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Abstract

Masked image modeling (MIM) has become a prevalent pre-training setup for
vision foundation models and attains promising performance. Despite its success,
existing MIM methods discard the decoder network during downstream applica-
tions, resulting in inconsistent representations between pre-training and fine-tuning
and can hamper downstream task performance. In this paper, we propose a new
architecture, RevColV2, which tackles this issue by keeping the entire autoen-
coder architecture during both pre-training and fine-tuning. The main body of
RevColV2 contains bottom-up columns and top-down columns, between which
information is reversibly propagated and gradually disentangled. Such design
enables our architecture with the nice property: maintaining disentangled low-level
and semantic information at the end of the network in MIM pre-training. Our
experimental results suggest that a foundation model with decoupled features can
achieve competitive performance across multiple downstream vision tasks such
as image classification, semantic segmentation and object detection. For exam-
ple, after intermediate fine-tuning on ImageNet-22K dataset, RevColV2-L attains
88.4% top-1 accuracy on ImageNet-1K classification and 58.6 mIoU on ADE20K
semantic segmentation. With extra teacher and large scale dataset, RevColv2-L
achieves 62.1 APbox on COCO detection and 60.4 mIoU on ADE20K semantic
segmentation.

1 Introduction

Pre-trained vision foundation models attract more attention in vision community [1, 2, 3, 4]. A
key component in pre-training is how to learn generalizable features which meet the demands of
various visual applications [5]. Typical series of methods focus on self-supervised learning, such as
contrastive learning [6, 7] and masked image modeling (MIM) [8, 9]. The latter obtains promising
results recently in most scenarios by learning occlusion invariant features [10], and becomes a
commonly used approach in vision pre-training especially for large models [11, 4, 12, 13].
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Figure 1: Illustration of the information distribution in different pre-training schemes. (a): low-level
information is gradually changed to be semantic in supervised pre-training; (b) and (c): low-level
information firstly changes to be semantic then recovers to be low-level or entangled in MAE and
BEiT pre-training; (d): low-level and semantic information is gradually disentangled in RevColV2
architecture with MIM pre-training.

A typical MIM method, masked autoencoders (MAE) [8], employs an encoder to embed the masked
images into semantic features and a decoder to reconstruct unseen patches, as shown in Figure 1
(b). Under such pre-training paradigm, features are rich in low-level information in both input
and output. The semantic features, which are desired for downstream tasks, are reserved inside
network. A common method to utilize such semantic feature is to manually partition the encoder
and decoder based on the amount of semantic information in features and discard the decoder during
downstream fine-tuning [8, 14, 15, 16]. Even so, discarding parts of the pre-trained network could
incur information loss when transferring to downstream visual tasks. Existing works alleviate this
defect by utilizing encoder only architectures [9, 17] and jointly modeling the un-masked patches and
mask tokens. Even with extra computation cost in pre-training, these methods often show inferior
generalization abilities, because the low-level information used for reconstructing images and the
semantic information still appears in an entangled form during pre-training, as shown in Figure 1 (c).

In this paper, we tackle this problem in terms of architecture design. Rather than discarding the
decoder, we keep the entire autoencoder architecture in both pre-training and fine-tuning. Similar
architecture has proven to be successful in masked language modeling [18]. Nevertheless, vision
tasks are naturally different from language tasks, due to their inconsistent output space between
pre-training and fine-tuning [19, 20]. In order to obtain better transfer ability as well as keep
the unified encoder-decoder architecture, it is important to separate the low-level and semantic
information during the image reconstruction process in pre-training. RevCol [1] is a pioneer that
combines the idea of reversible network [21, 22] and multi-column architecture [23, 24] to learn
disentangled representation in label-guided supervised pre-training. A straightforward attempt is
directly combining RevCol with the decoder used in MAE to perform MIM pre-training. However, in
order to reconstruct raw images, both low-level and semantic information is needed for reasoning the
unseen content and detail appearance, resulting in entangled information. This not only harms the
downstream tasks but also destroys the disentangled learning objective of RevCol.

As shown in Figure 2, we re-design the architecture of RevCol to fit the MIM pre-training target. The
new architecture contains a bottom-up reversible column encoder and a top-down reversible column
decoder. The bottom-up columns and top-down columns are totally symmetric with masked images
and encoder embedding as input. During MIM pre-training, the raw image reconstruction loss is
connected to the end of the last column in decoder. Hence low-level information primarily sinks to the
bottom level and semantic information moves upwards to other stages based on lossless propagation,
as shown in Figure 1 (d). Between bottom-up columns and top-down columns, reversible connections
are added to ensure the disentangle feature learning object of the whole network. Benefited from the
disentangled representations, during downstream fine-tuning, features in the last top-down columns
can be quickly adapted to various tasks. Thus the unified architecture does not have to discard the
decoder network3 and avoids the mixture of low-level and semantic information, fully exploring the
pre-training abilities. The re-designed new architecture is named RevColV2.

3Our decoder behaves differently from traditional ‘decoder’ which refers to the network performing merely
image reconstruction. The top-down reversible column decoder also includes semantic information in our design.
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We build various RevColV2 models with different number of parameters and computation budgets and
evaluate them on downstream ImageNet [25] image recognition, ADE20K [26] semantic segmentation
and COCO [27] object detection after MIM pre-training. The experimental results show consistent
improvements over RevCol(V1). Compared with other counterparts, RevColV2 achieves comparable
performance to state-of-the-art models pre-trained on pure ImageNet-1K dataset, verifying the
effectiveness of the new RevColV2 architecture. After intermediately fine-tuning on ImageNet-22K
dataset, RevColV2-L achieves 88.4% top-1 accuracy on ImageNet-1K and 58.7 mIoU on ADE20K
segmentation. Moreover, we design a new pre-training scheme which joint modeling the masked
semantic features in the top-level, as well as the low-level image pixels in the bottom. Under such
pre-training scheme and large scale dataset Laion400M[28], RevColv2-L achieves 62.1 APbox on
COCO detection. In ADE20K segmentation, RevColv2-L reaches 60.4 mIoU with multi-scale test.
We also conduct analytical experiments showing that RevColV2 with bottom-up reversible columns
and top-down reversible columns can learn disentangled representation in MIM pre-training. This
property benefits RevColV2 to share unified architecture between pre-training and fine-tuning, fully
exploiting the potential of vision pre-training.

