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Abstract

When explaining machine learning models, it is
important for explanations to have certain proper-
ties like faithfulness, robustness, smoothness, low
complexity, etc. However, many properties are in
tension with each other, making it challenging to
achieve them simultaneously. For example, reduc-
ing the complexity of an explanation can make
it less expressive, compromising its faithfulness.
The ideal balance of trade-offs between proper-
ties tends to vary across different tasks and users.
Motivated by these varying needs, we aim to find
explanations that make optimal trade-offs while
allowing for transparent control over the balance
between different properties. Unlike existing meth-
ods that encourage desirable properties implicitly
through their design, our approach optimizes ex-
planations explicitly for a linear mixture of multi-
ple properties. By adjusting the mixture weights,
users can control the balance between those prop-
erties and create explanations with precisely what
is needed for their particular task.

1 INTRODUCTION

When explaining machine learning models, it is desirable for
our explanations to satisfy various properties. For instance,
explanations should be faithful and accurately reflect the ac-
tual computations carried out by the underlying model [Yeh
et al., 2019]. We might also want them to be robust so that
similar inputs result in similar explanations [Alvarez Melis
and Jaakkola, 2018], or smooth so that similar dimensions in
the input are assigned similar values in the explanation [Ajal-
loeian et al., 2022]. Some applications may require explana-
tions to be simple with low complexity [Bhatt et al., 2020].
Accordingly, a range of metrics has been proposed to eval-
uate these properties [Chen et al., 2022, Wang et al., 2024].

Table 1: Different tasks require explanations with different
properties. For instance, when auditing models, explanations
need to be faithful no matter how complex so that users can
investigate every detail and catch the smallest breaches in
regulation. Meanwhile, counterfactual reasoning involves
extrapolating a model’s behavior to new cases, where robust
explanations that capture global trends might be more useful
than explanations faithful to local variations.

Task Property Preference

Auditing models Faithfulness ≻ Complexity [Nofshin et al., 2024]
Counterfactual reasoning Robustness ≻ Faithfulness [Nofshin et al., 2024]
Detecting model biases Smoothness ≻ Faithfulness [Colin et al., 2022]

While all of these properties can be useful, many of them
are in tension with each other, making it difficult to achieve
them simultaneously. For instance, reducing the complex-
ity of an explanation often makes it less expressive, which
can undermine its faithfulness [Bhatt et al., 2020]. Previous
work has shown similar trade-offs between faithfulness vs.
robustness [Tan and Tian, 2023], faithfulness vs. sensitiv-
ity [Bansal et al., 2020], and faithfulness vs. homogeneity
[Balagopalan et al., 2022].

Not only these trade-offs exist, but it is also the case that
different tasks or different users require different balances
among these properties [Zhou et al., 2021, Liao et al., 2022,
Nofshin et al., 2024]. For instance, users who work more
closely with AI might prefer more faithful explanations de-
spite their complexity, while non-AI experts might prefer
explanations that are shorter and clearer instead Wang et al.
[2024]. Likewise, studies show that users perform better
with faithful explanations when auditing black-box models
for compliance [Nofshin et al., 2024], robust explanations
when performing counterfactual (“what-if”) reasoning [Nof-
shin et al., 2024], or smooth explanations when trying to
detect model biases (see Table 1) [Colin et al., 2022].

Motivated by these varying user needs, we aim to provide
a method for finding explanations that make optimal trade-
offs between different properties, where the balance between
each property can be controlled transparently. We focus
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Figure 1: Summary of Related Work. Consider the trade-
off between two properties. Methods without explicit op-
timization (like SmoothGrad and LIME) fail to reliably
produce optimal explanations. Varying their hyperparame-
ters leads to different explanations, but does not consistently
balance one property againts the other. AGG can offer more
direct control over the trade-off by aggregating multiple
explanations, but its span and optimality are limited by the
quality of its base explanations. MOFAE can generate a
random set of near-optimal explanations, but provides little
control over where exactly these explanations land along the
optimality front (making it difficult to fine-tune the balance
for an individual explanation). In contrast, our approach
finds optimal explanations with transparent control across
the entire optimality front.

specifically on feature attribution explanations [e.g. Ribeiro
et al., 2016, Lundberg and Lee, 2017, Smilkov et al., 2017,
Selvaraju et al., 2020]. This popular type of explanation
assigns a contribution score to each input feature, capturing
the impact of that feature on the final output. We achieve
our goal by directly optimizing these contribution scores for
a linear mixture of properties, where the mixture weights
can be adjusted freely by the user.

We derive computationally efficient ways to perform such
optimization in both inductive and transductive settings. In
the inductive setting, we show that optimizing a combi-
nation of faithfulness, robustness, and smoothness can be
expressed as an equivalent Gaussian process (GP) inference
problem. While the inductive setting is more generally appli-
cable, the transductive setting allows us to consider an even
wider range of properties and efficient optimization strate-
gies. In particular, in the transductive setting, we consider
optimizing for complexity and alternative formulations of
faithfulness and robustness from the literature.

Related Work: Limitations of Current Methods. Most
feature attribution methods tend to target a specific property
when generating explanations. For instance, SmoothGrad
[Smilkov et al., 2017] improves robustness by averaging
gradients around input points. Meanwhile, LIME [Ribeiro
et al., 2016] prioritizes faithfulness by fitting local linear
models at individual input points. Like SmoothGrad and
LIME, methods are typically designed as forward computa-
tions, where the desired property is encouraged heuristically

through the design of those computations. Explanations are
almost never optimized directly for a target property or for
a desired trade-off between multiple properties.

As a consequence, such methods often make implicit trade-
offs against properties other than the one targeted. For in-
stance, methods like LIME or SHAP [Lundberg and Lee,
2017], which focus on faithfulness, have been shown to gen-
erate explanations that are not always robust [Alvarez Melis
and Jaakkola, 2018, Ghorbani et al., 2019, Slack et al., 2020].
Similarly, methods like SmoothGrad and GradCAM [Sel-
varaju et al., 2020], which focus on robustness, can yield
explanations that lack faithfulness [Adebayo et al., 2018].

These implicit trade-offs make it impossible to control the
balance between competing properties in a transparent man-
ner. To give an example, Tan and Tian [2023] demonstrated
for SmoothGrad that the balance between faithfulness and
robustness is sensitive to a hyperparameter, δ, but how ex-
actly δ affects this balance remains unclear (as we will see in
the experiments, varying δ can lead to unintuitive changes
in faithfulness and robustness). Furthermore, without ex-
plicit optimization, the resulting trade-off may not even be
optimal or the method might fail to produce the intended
property altogether. Frameworks for recommending expla-
nations tailored to specific user needs [e.g. Cugny et al.,
2022] often rely on tuning the hyperparameters of existing
explanation methods, inheriting the same limitations.

