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Abstract001

Large language models (LLMs) have revolu-002
tionized the domain of natural language pro-003
cessing because of their excellent performance004
on various tasks. Despite their impressive ca-005
pabilities, LLMs also have the potential to gen-006
erate texts that pose risks of misuse. Conse-007
quently, detecting LLM-generated text has be-008
come increasingly important. Previous LLM-009
generated text detection methods use semantic010
features, which are stored in the last layer. This011
leads to methods that overfit the training set012
domain and exhibit shortcomings in generaliza-013
tion. Therefore, We argue that utilizing intrin-014
sic features rather than semantic features for015
detection results in better performance. In this016
work, we design Text Fluoroscopy, a black-box017
method with better generalizability for detect-018
ing LLM-generated text by mining the intrinsic019
features of the text to be detected. Our method020
captures the text’s intrinsic features by iden-021
tifying the layer with the largest distribution022
difference from the last and first layers when023
projected to the vocabulary space. Our method024
achieves 7.36% and 2.84% average improve-025
ment in detection performance compared to026
the baselines in detecting texts from different027
domains generated by GPT-4 and Claude3, re-028
spectively.029

1 Introduction030

Large language models (LLMs) such as031

PaLM (Chowdhery et al., 2022), ChatGPT (Ope-032

nAI, 2022), LLaMA (Touvron et al., 2023),033

and GPT-4 (Achiam et al., 2023) demonstrate034

remarkable advancements in language capabilities.035

LLMs have significantly impacted the field of036

natural language processing, enabling proficient037

text generation for diverse tasks, including emails,038

news, and academic papers. With the advent039

of more advanced LLMs such as GPT-4, the040

outstanding performance of LLMs has led to041

the belief that they can be the artificial general042

intelligence (AGI) of this era (Bubeck et al., 2023).043

However, if misused, LLMs such as ChatGPT 044

have the potential to act as a “weapon of mass de- 045

ception” (Sison et al., 2023). For example, the 046

advanced writing capabilities of LLMs pose a sig- 047

nificant threat to democracy, as they facilitate the 048

creation of automated bots on social networks that 049

can influence political decisions during election 050

campaigns (Solaiman et al., 2019; Goldstein et al., 051

2023). Moreover, the use of ChatGPT by stu- 052

dents in educational institutions has led to instances 053

of academic dishonesty, with essays being gen- 054

erated by these models, as reported by various 055

news outlets (Mitchell, 2022; Patrick Wood, 2023). 056

Therefore, it is crucial and urgent to detect LLM- 057

generated texts. 058

Previous methods for detecting LLM-generated 059

text can be classified into two categories. The first 060

category relies on the features of the last layer in 061

the language model, e.g., BERT (Guo et al., 2023; 062

Hu et al., 2023; Guo and Yu, 2023), which can 063

be seen as the semantic features (Wu et al., 2023). 064

However, semantic features in human-created and 065

LLM-generated text can be remarkably similar, es- 066

pecially when the topics are more narrowly de- 067

fined, affecting detection quality and generaliza- 068

tion. The second category relies on linguistic fea- 069

tures (Yang et al., 2023; Wu et al., 2024; McGovern 070

et al., 2024), which are expressed as differences in 071

the frequency of words and grammatical patterns. 072

However, experimental results show that linguistic 073

features are more fragile to paraphrase attacks than 074

semantic features (McGovern et al., 2024). 075

Guided by the above analysis, it is evident that 076

overly abstract semantic features and overly simple 077

linguistic features can adversely affect detection 078

quality and robustness. Consequently, we can in- 079

fer that the features of the first and last layers are 080

not ideal. This raises the question: which features 081

perform effectively in the task of LLM-generated 082

text detection. Inspired by previous work (Jawa- 083

har et al., 2019; Tenney et al., 2019), the classical 084
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Figure 1: The difference between our method and previ-
ous detection methods.

