
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AutoScale: COMBINING MULTI-TASK OPTIMIZATION
WITH LINEAR SCALARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task learning is favored due to its efficiency and potential transfer learn-
ing achieved by sharing networks across tasks. While a series of multi-task op-
timization algorithms (MTOs) have been proposed to solve MTL optimization
challenges and enhance performance, recent research claims that simple linear
scalarization, which sums per-task loss with a carefully searched weight set, is
sufficient, casting doubt on the added value of more complex MTO algorithms. In
this paper, we provide a novel perspective that linear scalarization and MTOs are
closely related and can be combined to yield high performance and efficiency. We
show, for the first time, that a well-performing linear scalarization exhibits spe-
cific characteristics of certain optimization metrics proposed by MTOs, such as
high task gradient magnitude similarity and low condition number, via an exten-
sive empirical study. We then propose AutoScale, an efficient pipeline that lever-
ages these influential metrics to guide the search for optimal linear scalarization
weights. AutoScale shows superior performance than prior MTOs and performs
close to the searched weight performance consistently across different datasets.

1 INTRODUCTION

Multi-task learning (MTL) has gained significant attention in deep learning, due to its efficiency in
using a single network to learn multiple tasks, with acceptable or comparable performance to single-
task learning (Chen et al., 2018; Liu et al., 2024; Xin et al., 2022; Hu et al., 2024). Especially for
recent large-scale end-to-end models, MTL has become a convenient and attractive choice for users
and maintainers (Hu et al., 2023).

However, multi-task optimization (MTO) issues, such as gradient conflict and gradient dominance,
have been a challenge in MTL, which can lead to impartial learning, where tasks interfere and com-
pete for limited shared representation power (Chen et al., 2018; Liu et al., 2021b; Yu et al., 2020;
Senushkin et al., 2023; Ban & Ji, 2024; Lin et al., 2024). Over the years, researchers have developed
a series of multi-task optimization algorithms (MTOs) and proposed metrics to analyze and quantify
the optimization issues, subsequently used to guide the training process. Common MTO metrics
describe loss scale balance (Chennupati et al., 2019; Liu et al., 2021b), gradient magnitude (Chen
et al., 2018; Sener & Koltun, 2018; Liu et al., 2021b) and angle (Yu et al., 2020) similarities, stability
(Senushkin et al., 2023), and task convergence progress (Guo et al., 2018). While MTOs claim supe-
rior performance compared to unitary scalarization, which sums per-task losses with equal weights,
they are often criticized for their large computational and memory overhead due to per-task gradient
calculations (Xin et al., 2022; Kurin et al., 2022).

Recently, Xin et al. (2022); Kurin et al. (2022); Royer et al. (2024) surprisingly observe that linear
scalarization, which sums up the per-task loss with a fixed weight set, performs comparably or even
superior to MTOs when the task weights are carefully chosen. This finding is notable because linear
scalarization is conceptually and operationally simple, and it requires just a single backpropagation
during training, despite the high computation cost of weight search. There is hence an ongoing
debate about whether complicated MTO algorithms are necessary or even help.

To answer the question, we propose a novel perspective that bridges MTOs and linear scalarization:
certain metrics proposed by MTOs, designed to quantify optimization issues of multi-task training,
are useful in guiding the search for optimal linear scalarization weights. This offers a more efficient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

alternative to weight search methods, such as grid search. Specifically, through extensive exper-
iments, we show a strong correlation between linear scalarization performance and the key MTO
metrics during training, as depicted in Figure 3. Based on the insights, we propose AutoScale, a
two-phase automatic pipeline, which calculates an optimal weight set by optimizing key MTO met-
rics using gradient and loss information collected during the first training stage, and applies this
fixed weight set for linear scalarization in the remaining second stage. We demonstrate the effec-
tiveness of AutoScale across multiple datasets, including CityScapes (Cordts et al., 2016), NYUv2
(Silberman et al., 2012), and Nuscenes (Caesar et al., 2020).

To summarize, besides presenting a comprehensive summary of various MTO algorithms and met-
rics, our primary contributions are as follows:

• We identify, for the first time according to our knowledge, the relationship between MTO
metrics and optimal linear scalarization: a well-performing linear scalarization typically
exhibits specific characteristics of certain MTO metrics, such as high gradient similarity
among tasks and low condition number, which could serve as reliable indicators for deter-
mining the optimal weight set.

• We introduce AutoScale, an efficient two-phase pipeline combining both MTOs and linear
scalarization. Our method estimates an optimal linear scalarization weight set by optimiz-
ing key MTO metrics. Compared with gradient manipulating MTOs, our design reduces
training time significantly.

• We conduct extensive experiments to show that AutoScale outperforms prior MTO methods
in most cases, and performs close to the optimal linear scalarization, without the need for
grid search, across various datasets including a large-scale autonomous driving dataset.

Upon publication, our code will be available as open-source.

2 RELATED WORK

2.1 MULTI-TASK LEARNING: OVERVIEW

Research in multi-task learning (MTL), particularly within deep learning, has largely focused on
three main directions: (1) MTL-specific architectures, (2) task grouping, and (3) Multi-Task Op-
timization algorithms (MTOs). MTL-specific architecture aims to improve performance by de-
signing customized network structures for better handling multiple tasks (Misra et al., 2016; Dai
et al., 2016; Long et al., 2017; Ye & Xu, 2023). Task grouping, on the other hand, explores the
relationships among tasks and reduces negative transfer by grouping non-conflicting or minimally-
conflicting tasks during training (Thrun & O’Sullivan, 1996; Zamir et al., 2018; Standley et al.,
2020). Lastly, MTOs address the problem by designing optimal algorithms to manipulate and com-
bine task-specific gradients to update network parameters during back-propagation (Chen et al.,
2018; Senushkin et al., 2023; Liu et al., 2024). In this work, we focus on the last approach consid-
ering both MTOs and linear scalarization.

2.2 MULTI-TASK OPTIMIZATION

We categorize MTL training issues into five types: (1) gradient dominance, (2) gradient conflict, (3)
imbalanced convergence speed, (4) imbalanced loss, and (5) instability.

Gradient Dominance. Variations in the scale of task-wise gradients on the shared parameters create
impartial learning outcomes (Liu et al., 2021b), where the network converged primarily on tasks with
higher gradient magnitudes (as shown in Figure 1a). To tackle this, GradNorm (Chen et al., 2018)
dynamically adjusts the task weights to ensure the norm of each task’s scaled gradient is balanced.
While IMTL-G (Liu et al., 2021b) approaches this by finding an aggregated gradient with equal
projections onto each task gradient.

