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ABSTRACT

This work investigates the compatibility between label smoothing (LS) and knowl-
edge distillation (KD). Contemporary findings addressing this thesis statement
take dichotomous standpoints. Specifically, Müller et al. (2019) claim that LS
erases relative information in the logits; therefore a LS-trained teacher can hurt
KD. On the contrary, Shen et al. (2021b) claim that LS enlarges the distance be-
tween semantically similar classes; therefore a LS-trained teacher is compatible
with KD. Critically, there is no effort to understand and resolve these contradic-
tory findings, leaving the primal question − to smooth or not to smooth a teacher
network? − unanswered.
In this work, we establish a foundational understanding on the compatibility be-
tween LS and KD. We begin by meticulously scrutinizing these contradictory find-
ings under a unified empirical consistency. Through our profound investigation,
we discover that in the presence of a LS-trained teacher, KD at higher tempera-
tures systematically diffuses penultimate layer representations learnt by the stu-
dent towards semantically similar classes. This systematic diffusion essentially
curtails the benefits of distilling from a LS-trained teacher, thereby rendering KD
at increased temperatures ineffective. We show this systematic diffusion quali-
tatively by visualizing penultimate layer representations, and quantitatively using
our proposed relative distance metric called diffusion index (η).
Importantly, our discovered systematic diffusion was the missing concept which
is instrumental in understanding and resolving these contradictory findings. Our
discovery is comprehensively supported by large-scale experiments and analyses
including image classification (standard, fine-grained), neural machine translation
and compact student network distillation tasks spanning across multiple datasets
and teacher-student architectures. Finally, we shed light on the question − to
smooth or not to smooth a teacher network? − in order to help practitioners make
informed decisions.

1 INTRODUCTION

This paper deeply investigates the compatibility between label smoothing (Szegedy et al., 2016) and
knowledge distillation (Hinton et al., 2015). Specifically, we aim to explain and resolve the contra-
dictory standpoints of Müller et al. (2019) and Shen et al. (2021b), thereby establishing a founda-
tional understanding on the compatibility between label smoothing (LS) and knowledge distillation
(KD). Both LS and KD involve training a model (i.e.: deep neural networks) with soft-targets. In
LS, instead of computing cross entropy loss with the hard-target (one-hot encoding) of a training
sample, a soft-target is used, which is a weighted mixture of the one-hot encoding and the uniform
distribution. A mixture parameter α is used in LS to specify the extent of mixing. On the other
hand, KD involves training a teacher model (usually a powerful model) and a student model (usu-
ally a compact model). The objective of KD is to transfer knowledge from the teacher model to the
student model. In the most common form, the student model is trained to match the soft output of
the teacher model. The success of KD has been attributed to the transference of logits’ information
about resemblances between instances of different classes (logits are the inputs to the final softmax
which produces the soft targets). In KD (Hinton et al., 2015), a temperature T is introduced to
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facilitate the transference: an increased T may produce more suitable soft targets that have more
emphasis on the probabilities of incorrect classes (or equivalently, logits of the incorrect classes).

To smooth or not to smooth? Recently, a fair amount of research has been conducted to understand
the relationship between LS and KD (Müller et al., 2019; Shen et al., 2021b; Lukasik et al., 2020;
Yuan et al., 2020). One of the most intriguing and controversial discussion is the compatibility
between LS and KD. Particularly, in KD, does label smoothing in a teacher network suppress the
effectiveness of the distillation?

Müller et al. (2019) are the first to investigate this topic, and their findings suggest that applying LS
to a teacher network impairs the performance of KD. In particular, they visualize the penultimate
layer representations in the teacher network to show that LS erases information in the logits about
resemblances between instances of different classes. Since this information is essential for KD, they
conclude that applying LS for a teacher network can hurt KD. • ‘If a teacher network is trained with
label smoothing, knowledge distillation into a student network is much less effective.” (Müller et al.,
2019) • “Label smoothing can hurt distillation” (Müller et al., 2019)

The conclusion of Müller et al. (2019) is widely accepted (Khosla et al., 2020; Arani et al., 2021;
Tang et al., 2021; Mghabbar & Ratnamogan, 2020; Shen et al., 2021a). However, very recently, this
is questioned by Shen et al. (2021b). In particular, their work discussed a new finding: information
erasure in teacher can actually enlarge the central distance between semantically similar classes,
allowing the student to learn to classify these categories easily. Shen et al. (2021b) claim that this
benefit of using a LS-trained teacher outweighs the detrimental effect due to information erase.
Therefore, they conclude that LS in a teacher network does not suppress the effectiveness of KD.
• “Label smoothing will not impair the predictive performance of students.” (Shen et al., 2021b) •
“Label smoothing is compatible with knowledge distillation” (Shen et al., 2021b)

LS and KD compatibility remains mysterious. We were perplexed by the seemingly contradictory
findings by Müller et al. (2019) and Shen et al. (2021b). While the latter has shown empirical
results to support their own finding, their work does not investigate the opposite standpoint and
contradictory results by Müller et al. (2019). Critically, there is no effort to understand and resolve
the seemingly contradictory arguments and supporting evidences by Müller et al. (2019) and Shen
et al. (2021b). Consequently, for practitioners, it remains unclear as to under what situations LS
can be applied to the teacher network in KD, and under what situations it must be avoided.

Our contributions. In this work, we conduct an empirical investigation to establish a foundational
understanding on the compatibility between LS and KD. We begin by meticulously scrutinizing the
opposing findings of Müller et al. (2019) and Shen et al. (2021b). In particular, we discover that in
the presence of a LS-trained teacher, KD at higher temperatures systematically diffuses penultimate
layer representations learnt by the student towards semantically similar classes. This systematic dif-
fusion essentially curtails the benefits (as claimed by Shen et al. (2021b) ) obtained by distilling from
a LS-trained teacher, thereby rendering KD at increased temperatures ineffective. We perform large-
scale distillation experiments using ImageNet-1K to comprehensively demonstrate this systematic
diffusion in the student qualitatively using penultimate layer visualizations, and quantitatively using
our proposed relative distance metric called diffusion index (η).

Our finding on systematic diffusion is very critical when distilling from a LS-trained teacher. Par-
ticularly, we argue that this diffusion maneuvers the penultimate layer representations learnt by the
student of a given class in a systematic way that targets in the direction of semantically similar
classes. Therefore, this systematic diffusion directly curtails the distance enlargement (between se-
mantically similar classes) benefits obtained by distilling from a LS-trained teacher. Our qualitative
and quantitative analysis with our proposed relative distance metric (η) in Sec 4 aims to establish
not only the existence of this diffusion, but also establish that such diffusion is systematic.

We further conduct extensive experiments using fine-grained image classification (CUB200-2011),
neural machine translation (English to German, English to Russian translation using IWSLT) and
compact student network distillation (using MobileNetV2) tasks to support our key finding on sys-
tematic diffusion. Importantly, using systematic diffusion analysis, we explain and resolve the con-
tradictory findings by Müller et al. (2019) and Shen et al. (2021b), thereby establishing a foun-
dational understanding on the compatibility between LS and KD. Finally, using our discovery on
systematic diffusion, we provide empirical guidelines for practitioners regarding the combined use
of LS and KD. We summarize our key findings in Table 1. The key takeaway from our work is:
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• In the presence of a LS-trained teacher, KD at higher temperatures systematically diffuses
penultimate layer representations learnt by the student towards semantically similar classes.
This systematic diffusion essentially curtails the benefits of distilling from a LS-trained teacher,
thereby rendering KD at increased temperatures ineffective. Specifically, systematic diffusion
was the missing concept that is instrumental in explaining and resolving the contradictory find-
ings of Müller et al. (2019) and Shen et al. (2021b), thereby shedding light on whether to
smooth or not to smooth a teacher network.

Paper organization. In Sec 2, we review LS and KD. In Sec 3, we review key findings of Müller
et al. (2019) and Shen et al. (2021b) to to emphasize the research gap. Our main contribution is
Sec 4, where we introduce our discovered systematic diffusion, conduct qualitative, quantitative and
analytical studies to verify that the diffusion is not isotopic but systematic towards semantically-
similar classes, and therefore it directly curtails the benefits of using a LS-trained teacher. In Sec
5, we perform rich empirical studies to support our main finding on Systematic Diffusion. In Sec 6,
we provide our perspective regarding the combined use of LS and KD as empirical guidelines for
practitioners, and finally conclude this study.

Table 1: Main findings regarding LS and KD compatibility in recent works and our work.
Information
erase
(incompatibility)

Distance
enlargement
(compatibility)

Our main finding:
Systematic diffusion
(incompatibility)

Conclusion

Müller et al. (2019) LS erases relative
information in the
logits

LS-trained teacher
can hurt KD

Shen et al. (2021b) With LS, some
relative informa-
tion in the logits
is still retained

LS enlarges the
distance between
semantically simi-
lar classes

Benefits outweigh
disadvantages. LS
is compatible with
KD

Our work

Lower
T (i.e. :
T = 1)

We agree with
Shen et al.
(2021b) in infor-
mation erase

We experimentally
validate the inher-
itance of distance
enlargement in
the student, see
Figure 1. (Shen
et al. (2021b) has
not shown this).

With KD of lower T (i.e.:
T=1), there is lower degree
of systematic diffusion of
penultimate representations
towards semantically simi-
lar classes. This doesn’t
curtail the distance enlarge-
ment benefit.

At lower levels of
systematic diffu-
sion in student.
LS is compatible
with KD

Increase
of T

The loss of log-
its’ relative infor-
mation cannot be
recovered with an
increased T

We agree with
Shen’s observation,
but the distance
enlargement is
curtailed at an
increased T

With KD of increased T,
there is systematic diffu-
sion of penultimate repre-
sentations towards seman-
tically similar classes, cur-
tailing the distance enlarge-
ment (Sec 4)

At higher levels
of systematic dif-
fusion in student.
LS and KD are not
compatible

2 PREREQUISITES

Label Smoothing (LS) (Szegedy et al., 2016): LS was formulated as a regularization strategy to
alleviate models’ over-confidence. LS replaces the original hard target distribution with a mixture of
original hard target distribution and the uniform distribution characterized by the mixture parameter
α. Consider the formulation of LS objective with mixture parameter α as follows: Let pk,wk

represent the probability and last layer weights (including biases) corresponding to the k-th class.
Let x, yk, yLS

k represent the penultimate layer activations, true targets and LS-targets where yk = 1
for the correct class and 0 for all the incorrect classes1. xT is the transpose of x. Then for a
classification network trained with LS containing K classes, we minimize the cross entropy loss
between LS-targets yLS

k and model predictions pk given by LLS(y,p) =
∑K

k=1 −yLS
k log(pk),

where pk = exp(xTwk)/
∑K

l=1 exp(x
Twl) and yLS

k = yk(1− α) + α
K .