language model, e.g., BERT, has been shown to085

capture simple linguistic information at the earlier086

layers and semantic features at the later layers. In087

fact, the forward process of a language model can088

be viewed as a process of abstracting information089

from the input sentence. Therefore, we argue that090

the features of the middle layers reflect the intrinsic091

features of a sentence and are more suitable for de-092

tection. Intuitively, the features of the middle layer093

with the largest differences compared to the first094

and last layers most accurately reflect the intrinsic095

features of the text. Therefore, we intend to utilize096

such features for detection.097

Based on the above analysis, we propose098

Text Fluoroscopy, a black-box method for LLM-099

generated text detection through intrinsic features.100

We capture the intrinsic features of the text by iden-101

tifying the layer with the largest distribution differ-102

ence from the last and first layers when projected to103

the vocabulary space. The core idea of our method104

is shown in Figure 1.105

Text Fluoroscopy achieves a 7.36% and 2.84%106

average improvement in detection performance107

compared to the baselines in detecting texts from108

different domains generated by GPT-4 and Claude3.109

These findings underscore the efficacy of our110

method. Moreover, our method is robust to Para-111

phrase (Krishna et al., 2023) and Back-translate112

attacks.113

2 Related Work114

Previous methods (Guo et al., 2023; Hu et al., 2023;115

Guo and Yu, 2023) employ the semantic features116

stored in the last layer of the language model to117

perform detection. For example, Hello-Chatgpt-118

detector-roberta (Guo et al., 2023) uses the Roberta119

model to extract semantic features and then trains120

a classifier to detect LLM-generated texts. The121

features stored in the last layer are abstract repre-122

sentations of semantic content, causing the method123

to overfit the domain of the training set and show124

deficiencies in generalization. Therefore, to ob- 125

tain more generalizable detection methods, current 126

researchers work on developing methods by lin- 127

guistic features. For example, DNA-GPT (Yang 128

et al., 2023) takes advantage of the divergence be- 129

tween multiple completions of a truncated passage. 130

Some researchers (McGovern et al., 2024) find sim- 131

ple classifiers on top of n-gram and part-of-speech 132

features can achieve very robust performance on 133

both in- and out-of-domain data. These “finger- 134

prints” retain the more primitive features of LLMs 135

and are more useful for detecting LLM-generated 136

text. However, these features are more susceptible 137

to exploitation by attackers, and detection meth- 138

ods based on linguistic features are less robust than 139

those based on BERT’s features when facing para- 140

phrase attacks (McGovern et al., 2024). 141

3 Methods 142

The goal of an LLM-generated text detection task 143

is to ascertain whether a given text is generated by 144

LLMs. Let x be the text to be detected. Formally, 145

x = (x0, x1, . . . , xt−1) consists of t tokens. 146

We leverage a pre-trained language model as the 147

encoder to extract intrinsic features. Pre-trained 148

language models consist of an embedding layer, 149

N stacked transformer layers, and an affine layer 150

ϕ(·) for predicting the distribution of the next 151

word. First, the embedding layer embeds the tokens 152

x = (x0, x1, . . . , xt−1) into a sequence of vectors 153

H0 = {h(0)0 , h
(0)
1 , . . . , h

(0)
t−1}. Then H0 would be 154

processed by each of the transformer layers succes- 155

sively. We denote the output of the j-th layer as 156

Hj , (0 ≤ j ≤ N). Then, the vocabulary head ϕ(·) 157

predicts the probability of the next token xt over 158

the vocabulary set X . 159

The method based on semantic features uses the 160

feature h
(N)
t to the classifier. 161

ysem_pred = D(h
(N)
t−1), 162

where D represents the detector, ysem_pred repre- 163

sents the predicted label of the detector based on 164

semantic features. Instead of using the features 165

stored in the last layer, our method identifies the 166

layer with the largest distribution difference from 167

the last and first layers when projected to the vocab- 168

ulary space. We first predict the probability of the 169

next token xt over the vocabulary set X for every 170

layer. For j-th layer, we predict the probability of 171

the next token xt over the vocabulary set X , where 172
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J ⊂ {1, . . . , N − 1} is a set of candidate layers,173

qj(xt | x<t) = softmax
(
ϕ(h

(j)
t )