In order to produce a desired property more reliably, Bhatt
et al. [2020], Decker et al. [2024] proposed aggregating ex-
planations generated by multiple methods. While the prop-
erties induced by individual methods can be unpredictable,
with sufficient diversity, finding a desirable aggregation can
be possible. The algorithm of Decker et al. [2024], AGG,
searches for the best convex combination of some base
explanations to optimize either for faithfulness or for robust-
ness. AGG can be extended to target any arbitrary trade-off
between these two properties as well, offering transparent
control, however, the span and optimality of achievable
trade-offs would remain constrained by the properties of the
base explanations used (see Figure 1).

Wang et al. [2024] proposed a framework where explana-
tions are directly optimized for multiple properties simul-
taneously (rather than a single mixture as in our approach).
Their method, MOFAE, uses a genetic algorithm to generate
a collection of explanations, each achieving a different but
optimal trade-off. However, since this collection is generated
through a stochastic process, MOFAE is ineffective at tar-
geting a particular balance of properties or at fine-tuning the
balance achieved by an individual solution (see Figure 1).

Contributions. We make three contributions: (i) We pro-
pose a new method called POE (Property Optimized Ex-
planations), which directly optimizes for a combination of
desired properties. POE allow for fine-grained control over
the trade-offs between competing objectives, enabling users



Table 2: Summary of Property Definitions. We consider faithfulness (gradient matching), robustness (average differences),
and smoothness for both inductive and transductive settings. While the inductive setting is more generally applicable,
the transductive setting allows us to consider additional definitions of faithfulness (function matching) and robustness
(maximum difference) as well as complexity. †s(x,x′) and Snn′

.
= s(xn,xn′) quantify the similarity between two inputs.

‡S̃dd′ quantifies the similarity between two input dimensions.

Property Inductive Definition Transductive Definition

Faithfulness (Gradient Matching) (a) LF-grad(E) =
∫
Ω
∥E(x)−∇f(x)∥22dx (d) LF-grad(WE) =

∑
n ∥wEn −∇f(xn)∥22

Faithfulness (Function Matching) – (e) LF-func(WE) =
∑

n |(wEn
)⊤xn − f(xn)|2

Robustness (Average Difference) † (b) LR-avg(E) =
∫∫

Ω
∥E(x)− E(x′)∥22 s(x,x′) dxdx′ (f) LR-avg(WE) =

∑
n,n′ ∥wEn

−wEn′∥22 Snn′

Robustness (Maximum Difference) – (g) LR-max(WE) =
∑

n maxn′ ∥wEn −wEn′∥22
Smoothness ‡ (c) LS(E) =

∫
Ω

∑
d,d′ |Ed(x)− Ed′(x)|2 S̃dd′ dx (h) LS(WE) =

∑
n,d,d′ |(wEn

)d − (wEn
)d′ |2 S̃dd′

Complexity – (i) LC(WE) =
∑

n ∥wEn∥1

to create explanations with precisely the balance of prop-
erties needed for their task. (ii) We demonstrate that popu-
lar feature attributions methods (e.g. SmoothGrad, LIME)
not only fail to reliably generate explanations with optimal
properties, but also lack mechanisms for controlling the pri-
oritization of properties. Among recent frameworks, AGG
brings some control but does not ensure optimality, and
MOFAE finds optimal explanations but does not allow for
fine-grained control. (iii) Finally, we demonstrate through a
variety of experiments that POE consistently yields explana-
tions with optimal properties and easy-to-adjust trade-offs.

2 PROBLEM FORMULATION

Setting. We consider the problem of explaining some fixed
function f : RD → R. We assume that we can query the
function for an output y = f(x) for any input x as well
as a gradient ∇f(x). Depending on how explanations are
requested, we consider two different settings: (i) the induc-
tive setting, where the requests for explanations arrive in an
online fashion (i.e. one input point x at a time), and (ii) the
transductive setting, where we are given the full set of input
points {xn}Nn=1 that we will need to explain in advance.
While the inductive setting is more generally applicable, it
is also a more challenging setting (because properties like
robustness that rely on simultaneously optimizing explana-
tions at multiple inputs requires us to reason about the entire
input domain); the assumption of the transductive setting
will allow us to optimize for a wider range of properties.

Explanations. We restrict our focus to local explanations
that are based on feature-attributions. This is so that we can
give concrete definitions of properties such as faithfulness,
robustness, and smoothness as an exemplar of our approach.
In local feature attribution, an explanation E ∈ RD is a
vector assigning an attribution score to each component of
some input point x. In the inductive settings, these explana-
tions are given by a function E : RD → RD (from input to
explanation). In the transductive setting, we do not assume
an explicit explanation function, rather, for each input xn,
we denote the explanation at xn by wEn ∈ RD and the
matrix of explanations for the N inputs as WE ∈ RN×D.

The General Problem. We are given a set of desired prop-
erties {propi}, each characterized by a loss function Lpropi .
In the inductive setting, these losses are functions of E, and
in the transductive setting, they are functions of WE . Our
objective is to find the explanation function E—or the expla-
nation matrix WE—that optimizes for the given properties
(i.e. minimizes their characteristic loss functions):

E∗ = argminE
∑

i λpropiLpropi(E; f) (1)

where λpropi are weights that provide a transparent, intuitive
way to manage trade-offs between different properties.

3 PROPERTY DEFINITIONS

In this paper, we optimize for a range of common properties
that have been shown to be useful for downstream tasks in
literature. In existing literature, the same conceptual prop-
erty is mathematically formalized in many different ways
[Chen et al., 2022, e.g. Alvarez Melis and Jaakkola [2018]
vs. Yeh et al. [2019] for robustness]. We focus on the proper-
ties of faithfulness, robustness, smoothness, and complexity.
We choose to work with these four properties because they
are in tension, that is, it is not possible to maximize all four
unless the function has constant gradients (i.e. it is linear).
Thus, it is necessary for any explanation method to manage
the trade-off between faithfulness, robustness, smoothness,
and complexity in ways that are appropriate for specific
tasks. We consider formalizations of these properties that
have been well studied in literature as well as lend them-
selves to efficient optimization. Table 2 summarizes all the
properties we consider and their corresponding losses.

Faithfulness. Faithfulness quantifies the extent to which an
explanation accurately reflects the behavior of the function
that is being explained. The class of explanations wherein
one computes the marginal contribution of each dimension,
by using small perturbations or by analytically computing
input gradients, can be seen as optimizing faithfulness for-
malized as gradient matching [Table 2a, Baehrens et al.,
2010, Simonyan, 2013]:

LF-grad(E) =
∫
Ω
∥E(x)−∇f(x)∥22dx (2)



Many faithfulness metrics proposed in the literature can be
reduced to gradient matching under certain settings. For
example, the faithfulness metric in Tan and Tian [2023] is
equivalent to gradient matching, when the perturbation is
Gaussian and the similarity measure is Euclidean distance. A
number of metrics define faithfulness as matching the func-
tion with linear approximations based on the explanation,
e.g. local-fidelity [Yeh et al., 2019], local-accuracy [Tan and
Tian, 2023], loss-based-fidelity [Balagopalan et al., 2022],
see LF-func in Table 2e. We will consider this alternative
formalization in the transductive setting.