Knowledge distillation (KD) Hinton et al. (2015): KD uses a larger capacity teacher model(s)
to transfer the knowledge to a compact student model. The success of KD methods is largely at-

1x is concatenated with 1 at the end to include bias as wk includes biases at the end.
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tributed to the information about incorrect classes encoded in the output distribution produced by
the teacher model(s) (Hinton et al., 2015). Consider KD for a classification objective. Let T indi-
cate the temperature factor that controls the importance of each soft target. Given the k-th class
logit xTwk, let the temperature scaled probability be pk(T ). For KD training, let the loss be
LKD. For LKD, we replace the cross entropy loss H(y,p) with a weighted sum (parametrized
by β) of H(y,p) and H(pt(T ),p(T )) where pt(T ),p(T ) correspond to the temperature-scaled
teacher and student output probabilities. That is, pk(T ) = exp(x

Twk

T )/
∑K

l=1 exp(
xTwl

T ) and
LKD = (1 − β)H(y,p) + βT 2H(pt(T ),p(T )). Following Hinton et al. (2015) T 2 scaling is
used for the soft-target optimization as T will scale the gradients approximately by a factor of T 2.
Following Müller et al. (2019); Shen et al. (2021b), we set β = 1 for this study since we primarily
aim to isolate and study the effects of KD. β = 1 achieves good performance (Shen et al., 2021b).

Figure 1: Visualization of the penultimate layer representations (Teacher = ResNet-50,
Student = ResNet-18, Dataset = ImageNet). We follow the same setup and proce-
dure used in Müller et al. (2019) and Shen et al. (2021b). We also follow their three-classes analysis:
two semantically similar classes (miniature poodle, standard poodle) and one semanti-
cally different class (submarine). Additional visualization can be found in the Supplementary.
Observation 1: The use of LS on the teacher leads to tighter clusters and erasure of logits’ in-
formation as claimed by Müller et al. (2019). In addition, increase in central distance between
semantically similar classes (miniature poodle, standard poodle) as claimed by Shen
et al. (2021b) can be observed. Observation 2: We further visualize the student’s representations.
Increase in central distance between semantically similar classes can also be observed. This con-
firms the transfer of this benefit from the teacher to the student. Note that in Müller et al. (2019) and
Shen et al. (2021b), student’s representations have not been visualized. Observation 3 (Our main
discovery): KD of an increased T causes systematic diffusion of representations between seman-
tically similar classes (miniature poodle, standard poodle). This curtails the increment
of central distance between semantically similar classes due to the use of LS-trained teacher. We
notice similar observations in other datasets and networks, see Supplementary. Best viewed in color.
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3 A CLOSER LOOK AT LS AND KD COMPATIBILITY

In this section, we review the contradictory findings of Müller et al. (2019) and Shen et al. (2021b)
from the perspective of information erase in LS-trained teacher. This discussion is a necessary
preamble to discuss our main finding, Systematic Diffusion in the student in Sec 4.

Information Erase in LS-trained teacher. LS objective optimizes the probability of the correct
class to be equal to 1 − α + α/K, and incorrect classes to be α/K. This directly encourages the
differences between logits of the correct class and incorrect classes to be a constant (Müller et al.,
2019) determined by α. Following Müller et al. (2019), the logit xTwk can be approximately mea-
sured using the squared Euclidean distance between penultimate layer’s activations and the template
corresponding to class k. That is, xTwk can be approximately measured by ∥x−wk∥2. This al-
lows to establish 2 important geometric properties of LS (Müller et al., 2019): With LS, penultimate
layer activations 1) are encouraged to be close to the template of the correct class (large logit value
for the correct class, therefore small distance between the activations and the correct class template),
and 2) are encouraged to be equidistant to the templates of the incorrect classes (equal logit values
for all the incorrect classes). This results in penultimate layer activations to tightly cluster around
the correct class template compared to the model trained with standard cross entropy objective. We
demonstrate this clearly in Figure 1 Observation 1. With LS applied on the ResNet-50 model, we
observe that the penultimate layer representations become much tighter. As a result, substantial in-
formation regarding the resemblances of these instances to those of other different classes is lost.
This is referred to as the information erase in LS-trained network (teacher) (Müller et al., 2019).

Claim 1: Information erase in LS-trained teacher cause LS and KD to be Incompatible (Müller
et al., 2019): Müller et al. (2019) are the first to investigate this compatibility, and they argue
that the information erasure effect due to LS (shown in Figure 1 Observation 1) can impair KD.
Given the prominent successes in KD methods being largely attributed to dark knowledge/ inter-class
information emerging from the trained-teacher (Hinton et al., 2015; Tang et al., 2021), the argument
by Müller et al. (2019) that LS and KD are incompatible due to information loss in the logits is
generally convincing and widely accepted (Khosla et al., 2020; Arani et al., 2021; Tang et al., 2021;
Mghabbar & Ratnamogan, 2020; Shen et al., 2021a). This is also supported by empirical evidence.

Claim 2: Information erase in LS-trained teacher provides distance enlargement benefits be-
tween semantically similar classes, resulting in LS and KD to be Compatible (Shen et al.,
2021b): Recently an interesting finding by Shen et al. (2021b) argue that LS and KD are compati-
ble. Though they agree that information erasure generally happens with LS, their argument focuses
more on the effect of LS on semantically similar classes. They argue that information erase in LS-
trained teacher can promote enlargement of central distance of clusters between semantically similar
classes. This allows the student network to easily learn to classify semantically similar classes which
are generally difficult to classify in conventional training procedures. We show this increased sepa-
ration between semantically similar classes with LS in Figure 1 Observation 1. It can be observed
that the central distance between the clusters of standard poodle and miniature poodle
increases with using LS on the ResNet-50 teacher. In our work, we further extend to show that this
property is inherited by the ResNet-18 student as well in Observation 2. We remark that this inheri-
tance is not shown by Shen et al. (2021b). This finding by Shen et al. (2021b) is largely supported by
experiments and quantitative results. Though Shen et al. (2021b) claim that the benefit derived from
larger separation between semantically similar classes outweigh the drawbacks due to information
erase, thereby making LS and KD compatible, their investigation does not address the contradictory
findings and empirical results obtained by Müller et al. (2019).

Research Gap: Studied in isolation, both these contradictory arguments are convincing and are
well supported empirically. This has caused serious perplexity among the research community re-
garding the combined use of LS and KD.

4 SYSTEMATIC DIFFUSION IN STUDENT

Through profound investigation, we discover an intriguing phenomenon occurring in the student
called systematic diffusion when distilling from a LS-trained teacher at higher T . Particularly, this
diffusion maneuvers the penultimate layer representations learnt by the student of a given class
in a systematic way that targets in the direction of semantically similar classes. This systematic
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diffusion is critical as it directly curtails the distance enlargement benefits between semantically
similar classes when distilling from a LS-trained teacher.

Penultimate layer visualization as evidence of systematic diffusion. We follow Müller et al.
(2019), and use their visualization method based on linear projections of the penultimate layer rep-
resentations. See Figure 1 for visualization (We discuss Figure 1 deeply in Sec 5). Particularly,
our discovery on systematic diffusion affects the distance between semantically similar classes in
the student when distilled from a LS-trained teacher at higher T . This systematic diffusion can be
clearly observed by visualizing the penultimate layer representations of the student. We include the
visualization algorithm and Numpy-style code in Supplementary E.

Given that the increased cluster center separation between semantically similar classes being the
reason for the compatibility claim between LS and KD (Shen et al., 2021b), we discover that this
cluster center separation is affected by the degree of systematic diffusion in the student. Impor-
tantly, systematic diffusion is instrumental in explaining and resolving the contradictory findings of
Müller et al. (2019) and Shen et al. (2021b), thereby establishing a foundational understanding on
the compatibility between LS and KD.

Formulation of Diffusion index (η) to measure systematic diffusion. To comprehensively support
our discovery, we formulate a novel metric called diffusion index (η) to quantitatively measure this
systematic diffusion. Given that the interpretation of ‘semantics’ is rather subjective, we carefully
construct this metric to support our discovery. The basic idea of this metric is to quantify the distance
change between clusters in the student network when distilled from a LS-trained teacher at higher T .
Critically, the design of the metric is to verify that the diffusion is systematic: i.e. at higher T , inter-
cluster distance decreases for semantic similar classes and increases (relatively) for the remaining
classes. As explained in the Introduction, this systematic behaviour is critical in our study. There
are important considerations in formulating this metric discussed below.

• A target class π can be characterized by the centroid of the penultimate layer representations of
samples belonging to π. Let the centroid of class π be cπ .

• Consider the sets S1, S2 where S1 contains |S1| semantically similar classes to π and S2 contains
|S2| semantically dissimilar classes to π. |S| indicates the number classes in the set S. For easier
understanding, consider 2 classes p, q where p ∈ S1, q ∈ S2.

• The proximity of cπ to cp can approximately measure the semantic similarity between class π and
p. Though this proximity can be directly measured by Euclidean distance between centroids, it
requires some careful thought on normalization. The reason is as follows: What we are interested
is how close is centroid of class π to class p compared to class q. In other words, we are interested
in the relative distance between centroids of classes (π, p) and (π, q). Hence to measure this
relative distance we normalize the distance by the sum of pairwise distance from cπ to centroids
of all other classes in S.

• Do note that the location of the centroids will change with temperature. In fact, we are interested
in the change of centroids with increased T to measure this systematic diffusion. We formulate
the following diffusion index η to measure the average percentage change in distances between
semantically similar classes and semantically dissimilar classes with respect to a target class.