2 RevCol V2

In this section, we introduce the newly designed RevColV2, which is a pure isotropic transformer
architecture [29]. The core idea in RevColV2, learning disentangled representations during MIM
pre-training, is accomplished by the proposed symmetrical reversible encoder-decoder columns and
the unified architecture in pre-training and fine-tuning.

2.1 Preliminary

RevCol [1] is a reversible column architecture which learns disentangled representation in supervised
learning. The main body of RevCol is composed of multiple subnetworks named columns respectively.
Each column contains several basic residual blocks and could be partitioned into four levels with
corresponding feature maps. Between each column, reversible connections are introduced to keep
lossless information propagation. In Equation 1, we summarize the forward and inverse propagation
function in RevCol.

Forward : xl
i = F l

i(x
l
i−1, x

l−1
i+1) + γxl−1

i

Inverse : xl−1
i = γ−1[xl

i − F l
i(x

l
i−1, x

l−1
i+1)],

(1)

where xl
i denotes feature maps of the i-th level in l-th column; F l

i denotes an arbitrary non-linear
operation in i-th level, analogous to those residual functions in standard ResNets; γ is a reversible
operation (e.g. channel-wise scaling), whose inverse is denoted by γ−1. The i-th level takes the
features of the lower level at the same column xl

i−1 and the upper level at the previous column xl−1
i+1

as input. These two features are fused together and passed through a stack of building blocks. After
that, feature xl−1

i are added with reversible operation γ to get the final output. Given the features
within one column, we can compute the features in other columns recursively during forward and
backward propagation according to Equation 1. At the back-propagation, we can reconstruct the
required activations on the fly from the last column to the first, which means we only need to maintain
activations from one column in memory during training.

With this reversible property, RevCol can learn disentangled representations in supervised pre-training:
the most semantic information is maintained in the last level according to the class label target, and the
irrelevant low-level information is kept in other levels based on lossless propagation. In RevColV2,
we inherit the RevCol design paradigm but make some improvements for MIM pre-training.

2.2 Symmetrical Encoder and Decoder with Reversible Columns

Figure 2 gives a sketch of the RevColV2 top-level architecture design. The bottom-up column
encoder follows RevCol [1] in macro design. The input image is first split into non-overlapping
patches by a patch-embedding module. In MIM pre-training, the image patches are randomly masked
and the un-masked patches are input into each bottom-up column. The forward and inverse function
still follows Equation 1, but we change the operation inside F . We select hardware-friendly vanilla
transformer block [29] which includes pre-LayerNorm, Self-Attention and Feed-Forward network
(FFN) as the basic building blocks in each column. The blocks are evenly split into four levels for
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Figure 2: The pipeline of RevColV2 is a unified architecture between pre-training and fine-tuning.
The bottom-up columns inherit the design of RevCol with masked image patches as inputs. In
the pre-training, the top-down columns receive the outputs of bottom-up columns along with the
mask tokens, and reconstruct unseen raw patches at the lowest level of the last column. In the
fine-tuning, the output features of top-down columns are selectively used in downstream tasks, such
as classification task using the top level features.

easy implementation of downstream tasks. Two input feature maps of each level are first normalized
by a LayerNorm module and then summed together. Consider one of the input xl−1

i+1 is from the
previous column, we add another linear transformation on this inter-column branch to project the
input space into current column’s, as shown in Figure 2.

The top-down column decoder is symmetric to the bottom-up column encoder. Similar as MAE [8],
output features of the last bottom-up column are first normalized and concatenated with learnable
mask tokens, then input into the top-down columns. As the information propagation is in the opposite
direction, the input features of each level are also opposite to the encoder. Equation 1 becomes:

Forward : xl
i = F l

i(x
l
i+1, x

l−1
i−1) + γxl−1

i

Inverse : xl−1
i = γ−1[xl

i − F l
i(x

l
i+1, x

l−1
i−1)].

(2)

Two inputs of F l
i becomes xl

i+1 (feature of the upper level in current column) and xl−1
i−1 (feature of the

lower level in previous column). For the input (to the highest level) of each top-down column, xl
i+1 is

actually the last level’s output feature of the encoder, which follows the design of image patches input
to each bottom-up column. At the lowest level of the last top-down column, a pixel-level loss is add
to reconstruct the unseen image patches. Obviously, the top-down column is also reversible. Apart
from the input, all other calculations remain the same as the encoder, and that’s why we describe the
encoder and decoder as fully-symmetrical.

Compared with existing architectures [1, 29], the symmetrical reversible column architecture in MIM
pre-training has the following advantages:

• The disentangled feature learning object in RevCol is no longer restricted to supervised
learning. Although the image reconstruction loss at the end of decoder requires mostly
low-level information, the semantic information can still be maintained in other levels and
gradually refined through reversible propagation. Therefore, we can learn disentangled
representations in MIM pre-training without labels.

