0.4173 0.0996
General Knowledge & Misc. 0.7897 0.1506 0.3933 0.1265
History & Geography 0.9152 0.0696 0.4554 0.0647
Law & Governance 0.8548 0.1040 0.4267 0.0629
Mathematics 0.7084 0.2181 0.3668 0.1818
Philosophy & Ethics 0.8199 0.1447 0.4111 0.1187
Physical Sciences 0.7526 0.1750 0.3654 0.1441
Psychology & Sociology 0.9082 0.0679 0.4682 0.0587
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Table 3: Comparative Analysis of Model Calibration Techniques (Part 2 of 2). Performance metrics for the
remaining models.

Model Category Accuracy
Calibration Error ↓

Raw Platt Scaling NMPS

Qwen3-32B

Biological & Medical Sciences 0.8490 0.1228 0.4221 0.1148
Computer Science & Engineering 0.8347 0.1406 0.3903 0.1364
Economics & Business 0.8285 0.1256 0.4082 0.1079
General Knowledge & Misc. 0.7743 0.1690 0.3803 0.1398
History & Geography 0.8981 0.0891 0.4287 0.0886
Law & Governance 0.8126 0.1306 0.3943 0.0862
Mathematics 0.7268 0.1879 0.3836 0.1786
Philosophy & Ethics 0.7851 0.1566 0.3911 0.1345
Physical Sciences 0.8209 0.1393 0.4052 0.1249
Psychology & Sociology 0.9050 0.0730 0.4550 0.0595

S1.1-32B

Biological & Medical Sciences 0.8380 0.1226 0.4333 0.1082
Computer Science & Engineering 0.8200 0.1562 0.3919 0.1561
Economics & Business 0.8324 0.1190 0.4303 0.1026
General Knowledge & Misc. 0.7856 0.1476 0.3965 0.1360
History & Geography 0.9122 0.0709 0.4503 0.0687
Law & Governance 0.8420 0.1138 0.4029 0.0809
Mathematics 0.7376 0.1767 0.3990 0.1685
Philosophy & Ethics 0.7956 0.1657 0.4220 0.1560
Physical Sciences 0.7610 0.1514 0.3936 0.1511
Psychology & Sociology 0.8987 0.0806 0.4588 0.0765

Table 4: Quantitative Model Performance. This variance and standard deviation is representing for Table 1.

Model
Variance Standard Deviation

Raw Platt NMPS Raw Platt NMPS

DeepSeek-R1-Distill-Qwen-32B 0.0059 0.0046 0.0042 0.0769 0.0681 0.0645
Gemma3-27B 0.0101 0.0039 0.0049 0.1003 0.0627 0.0700
Llama-3.2-3B 0.0042 0.0041 0.0032 0.0646 0.0642 0.0568
Phi-4 0.0078 0.0052 0.0053 0.0886 0.0720 0.0729
Qwen2.5-32B-Instruct 0.0070 0.0043 0.0044 0.0840 0.0654 0.0664
Qwen3-32B 0.0054 0.0039 0.0035 0.0733 0.0628 0.0590
S1.1-32B 0.0060 0.0044 0.0042 0.0775 0.0664 0.0651

Table 5: Temperature Scaling Min Max Result. Performance showing from sweeping through 0.01 to 2.0 per 0.01
temperature changing.

Model Max CE ↓ Max Temp Min CE ↓ Min Temp

Qwen2.5-32B-Instruct 0.162080 0.270000 0.027387 0.010000
s1.1-32B 0.262212 0.180000 0.139237 0.010000
Llama-3.2-3B 0.434978 0.070000 0.246408 0.010000
DeepSeek-R1-Distill-Qwen-32B 0.177493 0.170000 0.036425 0.010000
Qwen3-32B 0.161016 0.210000 0.029547 0.010000
microsoft 0.294479 0.170000 0.147911 0.010000
google 0.222729 0.310000 0.026073 0.010000
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Figure 4: Quantization Effect on Calibration. This figure demonstrate our NMPS method on Llama 3.2-1B. This
demonstrates that domain-agnostic can still work even on less parameter models, but not as useful.
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Figure 5: The Influence of Quantization on the Efficacy of Temperature Scaling. This plot illustrates the
CE as a function of temperature, applied post-hoc to different model versions. The results indicate that across
different levels of model compression through quantization, the optimal temperature for minimizing calibration
error remains largely consistent. This suggests that the effectiveness of temperature scaling as a calibration method
is not significantly impacted by the quantization of the model.
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