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Abstract

We investigate approaches comparing AlphaGo-style methods, initialized from human
policies, with AlphaZero-style learning from scratch for real-world control tasks. While
AlphaZero achieved superior performance in Go without human data, we hypothesize
that for human-centered environments, human policies can encode safety constraints
and behavioral priors difficult to capture in reward functions alone. We evaluate these
approaches on a realistic driving simulator using a PID controller as our human-level
baseline. Our results show that human-guided Monte Carlo Tree Search (MCTS) sig-
nificantly outperforms the PID controller, achieving 23% higher rewards. Importantly,
standard AlphaZero Continuous fails to converge due to exploration instability. We
explore two key components for stable convergence: guided exploration and guided
rollouts. These findings suggest that human priors may provide crucial constraints for
safe and efficient learning in real-world reinforcement learning applications.

1 Introduction

Deep reinforcement learning has achieved superhuman performance in games and robotics (Silver
et al., 2018; Kober et al., 2013). In the game of Go, AlphaZero ultimately outperformed AlphaGo by
learning completely from self-play, while AlphaGo first trained on human expert games before rein-
forcement learning. However, for real-world domains like autonomous driving or industrial robotics
which are inherently human-centered, the optimal learning strategy remains largely unexplored.

Does leveraging priors from human policies outperform learning from scratch in
human-centered control environments?

We hypothesize that real-world control tasks benefit from human initialization because human poli-
cies inherently encode safety constraints and preferred behaviors that are difficult to specify through
reward functions alone. Unlike games which have well-defined rules and rewards, real-world control
systems often operate in noisy, safety-critical environments. This leads to constraints on exploration
which can hinder learning for reinforcement learning systems.

In this work, we investigate this hypothesis by comparing AlphaGo-style methods, which utilize
human behavioral priors, with AlphaZero-style learning from scratch on a realistic driving control
task. Specifically, we evaluate steering control using the benchmark Comma AI Controls Challenge
(Comma AI, 2024), which simulates real-world vehicle dynamics with a GPT-based model trained
on customer data.
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2 Background

In this section, we provide background on key algorithm foundations used in our experiments.

2.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an online search and planning algorithm (Coulom, 2007).
Unlike exhaustive search, MCTS selectively explores promising parts of the search tree, and caches
local statistics for each node. The four key stages of MCTS are: selection using Upper Confidence
Bound for Trees (UCT), expansion of leaf nodes, simulation via random rollouts to terminal states,
and backpropagation of rewards to update node statistics. After iteratively building up a search tree,
a final action is selected from the current state (i.e., root node) and executed in the environment.

2.2 AlphaZero and AlphaGo

AlphaZero has achieved state-of-the-art, super-human performance in Chess, Shogi, and the game
of Go (Moerland et al., 2018; Schrittwieser et al., 2020; Silver et al., 2018). The key innovation of
AlphaZero is the augmentation of Monte Carlo tree search (MCTS) with a neural network generated
policy. The augmented policy can learn to generalize from self-play, and progressively bootstraps
the network from random initialization up to superhuman play, without requiring extra human input.
AlphaGo, in contrast, first learned from human expert games through supervised learning before
improving via self-play reinforcement learning.

2.3 Controls Challenge

Classical control theory provides mathematical frameworks for regulating system behavior, with
Proportional-Integral-Derivative (PID) controllers remain widely used in practice due to their sim-
plicity and effectiveness (Åström & Hägglund, 2006). However, autonomous vehicle control
presents challenges including nonlinear dynamics, environment noise, and real-time performance
requirements, which often make conventional control methods insufficient (Rajamani, 2011).

The Comma AI Controls Challenge (Comma AI, 2024) is a realistic driving simulator built using
real-world driving data (illustrated in Figure 1). The goal is to output torque control to steer a car
along a desired trajectory, while minimizing control effort. To simulate the car’s steering responses,
the benchmark uses a GPT-based simulator trained on real-world noisy dynamics from customer
vehicles.
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Figure 1: Control challenge diagram showing interaction between learned policy and simulator.