• Low-level and semantic information is retained in both bottom-up columns and top-down
columns. Thus there is no need to discard parts of the network during fine-tuning. The
bottom-up encoder and top-down decoder can serve as a unified architecture that yields
consistent representation during pre-training and fine-tuning.
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2.3 The Unified Architecture between Pre-training and Fine-tuning

MIM Pre-training. As shown in Figure 2, in MIM pre-training, masked image patches are fed into
the bottom-up columns and reconstruct unseen patches through top-down columns. At the lowest
level of the last top-down column, we use mean-square error (MSE) loss to reconstruct raw images,
similar to [8]. As described in Section 2.2, the low-level information is mainly gathered in the bottom
levels (yellow regions in Figure 1(d)) with the constraint of MSE loss. Under the constraint of lossless
propagation, the semantic information is accordingly decoupled to the top levels (blue regions in
Figure 1(d)). Under such circumstances, the top-down column decoder learns not only reconstruction
details, but also semantic features, indicating that downstream tasks can directly take advantage of
these decoder outputs.

Joint Pre-training. Considering the semantic information will be gathered in the top levels during
MIM training, we make a further step. We explicitly joint model the masked semantic features in the
top-level, as well as the low-level image pixels in the bottom. Specifically, we introduce CLIP [30]
as as an extra teacher to model the semantic features and use cosine similarity as loss function. We
also keep the pixel reconstruction MSE loss. Thanks to the disentangled feature in the last column,
we can apply two different loss separately at the top and bottom. Our method is different from raw
pixel reconstruction methods like MAE [8] or mask distillation works like MaskDistill [31], which
modeling homogeneous features at the output of the network.

Downstream Fine-tuning. Rather than discard the decoder during fine-tuning, we leverage the
entire encoder-decoder architecture. We come up with two fine-tuning methods in downstream tasks,
according to different characteristics. For classification tasks, which require highly semantic features
only, we apply classification heads on top of the last top-down column. Since the whole network is
optimized by raw pixel reconstruction pre-training target, low-level information sinks to the bottom
level features and semantic information is preserved at the top. For dense prediction tasks, which
require of both semantic and low-level information, we take all level’s features of the last top-down
column, then directly connect them to task oriented dense prediction heads.

Compared with exists autoencoder architectures [8, 14, 32, 33, 34] that have to drop the decoder in
downstream applications, the unified RevColV2 architecture has consistent representations during
pre-training and fine-tuning, fully taking advantage of vision pre-training. Meanwhile, encoder
only architectures [9, 17, 4, 31] often entangle the low-level and semantic information in the final
output. However, RevColV2 can learn disentangled representations during pre-training, naturally
avoids these problems. Compared with CNN-based backbones, ViT backbones are cumbersome
to transfer in dense prediction tasks, often with an adapter like ViT-Adapter [35] or SimpleFPN in
ViTDet [36]. Thanks to the multi-level embedding output, RevColV2 is free from any extra feature
pyramid structures (eg, FPN [37], BiFPN[38], etc) or adapters. We simply interpolate the output
features in the last column to multiple resolutions, then leverage the hierarchical embedding in dense
prediction tasks. The simple and effective solution for dense prediction tasks makes the ViT-based
RevColV2 easy to transfer, like previous CNN-based backbones.

2.4 Model Variants

We provide two variants of RevColV2 models, Base and Large, as shown in Table 1. The depth
of bottom-up columns and top-down columns are fixed to 12 and 4. The number of bottom-up
columns and top-down columns is changed from 3 to 4 according to different model sizes. The
model parameters include the whole bottom-up columns and top-down columns. However, in the
downstream task such as image classification, not all levels are involved in computation (as shown
in Figure 2), such the number of parameters is slightly lower (as shown in Table 2). We do not use
intermediate supervision for each column as it needs careful tuning.

Table 1: RevColV2 architecture configurations for different model sizes. FLOPs are measured on
classification task with 2242 resolution input. BU and TD are short for bottom-up and top-down.

#BU columns. BU depth #TD columns. TD depth dim head dim Params. FLOPs

Base 3 12 3 4 416 32 101M 19G
Large 4 12 4 4 672 56 342M 67G

5



Table 2: ImageNet-1K classification results for various sizes models. The left table shows the end-to-
end fine-tune results after MIM pre-training, and the right table shows the results after intermediate
fine-tuning on ImageNet-22K.

Model Size Target Params FLOPs FT

ImageNet-1K pre-train:
BEIT-B [9] 2242 DALL-E 87M 18G 83.2
MAE-B [8] 2242 Pixel 87M 18G 83.6
CAE-B [14] 2242 DALL-E 87M 18G 83.9
SdAE-B [40] 2242 EMA 87M 18G 84.1
MaskFeat-B [32] 2242 HOG 87M 18G 84.0
ConvNeXt-B [41] 2242 Pixel 89M 15G 83.8
SimMIM-B [17] 2242 Pixel 88M 16G 84.0
HiViT-B [42] 2242 Pixel 66M 16G 84.2
DeiT III-B [43] 2242 Label 87M 18G 83.8
HorNetGF-B [44] 2242 Label 88M 16G 84.3
SwinV2-B [11] 2242 Label 88M 20G 84.2
ConvNeXt V2-B [12] 2242 Pixel 89M 15G 84.9
RevCol-B [1] 2242 Label 138M 17G 84.1
RevColV2-B 2242 Pixel 88M 19G 84.7

DeiT III-L [43] 2242 Label 304M 62G 84.9
BEiT-L [9] 2242 Pixel 307M 62G 85.2
MAE-L [8] 2242 Pixel 307M 62G 85.9
CAE-L [14] 2242 DALL-E 307M 62G 86.2
MaskFeat-L [32] 2242 HOG 307M 62G 85.7
SimMIM-L [17] 2242 Pixel 197M 35G 85.4
ConvNeXt V2-L [12] 2242 Pixel 198M 34G 85.8
RevColV2-L 2242 Pixel 327M 67G 86.3

