Text Fluoroscopy: Detecting LLLM-Generated Text
through Intrinsic Features

Anonymous ACL submission

Abstract

Large language models (LLMs) have revolu-
tionized the domain of natural language pro-
cessing because of their excellent performance
on various tasks. Despite their impressive ca-
pabilities, LLMs also have the potential to gen-
erate texts that pose risks of misuse. Conse-
quently, detecting LLM-generated text has be-
come increasingly important. Previous LLM-
generated text detection methods use semantic
features, which are stored in the last layer. This
leads to methods that overfit the training set
domain and exhibit shortcomings in generaliza-
tion. Therefore, We argue that utilizing intrin-
sic features rather than semantic features for
detection results in better performance. In this
work, we design Text Fluoroscopy, a black-box
method with better generalizability for detect-
ing LLM-generated text by mining the intrinsic
features of the text to be detected. Our method
captures the text’s intrinsic features by iden-
tifying the layer with the largest distribution
difference from the last and first layers when
projected to the vocabulary space. Our method
achieves 7.36% and 2.84% average improve-
ment in detection performance compared to
the baselines in detecting texts from different
domains generated by GPT-4 and Claude3, re-
spectively.

1 Introduction

Large language models (LLMs) such as
PalLM (Chowdhery et al., 2022), ChatGPT (Ope-
nAl, 2022), LLaMA (Touvron et al., 2023),
and GPT-4 (Achiam et al., 2023) demonstrate
remarkable advancements in language capabilities.
LLMs have significantly impacted the field of
natural language processing, enabling proficient
text generation for diverse tasks, including emails,
news, and academic papers. With the advent
of more advanced LLMs such as GPT-4, the
outstanding performance of LLMs has led to
the belief that they can be the artificial general
intelligence (AGI) of this era (Bubeck et al., 2023).

However, if misused, LLMs such as ChatGPT
have the potential to act as a “weapon of mass de-
ception” (Sison et al., 2023). For example, the
advanced writing capabilities of LLMs pose a sig-
nificant threat to democracy, as they facilitate the
creation of automated bots on social networks that
can influence political decisions during election
campaigns (Solaiman et al., 2019; Goldstein et al.,
2023). Moreover, the use of ChatGPT by stu-
dents in educational institutions has led to instances
of academic dishonesty, with essays being gen-
erated by these models, as reported by various
news outlets (Mitchell, 2022; Patrick Wood, 2023).
Therefore, it is crucial and urgent to detect LLM-
generated texts.

Previous methods for detecting LLM-generated
text can be classified into two categories. The first
category relies on the features of the last layer in
the language model, e.g., BERT (Guo et al., 2023;
Hu et al., 2023; Guo and Yu, 2023), which can
be seen as the semantic features (Wu et al., 2023).
However, semantic features in human-created and
LLM-generated text can be remarkably similar, es-
pecially when the topics are more narrowly de-
fined, affecting detection quality and generaliza-
tion. The second category relies on linguistic fea-
tures (Yang et al., 2023; Wu et al., 2024; McGovern
et al., 2024), which are expressed as differences in
the frequency of words and grammatical patterns.
However, experimental results show that linguistic
features are more fragile to paraphrase attacks than
semantic features (McGovern et al., 2024).

Guided by the above analysis, it is evident that
overly abstract semantic features and overly simple
linguistic features can adversely affect detection
quality and robustness. Consequently, we can in-
fer that the features of the first and last layers are
not ideal. This raises the question: which features
perform effectively in the task of LLM-generated
text detection. Inspired by previous work (Jawa-
har et al., 2019; Tenney et al., 2019), the classical
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Figure 1: The difference between our method and previ-
ous detection methods.

language model, e.g., BERT, has been shown to
capture simple linguistic information at the earlier
layers and semantic features at the later layers. In
fact, the forward process of a language model can
be viewed as a process of abstracting information
from the input sentence. Therefore, we argue that
the features of the middle layers reflect the intrinsic
features of a sentence and are more suitable for de-
tection. Intuitively, the features of the middle layer
with the largest differences compared to the first
and last layers most accurately reflect the intrinsic
features of the text. Therefore, we intend to utilize
such features for detection.

