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Abstract

We study the greedy (exploitation-only) algorithm in bandit problems with a known
reward structure. We allow arbitrary finite reward structures, while prior work
focused on a few specific ones. We fully characterize when the greedy algorithm
asymptotically succeeds or fails, in the sense of sublinear vs. linear regret as a
function of time. Our characterization identifies a partial identifiability property of
the problem instance as the necessary and sufficient condition for the asymptotic
success. Notably, once this property holds, the problem becomes easy—any
algorithm will succeed (in the same sense as above), provided it satisfies a mild
non-degeneracy condition. Our characterization extends to contextual bandits and
interactive decision-making with arbitrary feedback. Examples demonstrating
broad applicability and extensions to infinite reward structures are provided.

1 Introduction

Online learning algorithms often face uncertainty about the counterfactual outcomes of their actions.
To navigate this uncertainty, they balance two competing objectives: exploration, making potentially
suboptimal decisions to acquire information, and exploitation, leveraging known information to
maximize rewards. This trade-off is central to the study of multi-armed bandits [Slivkins, 2019,
Lattimore and Szepesvári, 2020], a foundational framework in sequential decision-making.

While exploration is central to bandit research, it presents significant challenges in practice, esp.
when an algorithm interacts with human users. First, exploration can be wasteful and risky for the
current user, imposing a burden that may be considered unfair since its benefits primarily accrue to
future users. Second, exploration adds complexity to algorithm design,and its adoption in large-scale
applications requires substantial buy-in and engineering support compared to a system that only
exploits [Agarwal et al., 2016, 2017]. Third, exploration may be incompatible with users’ incentives
when actions are controlled by the users. E.g., an online platform cannot force users to try and review
new products; instead, users gravitate toward well-reviewed or familiar options [Kremer et al., 2014].1

A natural alternative is the greedy algorithm (Greedy), which exploits known information at every
step without any intentional exploration. This approach sidesteps the aforementioned challenges and
often better aligns with user incentives. In particular, it models the natural dynamics in an online

1. Enforcing exploration in such settings is very challenging (Kremer et al. [2014] and follow-up work, see
Slivkins [2023] for an overview). While exploration can be made incentive-compatible, doing so involves
considerable performance and/or monetary costs and additional complexity. More importantly, it hinges upon
substantial (even if standard) assumptions from economic theory.
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platform where each user acts in self-interest, making decisions based on full observations of previous
users’ actions and outcomes, e.g., purchases and product reviews [Acemoglu et al., 2022].

Despite its simplicity and practical appeal, Greedy is widely believed to perform poorly. This belief is
deeply ingrained in the bandit literature, which overwhelmingly focuses on exploration as a necessary
ingredient for minimizing regret. A key motivation for this focus comes from well-known failure
cases in unstructured K-armed bandits. A classic example is as follows: “Suppose the reward of each
arm follows an independent Bernoulli distribution with a fixed mean, and Greedy is initialized with
a single sample per arm. If the best arm initially returns a 0 while another arm returns a 1, Greedy
permanently excludes the best arm.”

However, beyond such examples, the broader picture remains murky, especially for the widely-studied
structured bandits – bandit problems with a known reward structure (e.g., linearity, Lipschitzness,
convexity) – where observing some actions provides useful information about others. Formally, a
reward structure restricts the possible reward functions that map arms to their mean rewards. Reward
structures reduce the need for explicit exploration, making the bandit problem more tractable. For
some of them, Greedy in fact succeeds, e.g., two-armed bandits with expected rewards that sum up to
a known value. The literature provides a few examples of failure for some specific (one-dimensional,
linear) reward structures, and a few non-trivial examples of success (e.g., for linear contextual bandits);
see more on this in Related Work. Likewise, large-scale experiments yield mixed results: some
settings confirm the need for exploration, but others indicate that Greedy performs well [Bietti et al.,
2021]. This contrast raises a fundamental question: When—and why—does Greedy fail or succeed?

Our Contributions. We work towards the missing foundation for structured bandits: a general
theory of Greedy. Our main result allows finite, but otherwise arbitrary reward structures. We
provide a complete characterization of when Greedy asymptotically fails (incurs linear regret) vs
when it succeeds (achieves sublinear regret). Our characterization applies to every problem instance,
resolving it in the positive or negative direction, not (just) in the worst case over a particular reward
structure. The negative results are of primary interest here, as they substantiate the common belief
that Greedy performs poorly, and the positive results serve to make the characterization precise.

A key insight is identifying a new “partial identifiability” property of the problem instance, called self-
identifiability, as a necessary and sufficient condition for the asymptotic success. Self-identifiability
asserts that, given the reward structure, fixing the expected reward of a suboptimal arm uniquely
identifies it as suboptimal. We prove that Greedy achieves sublinear regret under self-identifiability,
and suffers from linear regret otherwise. The negative result is driven by the existence of a decoy:
informally, an alternative reward model such that its optimal arm is suboptimal for the true model
and both models coincide on this arm. We show that with some positive probability, Greedy gets
permanently stuck on such a decoy, for an infinite time horizon. For the positive result, Greedy
succeeds (only) because self-identifiability makes the problem instance intrinsically “easy”. In fact,
this success is not due to any particular cleverness of Greedy: we show that any reasonable algorithm
(satisfying a mild non-degeneracy condition) achieves sublinear regret under self-identifiability.

Our characterization allows for essentially an arbitrary interaction protocol between the algorithm
and the environment (Section 5). Specifically, we handle the model of “decision-making with
structured observations” (DMSO, Foster et al. [2021]), which allows for arbitrary auxiliary feedback
after each round. This model subsumes contextual bandits, combinatorial semi-bandits, and bandits
with graph-based feedback, as well as episodic reinforcement learning. Before moving to this full
generality, our presentation focuses on contextual bandits, where we obtain quantitatively stronger
guarantees (Section 4), and “vanilla” bandits as a paradigmatic case for building key intuition and
cleaner definitions (Section 3).

We apply our machinery to several examples, both positive and negative (Appendix D). We demon-
strate that most infinite structures of interest admit meaningful finite analogs via discretization. We
find that Greedy fails in linear bandits, Lipschitz bandits and “polynomial bandits” (with arms in
R and polynomial expected rewards), and does so for almost all problem instances. For linear
contextual bandits, Greedy succeeds if the context set is “sufficiently diverse”, but may fail if it is
“low-dimensional”. For Lipschitz contextual bandits, Greedy behaves very differently, failing for
almost all instances. One informal takeaway is that Greedy fails as a common case for most/all bandit
structures of interest, whereas for contextual bandits it can go either way, depending on the structure.
The success of Greedy appears to require context diversity and a parametric reward structure.
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The second main result of this work concerns infinite (e.g., continuous) reward structures (Section 6).
While our earlier analysis gave a sharp “if and only if” characterization for finite reward structures,
such a complete characterization is more challenging to obtain for infinite ones. To make progress,
we provide a characterization parameterized by a notion of “margin” (separating instances for which
the positive result applies from instances for which the negative result applies), with guarantees
that deteriorate as the margin vanishes. Subject to this margin, our result handles arbitrary infinite
reward structures. It applies to structured bandits with finite action sets, requiring stronger notions of
self-identifiability and decoy existence (parameterized by the margin), as well as new analysis ideas.

Discussion. The distinction between linear and sublinear regret is a standard “first-order” notion of
success vs failure in bandits. Our positive results attain logarithmic, instance-dependent regret rates,
possibly with a large multiplicative constant determined by the reward structure and the instance.
Our negative results establish a positive (but possibly very small) constant probability of a “failure
event” where Greedy gets permanently stuck on a decoy, for an infinite time horizon. Optimizing
these constants for an arbitrary reward structure appears difficult. However, we achieve much better
constants for the partial characterization in Section 6.

The greedy algorithm is initialized with some warm-up data collected from the same problem instance
(and it needs at least 1 warm-up sample to be well-defined). Our negative results require exactly one
warm-up sample for each context-arm pair. All our positive results allow for an arbitrary amount
of initial data. Thus, our characterization effectively defines “success” as sublinear regret for any
amount of warm-up data, and “failure” as linear regret for some amount of warm-up data.

We assume that Greedy is given a regression oracle: a subroutine to perform (least-squares) regression
given the reward structure. As in “bandits with regression oracles” (referenced below), we separate
out computational issues, leveraging prior work on regression, and focus on the statistical guarantees.

Related Work. Bandit reward structures studied in prior work include linear and combinatorial
structures [e.g., Awerbuch and Kleinberg, 2008, McMahan and Blum, 2004, György et al., 2007,
Cesa-Bianchi and Lugosi, 2012], convexity [e.g., Kleinberg, 2004, Flaxman et al., 2005, Bubeck
et al., 2017], and Lipschitzness [e.g., Kleinberg, 2004, Kleinberg et al., 2008, Bubeck et al., 2011],
as well as some others. Each of these is a long line of work on its own, with extensions to contextual
bandits [e.g., Li et al., 2010, Slivkins, 2014]. There’s also some work on bandits with arbitrary
reward structures [Amin et al., 2011, Combes et al., 2017, Jun and Zhang, 2020, Degenne et al., 2020,
Parys and Golrezaei, 2024], and particularly contextual bandits with regression oracles [e.g., Agarwal
et al., 2012, Foster et al., 2018, Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2022]. For more
background, see books Slivkins [2019], Lattimore and Szepesvári [2020], Foster and Rakhlin [2023].

For Greedy, positive results with near-optimal regret rates focus on linear contextual bandits with
diverse/smoothed contexts [Kannan et al., 2018, Bastani et al., 2021, Raghavan et al., 2023, Kim
and Oh, 2024]. Both context diversity and parametric reward structure are essential. Our positive
results for the same setting are incomparable: more general in terms of context diversity assumptions,
but weaker in terms of the regret bounds. (This line of prior work does not contain any negative
results.) Greedy is also known to attain o(T ) regret in various scenarios with a very large number of
near-optimal arms [Bayati et al., 2020, Jedor et al., 2021].2

Negative results for Greedy are derived for “non-structured” K-armed bandits: from trivial extensions
of the single-sample-per-arm example mentioned above, to an exponentially stronger characterization
of failure probability [Banihashem et al., 2023], to various “near-greedy” algorithms / behaviors, both
“frequentist” and “Bayesian” (same paper). Negative results for non-trivial reward structures concern
dynamic pricing with linear demands [Harrison et al., 2012, den Boer and Zwart, 2014] and dynamic
control in a generalized linear model [Lai and Robbins, 1982, Keskin and Zeevi, 2018]. Banihashem
et al. [2023] also obtain negative results for the Bayesian version of Greedy in Bayesian bandits,
under a certain “full support” assumption on the prior.3

2 Preliminaries: structured contextual bandits (StructuredCB)

We have action set A and context set X . In each round t = 1, 2, . . ., a context xt ∈ X arrives, an
algorithm chooses an action (arm) at ∈ A, and a reward rt ∈ R is realized. The context is drawn

2. E.g., for Bayesian bandits with ≫
√
T arms, where the arms’ mean rewards are sampled uniformly.

3. Essentially, the prior covers all reward functions {arms} → [0, 1] with probability density at least p > 0.
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independently from some fixed and known distribution over X . 4 The reward rt is an independent
draw from a unit-variance Gaussian with unknown mean f∗(xt, at) ∈ [0, 1]. 5 A reward function is a
function f : X ×A → [0, 1]; in particular, f∗ is the true reward function. The reward structure is
given by a known class F of reward functions which contains f∗; the assumption f∗ ∈ F is known
as realizability. To recap, the problem instance is a pair (f∗,F), where F is known and f∗ is not.

We focus on finite reward structures, i.e., assume (unless specified otherwise) that X ,A,F are all
finite. While this does not hold for most reward structures from prior work, one can discretize them
to ensure finiteness. Indeed, when reward functions can take infinitely many values, one could round
each function value to the closest point in some finite subset S ⊂ [0, 1], e.g., all integer multiples of
some ε > 0. Likewise, one could discretize contexts, arms, or function parameters, when they are
represented as points in some metric space, e.g., as real-valued vectors. Or, one could define finite
reward structures directly, with similar discretizations built-in (see Appendix D for examples).

We are interested in expected regret E [R(t) ] as a function of round t. Regret is standard: R(t) :=∑
s∈[t] ( r

∗(xs)− rs ), where r∗(x) := maxa∈A f∗(x, a), best expected reward given context x.

The greedy algorithm (Greedy) is defined as follows. It is initialized with T0 ≥ 1 rounds of
warm-up data, denoted t ∈ [T0]. 6 Each such round yields a context-arm pair (xt, at) ∈ X × A
chosen exogenously, and reward rt ∈ R drawn independently from the resp. reward distribution:
unit-variance Gaussian with mean f∗(xt, at). At each round t > T0, Greedy computes a reward
function via least-squares regression (implemented via a “regression oracle”, as per Section 1):

ft = argminf∈F
∑

s∈[t] ( f(xs, as)− rs )
2
. (2.1)

Note that there are no ties in (2.1) with probability one over the random rewards. Once reward
function ft is chosen, the algorithm chooses the best arm for ft and context xt, i.e.,

at ∈ argmaxa∈A ft(xt, a). (2.2)

For ease of presentation, we posit that f(x, ·) has a unique maximizer, for each feasible function
f ∈ F and each context x ∈ X ; call such f best-arm-unique. (Our results can be adapted to allow
for reward functions with multiple best arms, see Appendix A.)