Gradient Conflict. Conflicting gradients with opposing directions (as shown in Figure 1b) could
cause negative transfers (Senushkin et al., 2023; Lee et al., 2018). CosReg (Suteu & Guo, 2019)
proposes a regularization term based on squared cosine similarity between tasks, penalizing the net-
work when conflicting gradients are generated. PCGrad (Yu et al., 2020), on the other hand, avoids

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Epochs

LossLoss

Epochs

(a) Gradient dominance

Epochs

LossLoss

Epochs

(b) Gradient conflict

Epochs

LossLoss

Epochs

(c) Imbalanced convergence

Epochs

LossLoss

Epochs

(d) Imbalanced loss scale

Figure 1: Illustration of multi-task training issues. gi and Li represent gradient and loss for task i.

task conflicts by projecting the gradient of one task onto the normal plane of another. Similarly, Liu
et al. (2021a) finds a conflict-averse direction to minimize overall conflicts, while GradDrop (Chen
et al., 2020) enforces the sign consistency across task gradients to reduce conflict. Navon et al.
(2022) tries to solve it as a Nash bargaining game.

Imbalanced Convergence Speed. Different tasks inherently have varying levels of difficulty, po-
tentially leading to different convergence speeds (Guo et al., 2018; Yun & Cho, 2023) as shown in
Figure 1c. To address this issue, methods like GradNorm (Chen et al., 2018), DTP (Guo et al., 2018),
DWA (Liu et al., 2019), AMTL (Yun & Cho, 2023) and ExcessMTL (He et al., 2024) define specific
measures of training convergence and adjust task weights based on these indicators. Additionally,
Jacob et al. (2023) proposes to train single-task networks alongside the MTL network, using the
convergence speed of the single-task network to guide online knowledge distillation.

Imbalanced Loss. Imbalances in the scale of task-specific losses (shown in Figure 1d) can result
in suboptimal training outcomes. Many works have been focused on equalizing the scale of task
losses. GLS (Chennupati et al., 2019) adopts geometric mean to prevent tasks with larger losses
from dominating the overall loss. Following GLS, Yun & Cho (2023) proposes a weighted geometric
mean of loss that is robust to scale variation. Liu et al. (2021b) proposes IMTL-L to derive task
weights to balance re-scaled losses.

Stability Aligned-MTL (Senushkin et al., 2023) defines stability in MTL training as the stability of
the linear system formed of task gradients. It proposes to stabilize the training process by aligning
the principal components of the gradient matrix.

Additionally, we further discuss previously proposed MTO metrics to quantify and analyze these
five MTL issues in section 3.1.

2.3 REVISITING LINEAR SCALARIZATION

In recent years, linear scalarization has been revisited and argued to be a superior alternative to more
complex MTOs. Although linear scalarization has been shown to fail beyond the non-convex part
of the Pareto front (Hu et al., 2024), studies such as Kurin et al. (2022); Xin et al. (2022); Elich
et al. (2024); Royer et al. (2024) demonstrate that, in practice, it achieves performance comparable
to or even better than other MTOs through large-scale experiments. However, a major open chal-
lenge for linear scalarization is identifying the optimal set of scalarization weights with minimal
computational overhead. Although more efficient search methods have been proposed (Royer et al.,
2024), they remain costly compared to directly applying existing MTOs due to requiring multiple
training runs. In this work, we address this problem of costly search by proposing a unified pipeline
to efficiently localize optimal scalarization weights with minimal overhead.

3 MTL METRICS IN LINEAR SCALARIZATION

Motivated by the ongoing debate between MTOs and linear scalarization in current literature, we
conduct experiments (as shown in Tables 1 and 2) to compare the two approaches on multiple
datasets. Our findings support the claim that linear scalarization performs as well as, if not bet-
ter than, MTOs, as argued in Elich et al. (2024); Kurin et al. (2022); Xin et al. (2022). However, we
acknowledge that weight search is challenging.

Existing works on MTOs, on the other hand, have made great efforts to reason and analyze potential
issues in multi-task training, such as gradient conflicts, and have introduced various MTO metrics to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 50000 100000 150000
Training iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Gradient magnitude similarity

0 50000 100000 150000
Training iteration

0.02

0.03

0.04

0.05

0.06

(b) Gradient cosine similarity

0 50000 100000 150000
Training iteration

5

10

15

20

25

(c) Condition number

0 50000 100000 150000
Training iteration

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(d) Std of inverse learning rate

0 50000 100000 150000
Training iteration

0.80

0.85

0.90

0.95

1.00

1.05

1.10

(e) Descending rate

0 50000 100000 150000
Training iteration

0.1

0.2

0.3

0.4

(f) Std of relative loss

Figure 2: Evaluation on different MTO metrics and how they evolve during the training process
of seven linear scalarization weight sets on the CityScapes dataset : three with good performance
(G), one moderate (M), and three with bad performance (B) , with the performance ranking: G1
> G2 > G3 > M > B3 > B2 > B1 R1 > R2 > R3 > R4 > R5 > R6 > R7. The metrics
include (a) gradient dominance: gradient magnitude similarity; (b) gradient conflict: gradient cosine
similarity; (c) training stability: condition number; (d,e) training progress: inverse learning rate, loss
descending rate; (f) loss balance: relative loss scale. ⋆Unless specified, the metric values represent the average across
tasks (or task pairs for metrics like similarity); captions with ”std” indicate the standard deviation across tasks. The performance is ranked by
∆m: measuring the average performance drop across tasks, as detailed in Section 5.

quantify the degree of these issues. In our work, we hypothesize that these metrics could be useful
to guide the search for optimal linear scalarization weights.

As a first step, we summarize and categorize the metrics proposed by previous MTO studies in the
following section.

3.1 MTL METRICS SUMMARY

Gradient Dominance. Gradient magnitude ratio |g1|
|g2| between a pair of tasks has been used com-

monly to measure gradient dominance (Huang et al., 2023). Yu et al. (2020) proposes to quantify
the gradient dominance of a pair of tasks via gradient magnitude similarity 2|g1|·|g2|

|g1|2+|g2|2 ∈ (0, 1]. A
higher value indicates higher gradient magnitude similarity (thus less dominance), while a lower
value reflects greater dominance.

Gradient Conflict. Previous works commonly define gradient conflict as when the cosine similarity
between two task gradients is negative, gi·gj

|gi||gj | < 0 (Suteu & Guo, 2019; Senushkin et al., 2023; Yu
et al., 2020). In addition, Suteu & Guo (2019) proposes quantifying this issue via the standard
deviation and mean over cosine similarities during training. Minimal conflict is indicated by both a
low standard deviation and a mean close to zero. One could also measure gradient conflict by the
cosine similarity between the task gradient and the update gradient (Liu et al., 2021b). We interpret
negative values as the task receiving negative updates.

Imbalanced Convergence Speed. The convergence speed is defined in various ways. Grad-
Norm (Chen et al., 2018) quantifies this via the inverse training rate, calculated as the ratio of the
current training loss to the initial loss lt/l0. DWA (Liu et al., 2019) employs the ratio of losses be-
tween two consecutive epochs lt/lt−1, referred to as the loss descending rate. Similarly, FAMO (Liu
et al., 2024) introduces the improvement ratio (lt− lt−1)/lt−1, which reflects the percentage change
in training loss between successive epochs. Javaloy & Valera (2021) uses the rate of change in
gradient magnitude to define task convergence speed. Guo et al. (2018) defines training progress

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Gradient magnitude similarity (b) Condition number (c) Std of relative loss

Figure 3: Performance (∆m ↓: average of performance drop compared to single-task learning,
lower value indicate higher performance, as detailed in Section 5) vs. metrics values (average over
training iterations) of 19 weight sets of linear scalarization. The plots illustrate a clear correlation
between high performance and high gradient magnitude similarity, low condition number, and low
standard deviation of relative loss among tasks.

using the notion of key performance indicator (KPI), in the range of [0, 1], where values closer to 1
indicate higher progress. On the other hand, Yun & Cho (2023) views the performance of a single-
task network as the optimal benchmark and uses the ratio between current multi-task performance
and single-task performance to balance training. Likewise, Jacob et al. (2023) trains multi-task and
single-task networks concurrently and use the ratio of their per-epoch performance as the conver-
gence indicator.