Based on the above analysis, we propose
Text Fluoroscopy, a black-box method for LLM-
generated text detection through intrinsic features.
We capture the intrinsic features of the text by iden-
tifying the layer with the largest distribution differ-
ence from the last and first layers when projected to
the vocabulary space. The core idea of our method
is shown in Figure 1.

Text Fluoroscopy achieves a 7.36% and 2.84%
average improvement in detection performance
compared to the baselines in detecting texts from
different domains generated by GPT-4 and Claude3.
These findings underscore the efficacy of our
method. Moreover, our method is robust to Para-
phrase (Krishna et al., 2023) and Back-translate
attacks.

2 Related Work

Previous methods (Guo et al., 2023; Hu et al., 2023;
Guo and Yu, 2023) employ the semantic features
stored in the last layer of the language model to
perform detection. For example, Hello-Chatgpt-
detector-roberta (Guo et al., 2023) uses the Roberta
model to extract semantic features and then trains
a classifier to detect LLM-generated texts. The
features stored in the last layer are abstract repre-
sentations of semantic content, causing the method
to overfit the domain of the training set and show

deficiencies in generalization. Therefore, to ob-
tain more generalizable detection methods, current
researchers work on developing methods by lin-
guistic features. For example, DNA-GPT (Yang
et al., 2023) takes advantage of the divergence be-
tween multiple completions of a truncated passage.
Some researchers (McGovern et al., 2024) find sim-
ple classifiers on top of n-gram and part-of-speech
features can achieve very robust performance on
both in- and out-of-domain data. These “finger-
prints” retain the more primitive features of LLMs
and are more useful for detecting LLM-generated
text. However, these features are more susceptible
to exploitation by attackers, and detection meth-
ods based on linguistic features are less robust than
those based on BERT’s features when facing para-
phrase attacks (McGovern et al., 2024).

3 Methods

The goal of an LLM-generated text detection task
is to ascertain whether a given text is generated by
LLMs. Let x be the text to be detected. Formally,
x = (xg, 21, ...,T,—1) consists of ¢ tokens.

We leverage a pre-trained language model as the
encoder to extract intrinsic features. Pre-trained
language models consist of an embedding layer,
N stacked transformer layers, and an affine layer
¢(+) for predicting the distribution of the next
word. First, the embedding layer embeds the tokens
x = (xg, 1, ...,r—1) into a sequence of vectors
Hy = {h[()o), hgo)’ ... ,hiﬂ’l}. Then Hy would be
processed by each of the transformer layers succes-
sively. We denote the output of the j-th layer as
H;, (0 < j < N). Then, the vocabulary head ¢(-)
predicts the probability of the next token x; over
the vocabulary set X.

The method based on semantic features uses the
feature hEN) to the classifier.

Ysem_pred = D(hg%)’

where D represents the detector, Ysem pred repre-
sents the predicted label of the detector based on
semantic features. Instead of using the features
stored in the last layer, our method identifies the
layer with the largest distribution difference from
the last and first layers when projected to the vocab-
ulary space. We first predict the probability of the
next token x; over the vocabulary set A" for every
layer. For j-th layer, we predict the probability of
the next token x; over the vocabulary set X', where



J CA{1,..., N — 1} is a set of candidate layers,

qj(zy | v<y) = softmax(qS(hgj)))mt, jeJ.

The probability of the next token x; over the
vocabulary set X for the O-th and N-th layers are
denoted as qo(z¢ | v<¢) and gy (x¢ | ©<¢) , respec-
tively.

Then, we use Kullback-Leibler Divergence (KL
Divergence) to calculate the difference between the
distributions. We calculate the difference between
the distributions g;(x; | <), qo(z; | <) and
¢j(x¢ | <), qn (2 | £<¢). And we select the layer
with the largest KL divergence from the 0-th and V-
th layers, denoted the M-th layer (0 < M < N).
Discussions about the KL Divergence and selection
of layers are shown in Appendix A.

