
Pipeline Parallelism with Controllable Memory

Penghui Qi∗12, Xinyi Wan∗1, Nyamdavaa Amar† 2, Min Lin1

1Sea AI Lab 2National University of Singapore
{qiph,wanxy,linmin}@sea.com amara@u.nus.edu

Abstract

Pipeline parallelism has been widely explored, but most existing schedules lack
a systematic methodology. In this paper, we propose a framework to decompose
pipeline schedules as repeating a building block, and show that the lifespan of
the building block decides the peak activation memory of the pipeline schedule.
Guided by the observations, we find that almost all existing pipeline schedules, to
the best of our knowledge, are memory inefficient. To address this, we introduce a
family of memory efficient building blocks with controllable activation memory,
which can reduce the peak activation memory to 1/2 of 1F1B without sacrificing
efficiency, and even to 1/3 with comparable throughput. We can also achieve almost
zero pipeline bubbles while maintaining the same activation memory as 1F1B. Our
evaluations demonstrate that in pure pipeline parallelism settings, our methods
outperform 1F1B by from 7% to 55% in terms of throughput. When employing
a grid search over hybrid parallelism hyperparameters in practical scenarios, our
methods demonstrate a 16% throughput improvement over the 1F1B baseline for
large language models. The implementation is open-sourced at this url.

1 Introduction

Distributed model training has attracted a lot of attention in recent years, especially after the boom
of large language models [Brown et al., 2020]. As the model size becomes larger and larger, data
parallelism (DP) [Goyal et al., 2017] is no longer capable to hold all the parameters in a single device.
Under this background, model parallelism [Harlap et al., 2018, Huang et al., 2019, Shoeybi et al.,
2019, Zheng et al., 2022] is proposed to partition parameters into a set of devices to address the
memory constraint. Tensor parallelism (TP) [Shoeybi et al., 2019] is a commonly used model parallel
strategy, which partitions weight parameters into several devices and performs matrix multiplication
separately. A well-known shortcoming of TP is that, it requires a lot of communication volume,
which makes it inefficient when bandwidth becomes the bottleneck Narayanan et al. [2021]. In
such situations, pipeline parallelism [Harlap et al., 2018, Huang et al., 2019], which is another
model parallel strategy, shows its advantage in low communication cost. The core idea of pipeline
parallelism is to split the entire model into several stages, which can be processed by several devices
in a streaming way. In a typical large-scale training scenarios such as Narayanan et al. [2021], TP is
generally used within one compute node, and PP is used to scale up across nodes.

Although PP has been widely adopted and developed, it suffers from two prominent disadvantages:
pipeline bubbles and large activation memory. To eliminate pipeline bubbles, one line of work
focuses on asynchronous PP [Gaunt et al., 2017, Yang et al., 2021], which is theoretically bubble
free. However, it sacrifices the exact optimization semantics and may result in lower convergence
performance [Lian et al., 2018, Tang et al., 2020]. A parallel line of works revolve around synchronous
PP, focusing on reducing pipeline bubbles and/or activation memory. GPipe [Huang et al., 2019] is

∗Equal Contributors.
†Work was done during an internship at Sea AI Lab.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/sail-sg/zero-bubble-pipeline-parallelism

an early work to reduce the bubble rate by increasing the number of microbatches, at the cost of more
activation memory. 1F1B [Fan et al., 2021] avoids the activation memory growth with respect to the
number of microbatches by staggering forward pass and backward pass, keeping the same bubble rate
with GPipe. Another notable work is GEMS [Jain et al., 2020], which stores activation memory of
only one forward pass by scheduling microbatches one after another among two model replicas, thus
with a significantly large bubble rate. Chimera [Li and Hoefler, 2021] extends the ideas of GEMS by
combining two pipelines in different directions together, which reduces pipeline bubbles when the
number of microbatches is small, but with doubled parameter memory. Hanayo [Liu et al., 2023] is
introduced to attain the same scheduling efficiency with Chimera without replicated models, but still
suffering from scaling to more microbatches. Although its wave-like scheme is kind of similar to our
V-shape building blocks, it is not motivated for memory balance, thus resulting in totally different
pipeline schedules. In Megatron-LM [Narayanan et al., 2021], an interleaved strategy is proposed
to further reduce the bubble rate, at the cost of more communication cost and a portion of extra
activation memory. BPipe [Kim et al., 2023] focuses on reducing the activation memory of 1F1B
from another perspective, transferring activations across devices based on the memory imbalance of
1F1B. However, it introduces a lot of extra communication and increases the complexity of the system,
which makes it inefficient especially in settings with limited bandwidth. Zero Bubble [Qi et al., 2023]
splits the backward into activation gradient computation and weight gradient computation, which
can either reduce the pipeline bubbles without changing the maximum peak activation memory, or
achieve zero bubble at the cost of doubled activation memory compared to 1F1B.

In this paper, we first demonstrate all existing pipelines can be seen as repeating a basic building
block in time. We then identify a direct link between the activation memory and the lifespan of each
building block, which reveals the core insight of this paper: lifespan decides the activation memory.
Based on this insight, we present a family of novel and memory-efficient building blocks and their
pipelines. Compared to 1F1B, we reduce the activation memory to 1/2 asymptotically with even
higher throughput, and to 1/3 asymptotically with comparable throughput. We can also achieve zero
bubble under the same activation memory with 1F1B. Notably, our strategy is almost a pure gain to
the existing methods, only at the cost of doubled communication cost between pipeline stages, which
is relatively small and can be neglected.

2 How to Build a Pipeline

We propose a four-step framework to design pipeline schedules.

Building Block: It starts by laying out the passes for a single microbatch, which we call a building
block. For example, the building block of 1F1B is made of a sequence of forward passes followed by
backward passes in the reverse order. We highlight the building block of 1F1B in color in Figure 1a.

Repeating: More microbatches are then introduced. The building blocks are repeated and woven
together to form a pipeline. In Figure 1 (top), the repeating building blocks are shown in different
shades of gray. Notably, legit building blocks are required to repeat without a collision, namely, the
passes from two building blocks should not overlap with each other.

Squeezing: Depending on the building block, there may be redundant bubbles in the pipeline, which
can be simply removed by squeezing without changing the order of the passes. For example, Figure
1b shows a case where squeezing produces a more efficient pipeline.

F B

F B

F B

F B

F B

F B

Squeeze

Interval
Lifespan

(a) 1F1B

F B

F B

F B

F B

F B

F B

Squeeze

Interval
Lifespan

(b) Eager 1F1B

Figure 1: A pipeline can be built by repeating a building block, and then squeezing redundant bubbles.

2

Reordering (optional): We can reorder the passes in the warm-up and cool-down phase to further
improve the computation throughput. Intuitively, the peak of memory happens in the stable phase of
the pipeline, while in the warm-up and cool-down phases the RAM is under utilized, leaving some
space for improving the computation throughput without changing peak memory. We leave the details
in Appendix C.

Most of existing pipeline schedules can be explained under this framework. Besides the 1F1B and
eager 1F1B shown in Figure 1, we show the interleaved 1F1B [Shoeybi et al., 2019], ZB-H1 [Qi
et al., 2023] and a series of well-known pipelines in a more extensive gallery (see Appendix I).

2.1 Building Blocks

The computation and memory efficiency of various pipelines can be attributed to their building blocks.
The diversity of the building blocks primarily comes from three factors, model partitioning, device
placement, and offsets between passes. We follow the idea and notations in zero bubble PP [Qi et al.,
2023], using F to denote forward pass, B to denote “backward for the activations”, and W to denote
“backward for the weights”. Note that such finer granularity can be generalized to previous methods
like 1F1B, by always grouping B and W together.

Model partitioning deals with how the model is divided into pipeline stages. The most common
pattern is to equally divide the model to match the number of devices. A prominent example is the
1F1B schedule (Figure 1a). This is extended in interleaved 1F1B where the number of stages can be
an integer multiple of the number of devices.

Device placement is another key factor in the design of building blocks. While conventionally each
pipeline stage is sequentially placed on a different device, it is not uncommon to place multiple stages
on the same device like in interleaved 1F1B (Figure 18h). Another example of unconventional device
placement is Chimera, where two pipelines are placed in reversed device order.

Last but not least, the offsets between F,B,W passes play a major role in the computation and memory
efficiencies of the pipeline. By simply enlarging the offsets between subsequent F passes in the
building block of 1F1B, we obtain the eager 1F1B [Zhuang et al., 2023] (Figure 1b) where more F
passes are eagerly scheduled, resulting in higher memory consumption (but better communication
overlapping). GPipe can be seen as adding a large offset between the last F and the first B in the 1F1B
building block. One more example on the effect of the offset is the comparison of ZB-H1 (Figure
18c) and ZB-H2 (Figure 18d) schedules, one can see that properly chosen offsets result in zero bubble
schedules like ZB-H2. In this work, we assume that every F, B or W pass takes equally one unit of
computation time, and only consider integer unit of offsets. Although this may limit the number of
feasible building blocks, it greatly improves the simplicity of analysis.