The controls challenge captures three critical aspects of real-world RL: (1) high-dimensional con-
tinuous state-action spaces, (2) sensitive dynamics where errors accumulate rapidly, and (3) realistic
noise from a simulator trained on real vehicle data.
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3 Related Work

Reinforcement learning (RL) approaches have shown promise in continuous control tasks (Lillicrap
et al., 2016; Haarnoja et al., 2018; Schulman et al., 2017). These methods can learn control policies
directly from interaction with the environment, which are generic solutions that can outperform
classical hand-crafted controllers. Model-free RL methods learn a direct mapping from states to
actions, and model-based methods utilize an environment simulator to derive a controller(Wang
et al., 2019).

However, learning-based controllers face challenges in safety-critical applications like autonomous
driving, where balancing safe exploration and exploitation becomes difficult. This has led to interest
in hybrid methods, which combine model-based planning with learned components. These hybrid
methods offer several advantages: they can separate the exploration and learning phases, provide
safer exploration through model planning, and achieve greater data-efficiency than pure model-free
approaches (Wang et al., 2019).

AlphaZero is a hybrid approach which combines neural networks with tree-based search. Recent
work has extended AlphaZero beyond discrete games. AlphaZero Continuous (A0C) adapted the
algorithm to continuous action spaces by replacing self-play with simulation and using progressive
widening for action expansion (Moerland et al., 2018). Moss et al. (2024) further generalized these
methods to partially observable environments.

In autonomous driving, Hoel et al. (2020) applied AlphaGo Zero for discrete decision-making in
highway lane changes. More recently, Cusumano-Towner et al. (2025) demonstrated large-scale
self-play reinforcement learning for driving policies, by simulating copies of its own agent for ro-
bust policy learning. These works illustrate that the core ideas of AlphaZero—self-play, MCTS
search, and neural network learning—can be successfully applied to self-driving. However, the
approaches focus on high-level planning rather than low-level continuous control, which presents
unique challenges including noise sensitivity and safety requirements.

In previous work, Xu (2024) used model-free RL methods to learn a low-level autonomous vehicle
controller on the controls challenge. While Proximal Policy Optimization (PPO) faced difficulties
with efficient exploration in the large continuous action space, evolutionary methods were able to
converge reliably, yet do not scale well to larger parameter counts (Schulman et al., 2017; Hansen,
2023). The challenge of safe and efficient exploration motivate our hybrid learning approach, which
combines human behavior priors with planning over an internal model of vehicle dynamics.

4 Methods

We compare three approaches: (1) a tuned PID controller as our human baseline, (2) standard Alp-
haZero learning from scratch, and (3) AlphaGo Control with human guidance.

4.1 Baseline: PID Controller

We use a Proportional-Integral-Derivative (PID) controller as our human-level policy baseline. The
controller parameters (Kp = 0.3,Ki = 0.05,Kd = −0.1) were manually tuned for the environment
task and encode human preferences for desired control behavior.

4.2 AlphaZero Implementation

We developed a parallelized AlphaZero Continuous (A0C) implementation combining MCTS with
neural network learning. Our implementation differs from Moerland et al. (2018) since we use Q-
value estimates rather than normalized visit counts to construct the target policy, and we employ a
softmax temperature to control the sharpness of the distribution. The policy network learns from
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MCTS search results using cross-entropy loss:

Lpolicy = Es∼D

[
−

∑
a∈A

πMCTS(a|s) log πθ(a|s)

]
where πMCTS(a|s) = softmax(Q(s, a)/τ) is the target policy derived from Q-values with tempera-
ture τ , and πθ(a|s) is the neural network policy. The temperature parameter prevents overconfident
target policies when Q-value estimates have high variance.

The value network is trained to predict expected returns minimizing mean squared error:

Lvalue = Es∼D
[
(Vϕ(s)− z)2

]
where z is the discounted return from MCTS rollouts and Vϕ(s) is the value network prediction.