)
xt
, j ∈ J .174

The probability of the next token xt over the175

vocabulary set X for the 0-th and N -th layers are176

denoted as q0(xt | x<t) and qN (xt | x<t) , respec-177

tively.178

Then, we use Kullback-Leibler Divergence (KL179

Divergence) to calculate the difference between the180

distributions. We calculate the difference between181

the distributions qj(xt | x<t), q0(xt | x<t) and182

qj(xt | x<t), qN (xt | x<t). And we select the layer183

with the largest KL divergence from the 0-th and N -184

th layers, denoted the M -th layer (0 < M < N ).185

Discussions about the KL Divergence and selection186

of layers are shown in Appendix A.187

M = argmax
j∈J

{KL
(
qN (xt |x<t)||qj(xt |x<t)

)
+

KL
(
q0(xt |x<t)||qj(xt |x<t)

)
},

188

where J ⊂ {1, . . . , N − 1} is a set of candidate189

layers.190

After determining M , we use the features of the191

M layer for classification.192

ypred = D(h
(M)
t−1 ),193

where D represents the detector, ypred represents194

the predicted label of the detector.195

We train D using binary cross-entropy loss, and196

the loss function can be formalized as:197

L = − 1

N

N∑
i=1

(
y(i) log(y

(i)
pred)198

+(1− y(i)) log(1− y
(i)
pred)

)
,199

where y represents the true label of x, and the pre-200

dicted label of the detector is represented as ypred.201

4 Experiments202

4.1 Implementation details203

In this paper, we focus on the black-box scenario204

that closely mimics real-world conditions. In205

this scenario, all detectors cannot determine the206

source model of the text to be detected. We used207

the first 200 entries of the open-source Human-208

ChatGPT Comparison Corpus (HC3) (Guo et al.,209

2023) dataset collected by previous researchers as210

a training set to ensure the reproducibility of our211

method. We use gte-Qwen1.5-7B-instruct1 as 212

the encoder and train an end-to-end classification 213

model with fully connected layers. The details are 214

shown in Appendix B. 215

Datasets. We assessed the generalizability of de- 216

tection methods across various dataset domains and 217

generative models. For this purpose, we selected 218

three different datasets and utilized three genera- 219

tive models for data generation. Specifically, the 220

three datasets are Xsum (Narayan et al., 2018) for 221

news articles, WritingPrompts (Fan et al., 2018) 222

for story writing, PubMedQA (Jin et al., 2019) for 223

biomedical research question answering, which are 224

consistent with previous work (Bao et al., 2023) 225

in the field. We also utilized three current widely 226

used commercial closed-source models for data 227

generation, including ChatGPT (gpt-3-5-turbo) 2, 228

GPT-4 (gpt-4-0613) 3, and Claude3 (claude-3-opus- 229

20240229) 4. 230

Evaluation metric. We measure the detection per- 231

formance in the area under the receiver operating 232

characteristic (AUROC). 233

Baselines. We compared our method with exist- 234

ing supervised detectors and zero-shot detectors. 235

For supervised detectors, we compared GPT-2 de- 236

tectors based on RoBERTa-base/large (Liu et al., 237

2019) crafted by OpenAI, RADAR (Hu et al., 2023) 238

and CoCo (Liu et al., 2023). For zero-shot detec- 239

tors, we selected LRR (an amalgamation of log 240

probability and log-rank)(Su et al., 2023), DNA- 241

GPT (Yang et al., 2023), DetectGPT (Mitchell et al., 242

2023), and its enhanced variants NPR (Su et al., 243

2023) and Fast-DetectGPT (Bao et al., 2023). We 244

also chose classic zero-shot classifiers, and the re- 245

sults are shown in Appendix C.1 246

4.2 Performance 247

Detection effectiveness. The detection perfor- 248

mance of baselines and Text Fluoroscopy is shown 249

in Table 1. Our method achieves an average AU- 250

ROC of 96.73%, 97.94%, and 98.71% in detecting 251

three datasets generated by ChatGPT, GPT-4, and 252

Claude3, respectively. Notably, our method outper- 253

forms Fast-DetectGPT by 7.36% in average detec- 254

tion performance of datasets generated by GPT-4. 255

1https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct

2https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://platform.openai.com/docs/models/gpt-4-turbo-

and-gpt-4
4https://docs.anthropic.com/en/docs/models-overview
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Methods ChatGPT GPT-4 Claude3
XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.9150 0.7084 0.6188 0.7474 0.6778 0.5068 0.5309 0.5718 0.8944 0.8036 0.3647 0.6876
RoBERTa-large 0.8507 0.5480 0.6731 0.6906 0.6879 0.3822 0.6067 0.5589 0.9027 0.7128 0.3579 0.6578