Loss Balance. Different tasks in MTL can have loss terms with a wide range of scales. For example,
the cross entropy loss applied for classification problems (Krizhevsky et al., 2012) typically falls
under 1, whereas L2 loss for depth estimation (Zhang et al., 2023) could have much larger values,
particularly when using millimeter units. One way to quantify loss balance is by the ratio between
the losses of two tasks. Alternatively, one could define loss similarity by replacing the gradient
magnitude |gi| to loss values li > 0 in gradient magnitude similarity (Yu et al., 2020).

Training Stability. Senushkin et al. (2023) highlights the importance of training stability, which
they measure using the condition number of the gradient matrix.

A complete list of metric summaries with mathematical formulas is provided in Appendix C.

3.2 SCALARIZATION WEIGHTS AND MTL METRICS

To investigate whether linear scalarization correlates with various metrics proposed by MTOs, we
conduct extensive experiments using wide range of scalarization weights, observing the trajectories
of MTL metrics during training as shown in Figure 2.

Surprisingly, we find that certain metrics, including gradient magnitude similarity, condition num-
ber, inverse learning rate and relative loss scale, serve as good indicators of performance, with clear
patterns distinguishing goodhigh-performance from badlow-performance linear scalarization sets.
Specifically, the better-performing weight sets exhibit higher gradient magnitude similarity (Fig-
ure 2a). For training stability, the condition number of the best-performing linear scalarization is the
lowest, approaching to 1 (Figure 2c). Regarding the training progress and loss balance, good weights
lead to a more balanced convergence and loss scale across tasks, as reflected by smaller standard de-
viations in inverse learning rates (Figure 2d) and relative loss scales (Figure 2f). Figure 3 further
illustrates the clear correlations between linear scalarization performance and key MTO metrics over
19 runs with different weight sets.

Conversely, the loss descending rate is less informative and could be discarded as a performance
indicator (Figure 2e). Additionally, since linear scalarization only scales per-task loss, it does not
affect the angle (cosine similarity) of the gradients between tasks (Figure 2b).

More MTO metrics visualization are provided in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 METHOD

Given the strong relationship between linear scalarization performance and the key MTO metrics,
where high performance corresponds to optimal MTO metric values, we hypothesize that the reverse
also holds: linear scalarization with task weights that is expected to produce optimal MTO metrics
values will lead to high performance. We can then leverage this to localize the optimal task weights
by optimizing the key metric value. To formalize this, we express this in optimization terms as
follows:

w∗ = argmin
w

E[F(w|{G}, {L})], s.t.
K∑
i=1

wi = K, (1)

Algorithm 1 AutoScale.

Require: Existing MTOs (e.g., PcGrad, IMTL-G), total
iterations T , exploration ratio α, window size τ , cost
function F(w), weight predictor function f
/* Phase 1: Exploration */
Gradient set G, Loss set L ← ∅
for t← 1 : αT do

Run MTOs(L)→manipulate gradient g / weight w
G ← G ∪ {gt}, L ← L ∪ {lt}

end for
/* Phase 2: Linear Scalarization */
Calculate weight for each sliding window of size τ
for i = 1 : αT/τ do

wi ← argminw F(w|{gi : gi+τ}, {li : li+τ})
end for
Determine fixed weight for rest (1− α)T iterations
ŵ∗ ← f({w1, w2, ..., wαT/τ})
for t← αT + 1 : T do

Run linear scalarization using ŵ∗

end for

where w = [w1 w2 ... wK]T

is the vector of K task weights for
linear scalarization. {G} and {L}
are the sets of task-wise gradients
w.r.t. the shared model parameters,
and task losses, collected over mul-
tiple training iterations. F(w) is a
generalized cost function condition-
ing on data including task gradients
and losses. It assigns lower val-
ues (rewards) to weights that produce
MTO metric values positively cor-
related with high performance, and
higher values (penalties) to those as-
sociated with negative performance,
as suggested in Figure 3. For in-
stance, a potential cost function could
penalize weights that result in im-
balanced magnitudes of scaled gra-
dients across tasks. In Section 4.1,
we define our proposed cost functions
F(w) for three key MTO metrics.

One could optimize Equation (1) over multiple training iterations, or across an entire training, or
even by leveraging data from multiple runs to account for network randomness during training, to
get a precise and robust optimal weight for a specific combination of dataset, tasks, and model.
However, note that more iterations or runs mean increased computational costs.

We then propose AutoScale, an efficient and practical two-stage pipeline that partitions a single
training run into two phases. The idea is to use the first phase’s statistics to calculate an approximated
optimal weight ŵ∗, which is then applied for linear scalarization in the remaining second phase. A
summary of AutoScale is provided in Algorithm 1.

Specifically, in the first Eexploration phase, we run a selected MTO algorithm (e.g. PCGrad, IMTL-
G) to collect training statistics, including gradients and losses, required for later weight optimization.
We divide the Eexploration iterations into disjoint windows. For each window with index i, a local
optimal weight set wi is calculated by optimizing key MTO metrics through minimizing the cost
function F(w). Using the local weight sets calculated for each window in the Eexploration phase,
we estimate an optimal weight set to be used in the subsequent Llinear Sscalarization phase. To do
this, we apply a predictor, f : {wi} 7→ ŵ∗, which maps the derived local weight sets to a single
output as the approximation of optimal weight. In Section 4.2, we introduce the specific design of
the weight predictor f({wi}).

4.1 COST FUNCTIONS

We construct our cost function, which is by definition computed over τ iterations, as the average of
per iteration cost function Ft(w) at iteration t: F(w) = 1

τ

∑i+τ
t=i F

t(w). In this work, we propose
and analyze three cost functions, based on the observations from the linear scalarization experiments,
considering gradient magnitude similarity, loss similarity, and condition number.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Gradient Magnitude Similarity Maximization (Equal |G|). We define Ft(w) = |Atw|, where
At ∈ R(

K
2)×K contains the magnitudes of task gradients, with each row concerns a pair of tasks.

Specifically,

At
row(i,j),k =


|gti | if k = i

−|gtj | if k = j

0 otherwise,
e.g. At|K=3 =

|gt1| −|gt2| 0
|gt1| 0 −|gt3|
0 |gt2| −|gt3|

 (2)

in which row(i, j) refers to the row index assigned to the task pair (i, j), i ̸= j. gti is the gradient of
task i at iteration t. With this construction, the cost is minimized when a set of task weights results
in equal magnitudes for all re-scaled task gradients.