Notation. Let K be the number of arms; identify the action set as A = [K]. The number of
times a given arm a was chosen for a given context x before round t is denoted Nt(x, a), and
the corresponding average reward is r̄t(x, a). Average reward over the warm-up stage is denoted
r̄warm(x, a) := r̄t(x, a) with t = T0 + 1. We’ll work with an alternative loss function,

MSEt(f) :=
∑

(x,a)∈X×A Nt(x, a) ( r̄t(x, a)− f(x, a) )
2
. (2.3)

Note that it is equivalent to (2.1) for minimization, in the sense that ft = argminf∈F MSEt(f).

3 Characterization for structured bandits

Let us focus on the paradigmatic special case of multi-armed bandits, call it StructuredMAB.
Formally, there is only one context, |X | = 1. The context can be suppressed from the notation;
e.g., reward functions map arms to [0, 1]. An arm is called optimal for a given reward function f (or,
by default, for f = f∗) if it maximizes expected reward f(·), and suboptimal otherwise.

We start with two key definitions. Self-identifiability (which drives the positive result) asserts that
fixing the expected reward of any suboptimal arm identifies this arm as suboptimal.
Definition 1 (Self-identifiability). Fix a problem instance (f∗,F). A suboptimal arm a is called
self-identifiable if fixing its expected reward f∗(a) identifies this arm as suboptimal given F , i.e., if
arm a is suboptimal for any reward function f ∈ F consistent with f(a) = f∗(a). If all suboptimal
arms have this property, then the problem instance is called self-identifiable.

4. Whether the context distribution is known to the algorithm is inconsequential, since Greedy (particularly, the
regression in Eq. (2.1)) does not use this knowledge. W.l.o.g., X is the support set of the context distribution.
5. Gaussian reward noise is a standard assumption in bandits (along with e.g., 0-1 rewards), which we make for
ease of presentation. Our positive results carry over to rewards with an arbitrary sub-Gaussian noise, without any
modifications. Likewise, our negative results carry over to rewards rt ∈ [0, 1] with an arbitrary near-uniform
distribution, i.e., one specified by a p.d.f. on [0, 1] which is bounded away from 0 by an absolute constant.
6. We also refer to the first T0 rounds as warm-up stage, and the subsequent rounds as main stage.
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A decoy (whose existence drives the negative result) is another reward function fdec such that its
optimal arm adec is suboptimal for f∗ and both reward functions coincide on this arm.

Definition 2 (Decoy). Let f∗, fdec be two reward functions, with resp. optimal arms a∗, adec. Call
fdec a decoy for f∗ (with a decoy arm adec) if it holds that fdec(adec) = f∗(adec) < f∗(a∗).

We emphasize that self-identifiability and decoys are new notions, not reducible to structural notions
from prior work, see Appendix B. It is easy to see that they are equivalent, in the following sense:

Claim 1. An instance (f∗,F) is self-identifiable if and only if f∗ has no decoy in F .

In our characterization, the complexity of the problem instance (f∗,F) enters via its function-gap,

Γ(f∗,F) = min
functions f∈F : f ̸=f∗

min
arms a: f(a)̸=f∗(a)

|f∗(a)− f(a)|. (3.1)

We may also write Γ(f∗) = Γ(f∗,F) when the function class F is clear from context.

Theorem 1. Fix a problem instance (f∗,F) of StructuredMAB.

(a) If the problem instance is self-identifiable, then Greedy (with any warm-up data) satisfies
E [R(t) ] ≤ T0 + (K/Γ(f∗))2 ·O(log t) for each round t ∈ N.

(b) Suppose the warm-up data consists of one sample for each arm. Assume f∗ has a decoy
fdec ∈ F , with decoy arm adec. Then with some probability pdec > 0 it holds that Greedy
chooses adec for all rounds t ∈ (T0,∞). We can lower-bound pdec by e−O(K/Γ2(fdec)).

Discussion. Thus, Greedy succeeds, in the sense of achieving sublinear regret for any warm-up data,
if and only if the problem instance is self-identifiable. Else, Greedy fails for some warm-up data,
incurring linear expected regret. Specifically, regret is E [R(t) ] ≥ (t−T0) ·pdec ·(f∗(a∗)−f∗(adec))
for each round t ∈ (T0,∞), where a∗ is the best arm.

The correct perspective is that Greedy fails on every problem instance unless self-identifiability
makes it intrinsically “easy”. Indeed, consider any bandit algorithm that avoids playing an arm once it
is identified, with high confidence, as suboptimal and having a specific expected reward. This defines
a mild yet fundamental non-degeneracy condition: a reasonable bandit algorithm should never take
an action that provides neither new information (exploration) nor utility from existing information
(exploitation), whether it prioritizes one or balances both. The class of algorithms satisfying this
condition is broad—for instance, an algorithm may continue playing some arm a indefinitely as
long as the reward structure permits this arm to be optimal. However, under self-identifiability, any
algorithm satisfying this condition achieves sublinear regret (see Appendix C for details).

The failure probability pdec could be quite low. When there are multiple decoys fdec ∈ F , we
could pick one (in the analysis) which maximizes function-gap Γ(fdec). We present a more efficient
analysis under stronger assumptions (which also applies to infinite function classes), see Section 6.

Proof Sketch for Theorem 1(a). We show that a suboptimal arm a cannot be chosen more than
Õ(K/Γ2(f∗)) times throughout the main stage. Indeed, suppose a is chosen this many times by
some round t > T0. Then r̄t(a), the empirical mean reward for a, is within Γ(f∗)/2 of its true mean
f∗(a) with high probability, by a standard concentration inequality. This uniquely identifies f∗(a) by
definition of the function-gap, which in turn identifies a as a suboptimal arm for any feasible reward
function. Intuitively, this should imply that a cannot be chosen again. Making this implication formal
is non-trivial, requiring an additional argument invoking MSEt(·), as defined in (2.3).

First, we show that MSEt(f∗) ≤ Õ(K) with high probability, using concentration. Next, we observe
that any reward function f with f(a) ̸= f∗(a) will have a larger MSEt(·), and therefore cannot be
chosen in round t. It follows that ft(a) = f∗(a). Consequently, arm a is suboptimal for ft (by
self-identifiability), and hence cannot be chosen in round t.

Proof Sketch for Theorem 1(b). To show that Greedy gets permanently trapped on the decoy arm
despite reward randomness, we define two carefully-constructed events. The first ensures that the
warm-up data causes Greedy to misidentify fdec as the true reward function for all non-decoy arms:

E1 = { |r̄warm(a)− fdec(a)| < Γ(fdec)/2 for each arm a ̸= adec } . (3.2)
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This concerns the single warm-up sample per non-decoy arm. The second event ensures that the
empirical mean of the decoy arm adec remains close to f∗(adec) for all rounds after the warm-up:

E2 = { ∀t > T0, |r̄t(adec)− f∗(adec)| ≤ Γ(fdec)/2 } . (3.3)

Under E1 ∩ E2, Greedy always chooses the decoy arm. To lower-bound Pr [E1 ∩ E2 ], note that
E2, E1 are independent (as they concern, resp., adec and all other arms), analyze each event separately.

4 Characterization for structured contextual bandits (StructuredCB)

The ideas from Section 3 need non-trivial modifications. The naive reduction to bandits — treating
each contexts-to-arms mapping as a “super-arm” in StructuredMAB— does not work because
Greedy now observes contexts. Further, such reduction would replace the dependence on K in
Theorem 1 with the number of mappings, i.e., K |X |, whereas we effectively replace it with K · |X |.
Some notation: mappings from contexts to arms are commonly called policies. Let Π denote the set of
all policies. Expected reward of policy π ∈ Π is f∗(π) := Ex [ f

∗(x, π(x)) ], where the expectation
is over the fixed distribution of context arrivals. A policy π is called optimal for reward function f if
it maximizes expected reward f(π), and suboptimal otherwise. Let π∗ be the optimal policy for f∗.
Note that π(x) ∈ argmaxa∈A f(x, ·) for each context x, which is unique by assumption. .

Greedy can be described in terms of policies: it chooses policy πt in each round t, before seeing the
context xt, and then chooses arm at = πt(xt). Here πt is the optimal policy for the ft from Eq. (2.1).

As in Section 3, the positive and negative results are driven by, resp., self-identifiability and the
existence of a suitable ”decoy”. Let’s extend these key definitions to contextual bandits.
Definition 3 (Self-identifiability). Fix a problem instance (f∗,F). A suboptimal policy π ∈ Π is
called self-identifiable if fixing its expected rewards f∗(x, π(x)) for all contexts x ∈ X identifies this
policy as suboptimal given F . Put differently: if this policy is suboptimal for any reward function
f ∈ F such that f(x, π(x)) = f∗(x, π(x)) for all contexts x. If each suboptimal policy has this
property, then the problem instance is called self-identifiable.
Definition 4 (Decoy). Let f∗, fdec be two reward functions, with resp. optimal policies π∗, πdec.
Call fdec a decoy for f∗ (with a decoy policy πdec) if it holds that fdec(πdec) =f∗(πdec) < f∗(π∗)
and moreover fdec(x, πdec(x)) = f∗(x, πdec(x)) for all contexts x ∈ X .

In words, the decoy and f∗ completely coincide on the decoy policy, which is a suboptimal policy for
f∗. The equivalence of these definitions holds word-by-word like in Claim 1.

The notion of function-gap is extended in a natural way:

Γ(f∗,F) = min
functions f∈F : f ̸=f∗

min
(x,a)∈X×A: f(x,a)̸=f∗(x,a)

|f∗(x, a)− f(x, a)|. (4.1)

Our results are also parameterized by the distribution of context arrivals, particularly by the smallest
arrival probability across all contexts, denoted p0. (W.l.o.g., p0 > 0.)
Theorem 2. Fix a problem instance (f∗,F) of StructuredCB. Let X = |X |.

(a) If the problem instance is self-identifiable, then Greedy (with any warm-up data) satisfies
E [R(t) ] ≤ T0 + ( |X |K/Γ(f∗) )

2
/p0 ·O(log t) for each round t ∈ N.

(b) Suppose the warm-up data consists of one sample for each context-arm pair. Assume f∗ has
a decoy fdec ∈ F , with decoy policy πdec. Then with some probability pdec > 0, Greedy
chooses πdec in all rounds t ∈ (T0,∞). We have pdec ≥ X−O(KX/Γ2(fdec)).

Remark 1. Greedy succeeds (i.e., achieves sublinear regret for any warm-up data) if and only if the
problem instance is self-identifiable. Else, Greedy fails for some warm-up data, with linear regret:

E [R(t) ] ≥ (t− T0) · pdec · (f∗(π∗)− f∗(πdec)) for each round t ∈ (T0,∞). (4.2)

New Proof Ideas. For Theorem 2(a), directly applying the proof techniques from the MAB case
gives a regret bound linear in |Π| = KX . Instead, we develop a non-trivial potential argument to
achieve regret bound polynomial in KX . For Theorem 2(b), we give new definitions of events E1, E2

extending (3.2), (3.3) by carefully accounting for contexts, and refine the deviation analysis to remove
the dependence on |Π|. Proof sketches and full proofs are in Appendix F.
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5 Interactive decision-making with arbitrary feedback

We consider Decision-Making with Structured Observations (DMSO), a general framework for sequen-
tial decision-making with a known structure [Foster et al., 2021]. It allows for arbitrary feedback
observed after each round, along with the reward.7 The root challenge is that this feedback is usually
correlated with rewards. Greedy must account for these correlations, not just compute the best
fit based on rewards. Our solution is to develop a natural variant of Greedy based on maximum-
likelihood estimation. The analysis then becomes much more technical compared to StructuredCB,
requiring us to track changes in log-likelihood and define the ”model-gap” in terms of KL-divergence.

Preliminaries. DMSO is defined as follows. Instead of “arms” and “contexts”, we have two new
primitives: a policy set Π and observation set O. The interaction protocol is as follows: in each
round t = 1, 2, . . ., the algorithm selects a policy πt ∈ Π, receives a reward rt ∈ R ⊂ R, and
observes an observation ot ∈ O. A model is a mapping from Π to a distribution over R×O. The
reward-observation pair (rt, ot) is an independent sample from distribution M∗(πt), where M∗ is
the true model. The problem structure is represented as a (known) model class M which contains
M∗. We assume that Π,M,R,O are all finite.8 To recap, the problem instance is a pair (M∗,M),
where M is known but M∗ is not. This completes the definition of DMSO.

StructuredMAB is a simple special case of DMSO with one possible observation. StructuredCB
is subsumed by interpreting the observations ot as contexts and defining M∗(π) accordingly, to
account for the distribution of context arrivals, the reward distribution, and the reward function.9 The
observations in DMSO can also include auxiliary feedback present in various bandit models studied
in prior work. To wit: rewards of “atomic actions” in combinatorial semi-bandits [e.g., György
et al., 2007, Chen et al., 2013], per-product sales in multi-product dynamic pricing [e.g., Keskin
and Zeevi, 2014, den Boer, 2014], and rewards of all “adjacent” arms in bandits with graph-based
feedback [Alon et al., 2013, 2015]. Moreover, the observations can include MDP trajectories in
episodic reinforcement learning [see Agarwal et al., 2020, for background]. DMSO subsumes all these
scenarios, under the “realizability” assumption M∗ ∈ M.