Model Size Target Params FLOPs FT

ImageNet-1K pre-train + 22K intermidate fine-tune:
ViT-B [41] 3842 Label 86M 55G 84.0
DeiT III-B [43] 2242 Label 87M 18G 85.7
ConvNeXt-B [41] 2242 Pixel 89M 15G 85.8
ConvNeXt-B [41] 3842 Pixel 89M 45G 86.8
RevCol-B [1] 2242 Label 138M 17G 85.6
RevCol-B [1]↑ 3842 Label 138M 49G 86.7
RevColV2-B 2242 Pixel 88M 19G 86.2
RevColV2-B↑ 3842 Pixel 88M 64G 87.3
RevColV2-B↑ 5122 Pixel 88M 130G 87.5

ViT-L [29] 3842 Label 307M 191G 85.2
DeiT III-L [43] 2242 Label 304M 62G 87.0
MOAT-3 [45] 2242 Label 190M 45G 86.8
SwinV2-L [11] 2562 Label 197M 48G 86.9
SwinV2-L↑ [11] 3842 Label 197M 115G 87.6
ConvNeXt V2-L [12] 2242 Pixel 198M 34G 87.3
ConvNeXt V2-L↑ [12] 3842 Pixel 198M 103G 88.2
RevCol-L [1] 2242 Label 273M 39G 86.6
RevCol-L↑ [1] 3842 Label 273M 116G 87.6
RevColV2-L 2242 Pixel 327M 67G 87.4
RevColV2-L↑ 3842 Pixel 327M 215G 88.3
RevColV2-L↑ 5122 Pixel 327M 417G 88.4

3 Experiments

3.1 MIM Pre-training

3.1.1 Pre-training Details

We pre-train RevColV2 on ImageNet-1K [25] dataset. Hyper-parameters generally follow [8]. The
mask ratio is set as 75% with random sampling strategy and the reconstruction target is the normalized
raw pixel from the original image. We pre-train 1600 epochs for RevColV2 models. The pre-training
image size is 2242 and the pre-training optimization parameters are: batch size 4096, base learning
rate 1.5e-4 for 256 batch-size and linear scaled up, AdamW with weight decay 0.05. We do not use
stochastic depth strategy in pre-training. More details can be found in supplementary material.

3.1.2 ImageNet Classification

Setup. For image classification, we evaluate top-1 accuracy on ImageNet-1K [25]. We initialize
weights using MIM pre-trained models, and fine-tune on ImageNet-1K with class label, similar
to [8, 12, 9]. To fully exploit the potential of RevColV2, we intermediately fine-tune the models
on ImageNet-22K [39] following [34, 12] after MIM pre-training. The intermediate fine-tuning
hyper-parameters are almost the same as [12] and shown in supplementary material.

Results. Table 2 shows the results on ImageNet-1K classification. The MIM pre-train epochs for
RevColV2 is 1600, and other methods are reported with their longest schedules. RevColV2-B
achieves 84.7 top-1 accuracy with pure ImageNet-1K data, outperforms ViT [29] architecture pre-
trained with MIM [8, 9, 14, 40, 32] by a large margin using only raw pixels as reconstruction target.
As a pure transformer isotropic architecture, RevColV2-B also achieves comparable performance with
state-of-the-art hierarchical architectures, i.e. RevColV2-B reaches higher performance than SwinV2-
B[11], HorNetGF-B [44] and other counterparts in Table 2. For large size models, RevColV2-L with
86.3% top-1 accuracy outperforms ConNeXt V2 [12], MAE [8], and CAE [14] counterparts.

We initialize RevColV2 models with the MIM pre-trained model weights and then use larger dataset
ImageNet-22K and supervised training methods to test the scaling up ability. Under this training
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Table 3: Semantic segmentation result on ADE20K dataset with UperNet and Mask2Former frame-
work. M2F denotes using Mask2Former framework. We report mIoU with single/multi-scale test.

Backbone mIoU (ss.) mIoU (ms.) Params

ImageNet-1K:
MAE-B [8] 48.1 N/A 156M
CAE-B [8] 50.2 N/A 156M
PeCo-B [48] 48.5 N/A 156M
Swin-B [49] 48.1 49.7 121M
ConvNeXt-B [41] 49.1 49.9 122M
ConvNeXt V2-B [12] N/A 52.1 122M
InternImage-B [50] 50.8 51.3 128M
RevCol-B [1] 49.0 50.1 122M
RevColV2-B 51.3 52.3 121M
BEiT [9] 53.3 N/A 421M
MAE-L [8] 53.6 N/A 421M
ConvNeXt V2-L [12] 53.2 53.7 235M
RevColV2-L 54.0 54.4 399M

Backbone mIoU (ss.) mIoU (ms.) Params

ImageNet-1K + ImageNet-22K:
Swin-B [49] 50.3 51.7 121M
ConvNeXt-B [41] 52.6 53.1 122M
RevCol-B [1] 52.7 53.3 122M
RevColV2-B 53.1 53.9 121M
RevColV2-B+M2F 54.9 55.8 325M
Swin-L [49] 52.1 53.5 234M
ConvNeXt-L [41] 53.2 53.7 235M
RepLKNet-L [51] 52.4 52.7 207M
Focal-L [52] 54.0 55.4 240M
CSwin-L [53] 54.0 55.7 208M
RevCol-L [1] 53.4 53.7 306M
RevColV2-L 54.8 55.7 399M
RevColV2-L+M2F 58.2 58.6 570M

Table 4: Object detection and instance segmentation results on COCO dataset. † means using
ViT-Adapter [35] networks. †† means that model pre-trained on ImageNet-22K dataset and ⚗ denotes
using additional distillation teacher in pre-training.