Loss Similarity Maximization (Equal |l|). The objective is to find a set of weights that optimally
balance the task loss scales. It follows the same formulation as Equation (2), with gradient magni-
tudes |gti | replaced by loss scales |lti |.
Condition Number Minimization (Low Cond.). We defined the cost function as: Ft(w) =
κ(Gt

w) = σmax

σmin
, where κ(X) denotes the condition number of a matrix X, and Gt

w =

[w1g
t
1 w2g

t
2 ... wKgtK] is the gradient matrix consisting of scaled task gradients. Unlike Align-

MTL (Senushkin et al., 2023), which manipulates both the direction and magnitude of gradients, we
lower the condition number by rescaling the gradients using an optimal weight set.

4.2 WEIGHT PREDICTOR

Figure 4: Illustration of various f({w}).

In the second linear scalarization phase, as illus-
trated in Figure 4, we determine the weight for
the rest (1 − α)T iterations. We base the deci-
sion on the locally optimized weights set {w} =
{w1, w2, ..., wαT/τ} (marked as purple), calculated
from the collected gradients and losses during the
first αT iteration of exploration phase. We experi-
ment with five four simple methods, represented by
f : {wi} 7→ ŵ∗, as illustrated in Figure 4. 1) the av-
erage of all weight sets (Avg. W). 1

αT/τ

∑αT/τ
i=1 wi.

2) the weight set from the last window (Last. W).
wαT/τ . 3) the linearly extrapolated weight at iteration γT (L.E.). f({wi}) = f

{wi}
c (γT), where

f
{wi}
c (x) = ax + b, is a line fitted using {wi}. γ represents the training progress ratio, γ ∈ [0, 1],

with γ = 0 at the start of training and γ = 1 at its completion. 4) the exponentially extrapo-
lated weight at iteration γT (E.E). Similar to 3), the linear equation is replaced with an exponential
equation fwi

c (x) = ae−bx + c, where a, b, and c ∈ R are the fitted curve parameters.

5 EXPERIMENT

We demonstrate the effectiveness of our proposed AutoScale compared with various baselines on
different benchmarks.

Datasets and Models. We use three supervised MTL benchmarks, with a diverse range of dataset
scales and number of tasks, to evaluate our proposed method: Nuscenes (2 tasks), CityScapes (3
tasks), and NYU-v2 (4 tasks). Nuscenes (Caesar et al., 2020) is a challenging large-scale outdoor
benchmark for various autonomous driving tasks, among which we adopt 3D object detection and
bird-eye-view (BEV) map segmentation. It contains more than 40k annotated multi-modality sample
frames, each with six camera images and a 32-beam LiDAR pointcloud. We use UniTR (Wang
et al., 2023) as the network architecture for our experiment. According to our knowledge, we are
the first to systematically benchmark different MTOs in this scale of autonomous driving dataset,
providing a wider cover of the study. CityScapes (Cordts et al., 2016) dataset contains 5k street-view
RGB-D images with per-pixel annotations. We follow Senushkin et al. (2023) to use PSPNet (Zhao
et al., 2017) on a three-task setup, namely disparity estimation, instance, and semantic segmentation.
NYU-v2 (Silberman et al., 2012) is an indoor dataset consisting of 1449 RGB-D images and dense

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Perception of traffic sence (NUSCENES, two tasks, a
large scale dataset). We report Unitr (Wang et al., 2023) model
performance. Best scores are in gray , second-best in bold, and
third-best underlined. ⋆The performance reported for the searched weights repre-
sents the best result from 20 search trials. †s/iter denotes seconds per training iteration.

Method 3D Det.↑ Seg.↑ MR ∆mpos ∆m Time
mAP NDS mIoU ↓ % ↓ % ↓ s/iter† ↓

STL Baseline 0.693 0.725 0.701 - - -

MTOs
UM 0.681 0.716 0.698 5.5 1.91 0.95 0.455
Gradnorm 0.677 0.714 0.700 5.5 2.15 1.07 1.130
MGDA 0.647 0.696 0.660 10.0 11.15 5.57 1.157
PCGrad 0.671 0.711 0.657 9.5 8.82 4.41 1.170
IMTL-G 0.690 0.720 0.696 5.0 1.27 0.63 1.158
RLW 0.699 0.723 0.664 5.5 5.27 2.45 0.455
Aligned-MTL 0.664 0.706 0.680 8.5 6.50 3.25 1.213
FAMO 0.643 0.692 0.702 7.0 5.86 2.87 0.457

Linear Scalarization
Unitary 0.699 0.729 0.680 4.0 2.98 1.14 0.453Searched weights⋆ 0.695 0.725 0.706 2.5 0.00 -0.44

AutoScale (Ours) 0.684 0.718 0.711 3.0 1.12 -0.10 0.591

Figure 5: Performance (∆m%)
vs. training time for UniTR on
Nuscenes. ⋆The time for optimal weight
search is not included and was obtained after
20 search trials.

per-pixel labeling with 13 classes. We adopt TaskPrompter (Ye & Xu, 2023), a state-of-the-art
MTL model, and evaluate four scene understanding tasks: depth estimation, semantic segmentation,
surface normal estimation, and edge prediction tasks. Further details of the experiment setup can be
found in Appendix D.

Baseline. We compare our AutoScale with single-task learning (STL), UM (Kendall et al., 2018),
GradNorm (Chen et al., 2018), MDGA (Sener & Koltun, 2018), IMTL-G (Liu et al., 2021b), PC-
Grad (Yu et al., 2020), RLW (Lin et al., 2021), Aligned-MTL (Senushkin et al., 2023), FAMO (Liu
et al., 2024), unitary scalarization, and linear scalarization with the best set of task weights found by
grid search.

Evaluation Metrics. Following previous methods (Senushkin et al., 2023; Liu et al., 2024), we
use the Mean Rank (MR) and ∆m metrics to evaluate multi-task performance. 1) ∆m measures
the average performance drop relative to the single-task baseline across all tasks. ∆m =
1
K

∑K

k=1(−1)σkδmk. Here, we denote δmk = Mk−Bk

Bk
× 100 as the performance difference on

task k, where Mk and Bk are the kth task metric evaluated on a multi-task model and a single-task
baseline respectively. σk = 1 if Mk is higher the better, and σk = 0 otherwise. 2) Mean Rank
(MR) is the average ranking of performance across all tasks over all methods. For example, if a
method ranks first on one task but second on the other task, MR = (1 + 2)/2 = 1.5.

In addition to the above conventional metrics, we propose a new metric ∆mpos, which sums up
all positive per-task performance changes δm, that is, total performance degradation: ∆mpos =∑

K

k=1
max((−1)σkδmk, 0). This metric captures the total percentage of performance drops

((−1)σkδmk > 0) while disregarding improvements ((−1)σkδmk < 0). When ∆m is similar
across methods, ∆mpos helps distinguish which methods minimize degradation, offering a lower
bound on the percentage of tasks that perform worse. It offers valuable insight, particularly in
scenarios where minimizing overall performance drops is prioritized over sacrificing some tasks’
performance to enhance others.