We use some notation. Let f(π|M) be the expected reward for choosing policy π under model M ,
and f∗(π) := f(π|M∗). A policy is called optimal (under model M ) if it maximizes f(· |M), and
suboptimal otherwise. Let π∗ be an optimal policy for M∗. The history Ht at round t consists of
(πs, rs, os) tuples for all rounds s < t. D d

= D′ denotes that distributions D,D′ are equal.

Modified Greedy. The modified greedy algorithm (GreedyMLE) uses maximum-likelihood estimation
(MLE) to analyze reward-observation correlations. As before, the algorithm is initialized with T0 ≥ 1
rounds of warm-up data, denoted t ∈ [T0]. Each round yields a tuple (πt, rt, ot) ∈ Π × R × O,
where the policy πt is chosen exogenously, and the (rt, ot) pair is drawn independently from the
corresponding distribution M∗(πt). At each round t > T0, the algorithm determines

Mt ∈ argmaxM∈M L(M | Ht), (5.1)

the model with the highest likelihood L(M |Ht) given history Ht (with ties broken arbitrarily).10

Then the algorithm chooses the optimal policy given this model: πt ∈ argmaxπ∈Π f(π|Mt). For
simplicity, we assume that the model class M guarantees no ties in this argmax. Here L(M |Ht) is
an algorithm-independent notion of likelihood: the probability of seeing the reward-observation pairs
in history Ht under model M , if the policies in Ht were chosen in the resp. rounds. In a formula,

L(M | Ht) :=
∏

s∈[t−1] PrM(πs)(rs, os). (5.2)

W.l.o.g. we can restrict Π to policies that are optimal for some model; in particular |Π| ≤ |M|.
Our characterization. We adapt the definitions of “self-identifiability” and “decoy” so that “two
models coincide on a policy” means having the same distribution of reward-observation pairs.
Definition 5 (Self-identifiability). Fix a problem instance (M∗,M). A suboptimal policy π is called
self-identifiable if fixing distribution M∗(π) identifies this policy as suboptimal given M. That is: if

7. Bandit formulations with partial feedback that does not include the reward [known as partial monitoring,
e.g., Bartók et al., 2014, Antos et al., 2013], are outside our scope.
8. Finiteness of R,O is for ease of presentation. We can also handle infinite R,O if all outcome distributions
M(π) have a well-defined density, and Assumption 1 is stated in terms of these densities.
9. Here we work with discrete rewards, whereas our treatment in Sections 3 and 4 assumes Gaussian rewards.
10. As in Section 2, the regression is implemented via a “regression oracle’”; we focus on statistical guarantees.
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policy π is suboptimal for any model M ∈ M with M(π)
d
= M∗(π). The problem instance is called

self-identifiable if all suboptimal policies have this property.
Definition 6 (Decoy). Let M∗,Mdec be two models, with resp. optimal policies π∗, πdec. Call
Mdec a decoy for M∗ (with a decoy policy πdec) if Mdec(πdec)

d
= M∗(πdec) (i.e., the two models

completely coincide on πdec) and moreover π f∗(πdec) < f∗(π∗) (i.e., πdec is suboptimal for f∗).
Claim 2. A DMSO instance (M∗,M) is self-identifiable if and only if M∗ has no decoy in M.

We define model-gap, a modification of function gap which tracks the difference in reward-observation
distributions (expressed via KL-divergence, denoted DKL). The model gap of model M ∈ M is

Γ(M,M) := min
M ′∈M, π∈Π: M(π) ̸=M ′(π)

DKL (M(π),M ′(π) ) .

Our characterization needs an assumption on the ratios of probability masses: 11

Assumption 1. The ratio PrM(π)(r, o) / PrM ′(π) (r, o) is upper-bounded by B < ∞, for any models
M,M ′ ∈ M, any policy π ∈ Π, and any outcome (r, o) ∈ R×O.
Theorem 3. Fix an instance (M∗,M) of DMSO with Assumption 1 and model-gap Γ = Γ(M∗,M).

(a) If the problem instance is self-identifiable, then GreedyMLE (with any warm-up data) satisfies
E [R(t) ] ≤ T0 + (|Π| ln(B)/Γ)2 ·O ( ln ( |M| · t ) ) for each round t ∈ N.

(b) Suppose the warm-up data consists of N0 := c0 · (ln(B)/Γ)2 log |M| samples for each
policy, for an appropriately chosen absolute constant c0 (for the total of T0 := N0|Π|
samples). Assume M∗ has a decoy Mdec ∈ F , with decoy policy πdec. Then with some
probability pdec≥ B−O(N0 |Π|) > 0, GreedyMLE chooses πdec in all rounds t ∈ (T0,∞).

GreedyMLE succeeds (i.e., achieves sublinear regret for any warm-up data) if and only if the problem
instance is self-identifiable. Else, it fails for some warm-up data, with linear regret like in Eq. (4.2).
We also provide a more efficient lower bound on pdec in Theorem 3(b), replacing B with a term that
only concerns two relevant models, Mdec,M

∗ (not all of M). Letting D∞ be the Renyi divergence,

pdec ≥ e−O(CdecN0|Π|), where Cdec = maxπ∈Π D∞ (Mdec(π) ∥M∗(π) ) ≤ logB. (5.3)

Proof Sketch for Theorem 3. We consider the likelihood of a particular model M ∈ M given the
history at round t ≥ 2, Lt(M) := L(M | Ht). We track the per-round change in log-likelihood:

∆ℓt(M) := logLt+1(M)− logLt(M)= log
(
PrM(πt) (rt, ot)

)
. (5.4)

Let L1(·) = 1, so that (5.4) is also well-defined for round t = 1.

We argue that the likelihood of M∗ grows faster than that of any other model M ∈ M. Specifically,
we focus on Φt(M) := E [ ∆ℓt(M

∗)−∆ℓt(M) ]. We claim that

(∀t ∈ N ) If M∗(πt)
d
= M(πt) then Φt(M) = 0 else Φt(M) ≥ Γ. (5.5)

In more detail: if the two models completely coincide on policy πt, then ∆ℓt(M
∗) = ∆ℓt(M), and

otherwise we invoke the definition of the model-gap. We use (5.5) for both parts of the theorem. The
proof of Eq. (5.5) is where we directly analyze regression and invoke the model-gap.

Part (a). Suppose GreedyMLE chooses some suboptimal policy πt in some round t > T0 of the main
stage. By Eq. (5.5) and self-identifiability, it follows that Φt(Mt) ≥ Γ. (Indeed, by (5.5) the only
alternative is M∗(πt)

d
= Mt(πt), and then self-identifiability implies that policy πt is suboptimal for

model Mt, contradiction.) Likewise, we obtain that Φt(M) ≥ Γ for any model M ∈ M for which
policy πt is optimal; let Mopt(π) be the set of all models for which policy π is optimal.

We argue that suboptimal policies π ∈ Π cannot be chosen “too often”. Indeed, fix one such policy π.
Then with high probability (w.h.p.) the likelihood of any model M ∈ Mopt(π) falls below that of
M∗, so this model cannot be chosen again. So, w.h.p. this policy cannot be chosen again. 12

11. Related (but incomparable) assumptions on mass/density ratios are common in the literature on online/offline
RL, [e.g., Munos and Szepesvári, 2008, Xie and Jiang, 2021, Zhan et al., 2022, Amortila et al., 2024].
12. This last step takes a union bound over the models M ∈ Mopt(π), hence log(M) in the regret bound.
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Part (b). We define independent events E1 and E2, resp., on the warm-up process and on all rounds
when the decoy is chosen, so that E1 ∩ E2 guarantees that GreedyMLE gets forever stuck on the
decoy. While this high-level plan is the same as before, its implementation is far more challenging.

To side-step some technicalities, we separate out N0/2 warm-up rounds in which the decoy policy
πdec is chosen. Specifically, w.l.o.g. we posit that πdec is chosen in the last N0/2 warm-up rounds,
and let Hwarm = HT ′

0+1, T ′
0 := T0 −N0/2 be the history of the rest of the warm-up.

First, we consider the “ghost process” (ghost) for generating Hwarm: in each round t ≤ T ′
0, the

chosen policy πt stays the same, but the outcome (rt, ot) is generated according to the decoy model
Mdec. Under ghost, each round raises the likelihood Lt(Mdec) more compared to any other model
M ∈ M. Namely, write ∆ℓt(M) = ∆ℓt(M | Ht) explicitly as a function of history Ht, and let

Φt(M,Mdec) := E [ ∆ℓt(Mdec | Ht)−∆ℓt(M | Ht) ] , (5.6)

where Ht comes from ghost. Reusing Eq. (5.5) (with Mdec now replacing true model M∗), yields:

If Mdec(πt)
d
= M(πt) then Φt(M,Mdec) = 0 else Φt(M,Mdec) ≥ Γ. (5.7)

For each model M ∈ M different from Mdec, there is a policy π ∈ Π on which these two
models differ. This policy appears N0 times in the warm-up data, so by Eq. (5.7) we have∑

t∈[T ′
0]
Φt(M,Mdec) ≥ Γ ·N0. Consequently, letting Mother := M\ {Mdec }, event

E1 = { ∀M ∈ Mother L(Mdec | Hwarm) > L(M | Hwarm) }

happens w.h.p. when Hwarm comes from ghost.13 Since ghost and Hwarm have bounded Renyi
divergence, we argue that with some positive probability, event E1 happens under Hwarm.

Let’s analyze the rounds in which the decoy policy πdec is chosen. Let t(j) be the j-th such round,
j ∈ N. We’d like to argue that throughout all these rounds, the likelihood of the decoy model Mdec

grows faster than that of any other model M ∈ M. To this end, consider event

E2 := { ∀j > N0/2, ∀M ∈ Mother,
∑

i∈[j]Ψi(M) ≥ 0 },

where Ψj(M) := ∆ℓt(j)(Mdec)−∆ℓt(j)(M). Here, we restrict to j > N0/2 to ensure that E1, E2

concern disjoint sets of events, and hence are independent. E1∩E2 implies that in each round t > T0,
Lt(Mdec) > Lt(M) for any model M ∈ Mother, and so GreedyMLE chooses the decoy policy.

Finally, we argue that E2 happens with positive probability. W.l.o.g., the outcomes (rt, ot) in all
rounds t = t(j), j ∈ N are drawn in advance from an “outcome tape”.14 We leverage Eq. (5.5) once
again. Indeed, Ψj(M) = 0 for every model M ∈ M that fully coincides with Mdec on the decoy
policy πdec, so we only need to worry about the models M ∈ M for which this is not the case. Then∑

i∈[j] E [ Ψi(M) ] ≥ j · Γ. We obtain
∑

i∈[j] E [ Ψi(M) ] ≥ 0 with positive-constant probability by
appropriately applying concentration separately for each j > N0/2 and taking a union bound.

6 Structured bandits with an Infinite Function Class

We obtain a partial characterization for StructuredMAB, which handles an arbitrary infinite function
class F and yields better constants compared to Theorem 1. The success of Greedy requires a
stronger notion of self-identifiability: approximately fixing the expected reward of a suboptimal arm
identifies it as suboptimal. The failure of Greedy requires a stronger notion of a decoy function,
which must lie in the “interior” of F . The characterization is “partial” in the sense that it does not
yield a full dichotomy. However, the boundary between success and failure is controlled by a tunable
“margin” parameter ε > 0, which can be made arbitrarily small (and optimized based on the instance).

Definition 7. A problem instance (f∗,F) is ε-self-identifiable, ε ≥ 0, if any suboptimal arm a of f∗

is suboptimal for any reward function f ∈ F with |f(a)− f∗(a)| ≤ ε. An ε-interior of F , int(F , ε)
is the set of all functions f ∈ F , such that any reward function f ′ with ∥f ′ − f∥2 ≤ ε is also in F .

13. This argument invokes a concentration inequality, which in turn uses Assumption 1. Likewise, Assumption 1
is used for another application of concentration in the end of the proof sketch.
14. Its entries j ∈ N are drawn independently from M∗(πdec), and (rt(j), ot(j)) is defined as the j-entry.
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For a “continuous” function class such as linear functions or Lipschitz functions, int(F , ε) typically
includes all but an O(ε)-fraction of F . The choice of the ℓ2 norm in the definition of ε-interior is not
essential: any ℓp norm suffices. We provide the main theorem below; see proof in Appendix H.
Theorem 4. Fix a problem instance (f∗,F) of StructuredMAB with an infinite function class F
(but a finite action set A). For any ε > 0 (which can be optimized based on f∗):

(a) If the problem instance is ε-self-identifiable, then Greedy (with any warm-up data) satisfies
E [R(t) ] ≤ T0 + (K/ε)2 ·O(log t) for each round t ∈ N.

(b) Suppose the warm-up data consists of one sample for each arm. Assume f∗ has a decoy
fdec ∈ int(F , ε), with decoy arm adec. Then with some probability pdec > 0 it holds that
Greedy chooses adec for all rounds t ∈ (T0,∞). We can lower-bound pdec by e−O(K2/ε2).

This result mirrors Theorem 1, with the function gap replaced by ε, allowing for instance-dependent
optimization of ε and tighter bounds. The proof for part (a) carries over with simple modifications.
In contrast, proving part (b) is considerably more subtle. In the infinite case, Greedy may not get
stuck on a single reward function—it could almost surely switch among infinitely many. The key
insight is that such fluctuations need not impact the arm choice: even as the predictor ft changes, the
greedy selection at may remain fixed. The proof exploits this decoupling, constructing events where
the algorithm persistently selects a decoy arm, even as the greedy predictors continue to evolve.