The policy and value network are distilled from the MCTS exploration. The networks enable gen-
eralization and improves MCTS efficiency by (1) reducing search breadth (policy network biases
exploration toward promising actions) and (2) reducing search depth (truncating rollouts and using
value network leaf node estimates).

4.3 AlphaGo Control

Standard MCTS planning performed poorly in the control environment due to action sensitivity in
closed-loop feedback systems. Search depths beyond 2-3 steps caused rapid error accumulation,
leading to extreme Q-value estimates and system divergence (Figure 4c). We experimented with
two key modifications to address the instability:

Guided exploration. Instead of initializing with sampling from a random policy, we sample ac-
tions using Gaussian exploration around the PID policy output:

at ∼ N (πPID(st), σ
2)

where πPID is the PID controller policy and σ2 is the action variance, controlling the amount of
exploration around the selected action.

Rationale. While discrete AlphaZero uses policy priors πθ(a|s) as probability weights for action
selection, continuous action spaces have unbounded probability densities that cannot be directly
used as weights. Our method achieves similar bias toward promising actions by sampling from a
Gaussian centered on the expert policy, ensuring exploration remains within a reasonable action
region while preserving the ability to discover improvements.

Guided rollouts. We replace random simulation rollouts used in standard AlphaZero with PID-
guided rollouts. At each timestep, we explore alternative actions from the root node using the action
sampling above, but for all descendant nodes, we follow the PID policy:

at ∼

{
N (πPID(st), σ

2) if root node
πPID(st) otherwise

Rationale. This formulation is well-suited for policy improvement because: (1) it provides low-
variance value estimates by leveraging the known PID policy for rollouts, in comparison with Monte
Carlo rollouts which are high-variance, and (2) it enables direct policy improvement by compar-
ing the value of alternative actions against the current policy, following the standard Q-learning
paradigm where π′(s) = argmaxa Q

π(s, a) yields policy improvement when Qπ(s, a) estimates
are accurate.

These modifications enable more stable policy improvement through Qπ(s, a) estimates. The ap-
proach preserves MCTS’s ability to discover improved policies, while avoiding the exploration in-
stability in standard tree search.
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5 Results

The Comma AI Controls Challenge (Comma AI, 2024) is used as the test benchmark to evaluate
learned policies.

5.1 Planning Performance

We first evaluate the planning capabilities of different MCTS variants. Human-guided MCTS
achieved 23% lower cost than the PID baseline, while standard MCTS failed to converge due to
exploration instability (Table 1).

Table 1: Planning method comparison. Results averaged over 10 seeded evaluation rollouts (200
steps each) with search depth d = 3 and simulations n = 10. MCTS planning requires 8 times
longer execution time per training step (0.627s vs 0.075s for PID baseline), highlighting the tradeoff
between planning accuracy and computational efficiency.

Algorithm Total Cost (± std) Runtime/Step

PID (baseline) 80.17 (± 95.04) 0.075s
Standard MCTS 6443.13 (± 4657.55) 0.605s
Human-guided MCTS 61.70 (± 42.64) 0.627s

5.2 Policy Learning Results

After distilling MCTS exploration into neural networks, we evaluated the learned policies over 5,000
rollouts. AlphaGo Control significantly outperformed the standard AlphaZero (Table 2).

Table 2: The policy cost is calculated over 5,000 trajectory rollouts. The resulting mean and standard
deviation are are reported across 10 random seeds to ensure statistical significance. AlphaZero
training used 100 workers and 30 iterations.

Algorithm Total Cost Lat Accel Cost Jerk Cost

Standard AlphaZero 4954.00 (± 846.50) 98.55 (± 17.48) 26.86 (± 2.16)
AlphaGo Control 197.68 (± 8.50) 3.36 (± 0.15) 29.64 (± 3.17)

Figure 2 shows that AlphaGo Control achieves stable learning with consistent reward improve-
ment, while standard AlphaZero fails to converge. This may be due to the exploration-exploitation
dilemma, where deviating from stable policies leads to error accumulation, preventing learning from
random initialization.