Our Implementation. For all experiments on three benchmark datasets shown in Table 1 and
Table 2, we use the following settings for our AutoScale: in the first exploration phase, we run
IMTL-G (Liu et al., 2021b) to collect gradients and losses, with an exploration ratio α = 0.2,
window size τ = 50, and a Gradient Magnitude Similarity Maximization constraint function F(w)
(Equation 2). In the second linear scalarization phase, the weight function f is a linear fit at training
progress γ = 0.5.

Results. In most cases, the grid-searched linear scalarization weights yield the best performance
across datasets in terms of MR, ∆mpos%, and ∆m%. Our AutoScale achieves second-best perfor-
mance on the large-scale Nuscenes dataset, outperforming all other MTOs and coming closest to the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Scene understanding. CITYSCAPES: Three tasks with PSPNet (Zhao et al., 2017).
NYUV2: Four tasks with TaskPrompter (Ye & Xu, 2023). Best scores are in gray , second-best in
bold, and third-best underlined. ⋆The performance reported for the searched weights represents the
best result from 20 search trials, while for the others, it is the average of 3 random trials. †Gradnorm on
NYUv2 produces negative weights, so we adjusted it to remain non-negative.

Method
CITYSCAPES (three tasks) NYUV2 (four tasks)

Sem. Seg. Ins. Seg. Disp. MR ∆mpos ∆m Depth Edge Normal Sem. Seg. MR ∆mpos ∆m
mIoU ↑ L1 ↓ MSE ↓ ↓ % ↓ % ↓ RMSE ↓ L1 ↓ Mean ↓ mIoU ↑ ↓ % ↓ % ↓

STL Baseline 66.73 10.55 0.330 - - - 0.509 0.047 18.633 56.866 - - -

MTOs
UM 57.96 9.99 0.361 5.33 22.41 5.69 0.497 0.048 19.325 56.892 4.50 4.61 0.55
Gradnorm† 52.53 10.06 0.395 8.33 40.99 12.11 0.513 0.047 18.971 55.583 5.75 5.04 1.26
MGDA 67.29 17.77 0.333 6.00 69.49 22.88 0.521 0.048 19.801 54.378 9.50 13.76 3.44
PCGrad 54.52 10.04 0.385 6.33 35.02 10.07 0.500 0.048 19.099 56.681 5.25 3.79 0.52
IMTL-G 65.44 10.70 0.326 6.33 3.37 0.71 0.498 0.048 19.224 56.222 7.25 5.41 0.83
RLW 52.69 10.12 0.405 8.67 43.83 13.27 0.499 0.048 19.380 56.504 8.00 6.15 1.02
Aligned-MTL 66.05 10.69 0.324 5.00 2.33 0.16 0.501 0.048 19.192 56.364 7.75 4.88 0.83
FAMO 66.02 10.25 0.327 5.00 1.07 -0.92 0.495 0.047 19.196 56.842 3.00 3.66 0.25
Linear Scalarization
Unitary 54.16 9.96 0.392 6.33 37.47 10.62 0.499 0.048 19.150 56.765 5.75 4.12 0.56
Searched weights⋆ 66.27 10.36 0.320 4.00 0.69 -1.42 0.500 0.047 18.703 56.641 4.25 1.39 -0.07

AutoScale (Ours) 66.31 10.58 0.328 5.00 0.93 0.10 0.501 0.047 19.104 56.733 5.00 3.42 0.45

Figure 6: Ablation of using differ-
ent values of the exploration ratio
α. The red star is our setting.

Figure 7: Weights computed
with different MTOs in the 1st
phase show notable differences.

Table 3: Ablation over differ-
ent MTO algorithms selection
in the first Exploration phase.
IMTL-G shows good perfor-
mance across metrics. Our default
setting is marked in gray .

MTOs ∆mpos% ↓ ∆m% ↓
Unitary 11.52 2.63
PCGrad 7.73 2.53
Align-MTL 2.10 0.63
IMTL-G 0.93 0.10
FAMO 1.74 0.00

results of the searched weights in Table 1. For Cityscapes and NYUv2 datasets, as shown in Table 2,
we achieved state-of-the-art results comparable to FAMO, trailing only the searched weights. In
particular for the ∆mpos%, AutoScale outputforms MTOs consistently.

Efficiency. Regarding training time, as shown in Figure 5 on large-scale dataset Nuscenes, gradient
manipulating MTOs including GradNorm, MGDA, PCGrad, IMTL-G, and Aligned-MTL require
three times the training time compared to linear scalarization, UM, random weight, or FAMO. Since
our AutoScale uses IMTL-G in the exploration phase with α = 0.2, its training time is slightly longer
than linear scalarization methods but it significantly reduce training time by over 45% compared with
gradient manipulating MTOs, while delivering performance just behind the searched weights. The
efficiency of AutoScale on the NYUv2 and CityScapes datasets is presented in Appendix D.1.

5.1 ABLATION STUDY

We conduct an extensive ablation of our AutoScale using the default setting outlined in Section 5.
If not otherwise stated, the following experiments are based on CityScapes dataset (Cordts et al.,
2016) with PSPnet (Zhao et al., 2017).

Ablation on exploration ratio α. Figure 6 shows the impact of α on both performance and average
training iteration time. A higher α results in the higher portion of training iterations being allocated
to running MTOs and to collect loss and gradients for the exploration phase, which is computa-
tionally more demanding. We empirically find that an α of 0.2 strikes a good balance between
computational time and performance. Though high α in general induces better performance than
low α, we argue that it would sacrifice the efficiency benefit of linear scalarization and therefore
considered sub-optimal. Note that when α = 1, it is equivalent to running the chosen MTO for the
entire training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MTOs selection in exploration phase. Since the selected MTO fascilitates the training of the
network during early iterations in exploration phase, we argue that the choice of such MTOs is
important that it does not drive the network to a poor local minimum. To illustrate this point, we
perform ablation with five MTO methods: unitary scalarization, PCGrad (Yu et al., 2020), Aligned-
MTL (Senushkin et al., 2023), IMTL-G (Liu et al., 2021b), and FAMO (Liu et al., 2024). The
results, shown in Table 3 and Figure 7, reveal that different methods yield varying outcomes. The
performance gap is clear: unitary scalarization and PCGrad perform noticeably worse compared
to Aligned-MTL, IMTL-G, and FAMO, with IMTL-G and FAMO slightly outperforming Aligned-
MTL. Aligned with the table results, Figure 7 also shows two distinct trends in the calculated weights
based on the gradients collected during the exploration phase: unitary scalarization and PCGrad be-
have similarly, while the other three methods follow a different pattern. It highlights the importance
of MTOs selection, as some methods are more prone to pitfalls such as converging to a subop-
timal local minimum. Additionally, our findings suggest that certain MTO methods enhance our
AutoScale pipeline’s performance, offering evidence against earlier debates on the effectiveness of
MTOs by helping avoid suboptimal solutions and improving optimization.