Given a class π and its centroid cπ . Let the centroid of a class k be represented by ck, k ∈ S1, S2.
Let the temperature be T . We quantify the relative distance between classes π and k:

d(cπ(T ), ck(T )) = ∥cπ(T )−ck(T )∥2

R , where R =
∑

p∈S1
∥cπ(T ) − cp(T )∥2 +

∑
q∈S2

∥cπ(T ) −
cq(T )∥2 (normalization constant). The diffusion index η measures the average percentage change
in distance between a target class π and classes in the set S when temperature is changed from T1 to
T2 defined as follows:

η(T1, T2;π, S) =
1

|S|
∑
k∈S

d(cπ(T2), ck(T2))− d(cπ(T1), ck(T1))

d(cπ(T1), ck(T1))
(1)

Substituting S1, S2 into S of Eq. 1, we have: i) η(T1, T2;π, S1) measures the change in relative
distance between class π and its semantically similar class in S1. ii) η(T1, T2;π, S2) measures the
change in relative distance between class π and its semantically dissimilar class in S2.
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Figure 2: Soft output of the LS-trained ResNet-50 teacher (α = 0.1) same as the one in Figure 1. Left:
soft output at T = 1; Right: soft output at T = 2. The figures show the average of the soft outputs for
1300 training standard poodle samples. Index 1 is the soft output for the standard poodle class,
i.e. ptk∗(T ). Index 2 and 3 are the soft outputs for the semantically similar classes miniature poodle and
toy poodle respectively, i.e. ptml(T ). The rests are soft outputs of randomly-chosen semantically dissimilar
classes, i.e. ptms(T ). Note that an increase of T brings ptml(T ) closer to ptk∗(T ). Therefore, soft targets
at an increased T encourage student to learn penultimate representations closer to semantically similar class
ml, which are miniature poodle and toy poodle in this case. Therefore, in Figure 1 Observation
3, standard poodle activations has more overlapping with miniature poodle when KD of T = 2 is
used. Also, ptms(T ) remains negligible after T scaling, as shown in the figure. Furthermore, the figure of T = 1
(Left) suggests that even with LS probabilities of incorrect classes {ptm} are not all the same, and information
erase is not prefect in practice. Therefore, the diffusion of penultimate representations is not isotopic.

To give more intuition on η, consider the 3 class example (Fig. 1): miniature poodle (as
π class), standard poodle (as p ∈ S1 class and |S1| = 1), submarine (as q ∈ S2

class and |S2| = 1). As T increases from T1 = 1 to T2 = 3, the relative distance between
miniature poodle and standard poodle will reduce due to diffusion (Fig. 1), therefore
d(cπ(T2), cp(T2)) < d(cπ(T1), cp(T1)). From Eq. 1, it is clear that the numerator will be neg-
ative. We normalize by the reference distance to calculate the percentage change. As a result,
the average percentage change over S1 will give a negative value, indicating the diffusion towards
semantically similar classes. Similarly when measured over S2, the average percentage change
between miniature poodle and submarine will be positive (because d(cπ(T2), cq(T2)) >
d(cπ(T1), cq(T1)) as we observe in Fig. 1) indicating diffusion away from the target class.

Why is this diffusion systematic and not isotopic? We revisit discussion from Hinton et al. (2015)
to motivate the intuition behind this systematic diffusion. Hinton et al. (2015) introduce T to scale
the logits at the final softmax in order to produce soft targets that are more suitable for transfer. As
argued by Hinton et al. (2015) on MNIST classification, a sample of ‘2’ may be assigned a proba-
bility of 10−6 of being a ‘3’ and 10−9 of being a 7. The resemblance between ‘2’ and ‘3’ is valuable
information, but a probability of 10−6 has negligible influence on the loss when distilling to stu-
dent. Hinton et al. (2015) introduce a temperature T to emphasize the probabilities of such incorrect
classes: during KD, their T -scaled counterparts have more noticeable effects on the student. On
the other hand, the effect of T scaling on the probability of 10−9 is negligible; consequently, the
T -scaled counterparts of such probabilities remain to have unnoticeable effects on the student.

In particular, for a given sample of ground-truth class k∗, we let ptk∗ represent the probability of
the correct class output by the teacher, ptm represent the probability of one of the K − 1 incorrect
classes. Among these K − 1 ptm, one or a few could be significantly larger than the other; we refer
such probability as ptml (i.e.: probability of being a 3 in the above example). In particular, the class
ml is usually a semantically similar class of class k∗, therefore ptml is not negligible for a class k∗
sample (See Figure 2). For the rests of ptm which are almost zero (noise level), we refer them as
ptms (e.g., probability of being a 7 in the above example). Therefore, {ptm} = {ptml} ∪ {ptms}.
Usually, we have ptml ≫ ptms and ptms ≈ 0. We remark that {ptm} are not all the same and can be
observed even for a LS-trained teacher. It is because logits’ information is not completely erased
(see Figure 2).

When KD of an increased T is used, the soft output of the teacher is scaled and becomes pt(T ).
In particular, the effect of T scaling is to bring ptml closer to ptk∗ , i.e., ptml(T ) is closer to ptk∗(T )
relatively. Consequently, with soft target pt(T ), student is encouraged to produce a penultimate rep-
resentation of a class k∗ sample that is closer to the incorrect class ml. This results in systematic dif-
fusion of representations of class k∗ towards the incorrect class ml. This can be observed in Figure 1
Observation 3 for standard poodle activations (here class ml being miniature poodle),
and similarly for miniature poodle activations. On the other hand, because ptms is negligi-
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Table 2: Knowledge distillation results from ResNet-50 Teacher to ResNet-18 student (A) and
ResNet-50 student (B) following similar procedure as Shen et al. (2021b) on ImageNet-1K. We show
the top1/ top5 test accuracies. Configurations where LS and KD are compatible are in bold. As one
can clearly observe, with LS-trained teacher, there is a consistent degrade in student performance
as T increases. This can be observed in all our 28 experiments. These results comprehensively
support our claim: in the presence of a LS-trained teacher, KD at higher temperatures is rendered
ineffective. On the other hand, we observe that higher T can improve the performance when using
a teacher trained without LS in fine-grained classification and compact student network distillation
experiments (See Supplementary Tables 5 and 9). All these results are averaged over 3 independent
runs. Standard deviations are reported in Supplementary Tables 10, 11 respectively.

A. ResNet-50 to ResNet-18 KD

T
α 0 0.1

Teacher : ResNet-50 - 76.130 / 92.862 76.196 / 93.078

Student : ResNet-18

T = 1 71.547 / 90.297 71.616 / 90.233
T = 2 71.349 / 90.359 68.428 / 89.139

T = 3 69.570 / 89.657 66.570 / 88.631

T = 64 66.230 / 88.730 65.472 / 89.564

B. ResNet-50 to ResNet-50 KD

T
α 0 0.1

Teacher : ResNet-50 - 76.13 / 92.862 76.196 / 93.078

Student : ResNet-18

T = 1 76.502 / 93.059 77.035 / 93.327
T = 2 76.198 / 92.987 76.101 / 93.115

T = 3 75.388 / 92.676 75.821 / 93.065
T = 64 74.291 / 92.399 74.627 / 92.639

bly small, even with T scaling ptms(T ) remains negligible and has unnoticeable effect for student’s
penultimate representation. Therefore, the diffusion due to an increased T is not isotopic but towards
semantically similar classes (class ml). We provide more detailed discussion in Supplementary D.

We remark that this systematic diffusion can sometimes be observed when using a teacher without
LS, see Figure 1, row 2 subplot 1 and row 3 subplot 1. For a teacher without LS (i.e. without infor-
mation erase), this systematic diffusion could in fact be advantageous in some cases, as it improves
generalization of the student network using the rich logits’ information about instance resemblances.
However, we focus on our thesis statement: compatibility between LS and KD. In our case, system-
atic diffusion in student due to KD at an increased T curtails the distance enlargement (between
semantically similar classes) benefits of using a LS-trained teacher, rendering KD ineffective.

5 EMPIRICAL STUDIES

In this section, we conduct large-scale KD experiments (classification) using ImageNet-1K. We
remark that LS and KD are compatible when with all the other factors fixed (including T ), student
distilled from a LS-trained teacher outperforms the student distilled from a teacher trained without
LS. We use ResNet-50 teacher and ResNet-18, ResNet-50 students similar to Shen et al. (2021b).
Results are shown in Table 2.

Penultimate layer visualization analysis. We show this systematic diffusion in ResNet-18
student using Figure 1 Observation 3. We focus on the two semantically similar classes:
miniature poodle, standard poodle. Given the same LS-trained ResNet-50 teacher and
using the exact distillation process, we observe that at increased temperatures (T = 1 to T = 3), the
above semantically similar classes start to diffuse. We also observe that class submarine diffuses
towards another class which is semantically similar to submarine (not shown in the figure). Be-
cause of this systematic diffusion, the central cluster distances between miniature poodle and
standard poodle reduces with increased T in the presence of LS-trained teacher. Consequently,
this systematic diffusion results in detrimental performance in the student causing an accuracy drop
of 5.05% as shown in Table 2 A. ResNet-50 student visualization is included in Supplementary A.

Analysis using diffusion index (η). We quantitatively illustrate systematic diffusion in the ResNet-
18 student using η for 10 target classes in Table 3. We clearly observe that η(T1 = 1, T2 =
3;π, S1) < 0 and η(T1 = 1, T2 = 3;π, S2) > 0 for all these 10 target classes, thereby quanti-
tatively showing that the penultimate layer representations are diffused towards semantically similar
classes when distilled from a LS-trained teacher at a larger temperature. This systematic diffusion
results in detrimental performance of the student resulting in an accuracy drop of 5.05% as shown
in Table 2 A. We show similar analysis for ResNet-50 student in Supplementary A.

Resolving the contradictory claims using systematic diffusion. The seemingly contradictory
findings of Müller et al. (2019) and Shen et al. (2021b) can be resolved using our discovery on
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Table 3: η analysis for ResNet-18 student for 10 target classes (We show in 2 sets). We use ImageNet hierarchy
derived from WordNet (Fellbaum, 1998) to select 4 semantically similar classes and 20 semantically dissimilar
classes (random) to compute the diffusion index η. |S1| = 4 and |S2| = 20 for each target class. We
demonstrate that when increasing T = 1 to T = 3, the diffusion index η between target class and S1 reduces
substantially and vice versa for S2 shown for both training and validation set.