M = arg 1;.ﬂea};«{KL(qzv(ﬂc‘t |z<)|lg; (e | m<t))+
KL (qo(xt | w<t)llgs(ze [ w<4)) },

where J C {1,...,N — 1} is a set of candidate
layers.

After determining M, we use the features of the
M layer for classification.

M
Ypred = D(hgfl))’

where D represents the detector, ypreq represents
the predicted label of the detector.

We train D using binary cross-entropy loss, and
the loss function can be formalized as:

— (y( Vog(yiny)
=1

+(1—y) log(1 — yéfid)) ,

L=

where y represents the true label of x, and the pre-
dicted label of the detector is represented as Ypreq.

4 Experiments

4.1 Implementation details

In this paper, we focus on the black-box scenario
that closely mimics real-world conditions. In
this scenario, all detectors cannot determine the
source model of the text to be detected. We used
the first 200 entries of the open-source Human-
ChatGPT Comparison Corpus (HC3) (Guo et al.,
2023) dataset collected by previous researchers as
a training set to ensure the reproducibility of our

method. We use gte-Qwen1.5-7B-instruct! as
the encoder and train an end-to-end classification
model with fully connected layers. The details are
shown in Appendix B.

Datasets. We assessed the generalizability of de-
tection methods across various dataset domains and
generative models. For this purpose, we selected
three different datasets and utilized three genera-
tive models for data generation. Specifically, the
three datasets are Xsum (Narayan et al., 2018) for
news articles, WritingPrompts (Fan et al., 2018)
for story writing, PubMedQA (Jin et al., 2019) for
biomedical research question answering, which are
consistent with previous work (Bao et al., 2023)
in the field. We also utilized three current widely
used commercial closed-source models for data
generation, including ChatGPT (gpt-3-5-turbo) 2,
GPT-4 (gpt-4-0613) 3, and Claude3 (claude-3-opus-
20240229) “.

Evaluation metric. We measure the detection per-
formance in the area under the receiver operating
characteristic (AUROC).

Baselines. We compared our method with exist-
ing supervised detectors and zero-shot detectors.
For supervised detectors, we compared GPT-2 de-
tectors based on RoBERTa-base/large (Liu et al.,
2019) crafted by OpenAl, RADAR (Hu et al., 2023)
and CoCo (Liu et al., 2023). For zero-shot detec-
tors, we selected LRR (an amalgamation of log
probability and log-rank)(Su et al., 2023), DNA-
GPT (Yang et al., 2023), DetectGPT (Mitchell et al.,
2023), and its enhanced variants NPR (Su et al.,
2023) and Fast-DetectGPT (Bao et al., 2023). We
also chose classic zero-shot classifiers, and the re-
sults are shown in Appendix C.1

4.2 Performance

Detection effectiveness. The detection perfor-
mance of baselines and Text Fluoroscopy is shown
in Table 1. Our method achieves an average AU-
ROC of 96.73%, 97.94%, and 98.71% in detecting
three datasets generated by ChatGPT, GPT-4, and
Claude3, respectively. Notably, our method outper-
forms Fast-DetectGPT by 7.36% in average detec-
tion performance of datasets generated by GPT-4.

"https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct
“https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4
*https://docs.anthropic.com/en/docs/models-overview