Discussion: challenges. An “if and only if” characterization for arbitrary infinite function classes
is very difficult. First, one can no longer rely on the function-gap being strictly positive, which is
a cornerstone of our analysis in the finite case. Second, Greedy’s behavior can be highly unstable:
the algorithm’s predictor ft can fluctuate indefinitely within a continuous region of functions that
are all similarly consistent with data yet induce very different greedy action choices. As a result, the
intuitive logic of “getting stuck in a decoy and staying there forever” does not directly extend.

The partial characterization in Theorem 4 is our proposed route to address these challenges. The
margin ε serves a dual purpose: it stands in for the now-absent function-gap, and it allows us to deal
with the predictor’s instability (by showing that at can remain permanently fixed).

However, this is still insufficient for a complete characterization. For many natural function classes,
our framework leaves a set of instances, typically of fraction O(ε), uncharacterized. The boundary
between success and failure instances in a general infinite space can be highly complex; success
instances can be very close to failure instances, making a sharp separation difficult. Our ε-interior
notion is designed to provide a robust buffer around this boundary, at the cost of leaving instances
within that buffer “undecided.” A tight characterization in full generality would likely require a more
fine-grained analysis exploiting additional structural properties of the function class F .

7 Conclusions

We study Greedy in structured bandits and characterize its asymptotic success vs failure in terms of a
simple partial-identifiability property of the problem structure. Our characterization holds for arbitrary
finite structures and extends to bandits with contexts and/or auxiliary feedback. In particular, we find
that Greedy succeeds only if the problem is intrinsically “easy” for any algorithm which satisfies a
mild non-degeneracy condition. We also provide a partial characterization for StructuredMAB with
infinite reward structures (and finite action sets).

Several examples, both positive and negative, instantiate our characterization for various well-studied
reward structures. We find that failure tends to be a common case for bandits, whereas both failure
and success are common for structured contextual bandits.

We identify three directions for further work. First, extend our characterization to infinite action
sets and infinite function/model classes (ideally with a complete characterization, as discussed in
Section 6). Second, consider approximate greedy algorithms, stemming either from approximate
regression or from human behaviorial biases. Such algorithms, representing myopic human behavior
under behavioral biases, were studied in Banihashem et al. [2023], but only for unstructured multi-
armed bandits. Third, while our “asymptotic” perspective enables a general characterization, stronger
regret guarantees are desirable for particular reward structures (and are known for only a few).
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András Antos, Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a classification of finite
partial-monitoring games. Theor. Comput. Sci., 473:77–99, 2013.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. of Machine Learning
Research (JMLR), 3:397–422, 2002. Preliminary version in 41st IEEE FOCS, 2000.
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András György, Tamás Linder, Gábor Lugosi, and György Ottucsák. The on-line shortest path
problem under partial monitoring. J. of Machine Learning Research (JMLR), 8:2369–2403, 2007.

J. Michael Harrison, N. Bora Keskin, and Assaf Zeevi. Bayesian dynamic pricing policies: Learning
and earning under a binary prior distribution. Management Science, 58(3):570–586, 2012.

Baihe Huang, Kaixuan Huang, Sham M. Kakade, Jason D. Lee, Qi Lei, Runzhe Wang, and Jiaqi
Yang. Optimal gradient-based algorithms for non-concave bandit optimization. In 34th Advances
in Neural Information Processing Systems (NeurIPS), pages 29101–29115, 2021.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Our main result assumes a finite function class and comes with possibly large
constants. We discuss these limitations in detail, and also partially address them in our
second main result in Section 6.
Throughout, we assume realizability—the standard assumption in structured bandit problems
that the true model lies within the model class. While this assumption may not hold exactly
in practice, it is pervasive in the bandits literature and serves as a foundational premise for
theoretical analysis. Accordingly, our results should be interpreted in the context of this
widely adopted framework.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide full set of assumptions and complete proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not contain experimental results, hence the question does not
apply.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This question does not pertain since the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
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Justification: The paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conform with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical paper on multi-armed bandits, focusing on foundational
aspects of the field. We do not anticipate any direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This question does not apply to the current submission.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This question does not apply to the current submission.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This question does not apply to the current submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This question does not apply to the current submission.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This question does not apply to the current submission.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A StructuredCB with tie-breaking

Let us outline how to adjust our definitions and results to account for ties in Eq. (2.2). We assume
that the ties are broken at random, with some minimal probability q0 > 0 on every optimal arm
(i.e., every arm in argmaxa∈A ft(xt, a)). More formally, Greedy breaks ties in Eq. (2.2) according
to an independent draw from some distribution Dt over the optimal arms with minimal probability at
least q0. Subject to this assumption, the tie-breaking distributions Dt can be arbitrary, both within a
given round and from one round to another.

The positive results (Definition 3 and Theorem 2(a)) carry over word-by-word, both the statements
and the proofs. The negative results (Definition 4 and Theorem 2(b)) change slightly. Essentially,
whenever we invoke the optimal arm for decoy fdec, we need to change this to all optimal arms for
fdec.
Definition 8 (decoy). Let f∗ be a reward functions, with optimal policy π∗. Another reward function
fdec is called a decoy for f∗ if any optimal policy πdec for fdec satisfies fdec(πdec) = f∗(πdec) <
f∗(π∗) and moreover fdec(x, πdec(x)) = f∗(x, πdec(x)) for all contexts x ∈ X .

The equivalence of self-identifiability and not having a decoy holds as before, i.e., the statement of
Claim 1 carries over word-by-word. Moreover, it is still the case that “self-identifiability makes the
problem easy”: all of Appendix C carries over as written.
Theorem 5 (negative). Fix a problem instance (f∗,F) of StructuredCB. Suppose the warm-up
data consists of one sample for each context-arm pair. Assume f∗ has a decoy fdec ∈ F . Let Πdec is
the set of all policies that are optimal for fdec. Then with some probability pdec > 0, Greedy only
chooses policies πt ∈ Πdec in all rounds t ∈ (T0,∞). We have pdec ≥ X−O(KX/Γ2(fdec)), where
X = |X |.

Under these modifications, Remark 1 applies word-by-word. In particular, existence of a decoy
implies linear regret, where each round t with πt ∈ Πdec increases regret by f∗(π∗)− f∗(πdec).

Proof of Theorem 5. The proof of Theorem 2(b) mostly carries over, with the following minor
modifications. Let A∗

dec(x) = argmaxa∈A fdec(x) be the set of optimal arms for the decoy fdec for
a given context x. The two events E1 and E2 (as originally defined eq. (F.1) and eq. (F.2)) will be
modified to be invoked on all decoy context-arm pairs.

E1 = { |r̄warm(x, a)− fdec(x, a)| < Γ(fdec)/2 for each x ∈ X and arm a /∈ A∗
dec(x) } ,

E2 = { |r̄t(x, πdec(x))− f∗(x, πdec(x))| < Γ(fdec)/2 for each x ∈ X , a ∈ A∗
dec(x), and round t > T0 } .

Analyzing the probability for event E1 still follows from Lemma 20. Analyzing the probabil-
ity for event E2 follows from Lemma 21, but with the choice of σ will be chosen as σ =

Θ(Γ(fdec)/
√
ln(|X |K)), and we still have Pr[E2] ≥ 0.9.

23



B Novelty of self-identifiability

We argue that self-identifiability is a novel notion. Specifically, we compare it to (i) knowing the
optimal value, and (ii) Graves-Lai coefficient being 0.

First, one could ask if self-identifiability is equivalent to knowing the value of the best arm. However,
the former does not imply the latter. Consider the simple example F = {(3, 1), (2, 1)}. Both
functions are self-identifiable in F , but clearly the optimal value differs.

Second, consider the Graves-Lai coefficient [Graves and Lai, 1997, Wagenmaker and Foster, 2023].
Let us define it formally, for the sake of completeness. Consider DMSO, as defined in Section 5, with
model class M. Let

∆(π|M) = f(πM |M)− f(π|M)

be the suboptimality gap for model M and policy π, where πM is the optimal policy for M . Let
Malt be the set of models that disagree with M on the optimal policy:

Malt(M) := {M ′ ∈ M|πM ̸= πM ′} .
Now, the Graves-Lai coefficient is defined as

GLC(M,M) = inf
η∈RΠ

+

{∑
π∈Π

ηπ∆(π|M) | ∀M ′ ∈ Malt(M) :
∑
π∈Π

ηπDKL (M(π)∥M ′(π)) ≥ 1

}
.

Intuitively, the Graves-Lai coefficient measures the “verification” cost of verifying whether a given
function f∗ (or a given model M∗ in the DMSO setting) is indeed the true model. The Graves-Lai
coefficient being 0 implies that the learner can ascertain that f∗ or M∗ is indeed the true model by
simply executing the set of optimal policies Π(f∗) or Π(M∗).

Now, one could ask if self-identifiability is equivalent to GLC(M,M) = 0. We observe that this is
not the case: the two notions are incomparable. For a counterexample, consider StructuredMAB
with two arms and F = {(2, 1), (0.5, 1)}. Problem instance f∗ = (0.5, 1) is self-identifiable, since
revealing the sub-optimal arm as having reward 0.5 immediately rules out (2, 1) as being the true
model. But the GLC > 0, since to ascertain (0.5, 1) as being the true model one necessarily has to
choose the 1st arm and experiment. On the other hand, one can see f∗ = (2, 1) is not self-identifiable
but has GLC = 0. In this example, Greedy succeeds when GLC > 0 (larger GLC suggests larger
regret of the optimal algorithm in GLC-based theory) but fails when GLC = 0 (lower GLC suggests
lower regret of the optimal algorithm in GLC-based theory)! Hence GLC does not capture the
per-instance behavior of Greedy.

However, GLC has some connection to our machinery. Namely, if GLC(F , f) = 0 for some reward
function f , then f necessarily cannot be a decoy for any other reward function f∗. That said,
GLC(F , f) provides no information about whether f itself admits a decoy. We believe that GLC
precisely characterizes the asymptotic performance of the optimal algorithm [Graves and Lai, 1997,
Wagenmaker and Foster, 2023], whereas self-identifiability precisely captures the asymptotic behavior
of Greedy —a generally suboptimal algorithm.

C Self-identifiability makes the problem easy

Our characterization raises a natural question: does the success of Greedy under self-identifiability
stem from the algorithm itself, from self-identifiability, or both? Put differently, when Greedy
succeeds, does it make any non-trivial effort toward its success?

Surprisingly, our characterization provides a definitive negative answer: Greedy succeeds because
self-identifiability makes the problem intrinsically “easy.” We prove that whenever self-identifiability
holds, any reasonable algorithm (satisfying a mild non-degeneracy condition defined blow) also
achieves sublinear regret. This, in a sense, reveals the “triviality” of the greedy algorithm: it succeeds
only when the problem is so easy that any reasonable algorithm would succeed.

To formalize this, we must clarify what we mean by “reasonable algorithms.” Clearly, we need to
exclude certain degenerate cases, such as static algorithms that pick a single arm forever, neither
exploring nor exploiting information. We argue that a reasonable algorithm should at least care
about information—whether through exploration, exploitation, or both. In other words, a reasonable
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algorithm should never select an action that serves neither any exploration purpose (i.e., bringing
new information) nor any exploitation purpose (i.e., utilizing existing information). This principle
naturally leads to information-aware algorithms formally defined below.

We work in the setting of StructuredCB, and explain how to specialize it to StructuredMAB.

Definition 9. Consider some round t in StructuredCB. We say policy π is δ-identified-and-
suboptimal if there exists a suitable concentration event which happens with probability 1 − δ,
such that under the concentration event, its mean rewards f∗(x, π(x)) for each context x are
exactly identified given the current history, and moreover this identification reveals that the policy is
suboptimal given the function class.

For StructuredMAB, this definition specializes to defining δ-identified-and-suboptimal arms.

Definition 10. An algorithm for StructuredCB (resp., StructuredMAB) is called δ-information-
aware if at each round, it does not choose any policy (resp., arm) that is δ-identified-and-suboptimal.

Let us define the concentration events: EMAB for StructuredMAB and ECB for StructuredCB:

EMAB := { |r̄t(a)− f∗(a)| > βt (Nt(a) ) ∀a ∈ A, t ∈ N } , (C.1)
ECB := { |r̄t(x, a)− f∗(x, a)| < βt (Nt(x, a) ) and Nt(x, a) > Ω(Nt(π) p0)

with a = π(x) ∀x ∈ X , π ∈ Π, t ∈ N }, (C.2)

where βt(n) =

√
2
n log

(
10K |X | t·n2

3δ

)
and Nt(x) is the number of times context x has been

observed before round t. Here, p0 is the smallest context arrivial probability, like in Section 4. Note
that EMAB is just a specialization of ECB.

Theorem 6. Consider StructuredCB with time horizon T . Any 1/T -information-aware algorithm
ALG achieves a sublinear regret E [R(T ) ] under self-identifiability.

Proof. Assume ECB holds. Fix any suboptimal policy π. We show π can only be chosen o(T ) times.

By the definition of βt(·) in the event ECB, there must exists some parameter T ′ = Θ̃(1/Γ2(f∗))(=
o(T )), such that βt(T

′) < Γ(f∗). Then, if the suboptimal policy π is executed above the threshold
Ω(T ′/p0), we have Nt(x, a) > T ′, and consequently for any context x,

|r̄t(x, π(x))− f∗(x, π(x))| < β(T ′) < Γ(f∗).