Robustness. Robustness quantifies the extent to which an
explanation varies with respect to the input. A common way
to formalize robustness as a metric is to take the weighted
sum of pairwise differences between explanations for dif-
ferent inputs in the data. More formally, in the inductive
setting, this can be written (Table 2b):

LR-avg(E) =
∫∫

Ω
∥E(x)− E(x′)∥22 s(x,x′) dxdx′ (3)

where s(x,x′) ∈ R is a weight that quantifies the similarity
between x and x′. Metrics like (Lipschitz) local-stability
[Alvarez Melis and Jaakkola, 2018, Wang et al., 2020] are
instances of the above equation, where we set the weights
s(x,x′) to be a function of ∥x− x′∥22. Notably, our robust-
ness loss depends on the similarity of the explanation at
input x to the explanation at input x′. Thus, optimizing the
robustness of an explanation for even one input requires
assigning explanations to many other inputs. By explicitly
optimizing explanations, our approach will ensure that all ex-
planation assignments are consistent, a property not present
in most existing explanation methods. We detail our choice
of s in the appendix. Rather than averaged differences, met-
rics like max-sensitivity [Yeh et al., 2019] capture a notion
of robustness defined by the maximum difference between
the explanations at “neighboring” input points, see LR-max

in Table 2g. We will consider this alternative formalization
in the transductive setting.

Smoothness. Smoothness or “internal robustness" captures
the variability across different dimensions of an explana-
tion that is assigned to a fixed input. Similar to robustness,
suppose we are given a similarity matrix S̃dd′ that tells how
similar an input dimension d ∈ [D] is to another input di-
mension d′ ∈ [D] (for instance, when inputs are images, this
similarity can be related to the distance between two pixels).
Then, we define the smoothness loss in a form similar to
robustness (Table 2c):

LS(E) =
∫
Ω

∑
d,d′ |Ed(x)− Ed′(x)|2 S̃dd′ dx (4)

Complexity. A common way to formalize explanation com-
plexity is via sparsity, i.e. by counting the number of non-
zero weights in the explanations. In the transductive setting,
this can be captured through the ℓ1-norm of explanations
(Table 2i): LC(WE) =

∑
n ∥wEn∥1, which we prefer over

ℓ0-norm for efficient optimization.

4 INDUCTION: OPTIMIZING
EXPLANATION FUNCTIONS

In this section, we tackle the inductive version of our prob-
lem: learning explanation functions that are optimized for
a desired mixture of explanation properties. We instantiate
the general problem in Equation 1 with three properties:
faithfulness (F-grad), robustness (R-avg) and smooth-
ness (S). Then, we drive a computationally efficient and
mathematically consistent solution based on GP inference.

Instantiation. When linearly combined, the losses corre-
sponding to these three properties (LF-grad, LR-avg, LS in
Table 2a–c) lead to the following optimization problem:

E∗ = argminE
∫
Ω
λF-avg∥E(x)−∇f(x)∥22dx

+ λR-avg
∫∫

Ω
∥E(x)− E(x′)∥22s(x,x′)dxdx′ (5)

+ λS
∫
Ω

∑
d,d′ |Ed(x)− Ed′(x)|2S̃dd′dx

Here, the robustness loss in Equation 5 is what makes opti-
mization challenging: When assigning an explanation even
to one input, we must ensure that the explanation is similar
to explanations for nearby inputs; those explanations, to be
optimal, must in turn also be faithful, robust, and smooth.
To get a consistent solution, we must reason over the entire
space of explanation functions E(x). This challenge is what
sets the inductive setting apart from the transductive setting,
where we only need to optimize a finite set of explanations.

Equivalence to Gaussian Process Regression. We over-
come the above challenge via Gaussian process (GP) regres-
sion, which provides a theoretically grounded and computa-
tionally tractable framework for inference in function spaces.
Below, we show that the solution to the optimization prob-
lem in Equation 5 can be expressed as the maximum aposte-
riori function of a multi-output GP, where gradients ∇f(x)
can be viewed as observations of some latent explanation
function E(x), and the similarity measures s, S̃ can be writ-
ten as the inverse of a multi-output kernel. Viewed as GP
regression, we can drive a consistent, analytic solution to
Equation 5 for any number of query points.

Formally, let us start with the following GP prior over ex-
planation functions E(x):

E ∼ GP(m,K), m(x) = µ1D, µ ∼ N (0, σ2) (6)

where the mean m has a constant value µ ∈ R for all inputs
and all dimensions, and the kernel K is a matrix-valued func-
tion such that cov(Ed(x), Ed′(x′)) = Kdd′(x,x′) with its
inverse denoted as K−1. We interpret the gradient ∇f as a
random observation of some latent E, which determines the
likelihood for posterior inference:

∇f(x) ∼ N (E(x), ς2I) (7)

Then, we have the following equivalence:



Proposition 1. For {xn}Nn=1, xn ∼ Uniform(Ω), and ς2 =
1/N , the maximum aposteriori function

argmaxE p(E|{xn,∇f(xn)}) (8)

approaches to the optimal explanation function

argminE
∫
Ω
∥E(x)−∇f(x)∥22dx

−
∫∫

Ω

∑
d,d′ |Ed(x)− Ed′(x′)|2K−1

dd′(x,x
′)dxdx′ (9)

as σ2 → ∞ and N → ∞.

Proof. The complete proof can be found in the appendix.
However, the key insight is to write the inductive optimiza-
tion in Eq. 9 as the limiting case of a transductive optimiza-
tion, which allows us to manipulate it algebraically to show
its equivalence to the inference problem in Eq. 8.

When the similarity measures in Equation 5 are preci-
sion function corresponding to kernels, that is s(x,x′) =
−k−1(x,x′) and S̃ = −K̃−1 for some k, K̃, we can define
the GP kernel K in Equation 6 such that

K−1
dd′(x,x

′) = λR-avg

λF-grad
· k−1(x,x′) · 1{d = d′}

+ λS

λF-grad
· 1{x = x′} · K̃−1

d

(10)

Then, the objective in the proposition (Equation 9) becomes
equivalent to the objective in our explanation optimization
problem (Equation 5). Thus, the solution to our optimization
problem can be computed via GP inference (via Proposi-
tion 1). In particular, we can find efficient solutions to our
optimization problem through approximate GP inference by
using a set of inducing points {xn}. In our experiments, we
investigate the sensitivity of our approach to selection of in-
ducing points (specifically to their size N , and additionally
in the appendix, to their distribution).