RADAR 0.9972 0.9593 0.7372 0.8979 0.9931 0.8593 0.8029 0.8851 0.9952 0.9438 0.8029 0.9139
CoCo 0.5392 0.7741 0.5847 0.6327 0.5495 0.7473 0.5197 0.6055 0.4808 0.7633 0.7388 0.6610
LRR 0.9164 0.8962 0.7421 0.8516 0.7453 0.7040 0.6810 0.7101 0.9609 0.9598 0.8334 0.9180

DNA-GPT 0.9040 0.9449 0.7598 0.8696 0.7267 0.8164 0.7163 0.7531 0.9071 0.9655 0.5911 0.8212
NPR 0.7845 0.9697 0.5483 0.7675 0.5211 0.8276 0.4976 0.6154 0.9232 0.9696 0.7746 0.8891

Fast-DetectGPT 0.9907 0.9916 0.9021 0.9615 0.9064 0.9611 0.8498 0.9058 0.9942 0.9783 0.9035 0.9587
Text Fluoroscopy 0.9996 0.9856 0.9167 0.9673 0.9998 0.9835 0.9548 0.9794 0.9998 0.9979 0.9636 0.9871

Table 1: The detection performance (AUROC) of baselines and Text Fluoroscopy on three datasets generated by
ChatGPT, GPT-4, and Claude3.

Methods ChatGPT GPT-4 Claude3
Ori. DIPPER Back-translate Ori. DIPPER Back-translate Ori. DIPPER Back-translate

RoBERTa-base 0.9150 0.8148 0.8379 0.6778 0.6469 0.7536 0.8944 0.8120 0.8052
RoBERTa-large 0.8507 0.7884 0.6853 0.6879 0.6833 0.6660 0.9027 0.8153 0.7583

RADAR 0.9972 0.9964 0.9801 0.9931 0.9924 0.9608 0.9952 0.9940 0.9701
CoCo 0.5392 0.5374 0.5525 0.5495 0.5627 0.5510 0.4808 0.4886 0.5075
LRR 0.9164 0.8448 0.8621 0.7453 0.6607 0.8003 0.9609 0.9240 0.9243

DNA-GPT 0.9040 0.7733 0.8624 0.7267 0.5595 0.7776 0.9071 0.7876 0.8399
NPR 0.7845 0.5648 0.8050 0.5211 0.3006 0.6820 0.9232 0.7860 0.9042

Fast-DetectGPT 0.9907 0.9536 0.9711 0.9064 0.8057 0.9137 0.9942 0.9720 0.9860
Text Fluoroscopy 0.9996 0.9996 0.9980 0.9998 0.9994 0.9961 0.9998 0.9996 0.9995

Table 2: Detection performance of Text Fluoroscopy and the baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference.