Methods | ChatGPT GPT-4 Claude3
| XSum Writing PubMed Avg. | XSum Writing PubMed Avg. | XSum Writing PubMed  Avg.
RoBERTa-base | 0.9150 0.7084  0.6188 0.7474 | 0.6778 0.5068  0.5309 0.5718 | 0.8944 0.8036  0.3647 0.6876
RoBERTa-large | 0.8507 0.5480  0.6731 0.6906 | 0.6879 0.3822  0.6067 0.5589 | 0.9027 0.7128  0.3579  0.6578
RADAR 0.9972 0.9593 0.7372 0.8979 | 0.9931 0.8593  0.8029 0.8851 | 0.9952 0.9438  0.8029 0.9139
CoCo 0.5392  0.7741  0.5847 0.6327 | 0.5495 0.7473  0.5197 0.6055 | 0.4808 0.7633  0.7388  0.6610
LRR 09164 0.8962 0.7421 0.8516 | 0.7453 0.7040  0.6810 0.7101 | 0.9609 0.9598  0.8334  0.9180
DNA-GPT 0.9040 0.9449  0.7598 0.8696 | 0.7267 0.8164  0.7163  0.7531 | 0.9071 0.9655 0.5911 0.8212
NPR 0.7845 0.9697 0.5483 0.7675 | 0.5211 0.8276  0.4976  0.6154 | 0.9232 0.9696  0.7746  0.8891
Fast-DetectGPT | 0.9907 0.9916  0.9021 0.9615 | 0.9064 0.9611  0.8498 0.9058 | 0.9942 0.9783  0.9035 0.9587
Text Fluoroscopy | 0.9996 0.9856  0.9167  0.9673 | 0.9998 0.9835  0.9548 0.9794 | 0.9998 0.9979  0.9636 0.9871

Table 1: The detection performance (AUROC) of baselines and Text Fluoroscopy on three datasets generated by

ChatGPT, GPT-4, and Claude3.

Methods | ChatGPT GPT-4 Claude3
| Ori. DIPPER Back-translate | Ori.  DIPPER Back-translate | Ori.  DIPPER Back-translate

RoBERTa-base | 0.9150  0.8148 0.8379 0.6778  0.6469 0.7536 0.8944  0.8120 0.8052
RoBERTa-large | 0.8507  0.7884 0.6853 0.6879  0.6833 0.6660 0.9027  0.8153 0.7583
RADAR 0.9972  0.9964 0.9801 0.9931  0.9924 0.9608 0.9952  0.9940 0.9701
CoCo 0.5392  0.5374 0.5525 0.5495  0.5627 0.5510 0.4808  0.4886 0.5075
LRR 0.9164  0.8448 0.8621 0.7453  0.6607 0.8003 0.9609  0.9240 0.9243
DNA-GPT 0.9040  0.7733 0.8624 0.7267  0.5595 0.7776 0.9071  0.7876 0.8399
NPR 0.7845  0.5648 0.8050 0.5211  0.3006 0.6820 0.9232  0.7860 0.9042
Fast-DetectGPT | 0.9907  0.9536 0.9711 0.9064  0.8057 0.9137 0.9942  0.9720 0.9860
Text Fluoroscopy | 0.9996  0.9996 0.9980 | 0.9998  0.9994 0.9961 | 0.9998  0.9996 0.9995

Table 2: Detection performance of Text Fluoroscopy and the baselines in detecting Xsum dataset generated by

ChatGPT, GPT-4, and Claude3 with interference.

ChatGPT GPT4 Claude3

detecting with First Layer detecting with Last Layer s Text Fluoroscopy
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o o
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Figure 2: Detection AUROC of methods with different
layers.

4.3 Robustness

To better understand the performance of Text Flu-
oroscopy in real-world scenarios, we evaluate our
method under DIPPER (Paraphrase) (Krishna et al.,
2023) and back-translation attacks, details are
shown in Appendix C.2. From the results shown in
Table 2, it can be observed that when facing the two
attacks, the detection performance of our methods
is still better than other methods, indicating that
our method is more robust in real-world scenar-
ios. We believe this advantage arises because our
method extracts intrinsic features independently of
semantic features, rendering the semantic attack
ineffective and ensuring robustness.

4.4 Ablation studies

We conducted ablation studies to reveal the impact
of the selection of layers. We evaluated the average

AUROC of detection with the first and last layer
on three datasets generated by ChatGPT, GPT-4,
and Claude3. The results are shown in Figure 2.
It can be observed that the detection performance
of methods with the first and last layer features
is poorer than Text Fluoroscopy. This indicates
that semantic and linguistic features interfere with
detection quality, while Text Fluoroscopy chooses
intrinsic features that can effectively detect LLM-
generated text.