5 TRANSDUCTION: OPTIMIZING
EXPLANATIONS FOR FIXED INPUTS

Optimization in the inductive setting is generally challeng-
ing because the explanation function must be consistent
across all possible inputs. In this section, we describe how
optimization can be made even more efficient in the trans-
ductive setting, where we have in advance, a fixed set of
inputs xn that we want to explain. In particular, we identify
specific classes of properties for which the optimization
problem in the transductive setting can be solved analyti-
cally or efficiently, and with guarantees, by recasting these
problems as linear or quadratic programs.

Connection to the Inductive Setting. When we instantiate
Equation 1 for the transductive setting using the same defi-
nitions of faithfulness (F-grad), robustness (R-avg), and
smoothness (S) from Section 4, the optimization problem

defines a quadratic program:

W ∗
E = argminWE

λF-grad
∑

n ∥wEn
−∇f(xn)∥22

+ λR-avg
∑

n,n′ ∥wEn
−wEn′∥22Snn′ (11)

+ λS
∑

n,d,d′ |(wEn)d − (wEn)d′ |2S̃dd′

Furthermore, we note that when we choose the similarity
measures S and S̃ to be the negative precision matrices for
some kernels K and K̃, we can still take advantage of Propo-
sition 1 (when N is large!) and use GP inference to find a
solution. Doing so, the faithfulness objective follows from
the Gaussian likelihood in Equation 7, and the robustness
and smoothness objectives are determined by our choice of
kernel in the prior (Equation 6). This connection to GP infer-
ence provides theoretical grounding for the multi-property
optimization problem in Equation 11: Even though we are
optimizing these properties for a fixed set of inputs, the re-
sulting explanations are consistent with the wider, inductive
notions of faithfulness, robustness, and smoothness.

Additional Properties. In the transductive setting, we have
the ability to efficiently optimize a large number of addi-
tional formalizations of properties by recasting them as
linear or quadratic programs (as we no longer need the GP
framework to keep track of functions). For example, we con-
sider one additional formalization of faithfulness (function
matching, F-func in Table 2e), one additional formaliza-
tion of robustness (maximum difference, R-max in Table 2g)
and an entirely new property: complexity (captured through
sparsity, C in Table 2i).

• Faithfulness as function matching. This property is defined
by a quadratic loss,

∑
n ∥wEn

−∇f(xn)∥22, and can be
optimized with an unconstrained quadratic program.

• Robustness as maximum difference. The loss defining this
property involves a max operation:

∑
n maxn′ ∥wEn −

wEn′∥22. Optimizing it can be recast as a linear program
with quadratic constraints:

minimize WE ,∆n

∑
n ∆n

s.t. ∥wEn
−wEn′∥22 ≤ ∆n ∀n, n′ (12)

• Complexity as sparsity. Optimizing the loss defining this
property,

∑
n ∥WEn∥1 involves an unconstrained ℓ1 opti-

mization, which can be rewritten as a linear program with
linear constraints:

minimize WE ,∆nd

∑
n,d ∆nd

s.t. ∆nd ≥ 0 ∀n, d (13)
∆nd ≥ (WEn)d ≥ −∆nd ∀n, d

When integrated with other objectives, it can be efficiently
solved via sequential quadratic programs [Schmidt, 2005].

In all of these optimizations, the trade-off parameters of
our method, that is λF-grad, λF-func, λR-avg, λR-max, λS,



and λC, allow us to explicitly and flexibly prioritize their
corresponding properties. As we will show next with ex-
periments, baselines like SmoothGrad, LIME, AGG, and
MOFAE can only do so in limited ways, if at all.

6 EXPERIMENTS

First, we focus on the transductive setting (Section 6.1,
and demonstrate that our method can optimize for desired
properties and manage the trade-offs between competing
properties, while other baselines cannot reliably. We high-
light how different formalizations of a property can be
used in our method while still providing similar explana-
tions across alternative formalizations. Afterwards in Sec-
tion 6.2, we show that the same optimization can also be
performed efficiently in the inductive setting, by selecting
a small subset of the input over which to perform GP in-
ference. Specifically, we check that the explanations gen-
erated for a test set inductively, based on a separate set
of inducing points, approach those that could have been
generated transductively if the test points were available
ahead of time. This results means the two settings provide
solutions that are consistent with each other, and the in-
ductive setting enjoys the same benefits we highlight for
the transductive setting. Our implementation is available at:
https://github.com/dtak/POE

6.1 TRANSDUCTIVE EXPERIMENTS

Baselines. We compare our approach to two popular expla-
nation methods, SmoothGrad, and LIME as well as the two
multi-property frameworks that we have discussed in our
introduction, AGG and MOFAE:

• SmoothGrad is defined by averaging gradients of f over
a set of points sampled from a neighborhood of xn:

wSGn
= 1

S

∑S
s=1 ∇f(x̃n,s), x̃n,s∼N (xn, δ

2
SGI) (14)

where the parameter δSG controls the size of the neighbor-
hood, hence the degree of smoothing applied to ∇f .

• LIME approximates f at xn with a linear model trained on
points x̃n,s sampled from a δLIME-neighborhood of xn:

wLIMEn = argminw
∑S

s=1(f(x̃n,s)−w⊤x̃n,s)
2 (15)

• AGG linearly combines a base set of explanations {E(m)}
with weights αm to optimize for a desired property L:

min
αm:Σmαm=1

αm≥0

L(WAGG
.
=
∑

m αmWE(m)) (16)

Like our approach, AGG can also manage trade-offs be-
tween different properties if we set L =

∑
i λpropiLpropi .

However, the range and the optimality of trade-offs it can
achieve would naturally be limited by the initial properties

of the base explanations {E(m)}. We initialize this set
via SmoothGrad and LIME with varying hyperparameters
(picking three explanations from each method).

• MOFAE tackles multiple properties at once and searches
for Pareto optimal explanations—those are explanations,
WMOFAE, which are better than any other explanation in
terms of at least one property:

∀WE′ , ∃i, Lpropi(WE′) < Lpropi(WMOFAE) (17)

However, MOFAE relies on a genetic algorithm to achieve
this, and as such, returns random explanations along the
Pareto front without any mechanism to control which
properties are prioritized. We initialize MOFAE using the
same base explanations as AGG but supplemented with
100 additional SmoothGrad explanations (as the genetic
algorithm requires a significantly larger initial set).

Functions. We consider a number of functions with differ-
ent degrees of curvature, and periodicity/quasi-periodicity.
Specifically, we consider:

• Polynomials: f(x) =
∑

d(x)
3
d (Cubic), f(x) =

∑
d(x)

3
d

+
∑

d,d′,d′′(x)d(x)d′(x)d′′ (Cubic with Interactions).