A. Set 1
Target class Train : S1 Train : S2 V al : S1 V al : S2

Chesapeake Bay retriever -0.392 0.162 -1.082 0.269

curly-coated retriever -0.578 0.179 -2.024 0.383

flat-coated retriever -1.729 0.380 -3.320 0.655

golden retriever -0.880 0.228 -2.594 0.555

Labrado retriever -2.758 0.501 -4.618 0.840

B. Set 2
Target class Train : S1 Train : S2 V al : S1 V al : S2

thunder snake -2.316 0.376 -3.584 0.511

ringneck snake -0.463 0.058 -0.757 0.094

hognose snake -1.528 0.258 -4.067 0.631

water snake -2.028 0.326 -3.053 0.478

king snake -2.474 0.521 -4.577 0.840

systematic diffusion as follows: Müller et al. (2019) make the incompatibility claim between LS
and KD due to observing students distilled from LS-trained teacher performing inferior to students
distilled from teacher trained without LS at higher T . On the contrary, Shen et al. (2021b) make
the compatibility claim between LS and KD due to observing students distilled from LS-trained
teacher performing superior to students distilled from teacher trained without LS at lower T (i.e.:
T = 1). Critically, our main finding shows that in the presence of a LS-trained teacher, KD at higher
temperatures systematically diffuses penultimate layer representations learnt by the student towards
semantically similar classes. This systematic diffusion essentially curtails the distance enlargement
(between semantically similar classes) benefits of distilling from a LS-trained teacher, thereby ren-
dering KD at increased temperatures ineffective. More specifically, in the presence of a LS-trained
teacher, the degree of systematic diffusion is low when distilling at lower T thereby making LS and
KD compatible. On the other hand, the degree of systematic diffusion is relatively higher when dis-
tilling at higher T , thereby making LS and KD incompatible. Our findings are summarized in Table
1. Importantly, we remark that systematic diffusion was the missing concept that is instrumental in
resolving the contradictory claims of Müller et al. (2019) and Shen et al. (2021b).

Extended experiments to further support main finding. We perform extensive experiments using
fine-grained image classification, neural machine translation and compact student network distilla-
tion. These results and analysis further support our main finding and are reported in Supplementary
B.1, B.2 and B.3 respectively.

6 DISCUSSION AND CONCLUSION

To smooth or not to smooth? Based on our study, we provide our perspective on this question:
“To smooth or not to smooth a teacher network?” While increased T is believed to be a helpful
empirical trick (Also observed in some of our experiments when distilling from a teacher trained
without LS) to produce better soft-targets for KD, we convincingly show that in the presence of
LS-trained teacher, an increased T causes systematic diffusion of penultimate layer representations
towards semantically similar classes in the student. This systematic diffusion directly curtails the
distance enlargement (between semantically similar classes) benefits of a LS-trained teacher, thereby
rendering KD ineffective at increased T . As a rule of thumb, we suggest to use lower T (i.e.: T = 1)
for KD in the presence of a LS-trained teacher to avoid systematic diffusion.

Conclusion. Focusing on the compatibility between LS and KD, we have conducted an empirical
study to investigate the seemingly contradictory findings of Müller et al. (2019) and Shen et al.
(2021b). Through comprehensive scrutiny of these works, we discover an intriguing phenomenon
called systematic diffusion: That is in the presence of a LS-trained teacher, KD at higher tem-
peratures systematically diffuses penultimate layer representations learnt by the student towards
semantically similar classes. This systematic diffusion essentially curtails the benefits of distilling
from a LS-trained teacher, thereby rendering KD at increased temperatures ineffective. We showed
this systematic diffusion both qualitatively and quantitatively using extensive analysis. We also
supported our findings with large scale experiments including image classification (standard, fine-
grained), neural machine translation and compact student network distillation tasks. Critically, using
our discovery on systematic diffusion, we resolve the contradictory findings of Müller et al. (2019)
and Shen et al. (2021b), thereby establishing a foundational understanding regarding the compati-
bility between LS and KD. Finally, based on our new finding, we discussed our viewpoints on the
question: to smooth or not to smooth a teacher network.
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7 REPRODUCIBILITY STATEMENT

Code Submission Our submission includes Pytorch code to allow for research reproducibility. Refer
README.txt for specific instructions. The submitted code contains the following:

• ImageNet LS and KD code to reproduce Table 2 in the main paper
( src/imagenet/train teacher.py, src/imagenet/train student.py ).

• Fine-grained classification/ Compact neural network distillation using CUB200-2011
dataset to reproduce Tables 5 and 6
( src/cub/train teacher.py, src/cub/train student.py, ).

• Penultimate layer visualization code to reproduce all visualizations in the main paper.
( src/visualization/alpha-LS-KD imagenet centroids.py ).

• We provide clear bash file execution points to train all our models.
(See /bash scripts)

Pre-trained models submission Our submission includes all pretrained models for image classifica-
tion using ImageNet-1K, fine-grained classification using CUB200-2011, neural machine translation
using IWSLT and compact student distillation. We submit the pretrained models for both teachers
and students. All these models can be downloaded at this Google Drive Link. All our claims re-
ported in Main paper Table 2 and Supplementary tables 5, 6, 7, 8, 9 can be reproduced using the
submitted models.

Docker information : To allow for training in containerised environments (HPC, Super-computing
clusters), please use nvcr.io/nvidia/pytorch:20.12-py3 container.

Experiment details and hyper-parameters

ImageNet-1K: For ImageNet experiments, we follow similar setup as Shen et al. (2021b) and use
ILSVRC2012 version. For training LS networks, we train for 90 epochs with initial learning rate
0.1 decayed by a factor of 10 every 30 epochs. For KD experiments, we train for 200 epochs with
initial learning rate 0.1 decayed by a factor of 10 every 80 epochs. We conducted a grid search for
hyper-parameters as well. For all experiments, we use a batch size of 256 and SGD with momentum
0.9 . For data augmentation, we use random crops and random horizontal flips. All experiments
were repeated 3 times. For visualization of penultimate layer representations, we use 150 samples
for training set and 50 samples for validation set.

Fine-grained classification and compact student distillation. We follow similar setup as Shen et al.
(2021b). For training both LS and KD networks, we train for 200 epochs with initial learning rate
0.01 decayed by a factor of 10 every 80 epochs. We conducted a grid search for hyper-parameters
as well. For all experiments, we use a batch size of 256 and SGD with momentum 0.9 . All
experiments were repeated 3 times. For data augmentation, we use random crops, random rotation,
color jitter and random horizontal flips. For visualization of penultimate layer representations, we
use all samples for training and validation sets.

Neural Machine Translation (NMT) We use IWSLT dataset. We follow similar setup as Shen et al.
(2021b). We use Adam as the optimizer, lr with 0.0005, dropout with drop rate as 0.3, weight-decay
with 0 and max tokens with 4096, all of these hyper-parameters are following settings of Shen et al.
(2021b). These hyper-parameters were used for both translation tasks (English to German, English
to Russian). We use the code here similar to Shen et al. (2021b).
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mitigate label noise? In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Re-
search, pp. 6448–6458. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/
v119/lukasik20a.html.

Idriss Mghabbar and Pirashanth Ratnamogan. Building a multi-domain neural machine transla-
tion model using knowledge distillation. In Giuseppe De Giacomo, Alejandro Catalá, Bistra
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24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de
Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious
Applications of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in Artificial Intel-
ligence and Applications, pp. 2116–2123. IOS Press, 2020. doi: 10.3233/FAIA200335. URL
https://doi.org/10.3233/FAIA200335.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help?
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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SUPPLEMENTARY MATERIALS

CONTENTS OF THIS SUPPLEMENTARY

This Supplementary provides additional experiments and results (penultimate layer visualization
and η analysis) to further support our main finding on Systematic diffusion. The Supplementary
materials are organized as follows:

• Section A: Visualizations and η analysis for ResNet-50 Student (ImageNet-1K)
• Section B: Extended experiments and Analysis

– Section B.1: Fine-grained classification
– Section B.2: Neural machine translation
– Section B.3: Compact student network distillation

• Section C: Standard Deviation of ImageNet-1K experiments
• Section D: Additional Discussion: Why this diffusion is systematic and not isotopic?
• Section E: Algorithm for Projection and visualization of penultimate layer representations
• Section F: Semantically similar / dissimilar classes

– Section F.1: Using standard, pre-defined ImageNet knowledge graph as a prior
– Section F.2: Using distance in the feature space

• Section G: Case study: Smoothness of targets are insufficient to determine KD performance
– Section G.1: Case study at lower T with same degree of smoothness
– Section G.2: Case study at moderately higher T with same degree of smoothness
– Section G.3: Case study at very high T with same degree of smoothness

• Section H: Class-wise accuracy for target classes
• Section I: Additional Exploration of α and T

• Section J: Alternative characterization of cluster distance
• Section K: Additional References

A VISUALIZATIONS AND η ANALYSIS FOR RESNET-50 STUDENT
(IMAGENET-1K)

Table 4: η analysis for ResNet-50 student for 10 target classes (We show in 2 sets identical to ResNet-18
student shown in Table 3). We use ImageNet hierarchy derived from WordNet (Fellbaum, 1998) to select 4
semantically similar classes and 20 semantically dissimilar classes (random) to compute the diffusion index
η. |S1| = 4 and |S2| = 20 for each target class. We demonstrate that when increasing T = 1 to T = 64,
the diffusion index η between target class and S1 reduces substantially and vice versa for S2 shown for both
training and validation set (for most target classes). More η analysis is included in Supplementary.

A. Set 1
Target class Train : S1 Train : S2 V al : S1 V al : S2

Chesapeake Bay retriever -1.061 0.180 -1.346 0.240

curly-coated retriever -0.764 0.127 -1.193 0.207

flat-coated retriever -0.983 0.169 -0.331 0.056

golden retriever -0.744 0.159 -0.911 0.182

Labrado retriever -1.336 0.236 -1.468 0.257

B. Set 2
Target class Train : S1 Train : S2 V al : S1 V al : S2

thunder snake -2.565 0.417 -0.778 0.105

ringneck snake -2.224 0.358 -0.726 0.102

hognose snake -3.748 0.623 -2.173 0.342

water snake -1.631 0.258 -0.390 0.037

king snake -1.969 0.339 0.956 -0.159
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Figure 3: Visualization of the penultimate layer representations (Teacher = ResNet-50,
Student = ResNet-50, Dataset = ImageNet). We follow the same setup and pro-
cedure used in Müller et al. (2019) and Shen et al. (2021b). We also follow their three-classes
analysis: two semantically similar classes (miniature poodle, standard poodle) and one
semantically different class (submarine). Observation 1: The use of LS on the teacher leads
to tighter clusters and erasure of logits’ information as claimed by Müller et al. (2019). In ad-
dition, increase in central distance between semantically similar classes (miniature poodle,
standard poodle) as claimed by Shen et al. (2021b) can be observed. Observation 2: We
further visualize the student’s representations. Increase in central distance between semantically
similar classes can also be observed. This confirms the transfer of this benefit from the teacher to
the student. Note that in Müller et al. (2019) and Shen et al. (2021b), student’s representations have
not been visualized. Observation 3 (Our main discovery): KD of an increased T causes sys-
tematic diffusion of representations between semantically similar classes (miniature poodle,
standard poodle). Since the student is also a very powerful network (ResNet-50), the extent of
this systematic diffusion is not large compared to the ResNet-18 student. We further show η analysis
in Table 4 to quantitatively show this systematic diffusion. Best viewed in color.