2.2 Calculating the Peak Memory

Not every pipeline is born equal, researchers are constantly looking for pipelines that are more efficient
in computation and/or memory. While efficient pipelines could be discovered by enumerating every
possible building block, it is nonetheless prohibitively expensive. We discover that the peak memory
consumption of a pipeline can be calculated from its building block via a simple formula. This
enables us to design pipelines with a controllable peak memory.

Two quantities are crucial for the calculation of peak memory, the lifespan of a stage, and the repeating
interval of the building blocks, both of which are illustrated in Figure 1. The lifespan of a stage is
defined as the amount of time between the starting of the F pass and the ending of B or W pass. A
piece of activation memory is allocated at the starting of F, and retained in the RAM throughout the
lifespan until it is consumed by both B and W. The peak memory consumption can be calculated
by finding the maximum number of microbatches whose lifespans overlap with that of every other
microbatch. Using l to denote lifespan, T to denote the repeating interval and m the size of activation
memory for a single microbatch, we have the relation.

peak memory ≤ ⌈ l

T
⌉m

When there are multiple stages on one device, e.g. interleaved 1F1B, their contributions to the
peak memory are independent, using Si to denote all the stages allocated to device i, we sum the

3

contributions from every stage.

peak memory of device i ≤
∑
s∈Si

⌈ l
s

T
⌉ms (1)

Another key insight is that the repeating interval T is readily determined from the building block.
In an efficient pipeline, T should be equal to the number of units of computation in each stage of
the building block. Any T larger than that would cause pipeline bubbles in the stable phase, and T
smaller than that would lead to collisions. A subtle exception is the interleaved 1F1B whose repeating
interval is not uniform. We leave the discussion to Appendix G.

2.3 Repeating without Collision

One constraint to keep in mind when designing the building blocks is that a legit building block is
required to repeat without any collision. It may seem unintuitive how to design building blocks with
this constraint. In practice, we design the building block first and perform a post-hoc verification.
Another useful observation is that a legit building block usually produces a stable phase in the middle
of the pipeline, which contains a repeating d× T rectangle, where d is the number of devices and T
is the repeating interval. This offers an alternative to constrain the building blocks. We can start by
ordering passes within this rectangle and convert it back to a building block.

3 Memory Efficient Building Blocks

With the above framework, we can conveniently analyze the memory consumption pattern of existing
pipelines. To our knowledge, all existing pipelines are memory inefficient due to two primary
reasons: redundant dependency chain, and imbalanced memory usage. Before Zero Bubble [Qi et al.,
2023], the backward is often regarded as a single pass, resulting in unnecessarily longer lifespan
thus more memory footprint. In this paper, we leverage the backward splitting strategy to remove
these redundant lifespan. The imbalanced memory comes from the innate heterogeneity of the
lifespans across stages. From Figure 1a, we can easily see that the lifespan of the stages differs greatly
from each other, with the first stage having the longest lifespan. Consequently, it causes a memory
bottleneck on the first device and under utilization of memory on all other devices. To resolve this
problem, we introduce a family of novel building blocks, which we refer to as V-Shape building
blocks. The core insight comes from Equation 1 which says that the peak memory depends on the
sum of the lifespans. Therefore, when we place multiple stages on the same device, we should always
collocate stages of long lifespans with those of short lifespans. When the total sum of lifespans is
fixed, balanced placement always means higher memory efficiency. This can be demonstrated by
Figure 2, the parallel schedule (used in interleaved 1F1B) is imbalanced and has a memory bottleneck
proportional to l1 + l4, while in the V-Shape schedule it is l1 + l6.

The V-Shape schedule requests the model to be partitioned into stages twice the number of devices
and the device placement of the second half of stages to be in reverse order as the first half. As the
offsets directly determine the lifespan of each stage and therefore the peak memory by Equation 1, we
can then further control the offsets between passes to generate building blocks with diverse memory.

Parallel V-Shape

Figure 2: The V-Shape building block ensures balanced peak memory across all devices, whereas the
parallel building block has a memory bottleneck in the first device.

3.1 Controllable Balanced Memory

We assume the model is uniformly partitioned, namely, both the computation and memory of each
stage are identical. For a single microbatch, we denote the activation memory of each stage as m, and

4

F B

F B

F B

F B

2d 4d

(a) 1F1B

F F B W B W

F F B W B

F F B W B W

F F B B W W

2d-1 d 2d-1 d

(b) V-Half

F F B W B W

F F B W B W

F F B W B W

F F B B W W

d d d d

(c) V-Min

F F B W B W

F F B W B W

F F B W B W

F F B B W W

4d-3 2d-1 4d-3 2d-1

(d) V-ZB

Figure 3: V-Shape building blocks with 4 devices (d = 4), where white text colors represent the
first half of model stages and black text colors represent the second half. F, B and W represent the
forward, backward (for activation gradients) and backward for weight gradients, respectively.

1 2 3 4 1 5 2 6 3 7 4 8 5 6 7 8

1 2 3 1 4 2 5 3 6 4 7 5 8 6 7 8

1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

(a) 1F1B

1 2 3 1 1 1 2 2 1 2 1 4 3 3 2 3 2 5 4 4 3 4 3 6 5 5 4 5 4 7 6 6 5 6 5 8 7 7 6 7 6 8 8 7 8 7 8 8

1 2 1 2 1 1 3 1 2 1 2 3 4 2 3 2 3 4 5 3 4 3 4 5 6 4 5 4 5 6 7 5 6 5 6 7 8 6 7 6 7 8 7 8 7 8 8 8

1 2 1 2 1 1 1 3 1 2 3 2 2 4 2 3 4 3 3 5 3 4 5 4 4 6 4 5 6 5 5 7 5 6 7 6 6 8 6 7 8 7 7 7 8 8 8 8

1 1 2 2 1 1 1 1 3 3 2 2 2 2 4 4 3 3 3 3 5 5 4 4 4 4 6 6 5 5 5 5 7 7 6 6 6 6 8 8 7 7 7 7 8 8 8 8

(b) V-Min

1 2 3 4 5 1 1 1 2 2 2 3 1 1 3 3 4 6 2 2 4 4 5 7 3 3 5 5 6 8 4 4 6 6 7 7 5 7 5 8 8 8 6 6 7 7 8 8

1 2 3 4 1 2 1 1 3 2 1 2 5 1 4 3 2 3 6 2 5 4 3 4 7 3 6 5 4 5 8 4 7 6 5 6 5 7 8 7 6 8 6 7 8 7 8 8

1 2 3 1 2 3 1 1 4 1 1 2 2 4 5 2 2 3 3 5 6 3 3 4 4 6 7 4 4 5 5 7 8 5 5 6 6 8 7 6 7 7 8 6 7 8 8 8

1 1 2 2 3 3 1 1 1 4 1 4 2 2 2 5 2 5 3 3 3 6 3 6 4 4 4 7 4 7 5 5 5 8 5 8 6 6 7 7 6 6 8 8 7 7 8 8

(c) V-Half

1 2 3 4 5 6 7 1 1 1 2 2 2 3 3 3 4 4 1 4 1 8 5 5 2 5 2 6 6 3 6 3 7 7 4 7 4 8 8 5 8 6 5 7 6 8 7 8

1 2 3 4 5 1 6 2 1 1 3 2 2 4 3 1 3 1 7 5 4 2 4 2 8 6 5 3 5 3 7 6 4 6 4 8 7 5 8 6 7 7 5 8 8 6 7 8

1 2 3 1 4 2 5 3 1 1 4 2 1 2 1 6 5 3 2 3 2 7 6 4 3 4 3 8 7 5 4 5 4 8 6 5 7 6 8 7 6 8 5 7 6 8 7 8

1 1 2 2 3 3 4 4 1 1 1 1 5 5 2 2 2 2 6 6 3 3 3 3 7 7 4 4 4 4 8 8 5 5 6 6 7 7 8 8 5 5 6 6 7 7 8 8

(d) V-ZB

Figure 4: V-Shape schedules compared to 1F1B, under the setting of 4 devices and 8 microbatches.
The stable phases adhere to the pattern of their building blocks.

the total activation memory of the entire model as M . Note that M = 2dm, where d is the number
of devices. To make it simple and tractable, we use uniform offsets within each half of F and B
passes to control the peak memory. Specifically, we apply the same offset δ0F between two adjacent
F passes within the first d stages (e.g., δ0F = 2 in Figure 3b, δ0F = 1 in Figure 3c and δ0F = 4 in
Figure 3d). Similar constraints are applied to the other half of the F passes and both halves of the
B passes, denoted as δ1F , δ

0
B , δ

1
B , respectively. To guarantee balanced peak memory across devices,

we add another two constraints, δ0F = δ1B = δ0 and δ1F = δ0B = δ1, where we use notations δ0 and

5

δ1 for simplicity. For example, in Figure 3d, we set δ0 = 4 and δ1 = 2. Note that we only control
the offsets across different devices. For those adjacent passes within the same device (e.g., F and B
of the last stage, two F and two B in the last device), we use brute force to find optimal solutions,
ensuring their offsets are small (less than the repeating interval). Note that W can always be placed
greedily after settling all F and B passes, so we don’t need to search their offsets during brute force.
According to Equation 1, we can analyze the asymptotic peak memory with respect to d,

peak memory of device i ≤ 2d(δ0 + δ1) +O(1)

6
m ≈ δ0 + δ1

6
M (2)

By ignoring the small constant, we can directly control the peak memory by the value of δ0 and δ1.