• Periodic: f(x) =
∑

d sin((x)d).

• Quasi-Periodic: We create quasi-periodic functions by
modifying the above sinusoidal with various non-periodic
terms, f(x) =

∑
d(x)d+sin(3(x)d) (with Linear Term),

f(x) =
∑

d(x)
2
d/10+sin(3(x)d) (with Quadratic Term),

f(x) =
∑

d sin(e
(x)d/10) (with Exponentiated Inputs),

f(x) = (x)d+
∑

d sin(e
(x)d/10) (with Linear Terms and

Exponentiated Inputs).

• Exponential: f(x) =
∑

d e
(x)d .

In addition to these simple functions, we also consider neu-
ral networks with one hidden layer in the appendix as well as
pretrained convolutional neural networks for image classifi-
cation later in Section 6.2 for the inductive setting. As query
points, we choose N = 100D points from a D-dimensional
grid with values in (−5, 5) for each dimension. For our
main experiments, we set D = 3 but experiments for larger
D can be found in the appendix. For robustness losses, we
consider a uniform similarity measure such that Snn′ = 1.
Finally, for our method, we vary the trade-off parameters
λpropi so that they always sum to one.

Results. In Figure 2, we optimize for faithfulness (gradient
matching) and robustness (average difference), varying λ
for us and AGG. We also run SmoothGrad and LIME, vary-
ing δ. In Figure 3, we consider complexity in addition to
faithfulness and robustness.

Intuitive interpretations of the hyperparameters of Smooth-
Grad and LIME do not always hold. A number of works
show that δ, the sampling hyper-parameter of LIME and
SmoothGrad, affect the robustness of these methods. In par-
ticular, when the δ is larger, LIME and SmoothGrad generate

https://github.com/dtak/POE
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Figure 2: Faithfulness vs. Robustness. For most functions,
POE is the only method capable of generating explana-
tions that cover the entire optimality front. SmoothGrad
and LIME do not always result in a faithfulness-robustness
balance, sometimes outputting strictly worse explanations
when their hyperparameters are varied (e.g. Exponential).
AGG is constrained by the limited range of these methods.
MOFAE fail to consistently cover the optimality front, often
missing large portions (e.g. Exponential) or even outputting
suboptimal explanations (e.g. Cubic with Interactions).

explanations that are less sensitive to local perturbations.
However, robustness in these analyses is formalized as local-
Lipschitzness, and it is not clear how their insight generalize
to other formalizations. For instance, in Figure 2 for Cubic,
we see that the robustness of SmoothGrad (as defined in
Equation 3) does not depend on δ at all—increasing δ does
not smooth the explanations, only reduces their faithfulness.

Without explicit optimization, SmoothGrad and LIME can
fail to find robust and faithful explanations. In Figure 2 for
Exponential and Quasi-Periodic with Exponentiated Inputs,
we see that varying δ not only fails to control the balance
between faithfulness and robustness, but also might lead to
strictly worse explanations in terms of both properties.

AGG is limited by the quality of its base explanations. Al-
though AGG, similar to our approach, allows transparent
control over different properties, the optimality of the trade-
offs it can achieve is constrained by the properties of its base
explanations. For instance, in Figure 2 for Cubic, we see that
AGG is less effective in achieving more moderate trade-offs
between faithfulness and robustness since its base explana-
tions are either extremely faithful or extremely robust.

MOFAE does not offer any control over trade-offs and might
not always cover the complete range of possible trade-offs.
Since it uses a genetic algorithm to search for explanations,
MOFAE essentially produces a random collection of expla-
nations without offering any control over where these expla-
nations land in terms of their properties. Sometimes, they

AGG (λC = 0.00)

Ours (λC = 0.00)

SmoothGrad

AGG (λC = 0.25)

Ours (λC = 0.25)

LIME

AGG (λC = 0.50)

Ours (λC = 0.50)

MOFAE

AGG (λC = 0.75)

Ours (λC = 0.75)

AGG (λC = 1.00)

Ours (λC = 1.00)

Fa
ith

fu
ln

es
s

Lo
ss

(G
ra

di
en

tM
at

ch
in

g)
L
F
-
g
r
a
d

Cubic

0 1 2 3 4 5
1e7

0

1

2

3

4

5

6

1e5

Quasi-Periodic
with Linear Term

0.0 0.5 1.0 1.5 2.0 2.5
1e5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e3

Quasi-Periodic w/ Linear Term
& Exponentiated Inputs

0 1 2 3 4 5 6
1e5

3.6

3.8

4.0

4.2

4.4

4.6

4.8 1e5

Robustness Loss (Average Difference, LR-avg )

AGG (λR-avg = 0.00)

Ours (λR-avg = 0.00)

SmoothGrad

AGG (λR-avg = 0.25)

Ours (λR-avg = 0.25)

LIME

AGG (λR-avg = 0.50)

Ours (λR-avg = 0.50)

MOFAE

AGG (λR-avg = 0.75)

Ours (λR-avg = 0.75)

AGG (λR-avg = 1.00)

Ours (λR-avg = 1.00)

C
om

pl
ex

ity
Lo

ss
(L

C
) Cubic

0 1 2 3 4 5 6
1e5

0.0

0.5

1.0

1.5

1e4

Quasi-Periodic
with Linear Term

0.0 0.5 1.0 1.5
1e3

0

1

2

3

4

5

6

1e2

Quasi-Periodic w/ Linear Term
& Exponentiated Inputs

0 1 2 3 4 5 6
1e5

0

1

2

3

4

5 1e3

Faithfulness Loss (Gradient Matching, LF-grad )

Figure 3: Faithfulness vs. Robustness vs. Complexity. In
the top row, we report faithfulness vs. robustness for fixed
values of λC. In the bottom row, we report complexity vs.
faithfulness for fixed values of λR-avg.

do not achieve optimal trade-offs at all (e.g. Figure 2, Cubic
with Interactions). At other times, they only offer a lim-
ited range of trade-offs, leaving portions of the Pareto front
sparsely populated (e.g. Figure 2, Cubic and Exponential,
where explanations with low robustness loss are missed).

Transparent Trade-offs between Properties. In contrast to all
our baselines, POE can consistently find optimal trade-offs
between different properties, but even more importantly, it
provides fine control over these trade-offs through hyperpa-
rameters λpropi . POE makes it significantly easier to include
additional properties to the optimization as well, see results
for complexity in Figure 3. The addition of this third prop-
erty does not affect the explanations generated by Smooth-
Grad and LIME since they do not optimize for any property.
Similarly, the base explanation set of AGG does not get
any richer either. It increases the dimensionality of the op-
timality front that MOFAE needs to cover, which makes its
coverage even worse. For instance, we see in Figure 3 for
Quasi-Periodic with Exponentiated Inputs, MOFAE covers
the faithfulness-robustness front well (top row) but misses
a large portion of solutions that have low complexity loss
(bottom row). Meanwhile, our approach with λR-avg = 0
covers the faithfulness-complexity front as well.