Different constrain function F(w). To calculate the optimized weight for the gradients and losses
collected in the exploration phase, we experiment on different cost functions F(w), including opti-
mizing for low condition number, equal loss scale |L| and equal gradient magnitude |g| among tasks.
The results in Table 4 shows that using equal gradient magnitude gets a robust good performance
over different datasets.

Ablation on f({w}). We ablate five different weight predictors as introduced Section 4.2. Addi-
tionally, we test on the continuous linear fit until γ = 0.5 (L.E.†). As shown in Table 5, different
datasets prefer different f(w) methods. Overall, based on the mean rank (MR) across three datasets,
the linear extrapolated value at a fixed point γ shows the most robust and consistent performance.

How metrics evolve during AutoScale training? In Figure 2 and Appendix B.2, we show certain
metrics evolve during different weight sets of linear scalarization. We also provide the key metrics
trend during the training of AutoScale as shown in Appendix A. AutoScale exhibits favorable trends
across different metrics, including a low condition number, balanced convergence speed (inverse
learning rate), balanced loss scale, and equal angles to the final aggregated gradient, even when
using the default cost function of equal gradient magnitude. It shows that these metrics are not
independent, suggesting potential future work can be explored.

Table 4: Ablation over constrain function F(w).
We show the performance of optimizing differ-
ent metrics including low condition number, equal
loss scale, and equal gradient magnitude over
three datasets. Our default setting is marked in gray .

Cost Function ∆m% ↓
Nuscenes NYUv2 CityScapes

Low Cond. 0.18 0.51 1.63
Equal |l| 0.63 1.13 0.08
Equal |g| -0.10 0.45 0.10

Table 5: Ablation on f(w) when γ = 0.5.
⋆MR here refers to the average ranking of
∆m% across three datasets, not among dif-
ferent metrics. Our default setting is marked in gray .

f(w)
∆m% ↓ MR⋆ ↓Nuscenes NYUv2 CityScapes

Avg. W 0.37 0.69 -0.03 3.0
Last W 0.25 0.82 -0.10 2.7

L.E. -0.10 0.45 0.10 2.3
L.E.† 0.43 0.24 0.89 3.3
E.E. 0.95 0.36 0.26 3.7

6 CONCLUSION

In this work, we propose a novel perspective on the ongoing debate between MTO algorithms and
linear scalarization. Through a comprehensive set of experiments, we identify that well-performing
linear scalarization aligns with specific characteristics of certain MTO metrics, including high gra-
dient magnitude similarity, low condition number, and more balanced loss scale across tasks. These
findings help bridge the gap between linear scalarization and existing MTOs, highlighting the im-
portance of both in addressing MTL training challenges. Building on the insights, we introduce
AutoScale, an efficient pipeline which combines both: determine the optimal linear scalarization
weights using MTL metrics in a two-phase way. AutoScale achieves state-of-the-art performance
across a wide range of benchmarks including a large-scale modern autonomous driving dataset,
trailing only the searched weights, but without the need of grid search.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. arXiv preprint
arXiv:2402.15638, 2024.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Sumanth Chennupati, Ganesh Sistu, Senthil Yogamani, and Samir A Rawashdeh. Multinet++:
Multi-stream feature aggregation and geometric loss strategy for multi-task learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp. 0–0, 2019.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task network
cascades. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3150–3158, 2016.

Cathrin Elich, Lukas Kirchdorfer, Jan M. Köhler, and Lukas Schott. Challenging common
paradigms in multi-task learning, 2024.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 270–287, 2018.

Yifei He, Shiji Zhou, Guojun Zhang, Hyokun Yun, Yi Xu, Belinda Zeng, Trishul Chilimbi, and Han
Zhao. Robust multi-task learning with excess risks. arXiv preprint arXiv:2402.02009, 2024.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862, 2023.

Yuzheng Hu, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, and Han Zhao. Revisiting scalar-
ization in multi-task learning: A theoretical perspective. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Zhijian Huang, Sihao Lin, Guiyu Liu, Mukun Luo, Chaoqiang Ye, Hang Xu, Xiaojun Chang, and
Xiaodan Liang. Fuller: Unified multi-modality multi-task 3d perception via multi-level gradient
calibration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3502–3511, 2023.

Geethu Miriam Jacob, Vishal Agarwal, and Björn Stenger. Online knowledge distillation for multi-
task learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2359–2368, 2023.

Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. arXiv
preprint arXiv:2103.02631, 2021.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Varun Ravi Kumar, Senthil Yogamani, Hazem Rashed, Ganesh Sitsu, Christian Witt, Isabelle Leang,
Stefan Milz, and Patrick Mäder. Omnidet: Surround view cameras based multi-task visual percep-
tion network for autonomous driving. IEEE Robotics and Automation Letters, 6(2):2830–2837,
2021.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
defense of the unitary scalarization for deep multi-task learning. Advances in Neural Information
Processing Systems, 35:12169–12183, 2022.

Hae Beom Lee, Eunho Yang, and Sung Ju Hwang. Deep asymmetric multi-task feature learning. In
International Conference on Machine Learning, pp. 2956–2964. PMLR, 2018.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603, 2021.

Xi Lin, Xiaoyuan Zhang, Zhiyuan Yang, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Smooth
tchebycheff scalarization for multi-objective optimization. arXiv preprint arXiv:2402.19078,
2024.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021a.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
Advances in Neural Information Processing Systems, 36, 2024.

Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. iclr, 2021b.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S Yu. Learning multiple tasks with
multilinear relationship networks. Advances in neural information processing systems, 30, 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.

Amelie Royer, Tijmen Blankevoort, and Babak Ehteshami Bejnordi. Scalarization for multi-task and
multi-domain learning at scale. Advances in Neural Information Processing Systems, 36, 2024.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent compo-
nent alignment for multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 20083–20093, 2023.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pp. 746–760.
Springer, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 9120–9132. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/standley20a.html.

Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal gradients.
arXiv preprint arXiv:1912.06844, 2019.

Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks: The tc
algorithm. In ICML, volume 96, pp. 489–497. Citeseer, 1996.

Haiyang Wang, Hao Tang, Shaoshuai Shi, Aoxue Li, Zhenguo Li, Bernt Schiele, and Liwei Wang.
Unitr: A unified and efficient multi-modal transformer for bird’s-eye-view representation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6792–6802,
2023.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-
task optimization methods in deep learning even help? Advances in neural information processing
systems, 35:13597–13609, 2022.

Hanrong Ye and Dan Xu. Taskprompter: Spatial-channel multi-task prompting for dense scene
understanding. In ICLR, 2023.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

Hayoung Yun and Hanjoo Cho. Achievement-based training progress balancing for multi-task learn-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16935–
16944, 2023.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3712–3722, 2018.

Youmin Zhang, Xianda Guo, Matteo Poggi, Zheng Zhu, Guan Huang, and Stefano Mattoccia. Com-
pletionformer: Depth completion with convolutions and vision transformers. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 18527–18536, 2023.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

13

https://proceedings.mlr.press/v119/standley20a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A HOW METRICS EVOLVE DURING AutoScale TRAINING?