Table 1: Small constant values are ignored for bubbles and peak memory of V-Min and V-Half . For
1F1B, δ0/δ1 are redefined as the offsets between adjacent forward/backward passes. M represents
the total activation memory of the entire model, and d is the number of devices.

Building Block δ0 δ1 Peak Memory Bubbles
1F1B 2 4 M ≈ 6d
V-Min 1 1 ≈ M/3 ≈ 4d
V-Half 2 1 ≈ M/2 ≈ 3d
V-ZB 4 2 M 0

3.2 V-Shape Pipeline Schedules

By varying the values of δ0 and δ1, we come up with 3 novel V-Shape building blocks (Figure 3),
and present their final schedules based on our framework in Figure 4. The building block of V-Min
(Figure 3c) has the minimum offsets, namely δ0 = δ1 = 1, thus the minimum memory consumption.
With δ0 = 4 and δ1 = 2 as in Figure 3d, V-ZB eliminates the bubble to almost 0 (Figure 4d), pushing
to extreme throughput. The building block of V-Half (Figure 3b), which uses δ0 = 2 and δ1 = 1,
sits between the two extremes and consumes about half of the activation memory required by 1F1B.
Although both V-Min and V-Half have lower memory footprint than 1F1B, V-Min contains about 2/3
and V-Half contains about 1/2 of 1F1B’s bubbles, assuming F, B, W have equal run time. We show
the comparison between our proposed V-Shape schedules and 1F1B in Table 1. Notably, the exact
peak memory is ⌈d+2

3 ⌉M
d for V-Min, and ⌈d+1

2 ⌉M
d for V-Half . To avoid collisions in the building

blocks of V-Min and V-Half , the offsets (within the same device) are slightly different for different
values of d. The details are in Appendix F.

3.3 Repeating Bubbles in V-Min

In real-world scenarios where F, B and W have different run times, V-Min suffers from a repeating
bubble. As shown in Figure 5, there exists bubbles for every repeating interval T . Consequently, the
bubble grows as the number of microbatches increases. Although V-Half may encounter the same
issue (when the times of F, B and W differ significantly), it generates patterns that tessellate well
in most empirical cases due to its loose dependencies. As illustrated in Figure 5b, the throughput
of V-Half is robust to the variation of run times. Additionally, the bubbles of V-ZB will never grow
when increasing the number of microbatches. We leave the related discussions in Appendix E.

1 2 3 1 1 1 2 2 1 2 1 4 3 3 2 3 2 5 4 4 3 4 3 6 5 5 4 5 4

1 2 1 2 1 1 3 1 2 1 2 3 4 2 3 2 3 4 5 3 4 3 4 5 6 4 5 4 5
...

1 2 1 2 1 1 1 3 1 2 3 2 2 4 2 3 4 3 3 5 3 4 5 4 4 6 4 5 6

1 1 2 2 1 1 1 1 3 3 2 2 2 2 4 4 3 3 3 3 5 5 4 4 4 4 6 6 5

2 3 2 5 4 4

3 2 3 4 5 3 F=3,B=4,W=2 3 2 3 4 5 3

2 3 4 3 3 5 3 4 3 3

4 4 3 3 3 3 3 3

(a) V-Min

1 2 3 4 5 1 1 1 2 2 2 3 1 1 3 3 4 6 2 2 4 4 5 7 3 3 5 5 6 8 4 4 6

1 2 3 4 1 2 1 1 3 2 1 2 5 1 4 3 2 3 6 2 5 4 3 4 7 3 6 5 4 5 8 4
...

1 2 3 1 2 3 1 1 4 1 1 2 2 4 5 2 2 3 3 5 6 3 3 4 4 6 7 4 4 5 5 7

1 1 2 2 3 3 1 1 1 4 1 4 2 2 2 5 2 5 3 3 3 6 3 6 4 4 4 7 4 7 5

4 4 5 7 3 3 4 3 5 7 3 3

2 5 4 3 4 7 F=3,B=4,W=2 2 5 4 3 4 7

5 6 3 3 4 4 5 6 3 3 4 4

3 3 3 6 3 6 3 3 3 6 3 5

(b) V-Half

Figure 5: We take a repeating d× T grid from V-Min and V-Half schedules, and assign F/B/W with
different values. The result shows V-Min has bubbles for every repeating grid, while V-Half does not.

6

3.4 Other Building Blocks

Besides V-Shape building blocks, we also propose some other interesting building blocks in Appendix
H, to show the generalization ability of our framework. Some useful examples include a) 1F1B-V
achieving 2/3 of 1F1B’s activation memory without doing B-W split; b) a schedule consumes less
memory than interleaved 1F1B but with the same bubble rate (Figure 17c). Additionally, we
design an adaptive scheduler to control the memory at a finer granularity in Appendix A.

4 Experiments

We construct our experiments to show three conclusions: a) The throughput and memory of V-Min,
V-Half and V-ZB aligns with the theoretical analysis in Section 3.2; b) Memory-saving methods in-
cluding V-Min and V-Half can bring accelerations; c) Our methods still perform best when combining
with other state-of-the-art techniques.

4.1 Setup

We evaluate our methods using a series of models detailed in Table 2 analogous to GPT-3 [Brown
et al., 2020]. Our implementation is based on the open-source Megatron-LM project [Narayanan
et al., 2021] and is experimented on up to 40 NVIDIA A100 SXM 80G GPUs distributed across 5
nodes interconnected by a RoCE RDMA network. The running time of each iteration is recorded
after several warm-up iterations. Similar to the settings in [Qi et al., 2023], we deduct one transformer
layer from both the initial and final pipeline stage to compensate for the embedding and output layer
in LM, which can otherwise become the bottleneck of the pipeline and interfere to the efficiency.

Table 2: Models used in experiments.

Model Layers Attention Heads Hidden Size GPUs
9.6B 30 40 5120 16
21B 46 48 6144 24

38.5B 62 64 7168 32
98.5B 78 80 10240 40

Our experiments majorly focuses on the following pipeline parallel schedules: a) V-Min, V-Half and
V-ZB: schedules introduced in Section 3.2; b) 1F1B and Interleaved 1F1B: methods implemented in
Megatron-LM; c) 1F1B-R: 1F1B with full activation rematerialization [Chen et al., 2016]; d) ZB-1P
and ZB-2P: the adaptive zero-bubble methods introduced in [Qi et al., 2023] with activation memory
limit set to the 1x/2x times of 1F1B.

16 32 64 128 256
Number of Microbatches

30

40

50

60

M
FU

 (%
)

9.6B Model on 16 Pipelines

V-ZB
ZB-1P
V-Half
1F1B
V-Min
1F1B-R

24 48 96 192 384
Number of Microbatches

30

40

50

60

M
FU

 (%
)

21B Model on 24 Pipelines

V-ZB
ZB-1P
V-Half
1F1B
V-Min
1F1B-R

32 64 128 256 512
Number of Microbatches

30

40

50

60

M
FU

 (%
)

38.5B Model on 32 Pipelines

V-ZB
ZB-1P
V-Half
1F1B
V-Min
1F1B-R

16 32 64 128 256
Number of Microbatches

0

10

20

30

40

50

60

Ac
tiv

at
io

n
M

em
or

y
(G

B)

9.6B Model on 16 Pipelines

V-ZB
ZB-1P
V-Half
1F1B
V-Min
1F1B-R

24 48 96 192 384
Number of Microbatches

0

10

20

30

40

50

60

Ac
tiv

at
io

n
M

em
or

y
(G

B)

21B Model on 24 Pipelines

V-ZB
ZB-1P
V-Half
1F1B
V-Min
1F1B-R

32 64 128 256 512
Number of Microbatches

0

10

20

30

40

50

60

Ac
tiv

at
io

n
M

em
or

y
(G

B)

38.5B Model on 32 Pipelines
V-ZB
ZB-1P
V-Half
1F1B
V-Min
1F1B-R

Figure 6: Throughput and activation memory using the same microbatch size.

7

4.2 Comparing Pipeline Schedules

In Figure 6, we present comparisons of the throughput measured in FLOPS utilization (MFU) and
activation memory consumption across different pipeline schedules under various settings. From the
results, V-ZB outperforms all other methods in terms of throughput, which aligns with Figure 4. When
comparing the activation memory consumption, V-Min and V-Half stand out by significantly reducing
activation memory to approximately 1/3 and 1/2, while other methods’ memory is similar except for
1F1B-R. More details of our experiments and definition of metrics can be found in Appendix D.1.

Notably V-Min has a comparable throughput against 1F1B, but its throughput falls behind 1F1B at a
larger number of microbatches due to the aforementioned repeating bubble in Figure 5a, as discussed
in Section 3.3. However, it still outperforms 1F1B with full activation rematerialization, providing a
strong alternative for saving memory.