6.2 INDUCTIVE EXPERIMENTS

Quantitative Evaluation. Our goal is to check the consis-
tency between the transductive and inductive settings. We
optimize for faithfulness (gradient-matching) and robust-
ness (average differences), fixing λF-grad = 1 and varying
λR-avg. We report the total loss as we vary the number of in-
ducing points N that are used for GP inference, comparing
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Figure 4: As the number of inducing points increases, in-
ductive solutions obtained via GP inference (optimizing
faithfulness and robustness) approach to transductive solu-
tions on an exponential scale.

this with the total loss achievable transductively. We investi-
gate the impact of how the inducing points are selected in
the appendix. For now, just like in Proposition 1, we assume
that they share the same distribution as our query points.

In addition to functions from Section 6.1, we also con-
sider a Convolution Neural Network (CNN), specifically
the model architecture ResNet-50 [He et al., 2016] pre-
trained on the dataset ImageNet-1k [Russakovsky et al.,
2015]. For quantitative results, we sample 1000 query im-
ages from ImageNet-1k and up to N = 1000 separate im-
ages to be used as inducing points. Note that, for these
images, D = 244 × 244. For the robustness loss, we con-
sider similarity measures obtained by inverting Guassian
kernels, s = k−1 and k(x,x′) = exp(−0.5∥x−x′∥22/Λ2).

In Figure 4, we show that inductive solutions approach
transductive solutions exponentially fast as the number of
inducing points are increased. This means the benefits we
have seen so far can also be achieved in the inductive setting
(although for a more restricted set of properties).

Qualitative Evaluation. Finally, we also provide a visual
example to highlight the control over different properties
provided by POE. We pick a single image from ImageNet-
1k (one more example in the appendix) and compare the
explanations generated by our approach against Smooth-
Grad. Using POE, we optimize for faithfulness, robustness,
and smoothness via GP inference, using perturbations of the
original image as inducing points (uniform perturbations
as opposed to Gaussian perturbations). We fix λF-grad = 1
and vary λR-avg and λS. For SmoothGrad, we can only vary
δ in Equation 14 (using Gaussian perturbations to match the
Gaussian kernel in our approach).

In Figure 5, we see that POE can achieve an arbitrary bal-
ance between faithfulness, robustness, and smoothness. Fur-
thermore, the range of explanations we obtain shows that
robustness and smoothness each capture distinct aspects of
what makes an explanation “noisy”. While the main moti-
vation behind SmoothGrad is to de-noise explanations, it

Figure 5: Our approach can achieve an arbitrary balance be-
tween faithfulness, robustness, and smoothness. Meanwhile,
SmoothGrad can only manage the trade-off between faith-
fulness and robustness, and does not improve smoothness.

attributes noisiness solely to sharp variations in the gradients
around an input point, thereby only improving robustness
while missing the smoothness aspect entirely. Meanwhile,
users seeking de-noised explanations might have different
preferences regarding which aspect to prioritize. Without a
precise definition of what constitutes a noisy explanation,
and without an explicit optimization targeting that definition,
it is not clear how to modify SmoothGrad to also promote
smoothness alongside robustness, whereas in our approach,
noisiness can be expressed as a specific mixture of robust-
ness and smoothness based on user needs.

7 ETHICAL AND SOCIETAL
IMPLICATIONS

As argued by Alpsancar et al. [2024], explanations are a
means to an end, they are valuable not for their own sake, but
for how they support broader goals such as fairness, safety,
accountability and trust in machine learning systems. Our
work is intended to help users tailor explanations to serve
these goals more effectively. We believe that our approach
can give end users more control over how explanations
align with their specific needs. For example, in a recent
work Nofshin et al. [2024] showed that when attempting
to detect bias in a model, a less compact but more faithful
explanation is essential. With our approach, the properties
of an explanation – how faithful, how compact, etc– are
transparent. This provides a means for users to know what
the explanation can and cannot be used for, whether that is
to help mitigating bias and supporting fairness in real-world
applications, safety, or any other task.

8 CONCLUSION AND FUTURE WORK

A growing number of studies show that different down-
stream applications may require explanations with differ-
ent properties. Yet existing feature attribution methods like



SmoothGrad and LIME neither directly optimize for arbi-
trary explanation properties, nor can they manage trade-offs
between properties that are in tension. Multi-property frame-
works like AGG and MOFAE are either constrained by the
limitations of these methods or do not offer mechanisms to
control trade-offs when optimizing for properties.

In our work, we introduced POE, a framework that can effi-
ciently optimize for a set of desired explanation properties.
In addition, POE can also explicitly and intuitively manage
trade-offs between competing properties through its hyper-
parameters. We addressed both settings in which we have
the entire dataset that needs explanations (the transductive
setting) as well as settings in which we must generalize our
property-optimized explanations to unseen query points (the
inductive setting).

There are numerous potentially useful explanation proper-
ties. Some of those could use the same ideas in our work
straightforwardly; others will require algorithmic innova-
tion. Developing such methods is an interesting direction
for future work.

Another limitation of our framework, shared with many
feature-attribution explanation methods, is scalability. While
POE is faster than existing methods for some properties, it
becomes slower when solving a quadratic program is re-
quired. We see efficiently optimizing for a range of proper-
ties e.g. with clever amortization schemes as a ripe direction
for future work.
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A CHOICE OF SIMILARITY FUNCTION

For robustness losses, we need to choose a similarity function s(x,x′). Certain similarity functions lend themselves to
more efficient optimization. In particular, in Section 4, we showed that when s(x,x′) = −k−1(x,x′) is the precision of a
kernel function k, optimization in the inductive setting becomes equivalent to Gaussian process inference. As an example, in
this work, we consider similarity measures that are induced by Gaussian kernels: k(x,x′; Λ) = exp(−∥x− x′∥22/2Λ2). In
practice, we note that the choice of s or an associated kernel k should be informed by domain knowledge (e.g. capture a
notion of similarity between inputs that is meaningful for the user’s downstream task).

B PROOF OF PROPOSITION 1

For a sufficiently large N , the objective in Equation 9 can be written as:

argminE
1

N

∑
n
∥E(xn)−∇f(xn)∥22 −

1

N2

∑
n,n,d,d′

|Ed(xn)− Ed′(xn′)|2K−1
dd′(xn,x

′
n) (18)

We show that, as N → ∞ and σ2 → ∞, maximizing log p(E|{xn,∇f(xn)}) becomes equivalent to this objective.