Backbone APbox APmask Params

with Mask R-CNN:
MAE-B [8] 49.8 44.3 110M
MAE-B† [8] 51.3 45.4 122M
RevColV2-B 52.4 46.2 119M
MAE-L [8] 53.1 47.1 323M
MAE-L† [8] 53.3 47.4 330M
RevColV2-L 54.0 47.8 363M

Backbone APbox APmask Params

with Cascade Mask R-CNN:
Swin-B [49] 51.9 45.0 145M
ConvNeXt-B [41] 52.7 45.7 146M
RevCol [1] 53.0 45.9 196M
ViTDet-B [36] 54.0 46.7 141M
EVA-02-B †† [54] 55.5 47.1 141M
RevColV2-B 55.2 47.9 156M

schedule, RevColV2-B reaches 87.5% top-1 accuracy on ImageNet-1K with 5122 input resolution.
For large size models, the performance of RevColV2 achieves 88.4 % top-1 accuracy, surpassing hier-
archical counterparts of SwinV2 [11] and ConvNeXt V2 [12]. Compared with over RevCol(V1) [1],
all sizes RevColV2s show consistent and significant improvements on classification tasks, further
illustrating the effectiveness of our design.

3.1.3 Semantic Segmentation

Setup. For semantic segmentation tasks, we evaluate RevColV2 backbones on ADE20K bench-
marks [26] with UperNet [46] and Mask2Former [47] framework. We interpolate the position
embedding to a fixed input size for both bottom-up and top-down columns. Following previous
works [11, 12], we initialize weights using ImageNet-1k classification fine-tuned models. Training
hyper-parameters are available in supplementary material.

Results. Table 3 shows the head-to-head comparison results on ADE20K semantic segmentation with
various backbones and UperNet segmentation head. RevColV2 models gain competitive performance
over single-scale and multi-scale mIoU across different pure transformer and CNN architectures.
RevCol-B/L pre-trained on ImageNet-1K achieve 52.3 and 54.4 mIoU on ADE20K with 5122

input resolution respectively, outperforming other counterparts such as ConvNeXt V2 [12]. After
intermediate fine-tuning on ImageNet-22K, RevColV2-B/L reach 53.9 and 55.7 mIoU on ADE20K
benchmark with 6402 resolution, exceeding other competitors such as Focal transformer [52] and
CSwin [53]. With stronger segmentation framework Mask2Former [47], our RevCol-B/L backbones
achieve 55.8 and 58.6 mIoU, further demonstrating the effectiveness of RevColV2 backbones.

3.1.4 Object Detection

Setup. For object detection and instance segmentation task, we evaluate RevColV2 backbones on
COCO [27] dataset with Mask R-CNN [55] and Cascade Mask R-CNN [56] framework. We follow
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Table 5: Results of the data scaling. RevColV2-L with larger pre-training data and additional teacher achieves
comparable performance than 2.1G parameter RevColV1-H and EVA-02-L.

Model Params
Dataset COCO (w/o Obj365) ADE20K

Data teacher Detector APbox APmask Segmenter mIoU +ms

MaskDistill-L 0.3 G ImageNet1K CLIP - - - UperNet 56.5 -
BEiTv2-L 0.3 G ImageNet22K CLIP - - - UperNet 57.5 -
EVA-02-L 0.3 G merged 33M EVA01-CLIP Cascade 62.3 53.8 UperNet 60.1 -
RevCol-H 2.1 G private 168M semi-labeled HTC++ 61.1 53.0 Mask2Former 60.4 61.0
RevColV2-L 0.3 G Laion400M+IN-1K OpenCLIP Cascade 62.1 53.2 Mask2Former 59.5 60.4

the setting in [36] that using window attention in RevColV2 backbones. We train models with 10242

resolution crops using large scale jittering augmentations [57].

Results. Table 4 left shows the experiment results for RevColV2 backbones compared with MAE [8]
baseline using Mask R-CNN detector. For MAE baseline, we reproduce the results using the same
training configuration optionally with ViT-Adapter [35]. RevColV2 series achieve 52.4 and 54.0 box
AP for base and large models, outperforming MAE series. In Table 4 right, we compare RevColV2
backbones with other architectures using Cascade Mask R-CNN detector. RevColV2-B achieve 55.2
box AP and 47.9 mask AP, outperforming RevCol(V1)-B [1], ViTDet-B [36] and other competitors.

Note that in all dense prediction tasks, we do not use any extra feature pyramid structures (eg, FPN,
BiFPN, etc.) or adapters like ViT-Adapters in RevColV2 backbones implementation.

3.2 Joint Pre-training and Data Scaling

3.2.1 Pre-training Details

In joint pre-training, we use OpenCLIP-L as the teacher to represent the semantic features similar
to MaskDistill and EVA. Except for the additional teacher, we use a larger dataset Laion400M[28],
which contains about 400M unlabeled images in pre-training. Note that we do not use datasets such as
COCO, ADE20K, Object365, etc. in pre-training to avoid artificial fitting to specific distribution (this
is different from EVA-02 which uses a merged dataset that has overlapped data in the downstream
task). We use 800 ImageNet-1k epochs on Laion400M dataset and then 300 epochs on ImageNet-1k
dataset during pre-training.

3.2.2 Results

Then we evaluate our model on downstream tasks such as ImageNet1K classification, COCO detection
with cascade Mask-RCNN, and ADE20K semantic segmentation with Mask2Former. The newly
trained RevColv2-L achieves 87.7% Top-1 accuracy in ImageNet-1k classification with 224× 224
input resolution. The larger dataset and the extra teacher lead to better performance compared with
purely IN-1k MIM pre-training (86.3%) and IN-1k MIM + IN-22k intermediate fine-tuning (87.4%).
As shown in Table 5, the performance gain is more prominent on dense prediction tasks. RevColv2-L
achieves 62.1 box AP and 52.3 mask AP in COCO instance detection and segmentation. In ADE20K
segmentation, RevColv2-L reaches 60.4 mIoU with multi-scale test.