10 20 30 40
Activation Memory (GB)

35

40

45

50

55

M
FU

 (%
)

 1F1B

 ZB-1P
 V-ZB

 V-Half

 V-Min

 ZB-2P

 Interleaved 1F1B

 1F1B-R

Model: 9.6B; d=16; n=64; mbs=2

10 20 30 40
Activation Memory (GB)

35

40

45

50

55
M

FU
 (%

)

 1F1B

 ZB-1P
 V-ZB

 V-Half

 V-Min

 ZB-2P

 Interleaved 1F1B

 1F1B-R

Model: 21B; d=24; n=96; mbs=1

10 20 30 40 50
Activation Memory (GB)

* ZB-2P OOM

35

40

45

50

55

M
FU

 (%
)

 1F1B

 ZB-1P
 V-ZB

 V-Half

 V-Min

 Interleaved 1F1B

 1F1B-R

Model: 38.5B; d=32; n=128; mbs=1

Figure 7: Pareto frontier of MFU and memory for various setups.

We also plot both memory and MFU for the various methods in Figure 7 in a typical, but slightly
different setting in which we reduced the microbatch size of 9.6B and 21B model to allow ZB-2P
and Interleaved 1F1B to run which would otherwise run out of memory (OOM). It shows that the
V-Shape pipeline schedules lie at the Pareto frontier.

4.3 When to Save Memory

While V-ZB provides optimal throughput, V-Half and V-Min methods are mainly used when memory
budget is tight. Conventionally, rematerialization is used when it runs out of memory (OOM).
However, rematerialization leads to repeated computation and consequently decrease the throughput.
V-Half and V-Min significantly outperforms rematerialization (1F1B-R) as we show in Table 7.

16 32 64 128 256
Number of Microbatches

35

40

45

50

55

60

M
FU

 (%
)

9.6B Model on 16 Pipelines

V-ZB mbs:4
ZB-1P mbs:4
V-Half mbs:8
1F1B mbs:4
V-Min mbs:12

24 48 96 192 384
Number of Microbatches

35

40

45

50

55

60

M
FU

 (%
)

21B Model on 24 Pipelines

V-ZB mbs:2
ZB-1P mbs:2
V-Half mbs:4
1F1B mbs:2
V-Min mbs:6

32 64 128 256 512
Number of Microbatches

30

35

40

45

50

55

60

M
FU

 (%
)

38.5B Model on 32 Pipelines

V-ZB mbs:1
ZB-1P mbs:1
V-Half mbs:2
1F1B mbs:1
V-Min mbs:3

16 32 64 128 256
Number of Microbatches

0

10

20

30

40

50

60

Ac
tiv

at
io

n
M

em
or

y
(G

B)

9.6B Model on 16 Pipelines

V-ZB mbs:4
ZB-1P mbs:4
V-Half mbs:8
1F1B mbs:4
V-Min mbs:12

24 48 96 192 384
Number of Microbatches

0

10

20

30

40

50

60

Ac
tiv

at
io

n
M

em
or

y
(G

B)

21B Model on 24 Pipelines

V-ZB mbs:2
ZB-1P mbs:2
V-Half mbs:4
1F1B mbs:2
V-Min mbs:6

32 64 128 256 512
Number of Microbatches

0

10

20

30

40

50

60

Ac
tiv

at
io

n
M

em
or

y
(G

B)

38.5B Model on 32 Pipelines

V-ZB mbs:1
ZB-1P mbs:1
V-Half mbs:2
1F1B mbs:1
V-Min mbs:3

Figure 8: Throughput and activation memory under similar memory limit.

Another benefit of saving memory is that we can potentially use the extra memory for an increased
microbatch size, which leads to a higher arithmetic intensity. We present the results in Figure

8

8. On bigger models, where memory pressure is higher and hence microbatch size is smaller, V-
Half schedule can surpass V-ZB and other baselines because of its arithmetic intensity gain. This
observation does not apply for V-Min, implying its arithmetic intensity gain can not compensate for
the increased bubble. Doubling/Tripling the microbatch size for V-Half /V-Min results in a slightly
higher activation memory than the other methods. This reflects the constant factors we ignored in
Section 3.2. The increase is less significant as the number of devices grows.

4.4 Combining with Existing Techniques

We present our methods in the context of LLM training together with various other techniques.
The following techniques are considered: a) Flash Attention [Dao et al., 2022, Dao, 2023]; b)
Tensor Parallelism [Narayanan et al., 2021] and Sequence Parallelism [Korthikanti et al., 2023]; c)
Distributed Optimizer provided in Megatron-LM. The implementations are all from Megatron-LM
[Narayanan et al., 2021]. Both our methods and the baseline methods are combined with the above
techniques. Similar to the evaluation method in Kim et al. [2023], we perform a grid search on the
following parameters: the size of PP; the size of TP; the size of DP; the microbatch size (mbs). We
use 40 GPUs in this experiment. For each method, the best result from the grid search is reported.

We present the best result for each pipeline parallel schedule in Table 3 and the corresponding
parameters. We find that when sequence length is smaller and hence the memory budget is more
abundant, V-ZB performs the best due to the elimination of bubbles. When we increase the memory
pressure by increasing the sequence length, V-Half performs the best because of its memory efficiency.
The detailed data and analysis of grid search can be found in the Appendix D.3 D.4.

Table 3: V-Shape schedules combined with other memory saving methods.

Common PP Best MFU Best Parameters
Setup Method (%) DP TP PP mbs

1F1B 54.77 2 4 5 2
98.5B Model 1F1B-R 40.84 2 2 10 1

Seq Length 1024 ZB-1P 59.95 1 1 40 1
Batch Size 160 V-Half 57.83 2 1 20 1

V-Min 52.8 2 2 10 1
V-ZB 63.31 1 1 40 1
1F1B 62.95 2 4 5 1

98.5B Model 1F1B-R 50.37 2 1 20 1
Seq Length 3072 ZB-1P 62.18 1 4 10 1
Batch Size 640 V-Half 66.34 1 2 20 1

V-Min 61.04 1 1 40 1
V-ZB 62.56 1 4 10 1
1F1B OOM -

98.5B Model 1F1B-R 42.05 1 4 10 1
Seq Length 16384 ZB-1P OOM -

Batch Size 160 V-Half 57.85 1 8 5 1
V-Min 48.58 1 8 5 1
V-ZB OOM -

5 Conclusion And Future Work

In this work, we present a framework that constructs pipeline schedules by focusing on their repeating
building blocks. This framework enables direct computation of peak memory from the lifespan of the
building block. Based on this capability, we design a family of memory-efficient building blocks.
We discuss three representative methods from this family, namely V-Min, V-Half and V-ZB, and
demonstrate with experiments that our methods advance the Pareto frontier of throughput and memory
in large model training. Furthermore, our methodology of designing pipeline schedules through
building blocks may inspire the research community to explore more novel pipeline schedules. Notice
that repeating a building block is not the only way of building a pipeline, other methods like greedy
search could generate a pipeline that has no repeating patterns.

9

In the future, we plan to further explore more memory efficient pipeline schedules based on our
framework. A major limitation of V-Min is that, it suffers from growing bubbles when increasing the
number of microbatches. Although V-Half mitigates this issue, there is still a space to further reduce
the memory consumption. Using continuous offsets or finer-granularity discretization is a possible
way to solve it. We leave it in our future work.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 431–445, 2021.

Alexander L Gaunt, Matthew A Johnson, Maik Riechert, Daniel Tarlow, Ryota Tomioka, Dimitrios
Vytiniotis, and Sam Webster. Ampnet: Asynchronous model-parallel training for dynamic neural
networks. arXiv preprint arXiv:1705.09786, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg Ganger,
and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377, 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Arpan Jain, Ammar Ahmad Awan, Asmaa M Aljuhani, Jahanzeb Maqbool Hashmi, Quentin G
Anthony, Hari Subramoni, Dhableswar K Panda, Raghu Machiraju, and Anil Parwani. Gems:
Gpu-enabled memory-aware model-parallelism system for distributed dnn training. In SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–15. IEEE, 2020.

Taebum Kim, Hyoungjoo Kim, Gyeong-In Yu, and Byung-Gon Chun. Bpipe: Memory-balanced
pipeline parallelism for training large language models. In International Conference on Machine
Learning, pages 16639–16653. PMLR, 2023.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. Proceedings of Machine Learning and Systems, 5, 2023.

Shigang Li and Torsten Hoefler. Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14, 2021.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pages 3043–3052. PMLR,
2018.

10

Ziming Liu, Shenggan Cheng, Hao Zhou, and Yang You. Hanayo: Harnessing wave-like pipeline
parallelism for enhanced large model training efficiency. The International Conference for High
Performance Computing, Networking, Storage, and Analysis, pages 1–13, 2023. URL https:
//api.semanticscholar.org/CorpusID:261339639.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–15, 2021.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble pipeline parallelism. In The
Twelfth International Conference on Learning Representations, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Zhenheng Tang, Shaohuai Shi, Wei Wang, Bo Li, and Xiaowen Chu. Communication-efficient
distributed deep learning: A comprehensive survey. arXiv preprint arXiv:2003.06307, 2020.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and Christopher De Sa.
Pipemare: Asynchronous pipeline parallel dnn training. Proceedings of Machine Learning and
Systems, 3:269–296, 2021.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-
Operator} parallelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 559–578, 2022.