For simplicity, we sitch to a vectorized notation so that we can work with a single-dimensional GP: E =
[E(x1) . . . E(xN )] ∈ RND, ∇f = [∇f(x1) . . .∇f(xN )] ∈ RND, and

K =

K(x1,x1) . . . K(x1,xN )
...

. . .
...

K(xN ,x1) . . . K(xN ,xN )

 ∈ RND×ND (19)

Let us first consider only the prior term in the GP, marginalizing out the random mean explanation µ from the joint
distribution:

p(E, µ) = p(E|µ)p(µ) ∝ exp

{
−1

2
(E − µ1ND)⊤K−1(E − µ1ND)

}
exp

{
−1

2
· µ

2

σ2

}
(20)

where 1ND ∈ RND is a vector of ones (written as 1 henceforth). By marginalizing out µ in Equation 20 (after completing
the square, followed by some algebra), we obtain p(E) as the following Gaussian:

p(E) ∝ exp

{
− 1

2
E⊤
(
K−1 − K−111⊤K−1

1⊤K−11+ 1/σ2︸ ︷︷ ︸
.
=Σ−1

)
E

}
(21)

We denote the covariance of p(E) by Σ. This marginalization can be interpreted as a new Gaussian prior on the explanations
E; we will still have a multivariate Gaussian—and associated GP—with this new kernel.



Next, we note that the posterior mean of multivariate Gaussian p(E|∇f) is the solution to the least square regression
problem, regularized by the precision matrix Σ−1 of the prior p(E) that we just derived above in Equation 21:

maxE log p(E|∇f) ≡ minE
1

s2
(E −∇f)⊤(E −∇f) +E⊤Σ−1E (22)

≡ minE N(E −∇f)⊤(E −∇f) +E⊤Σ−1E (23)

≡ minE
1

N
(E −∇f)⊤(E −∇f) +

1

N2
E⊤Σ−1E (24)

With a little algebraic manipulation, the regularization term E⊤Σ−1E can be further expanded as follows:

E⊤Σ−1E =−1

2

ND∑
ℓ=1

ND∑
ℓ′=1

|Eℓ −Eℓ′ |2Σ−1
ℓℓ′︸ ︷︷ ︸

Term 1

+

ND∑
ℓ=1

(
|Eℓ|2

ND∑
ℓ′=1

Σ−1
ℓℓ′

)
︸ ︷︷ ︸

Term 2

(25)

We first observe that the second term goes to zero as the variance of the explanation mean σ2 goes to infinity. Specifically,
Term 2 in Equation 25 can be expanded as:∑

ℓ

|Eℓ|2
(
δ⊤ℓ K−1

ℓ 1− δ⊤ℓ K−1
ℓ 1

(
1⊤K−11

1⊤K−11+ 1/σ2

))
(26)

where δℓ is a vector of zeros except for the ℓ-th element, which is one. As σ2 goes to infinity (representing an improper,
uninformative prior over the value of the mean explanation), the fraction goes to one and the first and second terms in the
kernel expression cancel.

Thus, we are left with only the first term:

E⊤Σ−1E ≈−1

2

ND∑
ℓ=1

ND∑
ℓ′=1

|Eℓ −Eℓ′ |2Σ−1
ℓℓ′︸ ︷︷ ︸

Term 1

(27)

We are going to finish our proof by showing that Σ−1 tends to K−1 as σ2 → ∞ and N → ∞. Let r = K1 and r′ = K−11
be the vector of row sums for K and K−1 respectively. Now, as σ2 → ∞, we can re-write Σ−1 as

Σ−1
ℓℓ′ = K−1

ℓℓ′ − δ⊤ℓ (K−11)(K−11)⊤δℓ′

1⊤(K−11) + 1/σ2
= K−1

ℓ,ℓ′ −
r′ℓr

′
ℓ′∑

s r
′
s + 1/σ2

≈ K−1
ℓℓ′ − r′ℓr

′
ℓ′∑

s r
′
s

(28)

Note that, if rlower ≤ rs ≤ rupper for all s, then 1/rupper ≤ r′s ≤ 1/rlower for all s. Letting

Kmax
.
= maxx,x′,d,d′ Kdd′(x,x′) (29)

Kmin
.
= minx,d Kdd(x,x) (30)

we have Kmin ≤ rs ≤ NDKmax hence 1/NDKmax ≤ r′s ≤ 1/Kmin. Using these bounds, we obtain

Kmin

N3D3K2
max

≤ r′ℓr
′
ℓ′∑

s r
′
s

≤ (1/mins rs)
2

ND(1/maxs rs)
=

maxs rs/N

N2D · (mins rs/N)2
(31)

The left-hand side goes to zero as N → ∞. For the right-hand side, let

n[s] = ⌈s/D⌉ ∈ {1, . . . , N} (32)
d[s] = (s modD) + 1 ∈ {1, . . . , D} (33)

be the original dimensions corresponding to the flattened dimension s ∈ {1, . . . , ND}. Then, for input points xn ∼ P that
are i.i.d. and as N → ∞, we have

rs
N

=
1

N

∑
s′
Kss′ =

1

N

∑
n′,d′

Kd[s],d′(xn[s],xn′) → Ex′∼P

[∑
d′
Kd[s],d′(xn[s],x

′)
]
.
= K̄d[s](xn[s]) (34)



Note that K̄d(x) is a function independent of {xn} and N with maxima K̄max = maxx,d K̄d(x) and minima K̄min =
minx,d K̄d(x) independent of {xn} and N as well. For sufficiently large N , we have

maxs rs/N

N2D · (mins rs/N)2
≈

maxs K̄d[s](xn[s])

N2D · (mins K̄d[s](xn[s]))2
≤ K̄max

N2DK̄2
min

≈ 0 (35)

C ADDITIONAL TRANSDUCTIVE SETTING RESULTS

C.1 SHAP

SHAP Lundberg and Lee [2017] generates explanations by sampling subsets of features to quantify their contributions.
When comparing SHAP’s faithfulness and robustness losses to other explanation methods—including our proposed method,
POE we observe distinct behavior which for some functions the SHAP explanations have a higher robustness and faithfulness
loss. One potential reason for this difference could be SHAP’s lack of tunable hyperparameters, which sets it apart from
alternative methods. We plan to explore this in our future work.
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Figure 6: Faithfulness vs. Robustness. ss. Comparison of POE and baselines (SmoothGrad, LIME, AGG, and MOFAE)
with SHAP. Due to its lack of tunable hyperparameter, SHAP provides only a single explanation, which is not optimal for all
the functions above compared to our methods and other baselines.