5.3 Ablation Studies

We validated our design choices through ablation studies removing (A) guided exploration and (B)
guided rollouts. Figure 3 shows that both components are essential to stable learning.

Qualitatively, ablation A (i.e., no guided exploration) learns oscillatory control behavior, while ab-
lation B (no guided rollouts) learns conservative policies that produce minimal control actions (Fig-
ure 5). The oscillatory behavior may be due to poor initial actions from a randomly initialized pol-
icy. The conservative behavior in ablation B suggests that high-variance value estimates may lead
to similar Q-values across actions, causing the policy to default to low-magnitude control outputs
to minimize immediate penalties. Furthermore, the difference in policy behaviors suggest multiple
local optima exist, and human priors can help select for behaviorally optimal solutions.
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Figure 2: Learning curves comparing AlphaGo Control (human-guided) versus standard AlphaZero
(from scratch). Left: episode rewards during training showing stable improvement for AlphaGo
Control versus diverging returns for AlphaZero. Right: value network loss convergence.
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Figure 3: Learning curves for ablation studies. The AlphaGo Control learning algorithm is shown
in red. Without guided exploration or action sampling (green), random exploration fails to discover
improvements in the large continuous action space. Without guided rollouts (blue), high-variance
returns prevent effective value network learning, resulting in flat performance curves.

6 Conclusions

Our results suggest that human demonstrations can provide crucial constraints for safe exploration
in sensitive control environments. Importantly, standard AlphaZero Continuous fails to converge
due to exploration instability. We demonstrate in ablations two key components for stable conver-
gence: (1) guided exploration and (2) guided rollouts, both achieved by using human priors. These
components were used in the AlphaGo training framework to train a control policy, which showed
greater stability over standard AlphaZero learning from scratch.

This finding suggests that human priors can be effective for safe exploration in real-world control
tasks. Unlike games with well-defined rules, control systems require careful balance between ex-
ploration and safety in order to achieve stable learning, which human priors may naturally provide.
While standard MCTS diverges rapidly in the control setting, human-guided search achieves sta-
ble improvement with 23% better performance than baseline PID control. While we used a PID
controller as our human policy, this could be replaced with other heuristics or initializing a policy
learned through imitation learning from human data. These can extend beyond driving controls to
other human-centered domain where safety and exploration in low-level continuous state spaces is
important.
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Our work provides preliminary evidence that in real-world applications, behavior priors—such as
those used in AlphaGo—lead to safer and more stable learning compared to from-scratch approach
like AlphaZero. However, there are several limitations to our work. First, we focus on a single
control task with limited scope and complexity. Second, computational constraints restricted our
MCTS search depth, potentially limiting the full potential of from-scratch learning methods. Third,
our comparison uses a relatively simple PID baseline rather than more sophisticated hand-crafted
or imitation learning policies. Future work aims to scale up search and generalize to other tasks to
better evaluate from scratch and human-guided methods.

Appendix

Additional implementation details, training hyperparameters, and figures are included in the follow-
ing sections.

6.1 Problem Formulation

The controls challenge is formulated as a finite-horizon MDP M = {S,A, T,R, γ, Th}, where
S ⊆ Rns is the continuous state space, A ⊆ Rna is the continuous action space, T (s′ | s, a)
represents the GPT-based transition model, R(s, a) is the deterministic reward function, γ ∈ [0, 1)
is the discount factors, and Th is the time horizon. The reward function is defined as:

R(s, a) = − |alateral(s, a)− adesired| − λu∥a∥

The objective is to find the policy that maximizes the expected cumulative discounted reward:

π∗ = argmax
π

Eπ

[
Th−1∑
t=0

γtR(st, at)

]

The controller receives ego vehicle state st = {vego, aego, roll}, current and desired acceleration
(acurrent and adesired), and 20 seconds of future states and past context (st−20:t and st:t+20). The
controller output u is a continuous steering torque corresponding to a steering wheel input.