Yonghao Zhuang, Lianmin Zheng, Zhuohan Li, Eric Xing, Qirong Ho, Joseph Gonzalez, Ion Stoica,
Hao Zhang, and Hexu Zhao. On optimizing the communication of model parallelism. Proceedings
of Machine Learning and Systems, 5, 2023.

11

https://api.semanticscholar.org/CorpusID:261339639
https://api.semanticscholar.org/CorpusID:261339639

A Adaptive Scheduler Based on Search

Now we consider more general scenarios, where we want to minimize the bubbles given an activation
memory limit. A straightforward approach should be simply searching over all possible offsets and
picking the one with minimal bubbles. However, this naive method cannot work well due to there are
exponentially many possible offsets, which makes it intractable to iterate thoroughly. In this section,
we propose a more practical searching method to solve this general problem.

We use superscript c ∈ {0, 1} to denote which stage in a device, and use subscript i ∈ {1, 2, ..., d}
to denote the index of the device. For example, F c

i represent the forward pass of stage cd + i in
the i-th device. We define the offset from u to v as δ(u, v) = t(v)− t(u), where t(v) represent the
cell index along time horizon of pass v. To simplify the notations, we define δF 0

i = δ(F 0
i , F

0
i+1),

δF 1
i = δ(F 1

i , F
1
i−1), δB

1
i = δ(B1

i , B
1
i+1) and δB0

i = δ(B0
i , B

0
i−1), to denote the offset from a pass

to its next pass.

Instead of all possible offsets, we limit our search space to uniform offsets across devices. We also
try to ensure each device has a balanced peak memory. Note that for the uniform offsets introduced
in Section 3.1, the peak memory only falls into a small discrete set ({k

6M}, where k is an integer).
To make it work for a finer granularity of memory controlling, we split the repeating module into two
parts, containing the first K rows and the last d−K rows respectively. More formally, we use the
constraint as follows.

δF 0
i = δB1

i = δ0<K ,∀1 ≤ i < K δF 1
i = δB0

i = δ1≤K ,∀1 < i ≤ K

δF 0
i = δB1

i = δ0≥K ,∀K ≤ i < d δF 1
i = δB0

i = δ1>K ,∀K < i ≤ d
(3)

Note that the above constraints have good properties that the peak memory is balanced across
devices. As we can always greedily fill W 0

i and W 1
i when repeating, we only need to search over

the permutation of the first device, the values of δ0<K , δ1≤K , δ0≥K , δ1>K and K. The computational
complexity is O(d) if we regard repeating interval as a constant.

For each building block searched, we repeat the building block, check collision, do squeezing and
reordering as mentioned in 2.1. After searching over all possible building blocks, we pick the schedule
with minimal bubbles. Note that we can use the true run times of F, B and W to calculate the bubbles,
which will lead to more efficient schedule in real cases.

B Evaluation of Adaptive Scheduler

In Figure 9 we plot the bubble rate of adaptive V-Shape schedulers introduced in A under various
settings and different memory limit. The run times of F, B and W are from profiled real cases, as in
Table 5. We observe that the bubble rate drops as memory limit increases. Notably, there’s a sudden
drop in bubble rate when the memory limit just goes above approximately 1/2 of 1F1B, at which
point the repeating bubble mentioned in Figure 5a disappears.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

0.3

Bu
bb

le
 R

at
e

9.6B Model, d=16
Microbatches=32
Microbatches=64
Microbatches=128
Microbatches=256

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

0.3

Bu
bb

le
 R

at
e

21B Model, d=24
Microbatches=48
Microbatches=96
Microbatches=192
Microbatches=384

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

0.3

Bu
bb

le
 R

at
e

38.5B Model, d=32
Microbatches=64
Microbatches=128
Microbatches=256
Microbatches=512

Figure 9: Bubble rate of V scheduler under various settings.

We also compare V scheduler with the adaptive zero bubble scheduler proposed in [Qi et al., 2023]
in Figure 10. We find that V scheduler has a boarder range of memory configurations and a smaller
bubble rate compared to zero bubble scheduler. We also draw the bubble rate of 1F1B as a reference,
though 1F1B does not support a configurable memory.

12

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

0.3

Bu
bb

le
 R

at
e

9.6B Model, d=16, n=32
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

0.3

Bu
bb

le
 R

at
e

21B Model, d=24, n=48
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

0.3

Bu
bb

le
 R

at
e

38.5B Model, d=32, n=64
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

9.6B Model, d=16, n=64
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

21B Model, d=24, n=96
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

38.5B Model, d=32, n=128
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

9.6B Model, d=16, n=128
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

21B Model, d=24, n=192
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

38.5B Model, d=32, n=256
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

0.2

Bu
bb

le
 R

at
e

9.6B Model, d=16, n=256
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

Bu
bb

le
 R

at
e

21B Model, d=24, n=384
V Scheduler
ZB Scheduler
1F1B

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory Limit / M

0.0

0.1

Bu
bb

le
 R

at
e

38.5B Model, d=32, n=512
V Scheduler
ZB Scheduler
1F1B

Figure 10: Comparison of V scheduler and zero bubble scheduler.

C Reordering

In our framework, we may need to reorder the warm-up and cool-down phase after squeezing.
Basically, we employ simple greedy approaches to handle the reordering for warm-up and cool-down,
and illustrate how zero bubble schedule is reordered in Figure 11.

1 2 3 4 1 1 1 5 2 2 2 6 3 3 3 7 4 4 1 4 1 8 5 5 2 5 2 6 6 3 6 3 7 7 4 7 4 8 8 5 8 5 6 6 7 7 8 8

1 2 3 1 4 2 1 1 5 3 2 2 6 4 3 1 3 1 7 5 4 2 4 2 8 6 5 3 5 3 7 6 4 6 4 8 7 5 7 5 8 6 8 6 7 7 8 8

1 2 1 3 2 4 3 1 1 5 4 2 1 2 1 6 5 3 2 3 2 7 6 4 3 4 3 8 7 5 4 5 4 8 6 5 6 5 7 6 7 6 8 7 8 7 8 8

1 1 2 2 3 3 4 4 1 1 1 1 5 5 2 2 2 2 6 6 3 3 3 3 7 7 4 4 4 4 8 8 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8

Reordering

1 2 3 4 5 6 7 1 1 1 2 2 2 3 3 3 4 4 1 4 1 8 5 5 2 5 2 6 6 3 6 3 7 7 4 7 4 8 8 5 8 6 5 7 6 8 7 8

1 2 3 4 5 1 6 2 1 1 3 2 2 4 3 1 3 1 7 5 4 2 4 2 8 6 5 3 5 3 7 6 4 6 4 8 7 5 8 6 7 7 5 8 8 6 7 8

1 2 3 1 4 2 5 3 1 1 4 2 1 2 1 6 5 3 2 3 2 7 6 4 3 4 3 8 7 5 4 5 4 8 6 5 7 6 8 7 6 8 5 7 6 8 7 8

1 1 2 2 3 3 4 4 1 1 1 1 5 5 2 2 2 2 6 6 3 3 3 3 7 7 4 4 4 4 8 8 5 5 6 6 7 7 8 8 5 5 6 6 7 7 8 8

Figure 11: Top: the schedule after Squeezing. Bottom: the schedule after Reordering.

Warm-up In warm-up phase, bubbles mainly happen before the first B. We iterate all the cells from
left to right. If a vacant cell (which means a bubble) is encountered, we try to find a computation
pass to fill this bubble. We iterate all the following computation passes in the same device, and check
whether it is possible to move if we keep all other passes unchanged. If the check succeeds, we move
it to the vacant cell, and the bubble is filled.

Cool-down In cool-down phase, W can be scheduled at any time after its corresponding B. So we
utilize a heuristic way to handle the bubbles. Firstly, we delete all the W passes in cool-down phase.
Next, we squeeze the schedule to remove the bubbles caused by deleting W. After that, we use W to

13

fill the remaining bubbles, ensuring each W is after its corresponding B. Finally, we schedule all the
remaining W passes at the end.

Despite its simplicity, the above heuristics is general and effective. However, it may not achieve
the best performance in some cases. We also design other greedy or constructive methods as a
complement for some building blocks. We will release all the related code in our repository.