B EXTENDED EXPERIMENTS

B.1 FINE-GRAINED IMAGE CLASSIFICATION

We conduct fine-grained image classification experiments using CUB200-2011 dataset (Wah et al.,
2011) similar to Shen et al. (2021b). Similar to Shen et al. (2021b), we use ResNet-50 teacher
and ResNet-18, ResNet-50 students. The results are shown in Tables 5 and 6 respectively. Similar
to ImageNet-1K, we select two semantically similar classes (Great Grey Shrike and Loggerhead
Shrike) and one semantically dissimilar class (Black footed Albatross) in CUB200-2011 dataset to
clearly demonstrate this systematic diffusion. We show the systematic diffusion using penultimate
layer visualization for CUB200-2011 in Figure 4. These results also comprehensively support our
main finding: In the presence of a LS-trained teacher, KD at higher temperatures systematically
diffuses penultimate layer representations learnt by the student towards semantically similar classes.
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This systematic diffusion essentially curtails the benefits of distilling from a LS-trained teacher,
thereby rendering KD at increased temperatures ineffective.

Table 5: Top1/ Top5 Accuracy with Standard deviations for Knowledge distillation results from
ResNet-50 Teacher to ResNet-18 student on CUB200-2011, following the exact procedure as
Shen et al. (2021b). Configurations where LS and KD are compatible are in bold. As one can
clearly observe, with LS-trained teacher, there is a consistent degrade in student performance as T
increases. This can be observed in all our 28 experiments. These results comprehensively support
our claim: in the presence of a LS-trained teacher, KD at higher temperatures is rendered ineffective.
On the other hand, we also observe that higher T is helpful when distilling from a teacher trained
without LS in this setup (Observe improvement of student from T = 1 to T = 2 when distilling
from teacher trained without LS). These experiments are repeated for 3 independent runs and as you
can observe the standard deviations are within acceptable range.

T
α 0 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : ResNet-18

T = 1 80.169 ± 0.336 / 95.392 ± 0.03 80.946 ± 0.03 / 95.312 ± 0.18
T = 2 80.808 ± 0.314 / 95.593 ± 0.053 80.428 ± 0.053 / 95.518 ± 0.108

T = 3 80.785 ± 0.26 / 95.674 ± 0.163 78.196 ± 0.163 / 95.213 ± 0.125

T = 64 73.611 ± 0.314 / 94.529 ± 0.086 67.161 ± 0.086 / 93.062 ± 0.127

Table 6: Top1/ Top5 Accuracy with Standard deviations for Knowledge distillation results from
ResNet-50 Teacher to ResNet-50 student on CUB200-2011, following the exact procedure as
Shen et al. (2021b). Configurations where LS and KD are compatible are in bold. As one can
clearly observe, with LS-trained teacher, there is a consistent degrade in student performance as T
increases. This can be observed in all our 28 experiments. These results comprehensively support
our claim: in the presence of a LS-trained teacher, KD at higher temperatures is rendered inef-
fective. On the other hand, we observe that higher T can improve the performance when using a
teacher trained without LS in fine-grained classification and compact student network distillation
experiments (See Supplementary Tables 5 and 9) These experiments are repeated for 3 independent
runs and as you can observe the standard deviations are within acceptable range.

T
α 0 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : ResNet-18

T = 1 82.902 ± 0.343 / 96.358 ± 0.141 83.742 ± 0.141 / 96.778 ± 0.12
T = 2 82.534 ± 0.137 / 96.427 ± 0.105 83.379 ± 0.105 / 96.537 ± 0.018
T = 3 82.091 ± 0.161 / 96.243 ± 0.13 82.142 ± 0.13 / 96.427 ± 0.211

T = 64 79.784 ± 0.26 / 95.927 ± 0.13 77.206 ± 0.13 / 95.812 ± 0.259
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Figure 4: Visualization of the penultimate layer representations (Teacher = ResNet-50,
Student = ResNet-18, Dataset = CUB200-2011). We follow the same setup and pro-
cedure used in Müller et al. (2019) and Shen et al. (2021b). We also follow their three-classes
analysis: two semantically similar classes (Loggerhead Shrike, Great Grey Shrike) and
one semantically different class (Black footed Albatross). Observation 1: The use of
LS on the teacher leads to tighter clusters and erasure of logits’ information as claimed by
Müller et al. (2019). In addition, increase in central distance between semantically similar classes
(Loggerhead Shrike, Great Grey Shrike) as claimed by Shen et al. (2021b) can be ob-
served. Observation 2: We further visualize the student’s representations. Increase in central
distance between semantically similar classes can also be observed. This confirms the transfer of
this benefit from the teacher to the student. Note that in Müller et al. (2019) and Shen et al. (2021b),
student’s representations have not been visualized. Observation 3 (Our main discovery): KD of
an increased T causes systematic diffusion of representations between semantically similar classes
(Loggerhead Shrike, Great Grey Shrike). Best viewed in color.

B.2 NEURAL MACHINE TRANSLATION

We conduct neural machine translation experiments using IWSLT-2014 dataset. We perform trans-
lation on English - German task (Similar to Shen et al. (2021b)) and English - Russian task. The re-
sults are shown in Tables 7 and 8 respectively. These results also comprehensively support our main
finding: In the presence of a LS-trained teacher, KD at higher temperatures systematically diffuses
penultimate layer representations learnt by the student towards semantically similar classes. This
systematic diffusion essentially curtails the benefits of distilling from a LS-trained teacher, thereby
rendering KD at increased temperatures ineffective.

B.3 COMPACT STUDENT NETWORK DISTILLATION

KD is very widely explored in neural network compression applications. Specifically, we use KD to
transfer knowledge from a large and powerful teacher (i.e.: ResNet-50, DenseNet121 etc) to compact
student networks (i.e.: MobileNetV2). In this section, we conduct KD experiments using ResNet-50
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Table 7: BLEU scores with Standard deviations for Knowledge distillation results from Trans-
former Teacher to Transformer student on IWSLT dataset using English-German translation
task, following the similar procedure as Shen et al. (2021b). Configurations where LS and KD are
compatible are in bold. As one can clearly observe, with LS-trained teacher, there is a consistent
degrade in student performance as T increases. This can be observed in all our 28 experiments.
These results comprehensively support our claim: in the presence of a LS-trained teacher, KD at
higher temperatures is rendered ineffective. On the other hand, we observe that higher T can im-
prove the performance when using a teacher trained without LS in fine-grained classification and
compact student network distillation experiments (See Supplementary Tables 5 and 9). These ex-
periments are repeated for 3 independent runs and as you can observe the standard deviations are
within acceptable range.

T
α 0 0.1

Teacher : Transformer - 26.461 26.750

Student : Transformer

T = 1 24.914 ± 0.013 25.085 ± 0.082
T = 2 23.103 ± 0.103 23.421 ± 0.039
T = 3 21.999 ± 0.06 22.076 ± 0.125
T = 64 6.564 ± 0.288 6.461 ± 0.061

Table 8: BLEU scores with Standard deviations for Knowledge distillation results from Trans-
former Teacher to Transformer student on IWSLT dataset using English-Russian translation
task, following the similar procedure as Shen et al. (2021b). Configurations where LS and KD are
compatible are in bold. As one can clearly observe, with LS-trained teacher, there is a consistent
degrade in student performance as T increases. This can be observed in all our 28 experiments.
These results comprehensively support our claim: in the presence of a LS-trained teacher, KD at
higher temperatures is rendered ineffective. On the other hand, we observe that higher T can im-
prove the performance when using a teacher trained without LS in fine-grained classification and
compact student network distillation experiments (See Supplementary Tables 5 and 9)

T
α 0 0.1

Teacher : Transformer - 16.718 16.976

Student : Transformer

T = 1 16.140 16.197
T = 2 14.977 15.100
T = 3 13.826 14.106
T = 64 3.605 3.590

teacher and MobileNetV2 student on the fine-grained classification task (using CUB200-2011). The
results are shown in table 9
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Table 9: Top1/ Top5 Accuracy with Standard deviations for Knowledge distillation results from
ResNet-50 Teacher to MobileNetV2 student on CUB200-2011. Configurations where LS and KD
are compatible are in bold. As one can clearly observe, with LS-trained teacher, there is a consistent
degrade in student performance as T increases. This can be observed in all our 28 experiments.
These results comprehensively support our claim: in the presence of a LS-trained teacher, KD at
higher temperatures is rendered ineffective. We also observe that higher T is helpful when distilling
from a teacher trained without LS in this setup (Observe improvement of student from T = 1 to
T = 2, T = 3 when distilling from teacher trained without LS). On the contrary, we emphasize
that in the presence of LS-trained teacher, higher T renders ineffective KD. These experiments are
repeated for 2 independent runs and as you can observe the standard deviations are within acceptable
range.