Then recall for any function f and context-arm pair (x, a), we have either f(x, a) = f∗(x, a) or
|f(x, a)− f∗(x, a)| ≥ Γ(f∗). This precisely means the policy π becomes identified, and by self-
identifiability, any information-aware algorithm will not keep choosing π. Hence, the total regret of
the information-aware algorithm is at most O(T ′|Π|), which is sublinear o(T ).

D Examples

Let us instantiate our characterization for several well-studied reward structures from bandits literature.
We consider linear, Lipschitz, and (one-dimensional) polynomial structures, for bandits as well as
contextual bandits. All reward structures in this section are discretized to ensure finiteness, as required
for our complete characterization in Sections 3 to 5. (While our partial characterization in Section 6
handles infinite reward structures, a secondary goal of this section is to illustrate how common infinite
reward structures can be meaningfully discretized so that the complete finite-structure results become
directly applicable.) The discretization is consistent across different reward functions, in the sense
that all functions take values in the same (discrete) set R, with |R| ≪ |F|. This prevents a trivial
form of self-identifiability that could arise if each reward function f were discretized independently
and inconsistently, resulting in some f(a) values being unique and making f self-identifiable solely
due to the discretization strategy specific to f .15

15. For example, consider an instance (f∗,F) being not self-identifiable, with its decoy fdec ∈ F satisfying
f∗(adec) = fdec(adec) = 0.5. Now, suppose we discretize f∗(adec) using discretization step 0.1 and discretize
fdec(adec) using discretization step 0.2. After this modification, f∗(adec) and fdec(adec) would no longer be
equal, and self-identifiability could occur.
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On a high level, we prove that decoys exist for “almost all” instances of all bandit structures that we
consider (i.e., linear, Lipschitz, polynomial, and quadratic). Therefore, the common case in all these
bandit problems is that Greedy fails.

For contextual bandits (CB), our findings are more nuanced. Linear CB satisfy identifiability when
the context set is sufficiently diverse (which is consistent with prior work), but admit decoys (as
a somewhat common case) when the context set is “low-dimensional”. In contrast, existence of
decoys is the common case for Lipschitz CB. One interpretation is that self-identifiability requires
both context diversity and a parametric reward structure which enables precise “global inferences”
(i.e., inferences about arms that are far away from those that have been sampled).

In what follows, we present each structure in a self-contained way, interpreting it as special case of
our framework. Since our presentation focuses on best-arm-unique reward functions, our examples
are focused similarly (except those for Linear CB). Throughout, let [y, y′]ε be a uniform discretization
of the [y, y′] interval with step ε > 0, namely: [y, y′]ε := { ε · n ∈ [y, y′] : n ∈ N }. Likewise, we
define (y, y′)ε := { ε · n ∈ (y, y′) : n ∈ N }.

D.1 (Discretized) linear bandits

Linear bandits is a well-studied variant of bandits [Auer, 2002, Abe et al., 2003, Dani et al., 2008,
Rusmevichientong and Tsitsiklis, 2010].16 Formally, it is a special case of StructuredMAB defined
as follows. Arms are real-valued vectors: A ⊂ Rd, where d ∈ N is the dimension. Reward functions
are given by fθ(a) = a · θ for all arms a, where θ ∈ Θ ⊂ Rd. The parameter set Θ is known to the
algorithm, so the function class is F = { fθ : θ ∈ Θ }. The true reward function is f∗ = fθ∗ for
some θ∗ ∈ Θ. (Fixing Θ, we interpret θ∗ as a “problem instance”.)

Linear bandits, as traditionally defined, let Θ be (continuously) infinite, e.g., a unit ℓ1-ball, and
sometimes consider an infinite (namely, convex) action set. Here, we consider a “discretized” version,
whereby both Θ and A are finite. Specifically, Θ = ( [−1, 1]ε \ {0} )d, i.e., all parameter vectors in
[0, 1]d with discretized non-zero coordinates. Action set A is an arbitrary finite subset of [−1, 1]d

containing the hypercube {−1, 1 }d. 17 Note that each reward function fθ, θ ∈ Θ has a unique best
arm a∗θ = sign(θ) := ( sign(θi) : i ∈ [d] ) ∈ {−1, 1 }d.

We prove that linear bandits has a decoy for “almost all” problem instances.

Lemma 1. Consider linear bandits with dimension d ≥ 2, parameter set Θ = ( [−1, 1]ε \ {0} )d,
ε ∈ (0, 1/4], and an arbitrary finite action set A ⊂ [−1, 1]d containing the hypercube {−1, 1 }d.
Consider an instance θ∗ ∈ Θ such that ∥θ∗∥1 − 2 mini∈[d] |θ∗i | ≥ dε. Then θ∗ has a decoy in Θ.

Proof. Let j ∈ [d] be a coordinate with the smallest |θ∗j |. Choose arm adec ∈ {−1, 1 }d with
(adec)i = sign(θ∗i ) for all coordinates i ̸= j, and flipping the sign for i = j, (adec)j = −sign(θ∗j ).
Note that ⟨θ∗|adec⟩ = ∥θ∗∥1 − 2 mini∈[d] |θ∗i | ∈ [dε, d].

Now, for any given α ∈ [dε, d]ε and any sign vector v ∈ {−1, 1}d, there is θ ∈ Θ such that ∥θ∥1 = α
and its signs are aligned as sign(θ) = v. Thus, there exists θdec ∈ Θ such that ∥θdec∥1 = ⟨θ∗|adec⟩
and sign(θdec) = adec. Note that adec is the best arm for θdec. Moreover, ⟨θdec|adec⟩ = ∥θdec∥1 =
⟨θ∗|adec⟩ < ∥θ∗∥1 = ⟨θ∗|a∗⟩. So, θdec is a decoy for θ∗.

D.2 (Discretized) linear contextual bandits

Linear contextual bandits (CB) are studied since [Li et al., 2010, Chu et al., 2011, Abbasi-Yadkori
et al., 2011]. Formally, it is a special case of StructuredCB defined as follows. Each context is a
tuple x =

(
x(a) ∈ Rd : a ∈ A

)
∈ X ⊂ Rd×K , where d ∈ N is the dimension and X is the context

set. Reward functions are given by fθ(x, a) = x(a) · θ for all context-arm pairs, where θ ∈ Θ ⊂ Rd

and Θ is a known parameter set. While Linear CB are traditionally defined with (continuously)
infinite Θ and X , we need both to be finite.

16. We consider stochastic linear bandits. A more general model of adversarial linear bandits is studied since
Awerbuch and Kleinberg [2008], McMahan and Blum [2004], see Bubeck and Cesa-Bianchi [2012, Chapter 5]
for a survey.
17. For ease of exposition, we relax the requirement that expected rewards must lie in [0, 1].
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Like in linear bandits, the function class is F = { fθ : θ ∈ Θ }. The true reward function is f∗ = fθ∗

for some θ∗ ∈ Θ, which we interpret as a “problem instance”.
Remark 2. For this subsection, we do not assume best-arm-uniqueness, and instead rely on the
version of our characterization that allows ties in (2.2), see Appendix A.

We show that self-identifiability holds when the context set is sufficiently diverse. Essentially, we
posit that per-arm contexts x(a) take values in some finite subset Sa ⊂ Rd independently across
arms, and each Sa spans Rd; no further assumptions are needed.
Lemma 2 (positive). Consider linear CB with degree d ≥ 1 and an arbitrary finite parameter set
Θ ⊂ Rd. Suppose the context set is X =

∏
a∈A Sa, where Sa ⊂ [−1, 1]d are finite “per-arm”

context sets such that each Sa spans Rd. Then self-identifiability holds for all instances θ∗ ∈ Θ.

Proof. Fix some policy π. For a given context x, let v(x) = x(π(x)) ∈ Rd be the context vector pro-
duced by this policy. Let’s construct a set X0 ⊂ X of contexts such that v(X0) := { v(x) : x ∈ X0 },
the corresponding set of context vectors, spans Rd. Add vectors to X0 one by one. Suppose cur-
rently v(X0) does not span Rd. Then, for each arm a ∈ A, the per-arm context set Sa is not
contained in span(v(X0)); put differently, there exists a vector va ∈ Sa \ span(v(X0)) ∈ Rd. Let
x = (x(a) = va : ∀a ∈ A ) ∈ X be the corresponding context. It follows that v(x) ̸∈ span(v(X0)).
Thus, adding x to the set X0 increases span(v(X0)). Repeat this process till v(X0) spans Rd.

Thus, fixing expected rewards of policy π for all contexts in X0 gives a linear system of the form

v(x) · θ∗ = α(x) ∀x ∈ X0,

for some known numbers α(x) and vectors v(x), x ∈ X0. Since these vectors span Rd, this linear
system completely determines θ∗.

Remark 3. In particular, Lemma 2 holds when the context set is a (very) small perturbation of one
particular context x. For a concrete formulation, let S(a) = {x(a) + ε ei : i ∈ [d] } for each arm a
and any fixed ε > 0, where ei, i ∈ [d] is the coordinate-i unit vector. This is consistent with positive
results for Greedy in Linear CB with smoothed contexts [Kannan et al., 2018, Bastani et al., 2021,
Raghavan et al., 2023], where “nature” adds variance-σ2 Gaussian noise to each per-arm context
vector. (Greedy achieves optimal regret rates which degrade as σ increases, e.g., E [R(T ) ] ≤
Õ(

√
T/σ).) We provide a qualitative explanation for this phenomenon.

On the other hand, decoys may exist when the context set X is degenerate. We consider X =∏
a∈A Sa, like in Lemma 2, but now we posit that the per-arm sets Sa do not span Rd, even jointly.

We prove the existence of a decoy under some additional conditions.
Lemma 3 (negative). Consider linear CB with parameter set Θ = [−1, 1]dε , for some degree d ≥ 2
and discretization step ε ∈ (0, 1/2] with 1/ε ∈ N. Suppose the context set is X =

∏
a∈A Sa,

where Sa ⊂ [−1, 1]d are the “per-arm” context sets. Assume span(S1, . . . , SK−1) ⊂ Rd−1 and
SK = {( 0, 0, . . . , 0, 1 )}. Then any instance θ∗ ∈ Θ with θ∗d = 1 and ∥θ∗∥1 < 2 has a decoy in Θ.

Proof. Consider vector θdec ∈ Θ such that it coincides with θ∗ on the first d− 1 components, and
(θdec)d = −1. We claim that θdec is a decoy for θ∗.

To prove this claim, fix context x ∈ X . Let a∗, adec be some optimal arms for this context under θ∗
and θdec, respectively. Then adec ∈ [K − 1]. (This is because the expected reward x(a) · θ∗ of arm a
is greater than -1 when a ∈ [K − 1], and exactly −1 when a = K.) Similarly, we show that a∗ = K.
It follows that x(adec) · θdec = x(adec) · θ∗, since θdec and θ∗ coincide on the first K − 1 coordinates,
and the last coordinate of x(adec) is 0. Moreover x(adec) · θ∗ < 1 = x(a∗) · θ∗. Putting this together,
x(adec) · θdec = x(adec) · θ∗ < x(a∗) · θ∗, completing the proof.

D.3 (Discretized) Lipschitz Bandits

Lipschitz bandits is a special case of StructuredMAB in which all reward functions f ∈ F satisfy
Lipschitz condition, |f(a)− f(a′)| ≤ D(a, a′), for any two arms a, a′ ∈ A and some known metric
D on A. Introduced in Kleinberg et al. [2008], Bubeck et al. [2011], Lipschitz bandits have been
studied extensively since then, see Slivkins [2019, Ch. 4.4] for a survey. The paradigmatic case is
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continuum-armed bandits [Agrawal, 1995, Kleinberg, 2004, Auer et al., 2007], where one has action
set A ⊂ [0, 1] and metric D(a, a′) = L · |a− a′|, for some L > 0.

Lipschitz bandits, as traditionally defined, allow all reward functions that satisfy the Lipschitz
condition, and hence require an infinite function class F . To ensure finiteness, we impose a finite
action set A and constrain the set of possible reward values to a discretized subset R = [0, 1]ε. We
allow all Lipschitz functions A → R. Further, we restrict the metric D to take values in the same
range R. We call this problem discretized Lipschitz bandits.

We show that “almost any” any best-arm-unique reward function has a best-arm-unique decoy.
Lemma 4. Consider discretized Lipschitz bandits, with range R = [0, 1]ε and metric D. Let F be
the set of all best-arm-unique Lipschitz reward functions A → R. Consider a function f ∈ F such
that 0 < f(a) < f(a∗) some arm a. Then f has a decoy fdec ∈ F (with decoy arm a).

Proof. Define reward function fdec by fdec(a
′) = min ( 0, f(a)−D(a, a′) ) for all arms a′ ∈ A.

So, fdec takes values in R and is Lipschitz w.r.t. D (since D satisfies triangle inequality); hence
fdec ∈ F . Also, fdec has a unique best arm a (since f(a) > 0 and the distance between any two
distinct points is positive). Note that fdec(a) = f(a) < f(a∗), so fdec is a decoy.