D Detailed Experiment Data

Table 4: Comparing Pipeline Schedules

Model 9.6B 21B 38.5B
Setup #GPU 16 24 32

Microbatch 4 2 1
#Microbatch 16 32 64 128 256 24 48 96 192 384 32 64 128 256 512

Samples V-ZB 2.59 2.86 2.98 3.04 3.15 1.19 1.32 1.38 1.41 1.44 0.59 0.70 0.72 0.74 0.76
per ZB-1P 2.24 2.58 2.84 2.99 3.08 1.02 1.18 1.30 1.39 1.43 0.53 0.62 0.68 0.72 0.75

second V-Half 1.97 2.43 2.73 2.92 3.08 0.90 1.12 1.26 1.34 1.40 0.47 0.58 0.66 0.71 0.74
per 1F1B 1.69 2.18 2.55 2.80 2.94 0.76 0.99 1.16 1.29 1.35 0.40 0.52 0.61 0.67 0.71

GPU V-Min 1.73 2.10 2.34 2.49 2.61 0.81 0.98 1.10 1.18 1.22 0.42 0.51 0.58 0.62 0.65
1F1B-R 1.26 1.62 1.90 2.08 2.18 0.57 0.74 0.87 0.96 1.01 0.29 0.38 0.45 0.50 0.53
V-ZB 50.4 55.7 57.9 59.1 61.3 50.5 56.1 58.4 59.8 61.2 45.6 53.9 56.0 57.1 58.5
ZB-1P 43.5 50.2 55.2 58.2 60.0 43.5 50.3 55.2 58.9 60.5 40.9 47.8 52.6 55.7 57.7

MFU (%) V-Half 38.3 47.3 53.1 56.8 59.8 38.1 47.4 53.4 57.0 59.5 36.2 45.2 51.1 54.6 57.0
1F1B 32.9 42.4 49.5 54.4 57.1 32.4 41.8 49.2 54.7 57.4 30.6 39.9 47.0 51.8 54.9
V-Min 33.6 40.8 45.6 48.5 50.7 34.4 41.8 46.9 50.0 52.0 32.4 39.7 44.9 48.1 50.1

1F1B-R 24.5 31.5 36.9 40.5 42.4 24.2 31.3 36.8 40.8 42.9 22.8 29.7 35.0 38.6 40.9
V-ZB 58 59 59 59 59 57 57 57 57 57 55 55 55 55 55

Peak ZB-1P 58 57 57 57 57 57 56 56 56 56 55 55 55 55 55
memory V-Half 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38

(GB) 1F1B 56 56 56 56 56 56 56 56 56 56 54 54 54 54 54
V-Min 29 29 29 29 29 31 31 31 31 31 33 33 33 33 33

1F1B-R 14 14 14 14 14 18 18 18 18 18 24 24 24 24 24
V-ZB 48 48 48 48 48 43 43 43 43 43 36 36 36 36 36

Activation ZB-1P 48 47 47 47 47 43 42 42 42 42 36 36 36 36 36
memory V-Half 28 28 28 28 28 24 24 24 24 24 19 19 19 19 19

(GB) 1F1B 46 46 46 46 46 42 42 42 42 42 35 35 35 35 35
V-Min 19 19 19 19 19 17 17 17 17 17 14 14 14 14 14

1F1B-R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V-ZB 18.7 8.88 4.57 2.32 1.16 18.9 8.51 4.39 2.19 1.09 18.7 8.61 4.3 2.24 1.14

Bubble ZB-1P 31.7 20.1 11.2 5.92 3.06 31.5 19.8 11.0 5.82 3.0 32.1 20.1 11.1 5.89 3.04
rate V-Half 40.5 24.2 13.8 7.41 3.84 41.3 24.6 14.0 7.5 3.89 42.0 24.9 14.3 7.6 3.97
(%) 1F1B 50.1 34.3 21.7 13.5 8.76 50.5 34.6 21.9 13.5 8.67 50.7 34.6 21.8 13.4 8.44

V-Min 48.4 36.5 28.0 23.1 20.3 47.8 35.8 27.4 21.9 19.1 48.6 36.5 27.8 22.5 19.5
1F1B-R 63.0 51.2 41.9 35.8 32.2 63.3 51.3 41.9 35.7 32.0 63.5 51.6 42.0 35.8 32.2

D.1 Comparing Pipeline Schedules

For Section 4.2, we present our detailed experiment data in Table 4. Specifically, the metrics are
defined as:

• MFU: The FLOPS utilization of the training system. The calculation of FLOPS of a model is
following [Narayanan et al., 2021].

• Peak Memory: The maximum peak memory cross all devices.

14

• Activation Memory: Estimated as deducting the iteration-start memory from peak memory on
each device. The number presented is the maximum activation memory cross all devices.

• Bubble Rate: The theoretical bubble rate reported by scheduler, using profiled run times of F, B
and W at starting iterations.

D.2 Single-pass MFU Gain When Increasing Microbatch Size

To evaluate how increasing microbatch size increases the arithmetic intensity, we profile the run time
of each single F/B/W pass and calculate their single-pass MFU. We list the results in Table 5. It
shows that whether there are significant MFU gain depends on both the model and the microbatch
size.

Table 5: Single-pass MFU gain when increasing microbatch size

Model 9.6B 21B 38.5B
Microbatch Size 4 8 12 2 4 6 1 2 3

F Pass (ms) 12.96 26.30 39.45 9.30 18.11 26.81 6.72 12.27 18.05
B Pass (ms) 13.22 26.66 39.85 9.47 18.55 27.09 6.89 12.84 18.73
W Pass (ms) 9.76 19.62 28.93 7.19 14.03 21.82 5.06 9.63 15.46

FBW Average MFU (%) 72.13 71.45 71.86 71.11 72.83 73.14 66.86 71.87 71.69

D.3 More Details on Grid Search

Table 6: MFU of grid search, with SequenceLength = 1024 and BatchSize = 160

Parallelization MicroBS 1F1B 1F1B-R ZB-1P V-Half V-Min V-ZB
DP=1 1 51.66 38.18 52.59 52.32 47.36 53.42
TP=4 2 54.0 40.32 56.37 55.92 50.24 58.25
PP=10 4 52.44 38.81 - 55.49 49.79 -
DP=2 1 54.17 40.84 57.26 56.85 52.8 59.03
TP=2 2 - 40.35 - 57.03 52.3 -
PP=10 4 - 35.14 - - - -
DP=1 1 54.03 40.55 57.65 56.88 50.61 59.59
TP=2 2 53.3 39.83 57.55 56.9 50.4 60.23
PP=20 4 - 34.62 - - 45.52 -
DP=2 1 - 40.34 - 57.83 52.78 -
TP=1 2 - 35.89 - - 48.83 -
PP=20 4 - 27.78 - - - -
DP=1 1 53.47 40.07 59.95 57.68 52.54 63.31
TP=1 2 - 35.69 - 54.08 48.27 -
PP=40 4 - 27.53 - - - -
DP=1 1 44.71 33.21 44.6 44.05 36.88 45.32
TP=8 2 51.75 38.67 52.67 51.94 45.37 53.27
PP=5 4 52.0 38.49 53.84 52.98 46.67 53.98

8 50.2 36.84 - 51.87 46.83 -
DP=2 1 51.56 38.73 53.38 52.54 48.7 53.6
TP=4 2 54.77 40.69 57.48 56.32 52.24 58.05
PP=5 4 - 39.61 - 56.53 52.16 -

We show the MFU of every setup of our grid search in Table 6, 7 and 8 for three groups of experiments:
one with SequenceLength = 1024 and BatchSize = 160, one with SequenceLength = 3072
and BatchSize = 640 and the other with SequenceLength = 16384 and BatchSize = 160.

For the first experiment group, the best setup is V-ZB under pure PP because of its bubble elimination.
For the second setup, the best setup is V-Half because its memory efficiency enables a lower TP

15

degree, which is otherwise impossible for V-ZB/ZB-1P/1F1B. For the last setup, due to high memory
pressure only V-Min and V-Half can run without checkpointing. A comparison of TP and PP can be
found at D.4.

Table 7: MFU of grid search, with SequenceLength = 3072 and BatchSize = 640

Parallelization MicroBS 1F1B 1F1B-R ZB-1P V-Half V-Min V-ZB
DP=1 1 62.06 45.85 62.18 62.17 56.29 62.56
TP=4 2 - 45.52 - 45.86 55.54 -
PP=10 4 - 45.34 - - - -
DP=2 1 - 49.03 - - 60.59 -
TP=2 2 - 47.39 - - - -
PP=10 4 - 45.35 - - - -
DP=1 1 - 48.63 - 66.34 57.92 -
TP=2 2 - 47.18 - - - -
PP=20 4 - 45.3 - - - -
DP=2 1 - 50.37 - - - -
TP=1 2 - 46.01 - - - -
PP=20 4 - - - - - -
DP=1 1 - 49.7 - - 61.04 -
TP=1 2 - 45.26 - - - -
PP=40 4 - 42.73 - - - -
DP=1 1 55.93 41.31 54.13 54.22 49.75 54.38
TP=8 2 57.64 42.37 55.25 55.64 51.88 55.76
PP=5 4 - 43.3 - - 14.59 -
DP=2 1 62.95 46.49 - 61.95 57.74 -
TP=4 2 - 45.92 - - - -
PP=5 4 - 44.44 - - - -

Table 8: MFU of grid search, with SequenceLength = 16384 and BatchSize = 160

Parallelization MicroBS 1F1B 1F1B-R ZB-1P V-Half V-Min V-ZB
DP=1;TP=4;PP=10 1 - 42.05 - - - -
DP=2;TP=2;PP=10 1 - - - - - -
DP=1;TP=2;PP=20 1 - 41.52 - - - -
DP=2;TP=1;PP=20 1 - - - - - -
DP=1;TP=1;PP=40 1 - - - - - -
DP=1;TP=8;PP=5 1 - 39.48 - 57.85 48.58 -
DP=1;TP=8;PP=5 2 - - - - - -
DP=2;TP=4;PP=5 1 - 35.13 - - - -

D.4 Model Parallelism: More PP or More TP?