T
α 0 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : ResNet-18

T = 1 81.144 ± 0.037 / 95.677 ± 0.062 81.731 ± 0.256 / 95.754 ± 0.098
T = 2 81.895 ± 0.024 / 95.858 ± 0.000 80.609 ± 0.061 / 95.47 ± 0.159

T = 3 81.257 ± 0.073 / 95.677 ± 0.012 78.961 ± 0.293 / 95.306 ± 0.196

T = 64 75.441 ± 0.049 / 94.702 ± 0.025 70.435 ± 0.171 / 93.494 ± 0.025

C STANDARD DEVIATION OF IMAGENET-1K EXPERIMENTS

Table 10: Knowledge distillation results from ResNet-50 Teacher to ResNet-18 student with stan-
dard deviations, following similar procedure as Shen et al. (2021b) on ImageNet-1K (Deng et al.,
2009). We show the top1/ top5 test accuracies. Configurations where LS and KD are compatible are
in bold. As one can clearly observe, with LS-trained teacher, there is a consistent degrade in student
performance as T increases. This can be observed in all our 28 experiments. These results com-
prehensively support our claim: in the presence of a LS-trained teacher, KD at higher temperatures
is rendered ineffective. On the other hand, we observe that higher T can improve the performance
when using a teacher trained without LS in fine-grained classification and compact student network
distillation experiments (See Supplementary Tables 5 and 9) All these results are averaged over 3
independent runs. The standard deviations are reported in Supplementary Tables 10 and 11 respec-
tively. These experiments are repeated for 3 independent runs and as you can observe the standard
deviations are within acceptable range.

T
α 0 0.1

Student : ResNet-18

T = 1 71.547 ± 0.122 / 90.297 ± 0.175 71.616 ± 0.114 / 90.233 ± 0.119
T = 2 71.349 ± 0.017 / 90.359 ± 0.054 68.799 ± 0.065 / 89.279 ± 0.092

T = 3 69.570 ± 0.320 / 89.657 ± 0.041 67.699 ± 0.079 / 89.043 ± 0.096

T = 64 66.230 ± 0.036 / 88.730 ± 0.071 64.506 ± 0.142 / 87.811 ± 0.100
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Table 11: Knowledge distillation results from ResNet-50 Teacher to ResNet-50 student with stan-
dard deviations, following similar procedure as Shen et al. (2021b) on ImageNet-1K (Deng et al.,
2009). We show the top1/ top5 test accuracies. Configurations where LS and KD are compatible are
in bold. As one can clearly observe, with LS-trained teacher, there is a consistent degrade in student
performance as T increases. This can be observed in all our 28 experiments. These results com-
prehensively support our claim: in the presence of a LS-trained teacher, KD at higher temperatures
is rendered ineffective. On the other hand, we observe that higher T can improve the performance
when using a teacher trained without LS in fine-grained classification and compact student network
distillation experiments (See Supplementary Tables 5 and 9). These experiments are repeated for 3
independent runs and as you can observe the standard deviations are within acceptable range.

T
α 0 0.1

Student : ResNet-50

T = 1 76.502 ± 0.234 / 93.059 ± 0.061 77.035 ± 0.061 / 93.327 ± 0.185
T = 2 76.198 ± 0.035 / 92.987 ± 0.105 76.101 ± 0.105 / 93.115 ± 0.017

T = 3 75.388 ± 0.095 / 92.676 ± 0.006 75.821 ± 0.006 / 93.065 ± 0.088
T = 64 74.291 ± 0.014 / 92.399 ± 0.035 74.627 ± 0.035 / 92.639 ± 0.085

D ADDITIONAL DISCUSSION: WHY THIS DIFFUSION IS SYSTEMATIC AND
NOT ISOTOPIC?

We provide more perspective into why this diffusion is systematic and not isotopic. We use the
LS-trained ResNet-50 teacher (same one in Figure 2) trained on ImageNet-1K to numerically show
more evidence as to why this diffusion is systematic and not isotopic. Particularly we show that only
very few classes (out of the 1000 classes in ImageNet-1K) have probabilities significantly larger than
others. We examine the output probability for 3 classes: standard poodle samples, golden retriever
samples and thunder snake samples (We choose this classes randomly, similar analysis can be done
for other classes as well).

For each class, we compute the average output probability for 1300 training samples, and observe
following: Let p1 be the largest probability which is also probability of the correct class.

• For the average probability of standard poodle samples, the second largest probability, p2
(miniature poodle) is at least 100x larger than 976 other probabilities (out of 999 probabili-
ties)

• For the average probability of golden retriever samples, the second largest probability, p2
(Labrador retriever) is at least 100x larger than 924 other probabilities (out of 999 probabil-
ities)

• For the average probability of thunder snake samples, the second largest probability, p2 (ring-
neck snake) is at least 100x larger than 964 other probabilities (out of 999 probabilities)

Can this support the diffusion is systematic? We use results of standard poodle for discussion.
When KD of an increased T is used, these probabilities are scaled, and p2 is brought closer to p1,
see Figure 2. Consequently, student is encouraged to produce penultimate layer representations of
standard poodle samples that are closer to miniature poodle. This results in diffusion of penultimate
layer representations of standard poodle towards miniature poodle, curtailing the distance enlarge-
ment benefit of distilling from a LS-trained teacher. For the 976 classes which have probabilities
at least 100x smaller than that of miniature poodle, even with T scaling, the probabilities remain
negligible. They have no influence on the representation of standard poodle. Therefore diffusion of
standard poodle will be towards miniature poodle and several semantically similar classes but there
is no diffusion towards these 976 classes. Therefore, the diffusion is systematic and is not isotopic.

In this discussion, we use 100x to mean significance/insignificance. If a probability pi is 100x
smaller than another probability pj , then even with T scaling pi remains insignificant compared to
pj .
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E ALGORITHM FOR PROJECTION AND VISUALIZATION OF PENULTIMATE
LAYER REPRESENTATIONS

Algorithm 1 Projection and visualization of penultimate layer features
Input: 1⃝ High dimensional (h) features (X,Y ) of three classes extracted from penultimate layers
of the trained model f 2⃝ Model weight w of the final layer of f
Output: The projected 2-D features X ′

Compute the othonormal basis as
w′ = qr-decomposition (w) # dim = (h, 3)
for all samples do

Obtain the projected features on new basis via dot product: proj(X) = np.dot(X , w′) # dim =
(∗, 3)
Dimension reduction from 3-D to 2-D via PCA(proj(X)) # dim = (∗, 2)

end for
return 2-D features: PCA(proj(X))

Algorithm 2 NumPy-style pseudo-code of the visualization algorithm

1 # Inputs
2 # weights_path: weights path of the final layer of your trained model
3 # feature_path: feature path of the penultimate layer high dimension

features extracted by your trained model
4

5 # Outputs
6 # 2-D features of each class
7

8 # ------------------------------------------------------------------- #
9 # Step 0. Init settings and select the class to visualize

10 CLASSES = [’miniature_poodle’, ’standard_poodle’, ’submarine’]
11 color = [’r’, ’g’, ’b’]
12 model = ’resnet18’ # the student model
13

14 # Step 1. Compute the orthonormal basis
15 weights = np.load(weights_path) # load the final layer weights
16 basis, _ = np.linalg.qr(weights.T) # dim=(*, 3)
17

18 # Step 2. Load the extracted features
19 num_sample = 150 # We sample 150 images per class
20 output_feature = np.load(feature_path)
21

22 # Step 3. Project the high dimension features to the new 3-D subspace
23 output_project = np.dot(output_feature, basis)
24

25 # Step 4. Dimension reduction from 3-D to 2-D using PCA
26 pca = PCA(n_components=2)
27 pca.fit(output_project)
28 output_array = pca.transform(output_project)
29

30 # Step 5. Plot the features in a 2-D plane
31 for i, subclass in enumerate(CLASSES):
32 plt.scatter(output_array[i * num_sample:(i + 1) * num_sample, 0],
33 output_array[i * num_sample:(i + 1) * num_sample, 1],
34 c=color[i], label=subclass)
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F SEMANTICALLY SIMILAR / DISSIMILAR CLASSES

Given a target class π, let the set of semantically similar and dissimilar classes be S1,, S2 respec-
tively. In this section, we discuss 2 important methods for identifying S1, S2 for the target class
π.

F.1 METHOD 1: USING STANDARD, PRE-DEFINED IMAGENET KNOWLEDGE GRAPH AS A
PRIOR

We use ImageNet hierarchy derived from WordNet (Fellbaum, 1998) to select semantically similar
classes and semantically dissimilar classes to quantify systematic diffusion. WordNet (Fellbaum,
1998) is a laboriously hand-coded lexical database linking words into semantic relations including
synonyms, hyponyms, and meronyms 2. Do note that ImageNet is organized using WordNet hierar-
chy. A web browser version of the ImageNet hierarchy can be accessed at this link (You can click
any node to browse images that correspond to the associated synset)

We use this ImagNet hierarchy to select semantically similar classes and semantically dissimilar
classes for the target class π. This way, we ensure the selection of semantically similar classes (S1)
and semantically dissimilar classes (S2) is based on a strong prior (knowledge graph) to support our
main finding.

F.2 METHOD 2: USING DISTANCE IN THE FEATURE SPACE TO QUANTITATIVELY DEFINE
SEMANTICALLY SIMILAR / DISSIMILAR CLASSES

This method is a quantitative approach for defining semantically similar / dissimilar classes. Specifi-
cally, we consider the official ResNet-50 model trained on ImageNet-1K (classification). We use the
validation set of ImageNet-1K and extract the penultimate layer representations for all the samples.
For each class, we consider the centroid of the penultimate layer representations as the class proto-
type and calculate the centroid-centroid distance between all the classes (This will give a symmetric
matrix of 1000 x 1000).

For selecting S1: Next, for the target class π, we identify the closest 1% of classes (10 out of 999
classes) using the centroid-centroid distances. These would be the semantically similar classes to
the target class as they have the smallest distances to the centroid of the target class.

For selecting S2: Next, for the target class π, we identify the distant 90% of classes (900 out of 999
classes) using the centroid-centroid distances discussed above. These would be the semantically
dissimilar classes to the target class as their centroids lie much far away from the centroid of the
target class.

Consistency measurements between the 2 methods: Let the semantically similar
and dissimilar classes identified using method 1 be S1,qualitative, S2,qualitative respec-
tively. Let the semantically similar and dissimilar classes identified using method 1 be
S1,quantitative, S2,quantitative respectively. In this section, we measure the consistency between
qualitative selection of S1,qualitative, S2,qualitative (method 1) and the quantitative definition of
S1,quantitative, S2,quantitative (method 2). This consistency measurements are shown for all the
target classes in the Table 12. As one can clearly observe both method 1 and method 2 agree 85%
on average for semantically similar classes and 94% on average for semantically dissimilar classes.
Do note that we use pre-defined knowledge graph for ImageNet-1K as prior (method 1) to select the
semantically similar / dissimilar classes for our η computation in Table 3.