5 Conclusion

In this paper, we design Text Fluoroscopy, a black-
box method for detecting LLM-generated text
through intrinsic features. Our method captures
the intrinsic features by identifying the layer with
the largest distribution difference from the first and
last layers when projected to the vocabulary space.
Compared with previous methods, we reduce the
impact of semantic features on the detection pro-
cess to achieve better detection quality and gener-
alization. Our method can effectively detect LLM-
generated texts and is more robust in real-world
scenarios. We aspire that Text Fluoroscopy will in-
spire future research in LLM-generated text detec-
tion and offer insightful references for identifying
content generated by LMs in other fields.



6 Limitations

Although our method is simple and effective, it still
has some limitations. In our detection process, we
need to compute each layer of the pre-trained lan-
guage model to determine the layer with intrinsic
features, which will cause a time delay. We evalu-
ated the average time cost by our method and the
other methods in detecting a piece of text, and the
results are displayed in Table 3.

Our method’s average cost time in detecting
a piece of text from three datasets generated by
ChatGPT, GPT-4, and Claude3 is 0.5283s,0.5145s,
and 0.4995s, respectively. However, the detection
method only using the last layer takes just 0.0776s,
0.0948s, and 0.0808s, respectively.

Methods | ChatGPT | GPT-4 | Claude3

Detection with the Last Layer | 0.0776s | 0.0948s | 0.0808s
Text Fluoroscopy 0.5283s | 0.5145s | 0.4995s
Detection with the 30-th layer | 0.0815s | 0.0801s | 0.0785s

Table 3: The average time cost for detecting a piece of
text from three datasets generated by ChatGPT, GPT-4,
and Claude3 with the different layers of detection.

To overcome this limitation, we hope to find a
fixed layer with intrinsic features to reduce the cost
of time while maintaining accuracy. Therefore,
we tested the average detection AUROC of three
datasets generated by ChatGPT, GPT-4, and Clu-
ade3 with the different layers, as shown in Figure 3.
We found that the average detection AUROC gen-
erally increases as the layers deepen but decreases
after the 30-th layer. This observation also supports
the effectiveness of using middle layers for detec-
tion. When using a fixed layer, the overall detection
AUROC peaks at around the 30-th layer. Therefore,
we use the detection with the 30-th layer to reduce
time cost. The time cost for detecting a piece of
text with the 30-th layer is shown in Table 3.

We also tested the AUROC of detection with
the 30-th layer, shown in Table 4. The detec-
tion with the 30-th layer achieves an average AU-
ROC 0of 96.34%, 97.79%, and 98.79% in detecting
three datasets generated by ChatGPT, GPT-4, and
Claude3, respectively. Text Fluoroscopy has higher
average AUROC of 96.73%, 97.94%, and 98.71%,
respectively. Using the fixed 30-th layer, the de-
tection speed can be increased by approximately 5
times with an accuracy decrease of less than 0.4%
compared to Text Fluoroscopy.
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Figure 3: The average detection AUROC of three
datasets generated by ChatGPT, GPT-4, and Cluade3
with the different layers.
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A The KL Divergence and Selection of
Layers.

To fully illustrate the validity of using KL Diver-
gence for layer selection, we tested the KL Diver-
gence between the distributions of the first layer
and the i-th layer, and the AUROC of detection
with the ¢-th layer. The results are shown in Fig-
ure 4. The figure shows that the KL Divergence
and AUROC exhibit similar trends. They both grad-
ually increase over the first 30-th layers but show a
decreasing trend after the 30-th layer.

B Implementation Details

Implementation. We used the first 200 entries
of the open-source Human-ChatGPT Comparison
Corpus (HC3) (Guo et al., 2023) dataset collected
by previous researchers as a training set to ensure
the reproducibility of our method. The ratio for
splitting the training and validation is 8 : 1. we
use gte-Qwen1 .5-7B-instruct’ as the encoder
which can encode texts with a maximum of 32K
tokens into embeddings of 4096 dimensions, while
the classifier consists of three fully connected lay-
ers with Tanh function. The dimensions of the
intermediate layers in the classifier are 1024 and
512, respectively. The batch size is set to 16 and
Adam (Kingma and Ba, 2014) optimizer is em-
ployed with an initial learning rate of 3e — 3. We
train the classifier for 10 epochs on the training
set and utilize a validation set to select the weights
that yield the best performance. All experiments
are conducted on a workstation equipped with 4
NVIDIA RTX4090 GPUs.