Our grid search results in Appendix D.3 show a strong favor of Pipeline Parallel (PP) over Tensor
Parallel (TP), which might contradict with some existing industry experience where more degree
of TP usually accelerates training. To understand the reason, we briefly compare TP and PP in this
section.

Though PP also equally partition the model into p PP shards, it usually needs to cache the activations
for Θ(p) microbatches, resulting in the total activation memory demand same as the unpartitioned.
On the other hand, TP, when used with sequence parallelism [Korthikanti et al., 2023], partitions most
activation memory equally to t TP shards, which is one of the most significant benefit of TP over
PP. However, this comes at the cost of a collective communication and reducing the size of hidden
dimension to 1

t , which can significantly decrease the single-pass (F/B/W) MFU. Though one can
argue that the saved memory can be used to increase the microbatch size, our experiment measuring
the MFU under different TP setups (Figure 12) demonstrates that a higher-degree of TP even with
larger microbatch size still suffers from lower single-pass MFU.

16

t=1 t=2 t=4 t=8
SequenceLength=1024; BS=160

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
FU

Single-pass MFU under different TP degree
mbs=1
mbs=2
mbs=4
mbs=8

t=1 t=2 t=4 t=8
SequenceLength=3072; BS=640

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
FU

Single-pass MFU under different TP degree
mbs=1
mbs=2
mbs=4

Figure 12: Average single-pass MFU (over FBW) for grid search under different TP degrees.

The throughput of PP also decreases as PP degree increases for two major reasons: a) for PP schedules
with a fixed global batch size, a higher PP degree usually results in higher pipeline bubbles. For
example, 1F1B has a bubble rate of p−1

p+n−1 , which would increase if p grows and n keeps unchanged;
b) the first and last pipeline stage for a language model usually have an embedding or output layer
which has innegligible additional computations, making the pipeline unbalanced and hurting the
efficiency. With higher PP degree, the unbalance would be aggravated. However, theses two issues
can be mitigated. For the first issue, a larger number of microbatches or using V-ZB can significantly
reduce the pipeline bubble. For the second issue, we can use another standalone stage to handle
the embedding or output layer instead to avoid bottleneck. In our experiments, we simply deduct 1
layer from both the first and last pipeline stage to mitigate this problem. As a result, our methods
essentially push the preference from TP to PP.

E Bubble Analysis

Although we mainly focus on the memory efficiency in this paper, we also need to take care of the
bubbles in pipeline parallelism. Typically, there is a trade-off between memory and bubble, where
allowing more memory usage can reduce the bubble of a pipeline schedule. In this section, we will
discuss how to identify whether the bubble of a schedule will grow with respect to the number of
microbatches. Additionally, we illustrate an empirical lower bound of bubble in our methods. We
follow the notation in Section 3.1 and Appendix A in this section.

E.1 Existence of Repeating Bubbles

In pipeline parallelism, we usually expect there is no repeating bubbles introduced in Section 3.3,
namely, the bubble is only related to the number of pipeline devices (d), and won’t grow when
increasing the number of microbatches (n). This property guarantees a good scalability with respect
to n. We say a pipeline schedule is with O(d) bubble if it satisfies this property, otherwise with O(n)
bubble. Note that the conclusion is based on the values of TF , TB and TW , which are the run times
of F, B and W respectively. For example, the schedule of V-Min (Figure 4b) is with O(d) bubble
when TF = TB = TW , but is with O(n) bubble when TW is significantly smaller than TF and TB .

If there are no repeating bubbles in a schedule for any values of TF , TB , TW , the minimal
memory is 2dm. In a pipeline schedule, there are two types of dependencies, streaming dependency
within the same device and computational dependency across devices. We define a dependency path
as a sequence of passes τ = (v1, v2, ..., v|τ |) where for any 1 < i ≤ |τ |, vi is dependent on vi−1

(either streaming dependency or computational dependency). We define the time cost of a dependency
path as Tτ =

∑
1≤i≤|τ | Tvi where Tvi is the time cost of vi. Then the runtime of the whole pipeline

should be T = maxτ Tτ .

17

Obviously, there is a trivial dependency path τ1 that all the passes are from the same device, and
Tτ1 = 2n(TF + TB + TW). Note that it is the lower bound of runtime, and any extra runtime would
be considered as bubbles.

Let’s consider another dependency path τ2 containing only forward passes. To be simple, we denote
F̂j as the forward sequence for the j-th microbatch. Then τ2 = concatenate(F̂0, F̂k, ..., F̂⌊n−1

k ⌋k)

thus Tτ2 = 2d⌊n+k−1
k ⌋TF , where 6k > δ(F 0

1 , F
1
1) > 6(k − 1) (greedily include as many forward

passes as possible). Note that if we want to guarantee O(d) bubble for any values of TF , TB , TW , we
should choose k ≥ d to make 2d⌊n+k−1

k ⌋ ≤ 2n, otherwise 2d⌊n+k−1
k ⌋TF − 2n(TF + TB + TW) ∈

O(n) if we set TB = TW = 0. Then we can get δ(F 0
1 , F

1
1) > 6d− 6.

Then we consider a similar dependency path τ3 containing only backward passes, and we can get
δ(B1

1 , B
0
1) > 6d− 6. According to Equation 1, we can get the peak memory in the first device is at

least (⌈ δ(F 0
1 ,F

1
1)

6 ⌉+ ⌈ δ(B1
1 ,B

0
1)

6 ⌉)m ≥ 2dm.

For most real cases, V-Half is enough to guarantee there are no repeating bubbles. Although
the above proof shows that 2dm memory is required to guarantee O(d) bubble for any values of
TF , TB , TW , we don’t need that much memory in practice because the values of TF , TB and TW are
well constrained. As in Qi et al. [2023], F, B and W have similar total FLOPS, and TF , TB , TW don’t
differ too much in real cases. Based on this insight, we can check the conditions where our methods
are with O(d) bubble.

Because both warm-up phase and cool-down phase have O(d) passes, we only need to consider the
stable phase to identify whether a schedule is with O(d) bubble or with O(n) bubble. Obviously,
streaming dependency won’t block the device from executing the next pass. So bubble is caused
only by the computational dependency. Formally, a schedule is with O(n) bubble if and only if
there exist two passes u and v (within the same device) and there are two dependency paths τ and τ ′

between them, where τ only contains streaming dependencies, τ ′ contains at least two computational
dependencies, and Tτ < Tτ ′ . Based on our V-shape building blocks, we only need to check u and v
with a small distance (< 6) and τ ′ within two adjacent devices. In this way, we can conclude that the
schedule in Figure 4c is with O(d) bubble when TW +2TB ≥ 2TF & TW +2TF ≥ 2TB , which is
satisfied in most real cases.

E.2 Lower Bound

Device 1 1 1 1 8 8 8 8

Device 2 1 1 1 8 8 8

Device 3 1 1 1 8 8 8

Device 4 1 1 1 1 1 1 5 5 2 2 2 2 6 6 3 3 3 3 7 7 4 4 4 4 8 8 8 8

Time →

Figure 13: A dependency path of pipeline schedule.

The runtime of a schedule can be bounded by any dependency path. In Figure 13, we present a
dependency path which is a non-trivial lower bound for most schedules after squeezing and reordering.
Assuming the actual peak memory is km (k ≤ 2d) and TF = TB = TW = 1, then the runtime of
this dependency path is at least 6n+ 6d− 3k − 1. Empirically, we find that we can always get close
to this lower bound in our adaptive scheduler.

F Building blocks of V-Min and V-Half for all values of d

To avoid collisions when repeating building blocks, we need a slightly different offsets for different
number of devices d. We list the details in Table 9 and 10 while continue using the notation defined
in A. We do not list the offsets related to W passes because they always fill in the empty grids left by
F and B. Some samples can also be found at Figure 14.

18

F F B W B W

F F B W B W F F B W B W

F F B W B W F F B W B W F F B W B W

V-Min F F B W B W F F B W B W F F B B W W

F F B B WW F F B B WW F F B B WW

d mod 3 = 0 d mod 3 = 1 d mod 3 = 2

F F B W B W

F F B W B W F F B W B W

V-Half F F B W B W F F B W B W

F F B W B W F F B W B W

F F B B W W F F B B W W

d mod 2 = 0 d mod 2 = 1

Figure 14: Building blocks of V-Min and V-Half on different settings of d

Table 9: Offsets for V-Min

1 ≤ i < d, 1 < j ≤ d δF 0
i δF 1

j δB0
i δB1

j δ(F 0
d , F

1
d) δ(F 1

1 , B
1
1) δ(B0

d, B
1
d)

d ≡ 0 mod 3 1 1 1 1 1 3 1
d ̸≡ 0 mod 3 1 1 1 1 1 1 1

Table 10: Offsets for V-Half

1 ≤ i < d, 1 < j ≤ d δF 0
i δF 1

j δB0
i δB1

j δ(F 0
d , F

1
d) δ(F 1

1 , B
1
1) δ(B0

d, B
1
d)

d ≡ 0 mod 2 2 1 2 1 2 4 1
d ≡ 1 mod 2 2 1 2 1 2 1 1

G Non-uniform Repeating Interval of Interleaved 1F1B

While most existing schedules (Figure 18) are repeated with uniform interval, interleaved 1F1B
[Narayanan et al., 2021] is slightly different in the repeating pattern. The official interleaved 1F1B
has a repeating pattern as shown in Figure 15a. If we also employ uniform repeating interval as in
Figure 15b, we can obtain another schedule with the same memory footprint and bubble rate as the
official interleaved 1F1B, shown in the gallery (Figure 18i).