This result extends seamlessly to Lipschitz contextual bandits (CB) [Lu et al., 2010, Slivkins, 2014],
albeit with somewhat heavier notation. Formally, Lipschitz CB is a special case of StructuredCB
which posits the Lipschitz condition for all context-arm pairs: for each reward function f ∈ F ,

|f(x, a)− f(x′, a′)| ≤ D ( (x, a), (x′, a′) ) ∀x, x′ ∈ X , a, a′ ∈ A, (D.1)

where D is some known metric on X ×A. As traditionally defined, Lipschitz CB allow all reward
functions which satisfy (D.1). We define discretized Lipshitz CB same way as above: we posit
finite X ,A, restrict the range of the reward functions and the metric to range R = [0, 1]ε, and
allow all functions f : X × A → R which satisfy (D.1). Again, we show that “almost any” any
best-arm-unique reward function has a best-arm-unique decoy.
Lemma 5. Consider discretized Lipschitz CB, with range R = [0, 1]ε and metric D. Let F be the set
of all best-arm-unique Lipschitz reward functions X ×A → R. Consider a best-arm-unique function
f ∈ F such that for some policy π we have 0 < f(x, π(x)) < f(x, π∗(x)) for each context x. Then
f has a best-arm-unique decoy fdec ∈ F (with decoy policy π).

Proof. Define reward function fdec by fdec(x, a) = min ( 0, f(x, π(x))−D ( (x, π(x)), (x, a) ) )
for all context-arm pairs (x, a). Like in the proof of Lemma 4, we see that fdec takes values in R and
is Lipschitz w.r.t. D, hence fdec ∈ F . And it has a unique best arm π(x) for each context x. Finally,
fdec(x, π(x)) = f(x, π(x)) < f(x, π∗(x)), so fdec is a decoy.

D.4 (Discretized) polynomial bandits

Polynomial bandits [Huang et al., 2021, Zhao et al., 2023] is a bandit problem with real-valued
arms and polynomial expected rewards.18 We obtain a negative result for “almost all” instances of
polynomial bandits, and a similar-but-cleaner result for the special case of “quadratic bandits”.

We define polynomial bandits as a special case of StructuredMAB with action set A ⊂ R and reward
functions f are degree-p polynomials, for some degree p ∈ N. Denote reward functions as f = fθ,
where θ = (θ0, . . . , θp) ∈ Rp+1 is the parameter vector with θp ̸= 0, so that fθ(a) =

∑p
q=0 θq · aq

for all arms a. The function set is F = { fθ : θ ∈ Θ }, for some parameter set Θ. Typically one
allows continuously many actions and parameters, i.e., an infinite reward structure.

We consider discretized polynomial bandits, with finite A and Θ. The action space is A = [0, 1/2]ε,
for some fixed discretization step ε ∈ (0, 1

2p ). The parameter set Θ needs to be discretized in a more
complex way, in order to guarantee that the function class contains a decoy. Namely,

Θ =
∏p

q=0 [−1/q, 1/q ]δ(q) ,where δ(q) = εp+1−q.

18. Huang et al. [2021], Zhao et al. [2023] considered a more general formulation of polynomial bandits, with
multi-dimensional arms a ∈ Rd. It was also one of the explicit special cases flagged in Parys and Golrezaei
[2024].
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We “bunch together” all polynomials with the same leading coefficient θp. Specifically, denote
Θγ = {θ ∈ Θ : θp = γ } and Fγ = { fθ : θ ∈ Θγ }, for γ ̸= 0.

We focus on reward functions fθ such that

a∗θ = argmax
a∈A

fθ is unique and fθ(a
∗
θ) > sup

a∈(maxA,∞)ε

fθ(a);

call such fθ well-shaped. In words, the “best feasible arm in A” is unique, and dominates any larger
discretized arm.19 (We do not attempt to characterize which polynomials are well-shaped.)

We prove that “almost any” well-shaped function fθ ∈ Fγ has a well-shaped decoy in Fγ , for any
non-zero γ in some (discretized) range.20 Here, “almost all” is in the sense that every non-leading
coefficient of θ must be bounded away from the boundary by 5ε, namely: θq ∈ [−1/q + 5ε, 1/q − 5ε ]
for all q ̸= p. Let Θbdd

γ be the set of all such parameter vectors θ ∈ Θγ . Moreover, we consider θ
such that the best arm satisfies a∗θ > ε.

Lemma 6. Consider discretized polynomial bandits, as defined above, for some degree p ≥ 2 and
discretization step ε ∈ (0, 1

2p ). Fix some non-zero γ ∈ [−1/p, 1/p ]ε. Then any well-shaped reward
function fθ ∈ Fγ with θ ∈ Θbdd

γ and a∗θ > ε has a well-shaped decoy in Fγ .

Proof. Fix one such function fθ. Consider a function fdec : R → R defined by

fdec(a) ≡ fθ(a+ ε)− ( fθ(a
∗
θ)− fθ(a

∗
θ − ε) ) , ∀a ∈ R. (D.2)

In the rest of the proof we show that fdec is a suitable decoy.

First, we observe that fdec = fθdec
, where θdec ∈ Rp+1 is given by (θdec)p = θp,

(θdec)q =

p∑
i=q

θi

(
i

q

)
εi−q, ∀q = { p− 1 , . . . , 1 } , and

(θdec)0 =

p∑
i=0

θi ε
i − ( fθ(a

∗
θ)− fθ(a

∗
θ − ε) ) .

Second, we claim that θdec ∈ Θγ . Indeed, the above equations imply that all coefficients of θdec are
suitably discretized: (θdec)q ∈ (−∞,∞)δ(q) for all q ∈ { 0 , . . . , p− 1 }. It remains to show that
they are suitably bounded; this is where we use θ ∈ Θbdd. We argue this as follows:

• Since |θq| ≤ 1/q for all q = 0, . . . , p and
∑p

i=1 1/(i!) < e ≤ 3, a simple calculation shows
that |(θdec)q − θq| ≤ 3ε for each q ∈ { p− 1 , . . . , 1 }.

• Since |θq| ≤ 1/q for all q = 0, . . . , p and a ∈ [0, 1/2], a simple calculation shows that
fθ(a) is 2-Lipchitz on A, so |fθ(a∗θ)− fθ(a

∗
θ − ε)| ≤ 2ε, and moreover |(θdec)0 − θ0| ≤

3ε+ 2ε = 5ε.

Claim proved.

Third, we prove that fdec is well-shaped and is a decoy for fθ. Indeed, Eq. (D.2) and a∗θ > ε,
combined with the well-shaped condition (1) a∗θ = argmaxa∈A fθ being unique and (2) fθ(a∗θ) <
supa∈(maxA,∞)ε fθ(a), imply that (1) a∗dec = a∗θ − ε ∈ A is the unique best arm under fdec,
i.e., argmaxa∈A fdec(a) and (2) fdec(a

∗
dec) < supa∈(maxA,∞)ε fdec(a), which means that fdec

satisfies the well-shaped condition. Moreover, we have

fdec(a
∗
dec) = fθ(a

∗
dec) < fθ(a

∗
θ),

where the equality holds by (D.2), and the inequality holds by the uniqueness of a∗θ.

19. Being well-shaped is a mild condition. A sufficient condition is as follows: argmaxa∈(∞,∞)ε fθ is unique
and lies in (0, 1/2]. Note that even if argmaxa∈R fθ is non-unique or falls outside (0, 1/2], it is still possible that
fθ is well-shaped, since argmaxa∈R fθ is not necessarily in (−∞,∞)ε.
20. As a corollary, if we consider the function set consisting of all “well-shaped reward functions in Fγ”, then
“almost any” function in this function set has a decoy in the same function set.

29



D.5 (Discretized) quadratic bandits

Quadratic bandits is a special case of polynomial bandits, as defined in Appendix D.4, with degree
p = 2. Quadratic bandits (in a more general formulation, with multi-dimensional arms a ∈ Rd) have
been studied, as an explicit model, in Shamir [2013], Huang et al. [2021], Yu et al. [2023]. We obtain
a similar negative guarantee as we do for polynomial bandits – “almost any” problem instance has a
decoy – but in a cleaner formulation and a simpler proof.

Let’s use a more concrete notation: reward functions are fγ,µ,c with

f(γ,µ,c)(a) = γ(a− µ)2 + c,

where the leading coefficient γ < 0 determines the shape (curvature) of the function and the other
two parameters µ, c ∈ [0, 1] determine the location of the unique global maximum (i.e., (µ, c)).

Discretization is similar, but slightly different. The action space is A = [0, 1]ε, for some fixed
discretization step ε ∈ (0, 1/2]. The parameter space Θ, i.e., the set of feasible (γ, µ, c) tuples, is
defined as γ ∈ [−1,−0.5]ε, µ ∈ [0, 1]ε and c ∈ [0, 1]ε3 . Note that µ ∈ A, so any function f(γ,µ,c)
has a unique optimizer at a = µ ∈ A.

We focus on function space Fγ :=
{
f(γ,µ,c) : (γ, µ, c) ∈ Θ

}
, grouping together all functions with

the same leading coefficient γ. We prove that “almost any” function in Fγ has a decoy in Fγ .
Lemma 7. Consider discretized quadratic bandits, for some fixed discretization step ε ∈ (0, 1/2]. Fix
any leading coefficient γ ∈ [−1,−0.5]ε. Then for any reward function f∗ = f(γ,µ,c) ∈ Fγ , it has a
decoy fdec ∈ Fγ , as long as µ, c are bounded away from 0: µ ≥ ε and c ≥ |γ|ε2.

Proof. Consider reward function fdec = f(γ, µ−ε, c+γε2). Since µ ≥ ε and c ≥ |γ|ε2, it follows that
fdec ∈ Fγ . Let us prove that fdec is a decoy for f∗. Note that µ− ε is a suboptimal action for f∗ and
is the optimal action for fdec. Finally, it is easy to check that f∗(µ−ε) = γε2+c = fdec(µ−ε).

E StructuredMAB characterization: Proof of Theorem 1

E.1 StructuredMAB Success: Proof of Theorem 1(a)

Let us fix the time horizon t and show the bound on the expected regret E[R(t)]. Recall that r̄t(a) as
the empirical mean for arm a and that Nt(a) is the number of times arm a pulled up to round t. Also
recall the greedy algorithm is minimizing the following loss function each round:

MSEt(f) :=
∑

a∈[K]

Nt(a)(r̄(a)− f(a))2.

Lemma 8. Define β(n) =
√

2
n log π2Kn2

3δ . With probability 1− δ:

∀a, τ, |r̄τ (a)− f∗(a)| < β(Nτ (a)).

Proof. This lemma is a standard Hoeffding plus union bound, this exact form has appeared in Jun
et al. [2018].

In the following we shall always assume the event in the previous lemma holds and choose δ = 1/t.
Lemma 9. Assume the event in Lemma 8, then we have the upper bound on MSEτ for each round
τ ∈ [t].

MSEτ (f
∗) ≤ K ·O(log t).

Proof. Note that under the event from the previous lemma, we have for each arm:

Nτ (a)(r̄τ (a)− f(a))2 ≤ Nτ (a) · β2(Nτ (a))

≤ O(log t).

Then, summing over all arms completes the proof.

30



Lemma 10. Assume the event in Lemma 8. The number of times any suboptimal arm is chosen
cannot exceed T ′ rounds, where T ′ is some parameter with T ′ = (K/Γ(f∗)2) ·O(log t).

Proof. We prove this by contradiction. Consider any round τ during which some suboptimal arm a is
chosen above this threshold T ′. The reward for arm a is going to get concentrated within O(Γ(f∗))
to f∗(a), in particular:

|r̄τ (a)− f∗(a)| < Γ(f∗)/2.

Take any reward vector f ′ such that f ′(a) ̸= f(a). By the definition of class-gap, we have:

|f ′(a)− f∗(a)| ≥ Γ(f∗),

hence
|r̄τ (a)− f∗(a)| ≥ Γ(f∗)/2.

Then the cumulative loss

MSEτ (f
′) ≥ T ′ · (Γ(f∗)/2)2 = K · Ω(log t).

Therefore any f ′ with f ′(a) ̸= f(a) cannot possibly be minimizing MSEτ (·). That is to say, the
reward vector fτ minimizing MSEτ (·) must have fτ (a) = f∗(a). Then, by self-identifiability, we
precisely know that arm a is also a suboptimal arm for the reward vector fτ . Hence, we obtain a
contradiction, and arm a cannot possibly be chosen this round.

We complete the proof of Theorem 1(a) as follows. The regret incurred during the warmup data
is at most T0. Fix any round t > T0. After the warmup data, we know with probability 1 − 1/t,
any suboptimal arm can be pulled at most (K/Γ(f∗)2) ·O(log t) times after the warmup data, and
the regret is (K/Γ(f∗)2) ·O(log t). With the remaining probability 1/t, the regret is at most O(t).
Hence, the theorem follows.

E.2 StructuredMAB Failure: Proof of Theorem 1(b)

Recall the two events are defined as

E1 = { |r̄warm(a)− fdec(a)| < Γ(fdec)/2 for each arm a ̸= adec } .

E2 = { ∀t > T0, |r̄t(adec)− f∗(adec)| ≤ Γ(fdec)/2 } .

Lemma 11. Assume event E1 and E2 holds, then greedy algorithm only choose the decoy arm adec.

Proof. The proof is by induction. Assume by round t, the algorithm have only choose the decoy arm
adec. Note that assuming event E1 and E2 holds, for any reward vector f ̸= fdec, we will have

|r̄t(a)− fdec(a)| ≤ |r̄t(a)− f(a)|,

with at least one inequality strict for one arm. Hence fdec must (still) be the MSEt(·) minimizer, and
adec will be chosen in the next round.