6.2 Gym Environment Implementation

A custom Gym wrapper for the Control Challenge is used for training the RL algorithms. The key
modifications from the Control Challenge (2.3) include: formulating the cost for each trajectory
rollout into a dense reward for each timestep, support for batched environment observations and
forward pass in the simulator, and utilizing a custom control state as a context window of past
states. More specifically, the custom ControlState class is used as the internal simulator for
MCTS with the following state representation: context window of state history, action history, and
current lateral acceleration history ot−C:t, at−C:t, st−C:t where C is the context window of past 20
timesteps.

6.3 Network Architecture

Both actor and critic networks use multi-layer perceptrons with [256, 256] hidden layers and ReLU
activation. The input to the network is 304-dimensional tensor, which includes:

• Current state: target/current lateral acceleration, roll, ego velocity/acceleration (5 dimensions)

• Context history: past 20 timesteps of states, actions, and lateral accelerations (100 dimensions)

• Future plan: next 5 seconds of target accelerations and predicted states (196 dimensions)

• PID terms: current error, integral error, derivative error (3 dimensions)

The actor outputs a Gaussian policy with learnable log standard deviation initialized to −2.
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6.4 Training Hyperparameters

Key training hyperparameters include: learning rate 1×10−3, batch size 10,000, 100 parallel work-
ers, 30 training iterations. MCTS used a depth of 3, 10 simulations per action, action sampling
variance 0.1, and discount factor of γ = 0.99. Full details are provided in Table 3.

Table 3: Hyperparameters used in AlphaGo Control training

Parameter Default Value Description

Training Parameters

Max iterations 30 Maximum training iterations
Episode steps 200 Steps per episode during rollout
Workers 100 Number of parallel tree workers
Learning rate 1× 10−3 Adam optimizer learning rate
Training epochs 10 Epochs per iteration
Batch size 10,000 Training batch size
Replay buffer size 100,000 Maximum replay buffer capacity

Network Architecture

Hidden sizes [256, 256] Hidden layer dimensions for actor/critic
Log std −2 Initial log standard deviation for actor
L2 regularization 1× 10−4 L2 penalty coefficient
Value loss weight 0.5 Weight for value function loss

MCTS Parameters

Exploration weight 0.1 UCB exploration constant
Discount factor (γ) 0.99 Reward discount factor
MCTS depth 3 Search tree depth
MCTS simulations 10 Number of simulations per action
Action variance 0.1 Variance for action sampling
UCB parameter (k) 2 UCB formula parameter
Dirichlet alpha (α) 0.5 Dirichlet noise parameter

Policy Training

Temperature (τ ) 1 Softmax temperature for policy targets
Entropy coefficient 0.001 Entropy regularization weight

Evaluation

Evaluation episodes 5 Episodes for evaluation during training
Evaluation steps 200 Steps per evaluation episode

6.5 Trajectory Analysis

Examples of control trajectories and qualitative analysis are provided. Figure 4 compare trajectories
from the planning algorithms versus the baseline PID policy trajectories. Figures 5 and 6 compare
the trajectories from ablation study.
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(a) Human-guided MCTS rollout (b) PID rollout

(c) Standard MCTS divergence

Figure 4: Comparison of trajectories for MCTS planning and baseline PID controller. Desired
tracking trajectory is in blue and current lateral acceleration trajectory in red. (a) Guided MCTS
exploration around PID actions can lead to discovering better actions. (b) This improvement is
particularly evident during rapid acceleration changes, where PID tends to overshoot. (c) Using
standard MCTS as an online planner (without additional modifications for stability), the lateral
acceleration diverges after a few timesteps. A search depth of 10 and 100 simulations per step were
used for standard MCTS, and search depth of 3 and 10 simulations per step for human-guided MCTS
which is more efficient.

Figure 5: Sampled trajectories for ablations. Top row: ablation A (no action sampling) produces
oscillatory behavior. Bottom row: ablation B (no guided rollouts) produces near-zero control output.
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Figure 6: Sampled trajectories for AlphaGo Control learned policy. The controller is able to properly
track lateral acceleration, as shown in the red and blue trajectories.
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