3.3 Analysis

Experiments in this section are based on basic MIM pre-training.

RevColV2 can learn disentangle representation. Linear probing is a useful tool to evaluate the
sparsity of features. We assume the semantic information tends to be more sparse, while the low-
level information is more abundant. So, we evaluate the linear probing accuracy of each level to
visualize the distribution of semantic and low-level information. We construct two experiments:
1) RevCol(V1) [1]+MAE [8] baseline in which the RevCol(V1) encoder has 3 columns and MAE
decoder has 8 ViT blocks; 2) RevColV2 with 3 bottom-up columns encoder and 3 top-down columns
decoder in which each column contains 12 blocks. The number of model parameters is maintained
at the same level. Figure 3 shows the evaluation results on ImageNet-1K. The output level of the
baseline encoder only reaches 47.2% accuracy, which is far less than the previous level 60.1%. The
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Level 1

Level 2

Level 3

Level 4

Train with MAE decoder Train with reversible multi-column decoder

Figure 3: Linear probing accuracy of each levels on ImageNet-1K after pre-training 300 epochs. The
left is RevCol+MAE baseline, and the right is RevColV2 with reversible multi-column decoder.

baseline method will entangle the low-level and semantic information during column propagation,
because the MAE decoder needs both low-level and semantic features to reconstruct unseen patches.
Conversely, RevColV2 with reversible top-down columns can learn the disentangled representation
as described in Section 2. As shown in Figure 3, the last level of encoder and decoder reaches high
linear probing accuracy (64.9% and 62.5%), and the accuracy decreases at the lower levels. Thus
low-level and semantic information lies in a disentangled manner between the bottom and top levels
in the last column.

We also show the linear probing accuracy of various sizes RevColV2 models in supplementary
material. The separated semantic information significantly boosts the linear probing accuracy
compared to other encoder only methods such as SimMIM [17].

RevColV2 matters in unified representation fine-tune. We experimentally verify the effectiveness
of RevColV2 with unified architecture between pre-training and fine-tuning. We first compare the
bottom-up encoder only variant and the entire autoencoder variant of RevColV2 on ImageNet-1K.
The latter has about 0.9% (83.8% v.s. 84.7%) top-1 accuracy gain, showing the top-down columns
are critical in downstream fine-tuning. To eliminate the influence of model capacity (#params.
and FLOPs), we also build one experiment with the same number of parameters and FLOPs for
comparison. The experimental results show the accuracy of this encoder only variant (83.9%) is still
lower than the entire auto-encoder variant(84.7%).

Similarly, we conduct experiments for ViT [29] + MAE [8] that without dropping decoder in the
fine-tuning stage. The accuracy on ImageNet-1K drops about 0.4% (from 83.6% to 83.2%). Give
more model capacity does not increase the performance, indicating that the vanilla ViT decoder is
useless in downstream fine-tuning.

We also make an ablation that only utilize the encoder’s pre-trained weights while initializing the
decoder weights randomly with RevColV2-B. This variant achieves 84.4% (-0.3%) top-1 accuracy
on ImageNet-1K dataset and 50.7 (-0.6) mIoU on ADE20K dataset, with only ImageNet-1K MIM
pre-trained encoder weights. These experimental results draw the same conclusion that the pre-trained
decoder is necessary for RevColV2.

3.4 Ablation Study

Experiments in this section are based on basic MIM pre-training.

Depth of top-down decoder columns is analyzed similar to the decoder depth analysis in MAE [8],
as shown in Table 6 (a). In MAE [8], the fine-tuning accuracy does not vary much over the decoder
depth. However, the performance of RevColv2 drops with deeper decoder. This is because the
top-down column decoder also takes up model parameters as we do not discard decoder during fine-
tuning. We keep the total parameter the same, and deeper decoder will lead to shallower (narrower)
encoder, which could give rise to degraded performance. This experiment also explains why we use
shallower decoder (4 blocks decoder compared to 12 blocks encoder) in our RevColV2 variants.

Different type of decoder. The decoder in RevColV2 is a symmetric architecture with encoder,
that includes multiple reversible top-down columns. To verify the effectiveness of these top-down
columns, we compare this design with other variants: MAE decoder with a stack of ViT blocks; single
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Table 6: Ablation results on ImageNet-1K. In different configurations of architectures, we keep the
same overall FLOPs for fair comparison unless special descriptions.

(a) Decoder column depth.

Depth ftBase ftLarge

4 84.1 85.2
8 83.6 84.9
12 82.9 -

(b) Different scheduels.

Epochs ftBase ftLarge

300 84.1 85.2
800 84.5 85.9
1600 84.7 86.3

(c) Type of decoder.

Decoder type ft

MAE 83.5
UNet 83.4
Columns (w/o rev.) 83.7
Columns (w/ rev.) 84.1

column decoder with shortcuts from encoder similar to UNet [58]; top-down multi-columns without
shortcuts and reversible connections. Experiment results in Table 6 (c) draw the same conclusion with
Section 2 that reversible column decoder achieves the best performance. This is because top-down
reversible multi-columns can help feature disentangling while others not, as described in Section 2
and the analysis in Section 3.3.

Different pre-training schedules. We also conduct experiments with shorter schedules compared
with the default 1600 epochs training, i.e. 300/800 epochs. Table 6 (b) shows the fine-tuning top-1
accuracy on ImageNet-1K. The results indicate larger models may need longer iterations (+0.6%
from 300 to 1600 epochs for base size model, +1.1% from 300 to 1600 epochs for large size model)
in MIM pre-training to fully activate the potential of models.