Evaluation metric. We measure the detection per-
formance in the area under the receiver operating
characteristic (AUROC). AUROC ranges from 0.0
to 1.0, mathematically denoting the probability of
a random machine-generated text having a higher
predicted probability of being machine-generated
than a random human-written text. A higher AU-
ROC value indicates a better detection quality.

C Additional Experimental Results

C.1 Detection effectiveness.

We also compared other detection methods, includ-
ing Likelihood (mean log probabilities)(Gehrmann
et al., 2019), Entropy (mean token entropy of the

Shttps://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct

predictive distribution)(Ippolito et al., 2019), Lo-
gRank (average log of ranks in descending order
by probabilities) (Solaiman et al., 2019), Detect-
GPT (Mitchell et al., 2023). The results are shown
in Table 4. Our method achieves an average AU-
ROC of 96.73%, 97.94%, and 98.71% in detect-
ing three datasets generated by ChatGPT, GPT-4,
and Claude3, respectively. Likelihood, which is
the best method among the baselines shown in
the table, has a lower average AUROC of 93.64%,
82.12%, and 95.81%, respectively.

C.2 Robustness.

Existing research (Krishna et al., 2023; Sadasivan
et al., 2023) has pointed out that previous methods
exhibit performance degradation in complex sce-
narios where the text to be detected is subjected
to perturbations. To better understand the perfor-
mance of Text Fluoroscopy in real-world scenarios,
we evaluate our detection method under two differ-
ent modification methods.

The first one is the proposed paraphrasing at-
tack called DIPPER (Krishna et al., 2023) (or Dis-
course Paraphrase). DIPPER is an 11B-parameter
paraphrase generation model built by fine-tuning
T5-XXL. It can paraphrase paragraph-length texts,
re-order content, and optionally leverage context,
such as input prompts.

The second perturbation method we used, the so-
called back-translation attack, is more accessible to
a broader audience and does not require specialized
knowledge. Back-translation refers to the action of
translating a work that has previously been trans-
lated into the same language. We employed DeepL
Translator © to translate the given English text into
Chinese, followed by a subsequent translation back
into English.

We present the detection performance of our
method and baselines in detecting the Xsum dataset
generated by ChatGPT, GPT-4, and Claude3 with
interference in Table 5. RADAR shows the small-
est decrease among baselines against DIPPER at-
tacks, especially for text generated by GPT-4, with
a decrease of 00.07%, illustrating the robustness of
RADAR in incorporating adversarial networks into
detection. However, Our method maintains opti-
mal detection performance after both DIPPER and
back-translation attacks. The detection AUROC
of our method is 99.96% and 99.80% for detect-
ing the Xsum dataset generated by ChatGPT under

6ht’cps: //www.deepl.com/en/docs-api/
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Figure 4: The KL Divergence between the distributions of the first layer and the ¢-th layer, and the AUROC of
detection with the i-th layer.