We add the key metrics trajectories during the training of our AutoScale, based on Figure 2. As
shown in below figure, AutoScale exhibits favorable trends across different metrics, including a low
condition number, balanced convergence speed (inverse learning rate), balanced loss scale, and equal
angles to the final aggregated gradient, even when using the default cost function of equal gradient
magnitude. It is evident that these metrics are not independent, suggesting potential future work can
be explored.

Additionally, we observe an interesting pattern with IMTL-G. When IMTL-G is used during the first
20% of the exploration phase (α = 0.2), it achieves near-perfect gradient magnitude similarity (close
to 1) and gradient cosine similarity with the final aggregated gradient (with low standard deviation
among tasks). This aligns with IMTL-G’s objective of enforcing equal gradient magnitudes and
angle with the aggregated gradient. However, it sacrifices loss scale balance, as indicated by a high
standard deviation in the relative loss scale among tasks during this phase.

0 50000 100000 150000
Training iteration

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Gradient Magnitude Similarity

0 50000 100000 150000
Training iteration

5

10

15

20

25

(b) Condition Number

0 50000 100000 150000
Training iteration

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(c) Std of inverse learning rate

0 50000 100000 150000
Training iteration

0.1

0.2

0.3

0.4

(d) Std of relative loss

0 50000 100000 150000
Training iteration

0.0

0.1

0.2

0.3

0.4

(e) Std of gradient cosine similarity
w. final

0 50000 100000 150000
Training iteration

0

5

10

15

20

25

30

(f) Std of projected magnitude

Figure 8: How metrics evolve during AutoScale training? In addition to the seven linear scalarization
weight sets on the CityScapes dataset in Figure 2 : three with good performance (G), one moderate
(M), and three with bad performance (B) , we include our AutoScale to observe how metrics behave.
The performance ranking of all runs based on ∆m is: R1 > G2 > ours > G3 > M > B3 > B2
> B1 R1 > R2 > ours > R3 > R4 > R5 > R6 > R7. AutoScale exhibits favorable trends across
different metrics.

B MORE METRICS VISUALIZATION IN LINEAR SCALARIZATION ACROSS
VARIOUS DATASETS

B.1 CITYSCAPES

In addition to the metrics presented in Figure 2 in CityScapes, track patterns of other metrics across
multiple linear scalarizations runs with different task weights, as shown below.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 50000 100000 150000
Training iteration

0.1

0.2

0.3

0.4

(a) Std of gradient cosine
similarity w. final

0 50000 100000 150000
Training iteration

0

5

10

15

20

25

30

(b) Std of projected mag-
nitude

0 50000 100000 150000
Training iteration

0.10

0.05

0.00

0.05

0.10

0.15

(c) Loss improvement ra-
tio

0 50000 100000 150000
Training iteration

0

20

40

60

80

(d) Loss variance

Figure 9: Evaluation on different metrics and how they evolve during the training process of seven
linear scalarization weight sets on the CityScapes dataset : three with good performance (G), one
moderate (S), and three with bad performance (B) , with the performance ranking: G1 > G2 > G3
> M > B3 > B2 > B1 R1 > R2 > R3 > R4 > R5 > R6 > R7. The metrics shown include: (a) co-
sine similarity between per-task gradient and final gradient (aggregated gradient from the weighted
sum loss), (b) projected gradient magnitude of final gradient onto per-task gradient direction; (c)
improvement ratio; and (d) loss scale variance. The figures illustrate how these metrics evolve dur-
ing the training process on the CityScapes dataset. It is evident that cosine similarity with final and
projected magnitude correlates with the performance of linear scalarization, whereas the loss im-
provement ratio and variance do not show such correlations.

B.2 NUSCENES AND NYUV2

We present the behavior of various MTO metrics during linear scalarization on the Nuscenes and
NYUv2 datasets below, similar to Figure 2 and Figure 3 on the CityScapes dataset.

Certain MTO metrics, including gradient magnitude similarity and condition number, consistently
show strong correlations with the performance across both datasets. Poor-performing linear scalar-
ization runs are always associated with highly unbalanced loss scales. In contrast, metrics such as
loss variance and gradient cosine similarity (as linear scalarization does not alter per-task gradient
directions) consistently show no correlation with performance.

(a) Gradient magnitude
similarity

(b) Gradient cosine simi-
larity

(c) Condition number (d) Loss variance

(e) Std of inverse learning
rate

(f) Std of gradient cosine
similarity w. final

(g) Std of projected mag-
nitude

(h) Std of raw loss

Figure 10: Evaluation on different metrics and how they evolve during the training process of seven
linear scalarization weight sets on the Nuscenes dataset, with the performance ranking: R1 > R2 >
R3 > R4 > R5 > R6 > R7.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Gradient magnitude similarity (b) Condition number (c) Std of relative loss

Figure 11: Nuscenes: Performance (∆m ↓) vs. metrics values (average over training iterations) of
16 weight sets of linear scalarization.

(a) Gradient magnitude
similarity

(b) Gradient cosine simi-
larity

(c) Condition number (d) Loss variance

(e) Std of inverse learning
rate

(f) Std of gradient cosine
similarity w. final

(g) Std of projected mag-
nitude

(h) Std of raw loss

Figure 12: Evaluation on different metrics and how they evolve during the training process of seven
linear scalarization weight sets on the NYUv2 dataset, with the performance ranking: R1 > R2 >
R3 > R4 > R5 > R6 > R7.

(a) Gradient magnitude similarity (b) Condition number (c) Std of relative loss

Figure 13: NYUv2: Performance (∆m ↓) vs. metrics values (average over training iterations) of 16
weight sets of linear scalarization.

C LIST OF METRICS

We list the various metrics to quantify the degree of categorized multi-task training issues, with their
mathematical formulas below.

Note that we will omit the iteration index t whenever we use all items from the same iteration.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Symbol Description

li(t) The loss of task i at time t >= 0.
gi(t) The gradient of li(t) w.r.t. the shared parameters θshared.
K The total number of tasks.
|x| The Euclidean norm of a vector x.
θi,j The angle (in radians) between two task gradient vectors gi and gj .

Table 6: Notations

C.1 GRADIENT DOMINANCE

Gradient Magnitude Ratio (γi,j) (Huang et al., 2023)

γi,j =
|gi|
|gj |

, s.t. |gi| <= |gj |

Gradient Magnitude Similarity (Φ(gi, gj)) (Yu et al., 2020)

Φ(gi, gj) =
2|gi||gj |
|gi|2 + |gj |2

C.2 GRADIENT CONFLICT

Cosine Similarity to Average Gradient Direction (cos(θi)) (Javaloy & Valera, 2021)

cos(θ̄i) = (
gTi ḡ

|gi||ḡ|
),

where ḡ = 1
K

∑K
j=1 gj

Cosine Similarity (cos(θi,j)) (Yu et al., 2020)

cos(θi,j) =
gTi gj
|gi||gj |

Cosine Similarity to Final Gradient (ˆcos(θi)) (Liu et al., 2021b)

ˆcos(θ̂i) = (
gTi ḡ0
|gi||ḡ0|

),

where ḡ0 is the final gradient used to update the shared network parameters, for example, under
linear scalarization, ḡ0 =

∑K
j=1 wjgj

C.3 IMBALANCED CONVERGENCE SPEED

Inverse Training Rate (ri(t)) (Chen et al., 2018)

ri(t) =
li(t)

li(0)

Loss Descending Rate (ηi(t)) (Liu et al., 2019)

ηi(t) =
li(t)

li(t− 1)

Note that in our implementation, to obtain a more meaningful and stable trajectory, we use the losses
computed over a window of size τ , that is:

η†i (t) =
l̂i(t)

l̂i(t− 1)
,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where

l̂i(t) =
1

τ

t+τ∑
n=t

li(n).