1 2 3 4 5 6 7

(a) The non-uniform repeating interval of interleaved 1F1B. The number in highlighted grids
shows the microbatch with that index starts at this cell.
1 2 3 4 5 6 7

(b) A variation of interleaved 1F1B with uniform repeat.

Figure 15: Different repeat pattern of the same building block of interleaved 1F1B.

H Other Memory Efficient Building Blocks

Under the guidance of lifespan defined in Section 2.2, we also find some other building blocks besides
the V-Shape building block family. We show the building blocks in Figure 16 and their full schedules

19

F F B B

F F B B

F F B B

F F B B

F F B B

(a) 1F1B-V

F F B W B W

F F B B W W

F F B B W W

F F B W B W

F B F B W W

(b) Zero bubble schedule with 2/3 1F1B memory

F F B B

F F B B

F F B B

F F B B

F F B B

(c) A variation of interleaved 1F1B with the same bubble rate but lower
memory

Figure 16: Other memory-efficient building blocks.

1 2 3 4 5 6 1 1 2 2 3 3 4 4 5 5 7 1 6 6 8 2 7 7 3 8 8 4 5 6 7 8

1 2 3 4 5 6 1 2 1 3 2 4 3 5 4 1 7 6 5 2 8 7 6 3 8 7 4 8 5 6 7 8

1 2 3 4 1 2 3 4 1 5 2 3 5 6 1 4 6 7 2 5 7 8 3 6 8 4 7 5 8 6 7 8

1 2 3 1 4 2 3 4 1 5 2 1 5 3 6 2 6 4 7 3 7 5 8 4 8 6 5 7 6 8 7 8

1 1 2 2 3 3 4 4 1 1 5 5 2 2 6 6 3 3 7 7 4 4 8 8 5 5 6 6 7 7 8 8

(a) 1F1B-V
1 2 3 4 1 1 2 5 2 6 3 3 4 7 4 8 5 5 6 6 7 7 8 8

1 2 3 1 4 2 1 2 5 3 6 4 3 4 7 5 8 6 5 6 7 7 8 8

1 2 1 3 2 4 1 2 3 5 4 6 3 4 5 7 6 8 5 6 7 7 8 8

1 2 1 1 2 3 2 4 3 3 4 5 4 6 5 5 6 7 6 8 7 7 8 8

1 1 2 2 1 2 3 3 4 4 3 4 5 5 6 6 5 6 7 7 8 8 7 8

(b) Zero bubble schedule with 2/3 1F1B memory
1 2 3 4 5 1 2 3 4 5 1 6 2 7 3 6 4 8 1 7 2 8 5 3 6 7 8 4 5 6 7 8

1 2 3 4 5 1 2 3 4 1 5 2 6 3 7 4 6 1 8 2 7 5 8 3 6 7 8 4 5 6 7 8

1 2 3 4 5 1 2 3 1 4 2 5 3 6 4 7 1 6 2 8 5 7 3 8 6 7 8 4 5 6 7 8

1 2 3 4 5 1 2 1 3 2 4 3 5 4 6 1 7 2 6 5 8 3 7 6 8 7 8 4 5 6 7 8

1 2 3 4 5 1 1 2 2 3 3 4 4 5 1 6 2 7 5 6 3 8 6 7 7 8 8 4 5 6 7 8

(c) A variation of interleaved 1F1B with the same bubble rate but lower memory

Figure 17: Other memory-efficient schedules.

in Figure 17. All these schedules have lower bubble rate than 1F1B. Specifically, 1F1B-V applies
V-Shape to the building block of 1F1B but without B-W split, which can reduce the peak memory to
asymptotically 2/3 of 1F1B. We also find that utilizing B-W split, the zero bubble pipeline schedules
proposed in [Qi et al., 2023] with configurable memory limit can support a minimum of 2/3 activation
memory of 1F1B, using the building block shown in Figure 16b. Note that two microbatches are
included in a single building block to avoid collision. Using the building block defined in Figure 16c,
we can make a schedule with the same bubble rate as interleaved 1F1B but lower memory, shown in
Figure 17c.

I A Gallery of Pipeline Parallel Schedules and Their Building Blocks

We show the building blocks and full schedules of some well-known existing methods in Figure 18.

20

F B

F B

F B

1 2 3 1 4 2 5 3 6 4 5 6

1 2 1 3 2 4 3 5 4 6 5 6

1 1 2 2 3 3 4 4 5 5 6 6

(a) 1F1B
F B

F B

F B

1 2 3 4 5 1 6 2 3 4 5 6

1 2 3 1 4 2 5 3 6 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

(b) Eager 1F1B
F B W

F B W

F B W

1 2 3 1 1 4 2 2 5 3 3 6 4 4 5 5 6 6

1 2 1 3 2 1 4 3 2 5 4 3 6 5 4 6 5 6

1 1 2 2 3 3 1 4 4 2 5 5 3 6 6 4 5 6

(c) ZB-H1
F B W

F B W

F B W

1 2 3 4 5 1 1 6 2 2 3 3 4 4 5 5 6 6

1 2 3 1 4 2 5 3 1 6 4 2 5 3 6 4 5 6

1 1 2 2 3 3 4 4 5 5 1 6 6 2 3 4 5 6

(d) ZB-H2
F B

F B

F B

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

(e) GPipe

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

(f) GEMS
F F B B

F F B B

F F B B

F F B B

1 3 2 2 4 4 1 3

1 2 3 4 2 1 4 3

2 1 4 3 1 2 3 4

2 4 1 1 3 3 2 4

(g) Chimera
F F B B

F F B B

F F B B

1 2 3 1 2 3 4 5 1 6 2 4 3 5 1 6 2 3 4 5 6 4 5 6

1 2 3 1 2 3 1 4 2 5 3 6 1 4 2 5 3 6 4 5 6 4 5 6

1 2 3 1 1 2 2 3 3 4 1 5 2 6 3 4 4 5 5 6 6 4 5 6

(h) Interleaved 1F1B
F F B B

F F B B

F F B B

1 2 3 1 2 4 3 5 1 4 2 6 1 5 3 2 6 4 3 5 6 4 5 6

1 2 3 1 2 4 1 3 2 5 1 4 3 6 2 5 4 3 6 5 6 4 5 6

1 2 3 1 1 2 2 4 1 3 3 5 2 4 4 6 3 5 5 6 6 4 5 6

(i) Interleaved 1F1B with uniform interval (with reordering)

Figure 18: A gallery of pipeline schedules and their building blocks. The upper row of each schedule
shows the building block and how it repeats. The lower row shows the final schedule after squeezing.

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper focus on the memory efficiency of pipeline parallelism. Our major
contribution contains a framework to design pipeline schedules, which can control the
activation memory by adjusting the lifespan, and a family of memory-efficient schedules.
These are highlighted in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The major limitation of our work is that the performance V-Min method
degrades when F B and W times are different. We discussed the limitation in Section 3.2
and also reflected them in the evaluation Section 4
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

22

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We don’t have many theories in our work. The most theory part is the
relationship between lifespan and memory, which is quite intuitive.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our implementation is based on Megatron-LM, which is accessible from
everyone and we also disclosed the detailed setup of each schedule. We also plan to
open-source our implementation when camera-ready.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

23

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We’ll opensource the implementation code on camera-ready version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment details are shared in Section 4 and Appendix D.1, D.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our stats in experiments are mostly profiled memory and runtime, which are
quite stable in our environment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in Section 4, we need at most 40 GPUs to run our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conforms to the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our methods are focusing on the training systems only, not on the algorithms.
They should not have any societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

25

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our methods has no risk of being misused.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our implementation is based on Megatron-LM which has a lisence that allow
other works to freely work on them.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

26

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We’ll opensource our code with documentation on usage on camera-ready
version.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowd sourcing involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

27

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	How to Build a Pipeline
	Building Blocks
	Calculating the Peak Memory
	Repeating without Collision

	Memory Efficient Building Blocks
	Controllable Balanced Memory
	V-Shape Pipeline Schedules
	Repeating Bubbles in V-Min
	Other Building Blocks

	Experiments
	Setup
	Comparing Pipeline Schedules
	When to Save Memory
	Combining with Existing Techniques

	Conclusion And Future Work
	Adaptive Scheduler Based on Search
	Evaluation of Adaptive Scheduler
	Reordering
	Detailed Experiment Data
	Comparing Pipeline Schedules
	Single-pass MFU Gain When Increasing Microbatch Size
	More Details on Grid Search
	Model Parallelism: More PP or More TP?

	Bubble Analysis
	Existence of Repeating Bubbles
	Lower Bound

	Building blocks of V-Min and V-Half for all values of d
	Non-uniform Repeating Interval of Interleaved 1F1B
	Other Memory Efficient Building Blocks
	A Gallery of Pipeline Parallel Schedules and Their Building Blocks