Figure 2: Detection AUROC of methods with different
layers.
4.3 Robustness256

To better understand the performance of Text Flu-257

oroscopy in real-world scenarios, we evaluate our258

method under DIPPER (Paraphrase) (Krishna et al.,259

2023) and back-translation attacks, details are260

shown in Appendix C.2. From the results shown in261

Table 2, it can be observed that when facing the two262

attacks, the detection performance of our methods263

is still better than other methods, indicating that264

our method is more robust in real-world scenar-265

ios. We believe this advantage arises because our266

method extracts intrinsic features independently of267

semantic features, rendering the semantic attack268

ineffective and ensuring robustness.269

4.4 Ablation studies270

We conducted ablation studies to reveal the impact271

of the selection of layers. We evaluated the average272

AUROC of detection with the first and last layer 273

on three datasets generated by ChatGPT, GPT-4, 274

and Claude3. The results are shown in Figure 2. 275

It can be observed that the detection performance 276

of methods with the first and last layer features 277

is poorer than Text Fluoroscopy. This indicates 278

that semantic and linguistic features interfere with 279

detection quality, while Text Fluoroscopy chooses 280

intrinsic features that can effectively detect LLM- 281

generated text. 282

5 Conclusion 283

In this paper, we design Text Fluoroscopy, a black- 284

box method for detecting LLM-generated text 285

through intrinsic features. Our method captures 286

the intrinsic features by identifying the layer with 287

the largest distribution difference from the first and 288

last layers when projected to the vocabulary space. 289

Compared with previous methods, we reduce the 290

impact of semantic features on the detection pro- 291

cess to achieve better detection quality and gener- 292

alization. Our method can effectively detect LLM- 293

generated texts and is more robust in real-world 294

scenarios. We aspire that Text Fluoroscopy will in- 295

spire future research in LLM-generated text detec- 296

tion and offer insightful references for identifying 297

content generated by LMs in other fields. 298
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6 Limitations299

Although our method is simple and effective, it still300

has some limitations. In our detection process, we301

need to compute each layer of the pre-trained lan-302

guage model to determine the layer with intrinsic303

features, which will cause a time delay. We evalu-304

ated the average time cost by our method and the305

other methods in detecting a piece of text, and the306

results are displayed in Table 3.307

Our method’s average cost time in detecting308

a piece of text from three datasets generated by309

ChatGPT, GPT-4, and Claude3 is 0.5283s,0.5145s,310

and 0.4995s, respectively. However, the detection311

method only using the last layer takes just 0.0776s,312

0.0948s, and 0.0808s, respectively.313

Methods ChatGPT GPT-4 Claude3

Detection with the Last Layer 0.0776s 0.0948s 0.0808s
Text Fluoroscopy 0.5283s 0.5145s 0.4995s

Detection with the 30-th layer 0.0815s 0.0801s 0.0785s

Table 3: The average time cost for detecting a piece of
text from three datasets generated by ChatGPT, GPT-4,
and Claude3 with the different layers of detection.

To overcome this limitation, we hope to find a314

fixed layer with intrinsic features to reduce the cost315

of time while maintaining accuracy. Therefore,316

we tested the average detection AUROC of three317

datasets generated by ChatGPT, GPT-4, and Clu-318

ade3 with the different layers, as shown in Figure 3.319

We found that the average detection AUROC gen-320

erally increases as the layers deepen but decreases321

after the 30-th layer. This observation also supports322

the effectiveness of using middle layers for detec-323

tion. When using a fixed layer, the overall detection324

AUROC peaks at around the 30-th layer. Therefore,325

we use the detection with the 30-th layer to reduce326

time cost. The time cost for detecting a piece of327

text with the 30-th layer is shown in Table 3.328

We also tested the AUROC of detection with329

the 30-th layer, shown in Table 4. The detec-330

tion with the 30-th layer achieves an average AU-331

ROC of 96.34%, 97.79%, and 98.79% in detecting332

three datasets generated by ChatGPT, GPT-4, and333

Claude3, respectively. Text Fluoroscopy has higher334

average AUROC of 96.73%, 97.94%, and 98.71%,335

respectively. Using the fixed 30-th layer, the de-336

tection speed can be increased by approximately 5337

times with an accuracy decrease of less than 0.4%338

compared to Text Fluoroscopy.339

Figure 3: The average detection AUROC of three
datasets generated by ChatGPT, GPT-4, and Cluade3
with the different layers.
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A The KL Divergence and Selection of482