4 Related Works

Disentangled feature learning. Disentangled representation refers to separating the factors of vari-
antion [5]. Traditional methods [59, 60, 61] mainly focus on generative models to learn disentangled
representation. Hinton proposes GLOM [23] to build a general network that learning the part-whole
hierarchies. Cai et al. [1] integrate the idea of GLOM with reversible networks [22, 21] to learn
disentangle representation in supervised learning paradigm, namely RevCol. Although RevCol can
learn disentangled representation, it needs large-scale labeled data to maintain this property that can
not directly benefit from MIM. In this paper, We seek the advances of re-design RevCol with MIM to
further enhance the representation abilities while maintaining the decoupled feature learning ability.

Masked image modeling. Self-supervised learning has a long history in computer vision research
community [62, 63, 64, 65, 66, 7]. The recent method masked image modeling (MIM) erases
the masked image patches and then predicts the unseen contents, a representative of which is
masked autoencoders [8]. Following MIM pipeline, researchers make efforts on designing different
reconstruction targets, such as DALL-E [9, 14], HOG [32], VQGAN [48], frequency [33, 67], to
learn occlusion invariant features [10].

Some methods try to use consistent architecture during pre-training and fine-tuning, such as Sim-
MIM [17] which utilizes an encoder only network. As a result, low-level and semantic information
is entangled at the end of the network, resulting in degraded performance, especially for the linear
probing accuracy. The above methods usually directly adopt vanilla ViT as backbones, ignoring the
mutual promotion between architectures and MIM pipelines. Recent works [12, 68] aim to co-design
the architecture with MIM, and focus on the CNN architectures [41]. In this paper, we explore
the new research direction: learning disentangled representation during MIM. We design a unified
architecture between pre-training and fine-tuning based on RevCol [1] to learn disentangled features
and naturally avoid the above information mixture problem.

5 Conclusion

In this paper, we design a new architecture named RevColV2 which learns disentangled represen-
tations during MIM pre-training and keep a unified autoencoder architecture when transferring to
downstream tasks. RevColV2 extends the reversible columns network which is previously limited in
supervised learning to MIM training, and bridges the gap between pre-training and fine-tuning. These
unified architectures improve the performance across various downstream tasks, including image
classification, object detection and semantic segmentation, without using additional task specific
adapters. By these impressive results, we hope to stimulate more research in learning generalizable
features and help foundation model pre-training.
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A Analysis of Speed and Memory cost

Inference. The current model variants of RevColV2 introduce more latency compared with other
works of the similar number of parameters and FLOPs, such as ViT. We test the inference latency of
variant models in Table 7. As described RevColV1 [1], fragmented memory access takes a large part
of latency. In RevColV2, we make some improvements: 1) remove the up-sample and down-sample
operation in RevColV1; 2) reduce the number of total blocks; 3) hard-ware friendly architecture
without hierarchy. As shown in Table 7, RevColV2 has lower latency than the V1 version during
inference, but is still 1.21x higher than ViT. This is because of the large number of building blocks in
RevColV2-L (about twice of ViT-L). Though we reduce the total number of blocks, the multi-column
RevColv2 still requires at least 12 blocks in each column in the encoder. Shallower column leads to
coarse representation which could harm the performance. On the other hand, if we make the ViT
model deeper and maintain the same FLOPs, ViT-L-deeper (48 blocks) and RevColV2-L (48 blocks)
have similar latency.

Table 7: Results of the inference latency, all models are tested with batch-size 32 on single A100 GPU.

Model FLOPs Latency Model FLOPs Latency
RevCol-L 39G 61 ms RevColV2-L 67G 51 ms
ViT-L 62G 42 ms ViT-L (48 blocks) 64G 52 ms

Table 8: The throughput under different inference batch-size of RevColV2.

bs=16 bs=32 bs=64 bs=128 bs=256 bs=512
MAE-L [8] 730 754 786 811 820 823
RevColV2-L [8] 432 629 661 697 721 741
Speedup 0.591 0.834 0.841 0.859 0.879 0.900

We also analyze the impact of batch size. We show throughput (#image/s) under the different batch
size of RevColV2-L and ViT-L on a single A100 GPU.The results in Table 8 show that with the
increase in batch size, the inference speed gap between RevCol-L and ViT-L is closing because the
fragment memory access time can be distributed to each sample. Although the speed of RevColV2 is
lower than vanilla ViT, we think it can be solved by advanced techniques.

Training We make some further analysis on the per-training speed and its memory cost, and
compare them with the popular used ViT-MAE baseline. We take RevColV2-B and ViT-B for
comparisons. We test training speed and memory cost on a single A100 (80GB) x 8 machine, with
the same data-loader (implemented for our cluster). We use our own implementation for RevColV2
and the official implementation for MAE. Table 9 shows the training cost with batch size 4096 for
one epoch. To speed up training and save memory, we equip RevColV2 with Flash Attention. We
only use data parallel in this testing.

Table 9 shows that the vanilla implementation of RevColV2 pre-training has a little slower (249s vs.
220s) than ViT. Equipped with FlashAttn, RevColV2 achieves comparable pre-training cost (211s
vs. 220s and 42G vs. 43G). We further analyze the impact of reversible propagation. We test the
pre-training cost of the Reversible version of RevColV2 (re-compute the intermediate features during
backward according to the last column outputs, rather than the vanilla autograd function in PyTorch.
It is the key component of reversible column networks [1]). Results show that RevColV2-B can use
extremely few GPU memory (only 18G) during pre-training with a total batch size 4096. This allows
RevColV2 can be pre-trained with limited resources, such as RTX3090 GPU.