2https://en.wikipedia.org/wiki/WordNet
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Table 12: Consistency measurements between using pre-defined knowledge graph for ImageNet-1K
as prior vs. feature space distance method for identifying semantically similar / dissimilar classes.
This table shows the agreement between these 2 methods in identifying semantically similar / dis-
similar classes. Each row indicates the agreement between the 2 methods with respect to the target
class. An agreement value of 1.000 indicates a perfect agreement between the 2 methods. As we can
clearly observe on average both methods agree 85% for semantically similar classes and 94% for
semantically dissimilar classes. This can suggest that we can leverage on either one of the methods
to select the semantically similar / dissimilar classes for our analysis on systematic diffusion. Do
note that we use pre-defined knowledge graph for ImageNet-1K as prior (method 1) to select the
semantically similar / dissimilar classes for our η computation in Table 3.

Target class S1,qualitative∩S1,quantitative

∥S1,qualitative∥
S2,qualitative∩S2,quantitative

∥S2,qualitative∥

Chesapeake Bay retriever 1.000 0.950

curly-coated retriever 0.750 0.950

flat-coated retriever 1.000 1.000

golden retriever 0.500 1.000

Labrador retriever 0.750 1.000

thunder snake 1.000 0.900

ringneck snake 1.000 0.900

hognose snake 0.500 0.900

water snake 1.000 0.900

king snake 1.000 0.900

Average 0.850 0.940

G CASE STUDY: SMOOTHNESS OF TARGETS ARE INSUFFICIENT TO
DETERMINE KD PERFORMANCE

An interesting perspective is whether the degree of smoothness of targets produced by an LS-trained
teacher can determine the KD performance (of the student). We acknowledge that smoothness of
targets produced by the teacher at different temperatures is important. However, we quantitatively
show that the degree of smoothness cannot adequately explain the KD performance in the presence
of an LS-trained teacher. More specifically, we show that the KD performance in the presence of
LS-trained teachers can be explained by our discovered systematic diffusion and not directly using
the degree of smoothness. The detailed study is discussed below.

Our view: The degree of smoothness of targets is rather unable to explain the performance of KD.
We show this using 3 comprehensive case studies comprising 7 counterexamples.

Measuring smoothness of targets: To perform a quantitative study to support our view, we measure
the smoothness of the targets produced by the teacher. The target produced for every training sample
by the teacher for KD is a discrete probability distribution. To measure the smoothness of this target,
we can use entropy which is a very popular method. Entropy of a discrete probability distribution
with N classes can be indicated by H(p) =

∑N
i −piln(pi) where pi indicates the probability

assigned to the ith class. The maximum entropy/smoothness will be equal to Hmax(p) = ln(N)
which corresponds to the uniform probability distribution over all classes. The key idea here is
higher the entropy, smoother the target. We measure the average entropy for the training set (since
this is the set used for distillation) to approximate the smoothness of the targets. Do note that the
average entropy is measured using the targets produced by the teacher at different T .

Table 13 shows the average entropy/ smoothness of the targets for the ResNet-50 teachers used in
our CUB200-2011 experiments. Higher entropy indicates that the targets are over-smoothed. Do
note that the maximum average entropy for CUB200-2011 (Wah et al., 2011) is ln(200) ≈ 5.298.
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Table 13: This table shows the degree of smoothness as measured by average entropy using the
training set of CUB200-2011 at different temperatures for normally trained ResNet-50 teacher and
LS-trained ResNet-50 teacher. Do note that this analysis is done using CUB200-2011. We make
important observations regarding the smoothness of the targets produced by LS-trained teachers
and teachers training without LS. (1) As one can observe, at T = 1, LS-trained teacher produces
smoother targets compared to the normal teacher. (2) As T increases, the targets become smoother.
At moderate levels of T (See T = 2, 3), the LS-trained teacher will produce over smoothed targets
compared to the normal teacher. (3) At very high T (See T = 64), both LS-trained teacher and nor-
mal teacher will have almost the same amount of smoothness (almost closer to maximum entropy) as
they produce a probability distribution that is very close to the uniform distribution. We particularly
identify pairs of specific temperatures where the entropy/ smoothness of normally-trained teacher is
approximately equal to a configuration of LS-trained teacher in the table. These pairs are in bold
. I..e: The entropy / smoothness of targets produced by LS-trained teacher (α = 0.1) at T = 1
is approximately equal to the entropy/ smoothness of targets produced by normally-trained teacher
(α = 0.0) at T = 1.481375 which is ≈ 0.888.

CUB200-2011 Training Set: Average Entropy of the targets from ResNet-50 teacher α = 0 α = 0.1

T = 1 0.184 0.888
T = 1.481375 0.888 3.225

T = 2 2.246 4.550

T = 3 4.160 5.118
T = 5.638 5.118 5.269

T = 64 5.298 5.298

G.1 CASE STUDY AT LOWER T WITH SAME DEGREE OF SMOOTHNESS

Consider a lower T .

As shown in Table 13, the entropy / smoothness of targets produced by LS-trained teacher (α = 0.1)
at T = 1 is approximately equal to the entropy/ smoothness of targets produced by normally-trained
teacher (α = 0.0) at T = 1.481375. If smoothness of targets can determine the KD performance,
then we expect comparable performances in both the instances above as they have the same degree
of smoothness.

But using 2 counterexamples shown in Table 14, we show that even at the same degree of smooth-
ness, distilling from LS-trained teachers produces better students compared to distilling from
normally-trained teachers at lower T due to lower degree of systematic diffusion (LS and KD are
compatible). Through these counterexamples we show that whether or not LS was used during
training of teacher is very important in determining the performance of distillation even at the same
degree of smoothness, thereby showing that the degree of smoothness is insufficient/ unreliable in
determining the performance of distillation.

Table 14: Results of case study at lower T with same degree of smoothness. In Counterexample #1,
Teacher is ResNet-50, Student is ResNet-50. Two α/T configurations have been identified such that
average entropy of the teachers’ output are the same (0.888). We clearly observe different perfor-
mances for Student. Similarly, in Counterexample #2, Teacher is ResNet-50, Student is ResNet-18
and we clearly observe different performances for Student. For each counterexample, the higher KD
performance is in bold. Through these 2 counterexamples, we show that even at the same degree
of smoothness, distilling from LS-trained teachers produces better students compared to distilling
from normally-trained teachers at lower T due to lower degree of systematic diffusion (LS and KD
are compatible).

Counterexample Student α/T Average Entropy KD performance: Top1/Top5

#1 ResNet-50 α = 0.1/T = 1.0 0.888 83.742 / 96.778
ResNet-50 α = 0.0/T = 1.481375 0.888 82.603 / 96.496

#2 ResNet-18 α = 0.1/T = 1.0 0.888 80.946 / 95.312
ResNet-18 α = 0.0/T = 1.481375 0.888 80.808 / 95.547
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G.2 CASE STUDY AT MODERATELY HIGHER T WITH SAME DEGREE OF SMOOTHNESS

Consider a moderately higher T .

As shown in Table 13, the entropy / smoothness of targets produced by LS-trained teacher (α = 0.1)
at T = 3 is approximately equal to the entropy/ smoothness of targets produced by normally-trained
teacher (α = 0.0) at T = 5.638. If the smoothness is the most important factor, then we expect
comparable performances in both the instances above as they have the same degree of smoothness.

But using 2 counterexamples shown in Table 15, we show that even at the same degree of smooth-
ness, distilling from LS-trained teachers produces poorer students compared to distilling from
normally-trained teachers at moderately higher T due to increased degree of systematic diffusion
(LS and KD are incompatible). Through these counterexamples we show that whether LS was used
during training of teacher or not is very important in determining the performance of distillation
even at the same degree of smoothness, thereby showing that the degree of smoothness is insuffi-
cient/ unreliable in determining the performance of distillation.

Table 15: Results of case study at moderately higher T with same degree of smoothness. In
Counterexample #3, Teacher is ResNet-50, Student is ResNet-18. Two α/T configurations have
been identified such that average entropy of the teachers’ output are the same (5.188). We clearly
observe different performances for Student. Similarly, in Counterexample #4, Teacher is ResNet-
50, Student is MobileNetV2 and we clearly observe different performances for Student. For each
counterexample, the higher KD performance is in bold. Through these 2 counterexamples, we show
that even at the same degree of smoothness, distilling from LS-trained teachers produces poorer
students compared to distilling from normally-trained teachers. This is due to increased degree of
systematic diffusion as T increases in the presence of LS-trained teachers, thereby producing poor
students (LS and KD are incompatible).

Counterexample Student α/T Average Entropy Student performance: Top1/Top5

#3 ResNet-18 α = 0.1/T = 3.0 5.118 78.196 / 95.213
ResNet-18 α = 0.0/T = 5.638 5.118 78.719 / 95.478

#4 MobileNetV2 α = 0.1/T = 3.0 5.118 78.961 / 95.306
MobileNetV2 α = 0.0/T = 5.638 5.118 79.341 / 95.461

G.3 CASE STUDY AT EXTREMELY HIGH T WITH SAME DEGREE OF SMOOTHNESS

Consider a very high T .

As shown in Table 13, the entropy / smoothness of targets produced by LS-trained teacher (α = 0.1)
at T = 64 is approximately equal to the entropy/ smoothness of targets produced by normally-
trained teacher (α = 0.0) at T = 64 since at very high T both these models produce a probability
distribution that is very close to the uniform distribution. If the smoothness is the most important
factor, then we expect comparable performances in both the instances above as they have the same
degree of smoothness.

But using 3 counterexamples shown in Table 16, we show that even at the same degree of smooth-
ness, distilling from LS-trained teachers produces poorer students compared to distilling from
normally-trained teachers at extremely higher T due to extreme degree of systematic diffusion (LS
and KD are incompatible). Through these counterexamples we show that whether LS was used dur-
ing training of teacher or not is very important in determining the performance of distillation even
at the same degree of smoothness, thereby showing that the degree of smoothness is insufficient/
unreliable in determining the performance of distillation.

Conclusion regarding smoothness: Through these 3 quantitative case studies comprising of 7
counterexamples, we show that whether or not LS was used during training of teacher is very impor-
tant in determining the performance of distillation even at the same degree of smoothness, thereby
showing that the degree of smoothness is insufficient/ unreliable in determining the performance of
distillation.