Layers.483

To fully illustrate the validity of using KL Diver-484

gence for layer selection, we tested the KL Diver-485

gence between the distributions of the first layer486

and the i-th layer, and the AUROC of detection487

with the i-th layer. The results are shown in Fig-488

ure 4. The figure shows that the KL Divergence489

and AUROC exhibit similar trends. They both grad-490

ually increase over the first 30-th layers but show a491

decreasing trend after the 30-th layer.492

B Implementation Details493

Implementation. We used the first 200 entries494

of the open-source Human-ChatGPT Comparison495

Corpus (HC3) (Guo et al., 2023) dataset collected496

by previous researchers as a training set to ensure497

the reproducibility of our method. The ratio for498

splitting the training and validation is 8 : 1. we499

use gte-Qwen1.5-7B-instruct5 as the encoder500

which can encode texts with a maximum of 32K501

tokens into embeddings of 4096 dimensions, while502

the classifier consists of three fully connected lay-503

ers with Tanh function. The dimensions of the504

intermediate layers in the classifier are 1024 and505

512, respectively. The batch size is set to 16 and506

Adam (Kingma and Ba, 2014) optimizer is em-507

ployed with an initial learning rate of 3e− 3. We508

train the classifier for 10 epochs on the training509

set and utilize a validation set to select the weights510

that yield the best performance. All experiments511

are conducted on a workstation equipped with 4512

NVIDIA RTX4090 GPUs.513

Evaluation metric. We measure the detection per-514

formance in the area under the receiver operating515

characteristic (AUROC). AUROC ranges from 0.0516

to 1.0, mathematically denoting the probability of517

a random machine-generated text having a higher518

predicted probability of being machine-generated519

than a random human-written text. A higher AU-520

ROC value indicates a better detection quality.521

C Additional Experimental Results522

C.1 Detection effectiveness.523

We also compared other detection methods, includ-524

ing Likelihood (mean log probabilities)(Gehrmann525

et al., 2019), Entropy (mean token entropy of the526

5https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct

predictive distribution)(Ippolito et al., 2019), Lo- 527

gRank (average log of ranks in descending order 528

by probabilities) (Solaiman et al., 2019), Detect- 529

GPT (Mitchell et al., 2023). The results are shown 530

in Table 4. Our method achieves an average AU- 531

ROC of 96.73%, 97.94%, and 98.71% in detect- 532

ing three datasets generated by ChatGPT, GPT-4, 533

and Claude3, respectively. Likelihood, which is 534

the best method among the baselines shown in 535

the table, has a lower average AUROC of 93.64%, 536

82.12%, and 95.81%, respectively. 537

C.2 Robustness. 538

Existing research (Krishna et al., 2023; Sadasivan 539

et al., 2023) has pointed out that previous methods 540

exhibit performance degradation in complex sce- 541

narios where the text to be detected is subjected 542

to perturbations. To better understand the perfor- 543

mance of Text Fluoroscopy in real-world scenarios, 544

we evaluate our detection method under two differ- 545

ent modification methods. 546

The first one is the proposed paraphrasing at- 547

tack called DIPPER (Krishna et al., 2023) (or Dis- 548

course Paraphrase). DIPPER is an 11B-parameter 549

paraphrase generation model built by fine-tuning 550

T5-XXL. It can paraphrase paragraph-length texts, 551

re-order content, and optionally leverage context, 552

such as input prompts. 553

The second perturbation method we used, the so- 554

called back-translation attack, is more accessible to 555

a broader audience and does not require specialized 556

knowledge. Back-translation refers to the action of 557

translating a work that has previously been trans- 558

lated into the same language. We employed DeepL 559

Translator 6 to translate the given English text into 560

Chinese, followed by a subsequent translation back 561

into English. 562

We present the detection performance of our 563

method and baselines in detecting the Xsum dataset 564

generated by ChatGPT, GPT-4, and Claude3 with 565

interference in Table 5. RADAR shows the small- 566

est decrease among baselines against DIPPER at- 567

tacks, especially for text generated by GPT-4, with 568

a decrease of 00.07%, illustrating the robustness of 569

RADAR in incorporating adversarial networks into 570

detection. However, Our method maintains opti- 571

mal detection performance after both DIPPER and 572

back-translation attacks. The detection AUROC 573

of our method is 99.96% and 99.80% for detect- 574

ing the Xsum dataset generated by ChatGPT under 575

6https://www.deepl.com/en/docs-api/
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Figure 4: The KL Divergence between the distributions of the first layer and the i-th layer, and the AUROC of
detection with the i-th layer.