In addition to the above comparison, the fragmented access of memory can be optimized by some
techniques which can be further investigated in further work. Here, we give two ways that may be
further studied:

• Kernel fusion. This can reduce the frequent access of the memory caused by a large number
of blocks.
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Table 9: The training time and memory cost comparison on a single A100 (80GB) x 8 machine.

Model Time Cost Memory (each GPU)
MAE-B [8] 220 s/epoch 43G
RevColV2-B [8] 249 s/epoch 49G
RevColV2-B + FlashAttn [8] 211 s/epoch 42G
RevColV2-B + FlashAttn + Reversible [8] 240 s/epoch 18G

• Model parallel. Before the calculation of previous columns is finished, parts of the current
column can be calculated in parallel. This is the nature of the multi-column network and
can be further studied to speed up the inference and training.

B More Training Details

This section gives more training details on MIM pre-training and fine-tuning on downstream tasks,
such as ImageNet classification, COCO detection, and ADE20K segmentation. For ImageNet
experiments, the base learning rate is based on batch size 256.

B.1 Training Details on MIM pre-training.

We use the same setting for different sizes RevCol models on MIM pre-training. The detail hyper-
parameters are shown in Table 10. Following exists works [8, 12], we do not use stochastic depth [69]
and other regularization strategies in MIM pre-training.

config value
optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 40
training epochs 1600
augmentation RandomResizedCrop

Table 10: MIM Pre-training settings.

B.2 Details on Image22K intermediate fine-tuning.

We further intermediately fine-tune RevColV2 models on ImageNet-22K dataset. The fine-tuning
details is shown in Table 11. The hyper-parameters generally follow [1, 12].

B.3 End-to-end fine-tuning details on ImageNet-1K.

We end-to-end fine-tune RevCol variants on ImageNet-1K after MIM pre-training and intermediately
fine-tuning on ImageNet-22K. Table 12 shows the detail training settings after MIM pre-training.

We also show training settings on ImageNet-1K after ImageNet-22K fine-tuning. Table 13 gives the
detailed hyper-parameters.

B.4 Details on ADE20K semantic segmentation

For semantic segmentation, we evaluate different backbones on ADE20K dataset. We fine-tune the
pre-trained networks on ADE20K with 160,000 iterations. For UperNet framework [46], the learning
rate is 4e-5 with batch size 16, using AdamW optimizer. The layer-wise learning rate decay rate
is set as 0.65 for both base and large size models. The drop path rate is 0.1. For Mask2Former

17



config value
optimizer AdamW
base learning rate 2.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay 0.8
batch size 4096
learning rate schedule cosine decay
warmup epochs 5
training epochs 90
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1 (B), 0.2 (L)
head init 0.001
ema None

Table 11: End-to-end IN-22K intermediate fine-tuning settings.

config value
optimizer AdamW
base learning rate 5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100 (B), 50 (L)
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1
head init 0.001
ema 0.9999

Table 12: End-to-end ImageNet-1K fine-tuning settings

framework [47], the learning rate is 2e-5 with batch size 16. The drop path rate is set as 0.3 and the
layer-wise learning decay rate is 0.9.

B.5 Details on COCO object detection and instance segmentation

For object detection and instance segmentation, we evaluate RevColV2 backbones with Mask R-
CNN [55] and Cascade Mask R-CNN [56] detectors. We use ImageNet-1K MIM pre-trained weights
as initialization and fine-tune the models with 50 epochs and a batch size of 32, learning rate 1e-4
for Mask R-CNN framework. The large scale jittering data augmentation strategy is used with scale
range [0.1, 2.0]. The drop path rates for RevCOlV2 are set as 0.2 (base) and 0.3 (large) and the
layer-wise learning rate decay rates are set as 0.9. For Cascade Mask R-CNN framework, we train
models with 100 epochs following [36] with large scale jittering augmentation strategy. The learning
rate is 1e-4 with batch size 64. We do not use soft-NMS in our experiments.
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config value
optimizer AdamW
base learning rate 2.5e-5
weight decay 0.01
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay 0.9
batch size 512
learning rate schedule cosine decay
warmup epochs None
training epochs 30
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup None
cutmix None
drop path 0.1(B), 0.2 (L)
head init 0.001
ema 0.9999

Table 13: End-to-end ImageNet-1K fine-tuning settings (after IN-22K intermediate fine-tuning).

C More Results

C.1 Compared with supervised baseline

To verify the effectiveness of RevColV2 architecture with MIM pre-train, we compare the performance
on ImageNet-1K fine-tune using MIM pre-trained model weights and random initialization. We use
the same setting with [8] in this supervised baseline, except additional 0.999 EMA strategy. The
base/large models achieve 83.1% and 82.6% top-1 accuracy on ImageNet-1K. The MIM pre-trained
RevColV2 models outperform supervised baseline by a large margin (+1.6% and +3.7%).

C.2 Linear probing results

We report the linear probing results on ImageNet-1K after pre-training for RevColV2 models and
other counterparts on Table 14. Following [8], we fix the pre-trained backbone models and train
a classification head for 90 epochs with LARS optimizer. We append this classification head on
the last level of bottom-up columns in RevColV2. The linear probing performance of RevColV2
models surpasses other encoder only models such as SimMIM [17] and autoencoder models such as
MAE [8].

Table 14: Linear probing results on ImageNet-1K dataset.
Model Size Target Params FLOPs LIN

ImageNet-1K pre-train:
BEIT-B [9] 2242 DALL-E 87M 18G 56.7
SimMIM-B [17] 2242 Pixel 88M 16G 56.7
RevColV2-B 2242 Pixel 88M 19G 64.3

MAE-L [8] 2242 Pixel 307M 62G 75.8
RevColV2-L 2242 Pixel 327M 67G 77.2
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