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ABSTRACT

Multi-task learning is favored due to its efficiency and potential transfer learn-
ing achieved by sharing networks across tasks. While a series of multi-task op-
timization algorithms (MTOs) have been proposed to solve MTL optimization
challenges and enhance performance, recent research claims that simple linear
scalarization, which sums per-task loss with a carefully searched weight set, is
sufficient, casting doubt on the added value of more complex MTO algorithms. In
this paper, we provide a novel perspective that linear scalarization and MTOs are
closely related and can be combined to yield high performance and efficiency. We
show, for the first time, that a well-performing linear scalarization exhibits spe-
cific characteristics of certain optimization metrics proposed by MTOs, such as
high task gradient magnitude similarity and low condition number, via an exten-
sive empirical study. We then propose AutoScale, an efficient pipeline that lever-
ages these influential metrics to guide the search for optimal linear scalarization
weights. AutoScale shows superior performance than prior MTOs and performs
close to the searched weight performance consistently across different datasets.

1 INTRODUCTION

Multi-task learning (MTL) has gained significant attention in deep learning, due to its efficiency in
using a single network to learn multiple tasks, with acceptable or comparable performance to single-
task learning (Chen et al., 2018; Liu et al., 2024; Xin et al., 2022; Hu et al., 2024). Especially for
recent large-scale end-to-end models, MTL has become a convenient and attractive choice for users
and maintainers (Hu et al., 2023).

However, multi-task optimization (MTO) issues, such as gradient conflict and gradient dominance,
have been a challenge in MTL, which can lead to impartial learning, where tasks interfere and com-
pete for limited shared representation power (Chen et al., 2018; Liu et al., 2021b; Yu et al., 2020;
Senushkin et al., 2023; Ban & Ji, 2024; Lin et al., 2024). Over the years, researchers have developed
a series of multi-task optimization algorithms (MTOs) and proposed metrics to analyze and quantify
the optimization issues, subsequently used to guide the training process. Common MTO metrics
describe loss scale balance (Chennupati et al., 2019; Liu et al., 2021b), gradient magnitude (Chen
et al., 2018; Sener & Koltun, 2018; Liu et al., 2021b) and angle (Yu et al., 2020) similarities, stability
(Senushkin et al., 2023), and task convergence progress (Guo et al., 2018). While MTOs claim supe-
rior performance compared to unitary scalarization, which sums per-task losses with equal weights,
they are often criticized for their large computational and memory overhead due to per-task gradient
calculations (Xin et al., 2022; Kurin et al., 2022).

Recently, Xin et al. (2022); Kurin et al. (2022); Royer et al. (2024) surprisingly observe that linear
scalarization, which sums up the per-task loss with a fixed weight set, performs comparably or even
superior to MTOs when the task weights are carefully chosen. This finding is notable because linear
scalarization is conceptually and operationally simple, and it requires just a single backpropagation
during training, despite the high computation cost of weight search. There is hence an ongoing
debate about whether complicated MTO algorithms are necessary or even help.

To answer the question, we propose a novel perspective that bridges MTOs and linear scalarization:
certain metrics proposed by MTOs, designed to quantify optimization issues of multi-task training,
are useful in guiding the search for optimal linear scalarization weights. This offers a more efficient
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alternative to weight search methods, such as grid search. Specifically, through extensive exper-
iments, we show a strong correlation between linear scalarization performance and the key MTO
metrics during training, as depicted in Figure 3. Based on the insights, we propose AutoScale, a
two-phase automatic pipeline, which calculates an optimal weight set by optimizing key MTO met-
rics using gradient and loss information collected during the first training stage, and applies this
fixed weight set for linear scalarization in the remaining second stage. We demonstrate the effec-
tiveness of AutoScale across multiple datasets, including CityScapes (Cordts et al., 2016), NYUv2
(Silberman et al., 2012), and Nuscenes (Caesar et al., 2020).

To summarize, besides presenting a comprehensive summary of various MTO algorithms and met-
rics, our primary contributions are as follows:

• We identify, for the first time according to our knowledge, the relationship between MTO
metrics and optimal linear scalarization: a well-performing linear scalarization typically
exhibits specific characteristics of certain MTO metrics, such as high gradient similarity
among tasks and low condition number, which could serve as reliable indicators for deter-
mining the optimal weight set.

• We introduce AutoScale, an efficient two-phase pipeline combining both MTOs and linear
scalarization. Our method estimates an optimal linear scalarization weight set by optimiz-
ing key MTO metrics. Compared with gradient manipulating MTOs, our design reduces
training time significantly.

• We conduct extensive experiments to show that AutoScale outperforms prior MTO methods
in most cases, and performs close to the optimal linear scalarization, without the need for
grid search, across various datasets including a large-scale autonomous driving dataset.

Upon publication, our code will be available as open-source.

2 RELATED WORK

2.1 MULTI-TASK LEARNING: OVERVIEW

Research in multi-task learning (MTL), particularly within deep learning, has largely focused on
three main directions: (1) MTL-specific architectures, (2) task grouping, and (3) Multi-Task Op-
timization algorithms (MTOs). MTL-specific architecture aims to improve performance by de-
signing customized network structures for better handling multiple tasks (Misra et al., 2016; Dai
et al., 2016; Long et al., 2017; Ye & Xu, 2023). Task grouping, on the other hand, explores the
relationships among tasks and reduces negative transfer by grouping non-conflicting or minimally-
conflicting tasks during training (Thrun & O’Sullivan, 1996; Zamir et al., 2018; Standley et al.,
2020). Lastly, MTOs address the problem by designing optimal algorithms to manipulate and com-
bine task-specific gradients to update network parameters during back-propagation (Chen et al.,
2018; Senushkin et al., 2023; Liu et al., 2024). In this work, we focus on the last approach consid-
ering both MTOs and linear scalarization.