Improvement Ratio (r̄i(t)) (Liu et al., 2024)

r̄i(t) =
li(t)− li(t+ 1)

li(t)

Note that in our implementation, similar to the Loss Descending Rate, we use loss over a window
for the stability of the metric values:

r̄†i (t) =
l̂i(t)− l̂i(t+ 1)

l̂i(t)

Relative Inverse Training Rate (r̃i) (Chen et al., 2018)

r̃i =
K · ri∑K
j=1 rj

Note that using this idea, we can compute any normalized (i.e. relative) task-wise metrics in the
following general form:

β̃i =
K · βi∑K
j=1 βj

,

where βi is some metric computed for task i.

Task Loss Variance (σ2
i (t)) (Kumar et al., 2021)

σ2
i (t) =

1

τ − 1

τ−1∑
k=0

(li(t− k)− l̄i(t))
2,

where l̄i(t) is the mean loss within the window:

l̄i(t) =

τ−1∑
k=0

li(t− k)/τ,

and τ is the window size.

Focal Loss (FL(k̄i, αi)) (Guo et al., 2018)

FL(k̄i, αi) = −(1− k̄αi
i) · log(k̄i)

where k̄i is the KPI of task i, defined to be within the range of (0, 1), higher value should indicate
better performance at time t. αi is the focusing factor for task i, which adjusts the rate at which easy
(good performance) tasks are down-weighted.

Achievement (ai) (Yun & Cho, 2023)

ai = (1− Acci
m · pi

)γ

, where pi is the potential of task i, usually defined as the single task accuracy. m defines a safety
margin considering the multi-task performance can potentially become larger than that of the poten-
tial. γ is the focusing factor as in the focal loss.

Training Progress (mi) (Jacob et al., 2023)

mi =
lMTL
i

lSTL
i

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Relative Training Progress (λi) (Jacob et al., 2023)

λi = K
exp(mi/τ)∑K

j=1 exp((mj/τ))

Relative Gradient Magnitude (ḡi(t)) (Javaloy & Valera, 2021)

g̃i(t) =
|gi(t)|
|gi(0)|

C.4 LOSS SCALE BALANCE

Relative Loss Scale (l̃i)

l̃i =
li∑T
j=1 lj

or

l̃i =
exp{li}∑T
j=1 exp{lj}

Loss Ratio (rl(i,j))

rl(i,j) =
li
lj

C.5 TRAINING STABILITY

Condition Number (k(G)) (Senushkin et al., 2023)

k(G) =
σmax

σmin
,

where σ are the singular values of the gradient matrix G.

D EXPERIMENT DETAILS

Nuscenes For UniTR (Wang et al., 2023), while the model is designed to support both 3D detec-
tion and map segmentation, these tasks are not trained jointly. The reported results are based on
single-task training, each optimized with different hyperparameters, such as varying epochs (10 for
detection, 20 for segmentation), learning rates (3e-3 vs. 1e-3), and distinct data augmentations for
detection and segmentation. To ensure that all of the experiments are conducted under the same
training conditions, we apply the original detection configuration to both tasks: 10 epochs with a
learning rate of 3e-3. Note that with this setup, we observe a performance drop in map segmentation
compared to the original UniTR results, with mIoU decreasing from 0.732 to 0.701. We modify the
network to include both task heads and train them simultaneously using the same configuration for
the multi-task learning experiments. All experiments are done with 8 × A100 GPUs.

CityScapes We adopt the same experiment setup as in Senushkin et al. (2023). The PSPNet (Zhao
et al., 2017) is trained for 100 epochs with a learning rate of 1e-4 and a batch size of 8 on a single
A100 GPU.

NYUv2 We adopt TaskPrompter (Ye & Xu, 2023) for our experiments on NYUv2 dataset. The net-
work is trained for 40000 iterations, with a learning rate of 1e-3, polynomial learning rate scheduling
with weight decay of 1e-6, and a batch size of 2 on a single A100 GPU.

D.1 RUNTIME

We present the runtime table across various datasets below. As AutoScale has in two
phases—running an existing MTO in the exploration phase and using pure linear scalarization in
the second phase—its runtime varies depending on the selected MTO. Generally, AutoScale is more
efficient than gradient manipulating MTO algorithms such as GradNorm, MGDA, IMTL-G, and
Aligned-MTL, which require gradient computation throughout the entire training process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Method Nuscenes† CityScapes NYUv2
Iter. Time

(s)
Relative

Time
Iter. Time

(s)
Relative

Time
Iter. Time

(s)
Relative

Time
Linear Scalization

0.453 1.00 0.195 1.00 0.298 1.00Unitary
Searched weights‡

MTOs
UM 0.455 1.01 0.199 1.02 0.367 1.23
Gradnorm 1.130 2.50 0.572 2.93 0.790 2.65
MGDA 1.157 2.56 0.446 2.29 0.747 2.51
PCGrad 1.170 2.59 0.416 2.13 0.765 2.57
IMTL 1.158 2.56 0.422 2.16 0.829 2.78
RLW 0.455 1.01 0.190 0.97 0.287 0.96
Aligned-MTL 1.213 2.68 0.430 2.21 4.144 13.91
FAMO 0.457 1.01 0.198 1.02 0.290 0.97
AutoScale⋆ (Ours) 0.591 1.31 0.261 1.34 0.431 1.45

Table 7: Runtime comparison. ⋆ The runtime for AutoScale depends on the choice of MTO algo-
rithm in the exploration phase. By default, it uses IMTL-G, resulting in a total runtime of approxi-
mately 20% of IMTL-G’s time plus 80% of linear scalarization’s time. † The runtime for Nuscenes
is measured on 8 GPUs, while the others use a single GPU. ‡ For the searched weights, the runtime
increases when the number of search trials increases. “Iter. Time” refers to the training iteration
time.

20

	Introduction
	Related Work
	Multi-Task Learning: Overview
	Multi-Task Optimization
	Revisiting Linear Scalarization

	MTL metrics in Linear scalarization
	MTL Metrics Summary
	Scalarization Weights and MTL Metrics

	Method
	Cost Functions
	Weight Predictor

	Experiment
	Ablation Study

	Conclusion
	How metrics evolve during AutoScale training?
	More Metrics Visualization in Linear Scalarization FullBlue Across Various Datasets
	CityScapes
	Nuscenes and NYUv2

	List of Metrics
	Gradient Dominance
	Gradient Conflict
	Imbalanced Convergence Speed
	Loss Scale Balance
	Training Stability

	Experiment Details
	Runtime