C.2 HIGHER DIMENSIONAL EXPERIMENTS

C.2.1 POLYNOMIALS AND PERIODIC FUNCTIONS

Below we have additional results for polynomials and periodic functions for D = 10. We show that our method consistently
provides optimal explanations with an option to control the trade-off between faithfulness and robustness. For D = 10
inputs, we randomly sampled 100 points from a uniform distribution U(−5, 5).
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Figure 7: Faithfulness vs. Robustness.Trade-off between faithfulness loss and robustness loss for various λ values, the
hyperparameter controlling trade-off between faithfulness and robustness in our method and AGG.

C.2.2 Experiment with Images

We compared our method to baselines in an experiment using a pretrained ResNet model He et al. [2016] which contains
25,557,032 parameters on 10 different input images from ImageNet Russakovsky et al. [2015]
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Figure 8: Faithfulness vs. Robustness.We observe that our method provides explanations that are Pareto-optimal and
capable of managing trade-offs between properties. In contrast, the baselines produce explanations that are not optimal and
concentrated in a limited region of the Pareto front(upper left corner).

C.3 NEURAL NETWORK

We trained neural network models with one hidden layer using the sol [1989] dataset. The results show that our method
provides more optimal solutions than the baselines. Furthermore, they highlight the limitations of AGG and MOFAE, as
these methods are highly dependent on the quality of the base explanations used to generate the explanations.
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D QUALITATIVE COMPARISON

We compared POE with baselines based on agreement on the top-1 most important feature, where a score closer to 1
indicates stronger agreement. Our method demonstrates consistently high agreement across varying trade-off hyperparameter
values (λ), whereas the baselines show comparably lower agreement scores regardless of changes to their respective
hyperparameters. In addition, we also compared POE with baselines based on cosine similarity and L2 distance, results are
shown in Figure 10 and 11.
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Figure 9: Comparison of POE with baselines using Agreement on the top feature for a cubic function.
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Figure 10: Comparison of POE with baselines with respective hyperparameters using cosine similarity for a cubic function
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Figure 11: Comparison of POE with baselines with respective hyperparameters using L2 distance for a cubic function.

E SCALABILITY OF TRANSDUCTIVE SETTING

In the transductive setting, our method is faster, providing an explanation in approximately 0.00 seconds per lambda for
lower-dimensional inputs. In comparison, the baselines require substantially more time: SmoothGrad ( 0.39 seconds), LIME
( 0.13 seconds), AGG ( 33.01 seconds), and MOFAE ( 40.51 seconds) per respective hyperparameter. This difference
becomes more pronounced with higher-dimensional inputs, such as images.

The scalability of our method, as well as that of some baseline methods like AGG and MOFAE, remains a limitation in this
version of the work. Our primary goal was to demonstrate the generality and usefulness of the idea of treating explanations
as quantities. Developing more efficient algorithms for scalability, including amortization schemes, is an important direction
for future research.

F FURTHER QUALITATIVE EVALUATION

In Figure 5, we argued that our approach can control the balance between faithfulness, robustness and smoothness while
highlighting that SmoothGrad can only manage the trade-off between faithfulness and robustness (missing smoothness).
Here, we present a similar figure but for a different initial image (Figure 12) to show that this pattern is not limited to a
single instance.



Figure 12: Comparison of our approach vs. SmoothGrad for a different input image when explaining image-based models.

G CHOICE OF INDUCING POINTS

Our inductive approach required specifying a set of inducing points to be used as training data in GP inference. In Figure 4,
we investigated how the number of these inducing points affect the results of our method and concluded that solutions
approach to their transductive counterparts exponentially fast as the number of points increase. During those experiments,
we sampled points uniformly at random from the target function’s input domain Ω as our inducing points and used the same
set of inducing points for each query point. However, this leaves the question of whether one can be more efficient with their
choice of inducing points than uniform sampling. For instance, given a particular query point x∗, would it be as effective to
sample fewer points around x∗ as oppose to covering the entire input domain Ω?

Setup. We consider the same functions1 as in Figure 4 but with D = 1 so that we can compute solutions using a very large
density of inducing points over the whole input domain (N = 1000, uniformly spread over interval Ω = [−10, 10]). Using
these inducing points, we generate explanations for 100 query points, uniformly spread over interval [−5, 5] (a narrower
range to avoid any edge artifacts). These explanations optimize for faithfulness and robustness induced by a Gaussian kernel
with length scale Λ = 0.25), where λFaithful = 1 and λRobustness = 0.01. Treating these explanations as ground-truth, we
consider three other explanations generated using different inducing points: (i) Global uses a smaller number of points,
N = 100, but still uniformly spread over the whole input domain; (ii) Local also uses N = 100 points but spread over a
narrower interval Ω′ = [x∗−R,x∗+R] around each query point x∗; and (iii) Global+Local uses the union of both point sets.

Our GP-based approximation to the inductive problem, stated in Proposition 1, requires inducing points {xn} to be
distributed uniformly over Ω (as in Global). We use importance re-weighting to account for the distribution shift from Global
to Local or Global+Local. When inducing points are distributed according to an arbitrary density p(xn), each sample xn is
assigned the importance weight (1/|Ω)/p(xn). For instance, if inducing points are sampled uniformly over Ω′ ⊂ Ω instead
of Ω (as in Local), then each inducing point is now weighted more heavily with weighting factor |Ω′|/|Ω| > 1.

Results. In Figure 13, we report the mean square error of Global, Local, and Global+Local as the range of local inducing
points R varies relative to the kernel length scale Λ. We see that R ≪ Λ leads to worse accuracy than Global, inducing
points fail to cover parts of the input domain that are similar to the query point as dictated by our kernel. As long as R ⪆ Λ,
Local achieves smaller error than Global despite using the same number of inducing points. This is because a majority of
the inducing points used by Global would have a low similarity to a given query point; Local avoids this by using inducing
points in the immediate vicinity of each query point. However, this efficiency diminishes as R keeps increasing and the
inducing points become more spread out.

While Local makes more efficient use of inducing points, the fact that the set of inducing points is different for each query

1That is with the exception of quasi-periodic with exponent as it oscillates more frequently than the period between inducing points
considered in this set of experiments.
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Figure 13: Comparison of Global, Local, and Global+Local inducing points. As long as the range of local points are wider
than the kernel width, they achieve lower error than Global using the same number of inducing points. This efficiency is
reduced as the local point range gets wider and wider.

point requires performing GP inference from scratch for each individual query point (unlike Global where the GP posterior
can be computed once for the fixed set of inducing points). Therefore, we give the following practical advice: If query points
already cover the input domain densely, Global is likely to be the computationally more efficient strategy (despite requiring
more computation upfront). However, if query points are sparse relative to the size of the input domain (for instance, if the
input domain is very high dimensional), than Local with a range R on the same magnitude as the kernel length scale Λ is
likely to be the more efficient strategy instead.
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