Methods
ChatGPT GPT-4 Claude3

XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.9150 0.7084 0.6188 0.7474 0.6778 0.5068 0.5309 0.5718 0.8944 0.8036 0.3647 0.6876
RoBERTa-large 0.8507 0.5480 0.6731 0.6906 0.6879 0.3822 0.6067 0.5589 0.9027 0.7128 0.3579 0.6578

RADAR 0.9972 0.9593 0.7372 0.8979 0.9931 0.8593 0.8029 0.8851 0.9952 0.9438 0.8029 0.9139
CoCo 0.5392 0.7741 0.5847 0.6327 0.5495 0.7473 0.5197 0.6055 0.4808 0.7633 0.7388 0.6610

Likelihood 0.9577 0.9739 0.8776 0.9364 0.7982 0.8553 0.8100 0.8212 0.9760 0.9744 0.9240 0.9581
Entropy 0.3305 0.1901 0.2766 0.2657 0.4364 0.3703 0.3296 0.3788 0.4109 0.0836 0.1686 0.2210

LogRank 0.9584 0.9656 0.8680 0.9307 0.7980 0.8289 0.7997 0.8089 0.9783 0.9732 0.9260 0.9592
LRR 0.9164 0.8962 0.7421 0.8516 0.7453 0.7040 0.6810 0.7101 0.9609 0.9598 0.8334 0.9180

DNA-GPT 0.9040 0.9449 0.7598 0.8696 0.7267 0.8164 0.7163 0.7531 0.9071 0.9655 0.5911 0.8212
NPR 0.7845 0.9697 0.5483 0.7675 0.5211 0.8276 0.4976 0.6154 0.9232 0.9696 0.7746 0.8891

DetectGPT 0.4594 0.8008 0.3804 0.5469 0.3408 0.6542 0.3675 0.4542 0.4323 0.6800 0.7559 0.6227
Fast-DetectGPT 0.9907 0.9916 0.9021 0.9615 0.9064 0.9611 0.8498 0.9058 0.9942 0.9783 0.9035 0.9587

Text Fluoroscopy 0.9996 0.9856 0.9167 0.9673 0.9998 0.9835 0.9548 0.9794 0.9998 0.9979 0.9636 0.9871
Text Fluoroscopy (30-th Layer) 0.9996 0.9819 0.9088 0.9634 0.9997 0.9800 0.9539 0.9779 0.9995 0.9968 0.9674 0.9879

Table 4: The detection performance (AUROC) of baselines and Text Fluoroscopy on three datasets generated by
ChatGPT, GPT-4, and Claude3.

Methods ChatGPT GPT-4 Claude3
Ori. DIPPER Back-translate Ori. DIPPER Back-translate Ori. DIPPER Back-translate

RoBERTa-base 0.9150 0.8148 0.8379 0.6778 0.6469 0.7536 0.8944 0.8120 0.8052
RoBERTa-large 0.8507 0.7884 0.6853 0.6879 0.6833 0.6660 0.9027 0.8153 0.7583

RADAR 0.9972 0.9964 0.9801 0.9931 0.9924 0.9608 0.9952 0.9940 0.9701
CoCo 0.5392 0.5374 0.5525 0.5495 0.5627 0.5510 0.4808 0.4886 0.5075

Likelihood 0.9577 0.8438 0.9306 0.7982 0.6296 0.8449 0.9760 0.9080 0.9446
Entropy 0.3305 0.4514 0.3008 0.4364 0.5552 0.3705 0.4109 0.4978 0.3639

LogRank 0.9584 0.8596 0.9260 0.7980 0.6432 0.8436 0.9783 0.9256 0.9488
LRR 0.9164 0.8448 0.8621 0.7453 0.6607 0.8003 0.9609 0.9240 0.9243

DNA-GPT 0.9040 0.7733 0.8624 0.7267 0.5595 0.7776 0.9071 0.7876 0.8399
NPR 0.7845 0.5648 0.8050 0.5211 0.3006 0.6820 0.9232 0.7860 0.9042

DetectGPT 0.4594 0.3074 0.5417 0.3408 0.1823 0.4530 0.4323 0.3283 0.5273
Fast-DetectGPT 0.9907 0.9536 0.9711 0.9064 0.8057 0.9137 0.9942 0.9720 0.9860

Text Fluoroscopy 0.9996 0.9996 0.9980 0.9998 0.9994 0.9961 0.9998 0.9996 0.9995
Text Fluoroscopy(30-th Layer) 0.9634 0.9995 0.9966 0.9779 0.9993 0.9942 0.9879 0.9995 0.9983

Table 5: Detection performance of Text Fluoroscopy and the baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference.
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DIPPER and back-translation attacks, respectively,576

indicating that our method is more robust in real-577

world scenarios.578
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