Lemma 12. Event E1 happens with probability at least
[
Γ(fdec)√
2πσ2

exp
(
−2/σ2

)]K−1

.

Proof. The random variable r̄warm(a) is a gaussian variable with mean f∗(a) and variance σ2. It has
a distribution density at x with the following form

1√
2πσ2

exp
(
−(x− f∗(a))2/(2σ2)

)
.

For any x in the interval [fdec(a)−Γ(fdec)/2, fdec(a)+Γ(fdec)/2], by boundedness of mean reward,
we have

|x− f∗(a)| ≤ 2.
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Then, the density of x at any point on the interval [fdec(a)− Γ(fdec)/2, fdec(a) + Γ(fdec)/2] is at
least

1√
2πσ2

exp
(
−2/σ2

)
.

Therefore, for any arm a, we have the following.

Pr[|r̄warm(a)− fdec(a)| ≤ Γ(fdec)/2] ≥
Γ(fdec)√
2πσ2

exp
(
−2/σ2

)
.

Since the arms are independent, it follows that event E1 happens with probability[
Γ(fdec)√
2πσ2

exp
(
−2/σ2

)]K−1

.

Lemma 13. For some appropriately chosen σ = Θ(Γ(fdec)), we have event E2 happens with
probability at least

Pr{E2} ≥ 0.9.

Proof. Denote the bad event

E3 = {∃t > T0, |r̄t − fdec(adec)| > Γ(fdec)/2} ,

which is the complement of E2. We will obtain an upper bound on E3, therefore a lower bound on E2.
Note that event E2 (and E3) is only about the decoy arm adec, and recall that f∗(adec) = fdec(adec).

By union bound,

Pr[E3] ≤
T∑

t=1

Pr[|r̄t − fdec(adec)| > Γ(f∗)/2]

≤ 2

T∑
t=1

exp
(
−tΓ(fdec)

2/σ2
)

≤ 2 exp
(
−Γ(fdec)

2/σ2
)
/(1− exp

(
−Γ(fdec)

2/σ2
)
).

Here, the second inequality is by a standard Hoeffding bound, and the last inequality is by noting that
we are summing a geometric sequence.

Then, we can choose some suitable σ with σ = Θ(Γ(fdec)) ensures Pr[E3] < 0.1 and that Pr[E2] >
0.9.

Lemma 14. For some appropriately chosen σ = Θ(Γ(fdec)), we have the following lower bound:

Pr[E1 ∩ E2] ≥
[
Ω(exp

(
−2/σ2

)
)
]K−1

Proof. Note that event E1 and E2 are independent, then, the probability of E1 ∩ E2 can be obtained
from the previous two lemmas.

Theorem 1(b) directly follows from the above lemmas.

F StructuredCB characterization: Proof of Theorem 2

We start with a proof sketch, and proceed with full proofs.

Part (a). Directly applying the proof technique from the MAB case results in a regret bound that
is linear in |Π| = KX . Instead, we apply a potential argument and achieve regret bound that is
polynomial in KX . First, by a standard concentration inequality, we upper-bound the loss for
f∗ as MSEt(f∗) ≤ Õ(KX) with high probability. Then, we use self-identifiability to argue that
if in some round t of the main stage some suboptimal policy π is chosen, there must exist some
context-arm pair (x, π(x)) that is “under-explored”: appeared less than Õ(XK/Γ2(f∗) times. This
step carefully harnesses the structure of the contextual bandit problem. Finally, we introduce a
well-designed potential function (see Lemma 18) that tracks the progress of learning over time. This
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function increases whenever a suboptimal policy is executed on an under-explored context-action pair,
allowing us to bound the total number of times any suboptimal policy is executed. A key challenge is
that while the second step guarantees the existence of an “under-explored” context-arm pair, it does
not ensure that the context actually appears when the associated policy is chosen. We address this
using a supermartingale argument and the fact that each context arrives with probability at least p0 in
each round. Combining these steps, we upper-bound the expected number of times Greedy selects a
suboptimal policy, and we bound the final expected regret via the regret decomposition lemma.

Part (b). As in the MAB case, we define event E1 to ensure that the warm-up data misidentifies fdec
as the true reward function, and event E2 that the empirical rewards of the decoy policy are tightly
concentrated. The definitions are modified to account for contexts:

E1 =
{ ∣∣r̄warm(x, a)− f†(x, a)

∣∣ < Γ(f†)/2 for each x ∈ X and arm a ̸= π†(x)
}
, (F.1)

E2 =
{ ∣∣r̄t(x, π†(x))− f∗(x, π†(x))

∣∣ < Γ(f†)/2 for each x ∈ X and round t > T0

}
. (F.2)

A decoy context-arm pair (x, a) is one with a = πdec(x). E1 concerns the single warm-up sample for
each non-decoy context-arm pair. E2 asserts that the empirical rewards are concentrated for all decoy
context-arm pairs (and all rounds throughout the main stage). The two events are independent, as
they concern non-overlapping sets of context-arm pairs. Greedy always chooses the decoy arm when
E1, E2 happen. To lower-bound Pr [E1 ∩ E2 ], invoke independence, analyze each event separately.

F.1 StructuredCB Success: Proof of Theorem 2(a)

Recall Nt(x, a) as the number of times that context x appears and arm a was chosen up until round t.
Also recall the greedy algorithm is finding the function f that minimize the following function each
round: MSEt(f) =

∑
x,a Nt(x, a)(r̄t(x, a)− f(x, a))2.

Let us fix any t ∈ N. We will show the upper bound on the expected regret as stated in the theorem.

Lemma 15. Fix any δ ∈ (0, 1). Let β(n) =
√

2
n log π2XKn2

3δ . Then with probability at least 1− δ,

∀x, a, s, |r̄s(x, a)− f(x, a)| ≤ β(Ns(x, a)).

Proof. The proof is similar to that of Lemma 8 in the previous section, which is a Hoeffding-style
concentration bound with a union bound. We can simply treat each context-arm pair (x, a) as an arm,
and this directly yields the result.

In the following, we shall assume the event in the previous lemma holds, and choose δ = 1/t.

Lemma 16. Assume the event in Lemma 15 holds. For any round s ∈ [t], the cumulative loss at the
true underlying function, MSEs(f∗), can be upper bounded as |X |K ·O(log t).

Proof. We observe that

MSEs(f
∗) =

∑
x∈X ,a∈[K]

Ns(x, a)(r̄s(x, a)− f(x, a))2

≤
∑
x,a

O(log(|X |Kt))

≤ |X |K ·O(log(|X |Kt)).

Lemma 17. Assume the event in Lemma 15 holds. Fix any round s. Let T ′ be some suitably chosen
parameter and T ′ = |X |K/Γ(f∗)2 · O(log(|X |Kt)). Suppose Greedy executes some suboptimal
policy π in round s. Then there exists context x, such that Ns(x, π(x)) < T ′.

Proof. We prove this by contradiction. Suppose that a suboptimal policy π is executed at round s,
and further suppose that for all context x, we have Ns(x, π(x)) ≥ T ′.

By the previous lemma, we have ∀x,

|r̄t(x, π(x))− f∗(x, π(x))| < β(T0) < Γ(f∗)/2.
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Consider any function f such that:

∃x : f(x;π(x)) ̸= f∗(x;π(x)). (F.3)

By the definition of the class gap,

|f(x, a)− f∗(x, π(x))| ≥ Γ(f∗),

and then
|f(x, a)− r̄t(x, π(x))| ≥ Γ(f∗)/2.

Then, the term MSEs(f) can be lower bounded:

MSEs(f) ≥ T ′ · (Γ(f∗)/2)2 ≥ |X |K ·O(log(|X |Kt)).

Hence, any function satisfying Eq. (F.3) cannot possibly minimize MSEs(·). In other words, the
function minimizing the loss at this step ft must satisfy

ft(x;π(x)) = f∗(x;π(x)).

Finally, the self-identifiability condition precisely tells us the policy π must be suboptimal for ft and
hence cannot be executed at round t. We obtain a contradiction, and the lemma is proven.

Lemma 18. Conditional on the event in Lemma 15, the expected total number of times of suboptimal
policy execution is no larger than |X |KT ′/p0 = (|X |K/Γ(f∗))2/p0 ·O(log t).

Proof. Define the potential function as

Ms =
∑
x,a

min(Ns(x, a), T
′).

Consider any round s that a suboptimal policy π is executed, by the previous lemma, there exists a
context arm pair (x, π(x)) such that Ns(x, π(x)) < T ′. With probability at least p0, such a context
x will arrive, and Ms will increase by 1. Therefore, whenever a suboptimal policy is executed, with
probability at least p0, we will have Mt+1 = Mt + 1.

Let us use the indicator variable Is to denote whether a suboptimal policy is executed in round s.
Then Ms forms a supermartingale:

E[Ms|Ms−1] ≥ Ms−1 + p0Is.

Since we have that deterministically Mt < |X |KT ′, we know that the total number of times of
suboptimal policy execution Nt =

∑t
s=1 Is satisfies

E[Nt] = E[
t∑

s=1

Is] ≤ E[
t∑

s=1

(E[Ms | Ms−1]−Ms−1)]/p0 < |X |KT ′/p0.

Hence, the total number of suboptimal policies pull is upper bounded as desired.

Proof of Theorem 2(a). The regret incurred in the warmup phase is at most T0. With probability
1 − 1/t, the number of suboptimal policy pulls can be bounded as in the lemma above. With the
remaining 1/t probability the regret is at most O(t). Finally, by the regret decomposition lemma
(Lemma 4.5 in Lattimore and Szepesvári [2020]), we have

E[R(t)] ≤ T0 + |X |KT ′/p0 +O(1)

≤ T0 + (|X |K/Γ(f∗))2/p0 ·O(log t)
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F.2 StructuredCB Failure: Proof of Theorem 2(b)

Recall the two events

E1 = { |r̄warm(x, a)− fdec(x, a)| < Γ(fdec)/2 for each x ∈ X and arm a ̸= πdec(x) } ,
E2 = { |r̄t(x, πdec(x))− f∗(x, πdec(x))| < Γ(fdec)/2 for each x ∈ X and round t > T0 } .

Lemma 19. Assume event E1 and E2 holds. Then the greedy algorithm only executes the decoy
policy πdec.

Proof. We prove this by induction. Assume up until round t the greedy algorithm only executes πdec.
Consider any other function f ̸= fdec. Then we must have

∀x, a|r̄t(x, a)− f(x, a)| ≥ |r̄t(x, a)− fdec(x, a)|.

And the inequality is strict for at least one (x, a) pair. Hence fdec is (still) the reward function
minimizing MSE in round t, and the policy πdec will be executed.

Lemma 20. Event E1 happens with probability at least Ω(
Γ(fdec) exp(−2/σ2)

σ )|X |K .

Proof. The proof is similar to the counterpart in multi-arm bandits. Note that r̄warm(x, a) is gaussian
distributed with variance σ2. We can obtain a lower bound by directly examining the distribution
density of a gaussian.

Lemma 21. For some suitable chosen σ = Θ(Γ(fdec)/
√

ln(X)), event E2 happens with probability
0.9.

Proof. Similar to the proof for multi-arm bandits, define the event

E3 = {∃t, x, |r̄t(x, πdec(x))− fdec(x, πdec(x))| ≥ Γ(fdec)/2}

which is the complement of event E2. By a union bound,

Pr[E3] = |X |
∞∑
t=1

exp
(
−tΓ2(fdec)/σ

2
)

≤ |X | exp
(
−Γ2(fdec)/σ

2
)
/(1− exp

(
−Γ2(fdec)/σ

2
)
)

Choosing some suitable σ = Θ(Γ(fdec)/
√
lnX) ensures Pr[E3] < 0.1, and consequently Pr[E2] >

0.9.

Lemma 22. We have the following lower bound:

Pr[E1 ∩ E2] ≥
[
log(|X |) exp

(
−2(log |X |)2/Γ(fdec)

)2]|X |K
.

Proof. Note that event E1 and E2 are independent, hence the lemma follows by the previous two
lemmas.

Theorem 2(b) now follows from the above lemmas.

G DMSO characterization: Proof of Theorem 3

Recall that ∆ℓt(M) is the change in log-likelihood for model M in round t, as per (5.4). Note that

∆ℓt(M)−∆ℓt(M
′) = log

(
PrM(πt) (rt, ot) /PrM ′(πt) (rt, ot)

)
∈ [− logB, logB ] .

The equality is by (5.4), and the inequality is by Assumption 1 (and this is how this assumption is
invoked in our analysis). We use the notation σ0 = log |B| in what follows.
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G.1 DMSO Success: Proof of Theorem 3(a)

The below lemma bounds the number of times any suboptimal policy can be executed.

Lemma 23. Let π◦ be any suboptimal policy. Fix δ ∈
(
0, 1

|M|

)
. With probability at least 1− |M|δ,

the policy π◦ can be executed for at most O
(
σ2
0 Γ

−2 ln(1/δ)
)

rounds.

Proof. Let M∗(π◦) be the class of models whose optimal policy is π◦. We show that after π◦ has
been executed for T ′ rounds, any model in M∗(π◦) cannot be the MLE maximizer with probability
1− |M|δ. Let Yt(M) be the difference in increase in log-likelihood of M∗ and M in the t-th round:

Yt(M) = ∆ℓt(M
∗)−∆ℓt(M).