| ChatGPT GPT-4 Claude3
Methods
‘ XSum  Writing PubMed  Avg. | XSum Writing PubMed Avg. | XSum Writing PubMed  Avg.
RoBERTa-base 09150 0.7084 0.6188 0.7474 | 0.6778 0.5068  0.5309 0.5718 | 0.8944 0.8036  0.3647 0.6876
RoBERTa-large 0.8507 0.5480 0.6731  0.6906 | 0.6879 0.3822  0.6067 0.5589 | 0.9027 0.7128  0.3579  0.6578
RADAR 0.9972 0.9593  0.7372  0.8979 | 0.9931 0.8593  0.8029 0.8851 | 0.9952 0.9438  0.8029 0.9139
CoCo 0.5392  0.7741  0.5847 0.6327 | 0.5495 0.7473  0.5197 0.6055 | 0.4808 0.7633  0.7388  0.6610
Likelihood 09577 0.9739  0.8776  0.9364 | 0.7982 0.8553  0.8100 0.8212 | 0.9760 0.9744  0.9240 0.9581
Entropy 0.3305 0.1901  0.2766  0.2657 | 0.4364 03703  0.3296  0.3788 | 0.4109 0.0836  0.1686  0.2210
LogRank 0.9584 0.9656  0.8680 0.9307 | 0.7980 0.8289  0.7997  0.8089 | 0.9783 0.9732  0.9260  0.9592
LRR 09164 0.8962 0.7421  0.8516 | 0.7453 0.7040  0.6810 0.7101 | 0.9609 0.9598  0.8334  0.9180
DNA-GPT 0.9040 0.9449  0.7598 0.8696 | 0.7267 0.8164  0.7163  0.7531 | 0.9071  0.9655  0.5911  0.8212
NPR 0.7845 0.9697  0.5483  0.7675 | 0.5211 0.8276  0.4976 0.6154 | 0.9232 0.9696  0.7746  0.8891
DetectGPT 0.4594 0.8008  0.3804 0.5469 | 0.3408 0.6542  0.3675 0.4542 | 0.4323 0.6800  0.7559  0.6227
Fast-DetectGPT 0.9907 0.9916 0.9021 0.9615 | 0.9064 0.9611  0.8498 0.9058 | 0.9942 0.9783  0.9035 0.9587
Text Fluoroscopy 0.9996 0.9856  0.9167 0.9673 | 0.9998 0.9835  0.9548 0.9794 | 0.9998 0.9979  0.9636 0.9871
Text Fluoroscopy (30-th Layer) | 0.9996 0.9819  0.9088  0.9634 | 0.9997 0.9800 0.9539 0.9779 | 0.9995 0.9968  0.9674 0.9879

Table 4: The detection performance (AUROC) of baselines and Text Fluoroscopy on three datasets generated by
ChatGPT, GPT-4, and Claude3.

Methods | ChatGPT GPT-4 Claude3
| Ori. DIPPER  Back-translate | Ori. DIPPER  Back-translate | Ori. DIPPER Back-translate

RoBERTa-base 09150 0.8148 0.8379 0.6778  0.6469 0.7536 0.8944  0.8120 0.8052
RoBERTa-large 0.8507 0.7884 0.6853 0.6879  0.6833 0.6660 0.9027 0.8153 0.7583
RADAR 0.9972  0.9964 0.9801 0.9931  0.9924 0.9608 0.9952  0.9940 0.9701
CoCo 0.5392  0.5374 0.5525 0.5495  0.5627 0.5510 0.4808  0.4886 0.5075
Likelihood 0.9577  0.8438 0.9306 0.7982  0.6296 0.8449 0.9760  0.9080 0.9446
Entropy 0.3305 04514 0.3008 0.4364  0.5552 0.3705 0.4109 0.4978 0.3639
LogRank 0.9584  0.8596 0.9260 0.7980 0.6432 0.8436 0.9783  0.9256 0.9488
LRR 09164  0.8448 0.8621 0.7453  0.6607 0.8003 0.9609  0.9240 0.9243
DNA-GPT 0.9040  0.7733 0.8624 0.7267  0.5595 0.7776 0.9071  0.7876 0.8399
NPR 0.7845  0.5648 0.8050 0.5211  0.3006 0.6820 0.9232  0.7860 0.9042
DetectGPT 0.4594  0.3074 0.5417 0.3408 0.1823 0.4530 0.4323  0.3283 0.5273
Fast-DetectGPT 0.9907 0.9536 0.9711 0.9064  0.8057 0.9137 0.9942  0.9720 0.9860
Text Fluoroscopy 0.9996  0.9996 0.9980 0.9998  0.9994 0.9961 0.9998  0.9996 0.9995
Text Fluoroscopy(30-th Layer) | 0.9634  0.9995 0.9966 0.9779  0.9993 0.9942 0.9879  0.9995 0.9983

Table 5: Detection performance of Text Fluoroscopy and the baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference.



DIPPER and back-translation attacks, respectively,
indicating that our method is more robust in real-
world scenarios.
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