Another way to intuitively think about this is that smoothness of targets can be characterized using
the probability output of the teacher at different temperatures. But systematic diffusion is a phe-
nomenon happening exclusively in the student. This is precisely the reason why we quantify the
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Table 16: Results of case study at extremely high T with same degree of smoothness. In Coun-
terexample #5, Teacher is ResNet-50, Student is ResNet-18. Two α/T configurations have been
identified such that average entropy of the teachers’ output are the same (5.298). We clearly observe
different performances for Student. Similarly, in Counterexample #6, Teacher is ResNet-50, Stu-
dent is ResNet-50 and we clearly observe different performances for Student. In Counterexample
#7, Teacher is ResNet-50, Student is MobileNetV2 and we clearly observe different performances
for Student. For each counterexample, the higher KD performance is in bold. Through these 3
counterexamples, we show that even at the same degree of smoothness, distilling from LS-trained
teachers produces extremely poorer students compared to distilling from normally-trained teachers.
This is due to extreme degree of systematic diffusion at very high T in the presence of LS-trained
teachers, thereby producing poor students (LS and KD are incompatible).

Counterexample Student α/T Average Entropy Student performance: Top1/Top5

#5 ResNet-18 α = 0.1/T = 64 5.298 67.161 / 93.062
ResNet-18 α = 0.0/T = 64 5.298 73.611 / 94.529

#6 ResNet-50 α = 0.1/T = 64 5.298 77.206 / 95.812
ResNet-50 α = 0.0/T = 64 5.298 79.784 / 95.927

#7 MobileNetV2 α = 0.1/T = 64 5.298 70.435 / 93.494
MobileNetV2 α = 0.0/T = 64 5.298 75.441 / 94.702

degree of systematic diffusion using penultimate layer representations of the student, as these stu-
dent representations are more indicative of the resulting student performance. That is, in all our
28 experiments, increased systematic diffusion definitely indicates lower performance of students
whereas the degree of smoothness of targets does not give reliable insights as shown in the case
studies G.1, G.2, G.3.
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H CLASS-WISE ACCURACY FOR TARGET CLASSES

This section contains class-wise accuracy for all the target classes used in the paper.

Given that we use the training set for distillation, let us consider both the training set and the val-
idation set for this analysis. There are 1300 training and 50 validation samples for each class in
ImageNet-1k. We use an exhaustive list of T values for this analysis, T = 1, T = 2, T = 3, and use
the exact LS-trained teacher (ResNet-50, α = 0.1) reported in Table 2. There are 13 target classes
used: 3 classes for the visualization in Figure 1, and 10 classes in Table 3. We show the complete
class wise accuracies for both the training and validation set at T = 1, T = 2, T = 3. For each set
we also compute the average accuracies to show the general trend to support our main findings. The
results are shown in Tables 17, 18 and 19. As one can observe in Tables 17, 18, 19 , in the presence
of an LS-trained teacher, KD at higher temperatures causes systematic diffusion thereby rendering
KD ineffective. We can see this for most classes at increased temperatures shown below. That is,
in the presence of a LS-trained teacher as we increase the temperature from T = 1, the accuracies
for most of these classes drop due to systematic diffusion. This can be seen in both training and
validation sets.

Table 17: The table shows the class-wise accuracies for the 3 classes used in Fig 1 (penultimate
layer visualization). As one can observe, in the presence of an LS-trained teacher, KD at higher
temperatures causes systematic diffusion thereby rendering KD ineffective. We can see this for
most classes at increased temperatures shown below. That is, in the presence of a LS-trained teacher
as we increase the temperature from T = 1, the accuracies for most of these classes drop due
to systematic diffusion. This can be seen in both training and validation sets. Do note that since
the validation set contains only 50 samples per class, class wise validation accuracies may not be
statistically reliable and contain outlier points, and we suggest observing the general trend as shown
by the average for the set.

Set A (Fig 1. classes) T = 1 T = 2 T = 3

Train Val Train Val Train Val

miniature poodle 58.077 46.000 47.462 46.000 49.846 34.000

standard poodle 72.077 80.000 65.462 76.000 61.846 74.000

submarine 89.692 68.000 85.077 64.000 82.000 54.000

Average 73.282 64.667 66.000 62.000 64.564 54.000

Table 18: The table shows the class-wise accuracies for the 5 targets classes used in our systematic
diffusion analysis (η calculation as shown in 3). As one can observe, in the presence of an LS-trained
teacher, KD at higher temperatures causes systematic diffusion thereby rendering KD ineffective.
We can see this for most classes at increased temperatures shown below. That is, in the presence of
a LS-trained teacher as we increase the temperature from T = 1, the accuracies for most of these
classes drop due to systematic diffusion. This can be seen in both training and validation sets. Do
note that since the validation set contains only 50 samples per class, class wise validation accuracies
may not be statistically reliable and contain outlier points, and we suggest observing the general
trend as shown by the average for the set.

Set B T = 1 T = 2 T = 3

Train Val Train Val Train Val

Chesapeake Bay retriever 86.308 84.000 80.846 80.000 78.846 76.000

curly-coated retriever 83.826 76.000 81.199 82.000 80.296 74.000

flat-coated retriever 82.538 80.000 79.154 72.000 79.462 70.000

golden retriever 81.154 86.000 75.615 84.000 76.000 76.000

Labrador retriever 70.692 82.000 62.692 86.000 58.385 78.000

Average 80.900 81.600 75.900 80.800 74.600 74.800
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Table 19: The table shows the class-wise accuracies for the 5 targets classes used in our systematic
diffusion analysis (η calculation as shown in 3). As one can observe, in the presence of an LS-trained
teacher, KD at higher temperatures causes systematic diffusion thereby rendering KD ineffective.
We can see this for most classes at increased temperatures shown below. That is, in the presence of
a LS-trained teacher as we increase the temperature from T = 1, the accuracies for most of these
classes drop due to systematic diffusion. This can be seen in both training and validation sets. Do
note that since the validation set contains only 50 samples per class, class wise validation accuracies
may not be statistically reliable and contain outlier points, and we suggest observing the general
trend as shown by the average for the set.

Set B T = 1 T = 2 T = 3

Train Val Train Val Train Val

thunder snake 84.615 78.000 69.231 68.000 68.462 66.000

ringneck snake 70.000 86.000 78.923 82.000 77.538 78.000

hognose snake 76.692 60.000 60.154 56.000 52.000 42.000

water snake 86.154 64.000 67.385 60.000 68.385 72.000

king snake 58.077 78.000 80.385 72.000 79.692 78.000

Average 75.110 73.200 71.220 67.600 69.220 67.200

I ADDITIONAL EXPLORATION OF α AND T

Table 20: The table shows results of additional exploration of α and T . CUB200-2011 dataset is
used for these experiments.

T /α α = 0 α = 0.1 α = 0.2

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168 81.412 / 96.186
Student : MobileNetV2 T=1 81.144 / 95.677 81.731 / 95.754 81.498 / 95.892
Student : MobileNetV2 T=2 81.895 / 95.858 80.609 / 95.470 79.997 / 95.599
Student : MobileNetV2 T=3 81.257 / 95.677 78.961 / 95.306 76.959 / 95.202
Student : MobileNetV2 T=64 75.441 / 94.702 70.435 / 93.494 63.738 / 91.992

Given that label smoothing was originally formulated as a regularization strategy to alleviate models’
overconfidence, most works spanning different learning problems use a smaller α = 0.1, including
work closely related to our study. The intuition is that a larger α can introduce too much regulariza-
tion that may subsequently hurt the model performance.

To show this, here we conduct additional experiments using larger α (α = 0.2) for compact student
network distillation. We use CUB200-2011 dataset for these experiments.

The results are shown in Table 20. These additional results further support our findings on systematic
diffusion.

In particular, we can make two important observations here: (i) larger α (α = 0.2) results in a
weaker ResNet-50 teacher. We emphasize that it is reasonable to expect such behaviour, and this
suggests why most works use α = 0.1 as in our main experiments. (ii) As one can clearly observe,
with α = 0.2, KD at higher T causes systematic diffusion, thereby rendering KD substantially
ineffective.

These experiments further support our main finding, and we emphasize that our findings can be
generalized to larger values of α (α = 0.2).
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J ALTERNATIVE CHARACTERIZATION OF CLUSTER DISTANCE

Here we discuss an alternative characterization of cluster distance based on pairwise distances.

While our proposed η (Table 3) to use centroids to characterise distance between clusters should be
very robust, here we discuss an alternative.

In this alternative, we propose to replace centroid-centroid distance with average pairwise distance
between the projected penultimate layer representations. Note that this alternative is more computa-
tionally expensive.

We perform additional experiments using this alternative pairwise distance metric. We show that
diffusion index based on this alternative distance, ηpairwise, for all the 10 target classes used in the
paper with this pairwise distance below.

Table 21: Results of using alternative distance, i.e., pairwise distance, to define the diffusion index
ηpairwise. The findings are consistent with using alternative distance.

Train: S1 Train: S2 Val: S1 Val: S2

Chesapeake Bay retriever -2.532 1.025 -2.919 1.154
curly-coated retriever -2.359 1.208 -3.068 1.354
flat-coated retriever -3.201 1.183 -3.643 1.237
golden retriever -2.307 0.895 -2.994 1.038
Labrador retriever -3.586 1.089 -4.337 1.355
thunder snake -5.438 1.642 -6.419 1.939
ringneck snake -5.680 1.814 -5.914 1.775
hognose snake -5.327 1.742 -5.393 1.707
water snake -5.266 1.672 -5.301 1.640
king snake -5.454 1.941 -5.783 1.998

As one can clearly observe, using this alternative (pairwise distances) we obtain consistent findings
for all 10 target classes as that in the paper Table 3: negative ηpairwise for S1, positive ηpairwise for
S2.
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K ADDITIONAL REFERENCES

LS: LS: Many state-of-the-art models have leveraged on LS to improve the accuracy of deep neural
networks across multiple tasks including image classification (He et al., 2019; Real et al., 2019; Zoph
et al., 2018; Huang et al., 2019), machine translation (Vaswani et al., 2017) and speech recognition
(Chorowski & Jaitly, 2017; Chiu et al., 2018; Pereyra et al., 2017).

KD: Recently KD methods have been widely used in visual recognition (Zhang et al., 2020; Peng
et al., 2019; Lopez-Paz et al., 2016), NLP (Hu et al., 2018; Jiao et al., 2020; Nakashole & Flauger,
2017), speech recognition (Shen et al., 2020; Kwon et al., 2020; Perez et al., 2020) and self-
supervision (Fang et al., 2021).
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