Note that Yt(M) is a random variable where randomness comes from random realizations of reward-
outcome pairs. Yt(M) can exhibit two types of behaviors:

1. Yt(M) = 0, corresponding to the case where M(πt)
d
= M∗(πt) (i.e., models M and M∗

coincide under πt)

2. Yt(M) is a random sub-gaussian variable with variance ≤ σ2
0 and that E[Yt] ≥ Γ.

Consider rounds s during which the policy π◦ is executed. Since π◦ is a suboptimal policy, during
these rounds, we know that Yt(M) is of the second type for any M in M∗(π◦). That is to say, it is a
subgaussian random variable with variance upper bounded by O(σ2

0), and that further
E[Yt(M)] = DKL(M

∗(π◦),M∗(π◦)).

Since we have assumed π◦ is suboptimal for the true model M∗, we know that,
E[Yt(M)] ≥ Γ.

Let Zt(M) =
∑t

τ=1 Yt(M).

Pr[Nt(π
◦) > T ′] ≤ Pr[∃s, π ∈ M∗(π◦), s.t. Zs(M(π)) ≤ 0, Ns(π

◦) = T ′]

≤ |M|δ.
Here in the last line we choose T ′ = O

(
σ2
0 Γ

−2 ln(1/δ)
)
, completing the proof.

We complete the proof as follows. By a union bound, with probability 1− |M ||Π|δ, the total number
of rounds all suboptimal policy can be chosen is upper bounded by

O
(
|Π|σ2

0 Γ−2 ln(1/δ)
)
.

Choose δ = 1/(t|Π||M|) and that log(1/δ) = O(|Π|t), then with probability 1 − 1/t, the total
number of suboptimal policies executions can be upper bounded by

|Π|σ2
0

Γ2
·O(log(|Π|t)).

G.2 DMSO Failure: Proof of Theorem 3(b)

In the subsequent discussion, we define Q(E) as the probability of some event E occurring under
the assumption that the data is generated by the decoy model Mdec (a hypothetical or ghost process).
Similarly, we denote P (E) as the probability of event E occurring under the assumption that the data
is generated by M∗ (the true process).

Recall that the two events are defined as follows.
E1 = { ∀M ∈ Mother L(Mdec | Hwarm) > L(M | Hwarm) }

and the event

E2 :=
{
∀j > N0/2, ∀M ∈ Mother,

∑
i∈[j]Ψi(M) ≥ 0

}
.

Where we defined Ψj(M) := ∆ℓt(j)(Mdec)−∆ℓt(j)(M).

We first begin with the following concentration result. This result is stated in a general manner and
not specific to our problem.
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Lemma 24. Let X1, X2, . . . be a sequence of random variables with E[Xi] > Γ, and each is
subgaussian with variance σ2. Then there exists some T ′ with T ′ = Θ(σ2/Γ2), such that with
probability 1− δ, for any t > T ′ ·O(log 1/δ),

t∑
τ=1

Xτ > 0.

Proof. This lemma is by a standard concentration with union bound. We perform the following
bounds

Pr

[
∃t > T ′,

t∑
s=1

Xs > 0

]
≤

∞∑
t=T ′

Pr

[
t∑

s=1

Xs > 0

]

≤
∞∑

t=T ′

exp
(
−tσ2/Γ2

)
≤ δ.

Here the last line is by choosing a suitable T ′ = Θ(σ2/Γ2) and noticing we are summing a geometric
sequence.

The below lemmas lower bound the probability that the likelihood of Mdec will be the unique highest
after the warmup data (assuming under ghost process Q).

Lemma 25. We have a lower bound on E1 under the ghost process:

Q(E1) ≥ 0.9.

Proof. Fix a model M ̸= Mdec. There must exist at least one policy π that discriminates M and
Mdec, in other words the distribution M(π) and Mdec(π) are different. Then, the expected change in
log-likelihood of Mdec is at least Γ(Mdec) greater than that of M for each time a sample or policy π
is observed:

Φt(M,Mdec) ≥ Γ.

where we defined Φt(M,Mdec) as per Eq. (5.6),

Φt(M,Mdec) := E [ ∆ℓt(Mdec | Ht)−∆ℓt(M | Ht) ] .

Moreover, we know that in each round, either Φt(M,Mdec) = 0, or Φt(M,Mdec) is a subgaussian
random variable with mean greater than Γ. Further, during rounds when π is sampled, the latter will
happen. The policy π is sampled for N0 = c0 · (σ0/Γ)

2 log(|Π||M |)) times in the warmup phase.
Then, by a standard concentration inequality

Pr[ℓwarm(Mdec)− ℓwarm(M) < 0] < 0.1/|M|.

Now, we take a union bound over all models |M|, and we obtain a lower bound for event E1.

What remains is the to show a lower bound for the event E2. We do so in the below lemma.

Lemma 26. Event E2 happens with probability at least 0.9.

Note that event E2 is only about when πdec is sampled. Since Mdec(πdec) = M(πdec), the ghost
process coincides with the true process.

Proof. Fix some model M . If the distribution for M(πdec) and Mdec(πdec) were the same, then Ψj

would be 0 for any j. Hence we can assume M(πdec) and Mdec(πdec) are two different distributions.
Then Ψj would be a subgaussian random variable with E[Ψj ] > Γ(Mdec). By the previous Lemma
24, the event E2 holds specifically for model M with probability at least 1 - δ/|M |. Then, by a union
bound, event E2 holds with probability 1− δ.

Lemma 27. If event E1 and event E2 holds, then only πdec is executed.
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Proof. The proof is by induction. Clearly after the warmup phase, the policy πdec is executed. Now
suppose up until round t the policy πdec is executed, by event E2, the model Mdec remains the
log-likelihood maximizer, and hence πdec will still be chosen next round.

Proof of Theorem 3(b). Now let P be the true underlying process for which data is actually generated
according to true model M∗. Recall D∞(Mdec(π)|M∗(π)) ≤ logB. Then on the warmup data
consisting of |Π|N0 samples, the density ratio of the ghost process and true process is bounded by
B|Π|N0 . Therefore, the probability of event E1 can be bounded as follows.

P (E1) ≥ Q(E1)/B
|Π|N0 .

And after warmup GreedyMLE only choose πdec by event E2. Hence, the final probability lower
bound of always choosing πdec after the warmup is Ω(B−|Π|N0).

H StructuredMAB with an Infinite Function Class: Proof of Theorem 4

H.1 Success: Proof of Theorem 4(a)

The proof of Theorem 1(a) carries over with a modified version of Lemma 10. Thus, it suffices to
state and prove this modified lemma.
Lemma 28. Let F be an infinite function class. Assume the event in Lemma 8. The number of
times any suboptimal arm is chosen cannot exceed T ′ rounds, where T ′ is some parameter with
T ′ = (K/ε2) ·O(log t).

Proof. We prove this by contradiction. Consider any round τ during which some suboptimal arm a
is chosen above this threshold T ′. The reward for arm a is going to get concentrated within O(ε) to
f∗(a), in particular:

|r̄τ (a)− f∗(a)| < ε/2.

Take any reward vector f ′ such that |f(a′)− f(a)| > ε. Then we have

|r̄τ (a)− f(a)| ≥ ε/2.

Then the cumulative loss

MSEτ (f
′) ≥ T ′ · (ε/2)2 = K · Ω(log t).

Therefore any f ′ with |f ′(a)− f(a)| ≥ ε cannot possibly be minimizing MSEτ (·). That is to say, the
reward vector fτ minimizing MSEτ (·) must have |fτ (a)− f∗(a)| < ε. Then, by the strong notion of
ε-self-identifiability, we precisely know that arm a is also a suboptimal arm for the reward vector fτ .
Hence, we obtain a contradiction, and arm a cannot possibly be chosen this round.

H.2 Failure: Proof of Theorem 4(b)

The proof of Theorem 4(b) follows the same structure as Theorem 1(b) (see Appendix E.2), with a
key modification: although we still aim to show that Greedy becomes permanently stuck on adec
with constant probability, the regression oracle may no longer return fdec exactly—its output may
fluctuate around fdec due to reward noise and the continuity of F . Our key insight is that, under
suitable probabilistic events, these fluctuations do not change the greedy decision: the regression
output may differ slightly from fdec, but the resulting action remains adec.

Let us define the following events:

E1 =
{ ∣∣∣r̄warm(a)− (fdec(a)− ε/(2

√
K))

∣∣∣ < ε/(4
√
K) for each arm a ̸= adec

}
,

E2 =
{
∀t > T0, |r̄t(adec)− f∗(adec)| ≤ ε/(4

√
K)

}
.

These events mirror (3.2) and (3.3), but with two changes: (1) we replace the confidence radius
Γ(fdec)/2 by ε/(4

√
K), and (2) shift the baseline value of fdec(a) by −ε/(2

√
K) in E1.

We begin with three probabilistic lemmas.
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Lemma 29. Event E1 happens with probability at least
[

ε

2
√
2πσ2K

exp
(
−2/σ2

)]K−1

.

Proof. The random variable r̄warm(a) is a gaussian variable with mean f∗(a) and variance σ2. It has
a distribution density at x with the following form

1√
2πσ2

exp
(
−(x− f∗(a))2/(2σ2)

)
.

For any x in the interval [fdec(a) − 3ε/(4
√
K), fdec(a) − ε/(4

√
K)], by boundedness of mean

reward, we have
|x− f∗(a)| ≤ 2.

Then, the density of x at any point on the interval [fdec(a)− 3ε/(4
√
K), fdec(a)− ε/(4

√
K)] is at

least
1√
2πσ2

exp
(
−2/σ2

)
.

Therefore, for any arm a, we have the following.

Pr
[∣∣∣r̄warm(a)− (fdec(a)− ε/(2

√
K)

∣∣∣ < ε/(4
√
K)

]
≥ ε

2
√
2πσ2K

exp
(
−2/σ2

)
.

Since the arms are independent, it follows that event E1 happens with probability[
ε

2
√
2πσ2K

exp
(
−2/σ2

)]K−1

.

Lemma 30. For some appropriately chosen σ = Θ(ε/
√
K), we have event E2 happens with

probability at least
Pr{E2} ≥ 0.9.

Proof. Denote the bad event

E3 =
{
∃t > T0, |r̄t − fdec(adec)| > ε/(4

√
K)

}
,

which is the complement of E2. We will obtain an upper bound on E3, therefore a lower bound on E2.
Note that event E2 (and E3) is only about the decoy arm adec, and recall that f∗(adec) = fdec(adec)
by the definition of a decoy.

By union bound,

Pr[E3] ≤
T∑

t=1

Pr
[
|r̄t − fdec(adec)| > ε/(4

√
K)

]
≤ 2

T∑
t=1

exp
(
−tε2/(4σ2K)

)
≤ 2

exp
(
−ε2/(4σ2K)

)
(1− exp(−ε2/(4σ2K)))

.

Here, the second inequality is by a standard Hoeffding bound, and the last inequality is by noting that
we are summing a geometric sequence.

Then, we can choose some suitable σ with σ = Θ(ε/
√
K) ensures Pr[E3] < 0.1 and that Pr[E2] >

0.9.

Lemma 31. For some appropriately chosen σ = Θ(ε/
√
K), we have the following lower bound:

Pr[E1 ∩ E2] ≥
[
Ω(exp

(
−2/σ2

)
)
]K−1
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Proof. Since event E1 concerns all a ̸= adec and event E2 concerns adec, we know that events E1

and E2 are independent. As a result,

Pr[E1 ∩ E2] = Pr[E1] Pr[E2]

≥ 0.9Pr[E1]

= Ω

[
ε

2
√
2π(ε2/K)K

exp
(
−2/σ2

)]K−1


=
[
Ω(exp

(
−2/σ2

)
)
]K−1

,

where we utilize the previous two lemmas.

Having obtained the previous three probabilistic lemmas, we now prove a crucial lemma which is an
extension of Lemma 11 to the infinite F setting. At this point, the key insight introduced in Section 6
plays a central role in the proof.
Lemma 32. Assume event E1 and E2 holds, then greedy algorithm only choose the decoy arm adec.

Proof. The proof is by induction. Assume by round t, the algorithm have only choose the decoy arm
adec. Note that assuming event E1 and E2 holds. Consider the reward function f emp

t given by the
empirical means: f emp

t (a) = r̄t(a) for all a ∈ A. By the induction assumption, r̄t(a) = r̄warm(a) for
each arm a ̸= adec. Hence, by the definition of E1 and E2, we have

∥f emp
t − fdec∥2 ≤

√√√√∑
a∈A

(
3ε

4
√
K

)2

=
3ε

4
.

Since fdec is an ε-interior with respect to F , we have f emp
t ∈ F .

Clearly, f emp
t ∈ F is the unique minimizer of MSEt(·). To see this, for any reward vector f ̸= f emp

t ,
we will have ∣∣r̄t(a)− f emp

t

∣∣ = 0 ≤ |r̄t(a)− f(a)|,
with at least one inequality strict for one arm. Hence the regression oracle will choose ft = f emp

t .

Although f emp
t is not the same as fdec, its optimal action is adec when E1 and E2 happen. This is

because

f emp
t (adec) ≥ f∗(adec)−

ε

4
√
K

= fdec(adec)−
ε

4
√
K

= (fdec(adec)−
ε

2
√
K

) +
ε

4
√
K

> f emp
t (a)

for all a ̸= adec, where the first inequality follows from the definition of E2, the first equality follows
from the definition of a decoy, and the last inequality follows from the definitions of E1 and f emp

t .

Theorem 4(b) directly follows from the above lemmas.
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