2.2 MULTI-TASK OPTIMIZATION

We categorize MTL training issues into five types: (1) gradient dominance, (2) gradient conflict, (3)
imbalanced convergence speed, (4) imbalanced loss, and (5) instability.

Gradient Dominance. Variations in the scale of task-wise gradients on the shared parameters create
impartial learning outcomes (Liu et al., 2021b), where the network converged primarily on tasks with
higher gradient magnitudes (as shown in Figure 1a). To tackle this, GradNorm (Chen et al., 2018)
dynamically adjusts the task weights to ensure the norm of each task’s scaled gradient is balanced.
While IMTL-G (Liu et al., 2021b) approaches this by finding an aggregated gradient with equal
projections onto each task gradient.

Gradient Conflict. Conflicting gradients with opposing directions (as shown in Figure 1b) could
cause negative transfers (Senushkin et al., 2023; Lee et al., 2018). CosReg (Suteu & Guo, 2019)
proposes a regularization term based on squared cosine similarity between tasks, penalizing the net-
work when conflicting gradients are generated. PCGrad (Yu et al., 2020), on the other hand, avoids
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Figure 1: Illustration of multi-task training issues. gi and Li represent gradient and loss for task i.

task conflicts by projecting the gradient of one task onto the normal plane of another. Similarly, Liu
et al. (2021a) finds a conflict-averse direction to minimize overall conflicts, while GradDrop (Chen
et al., 2020) enforces the sign consistency across task gradients to reduce conflict. Navon et al.
(2022) tries to solve it as a Nash bargaining game.

Imbalanced Convergence Speed. Different tasks inherently have varying levels of difficulty, po-
tentially leading to different convergence speeds (Guo et al., 2018; Yun & Cho, 2023) as shown in
Figure 1c. To address this issue, methods like GradNorm (Chen et al., 2018), DTP (Guo et al., 2018),
DWA (Liu et al., 2019), AMTL (Yun & Cho, 2023) and ExcessMTL (He et al., 2024) define specific
measures of training convergence and adjust task weights based on these indicators. Additionally,
Jacob et al. (2023) proposes to train single-task networks alongside the MTL network, using the
convergence speed of the single-task network to guide online knowledge distillation.

Imbalanced Loss. Imbalances in the scale of task-specific losses (shown in Figure 1d) can result
in suboptimal training outcomes. Many works have been focused on equalizing the scale of task
losses. GLS (Chennupati et al., 2019) adopts geometric mean to prevent tasks with larger losses
from dominating the overall loss. Following GLS, Yun & Cho (2023) proposes a weighted geometric
mean of loss that is robust to scale variation. Liu et al. (2021b) proposes IMTL-L to derive task
weights to balance re-scaled losses.

Stability Aligned-MTL (Senushkin et al., 2023) defines stability in MTL training as the stability of
the linear system formed of task gradients. It proposes to stabilize the training process by aligning
the principal components of the gradient matrix.

Additionally, we further discuss previously proposed MTO metrics to quantify and analyze these
five MTL issues in section 3.1.

2.3 REVISITING LINEAR SCALARIZATION

In recent years, linear scalarization has been revisited and argued to be a superior alternative to more
complex MTOs. Although linear scalarization has been shown to fail beyond the non-convex part
of the Pareto front (Hu et al., 2024), studies such as Kurin et al. (2022); Xin et al. (2022); Elich
et al. (2024); Royer et al. (2024) demonstrate that, in practice, it achieves performance comparable
to or even better than other MTOs through large-scale experiments. However, a major open chal-
lenge for linear scalarization is identifying the optimal set of scalarization weights with minimal
computational overhead. Although more efficient search methods have been proposed (Royer et al.,
2024), they remain costly compared to directly applying existing MTOs due to requiring multiple
training runs. In this work, we address this problem of costly search by proposing a unified pipeline
to efficiently localize optimal scalarization weights with minimal overhead.

3 MTL METRICS IN LINEAR SCALARIZATION

Motivated by the ongoing debate between MTOs and linear scalarization in current literature, we
conduct experiments (as shown in Tables 1 and 2) to compare the two approaches on multiple
datasets. Our findings support the claim that linear scalarization performs as well as, if not bet-
ter than, MTOs, as argued in Elich et al. (2024); Kurin et al. (2022); Xin et al. (2022). However, we
acknowledge that weight search is challenging.

Existing works on MTOs, on the other hand, have made great efforts to reason and analyze potential
issues in multi-task training, such as gradient conflicts, and have introduced various MTO metrics to

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 50000 100000 150000
Training iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Gradient magnitude similarity

0 50000 100000 150000
Training iteration

0.02

0.03

0.04

0.05

0.06

(b) Gradient cosine similarity

0 50000 100000 150000
Training iteration

5

10

15

20

25

(c) Condition number

0 50000 100000 150000
Training iteration

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(d) Std of inverse learning rate

0 50000 100000 150000
Training iteration

0.80

0.85

0.90

0.95

1.00

1.05

1.10

(e) Descending rate

0 50000 100000 150000
Training iteration

0.1

0.2

0.3

0.4

(f) Std of relative loss

Figure 2: Evaluation on different MTO metrics and how they evolve during the training process
of seven linear scalarization weight sets on the CityScapes dataset : three with good performance
(G), one moderate (M), and three with bad performance (B) , with the performance ranking: G1
> G2 > G3 > M > B3 > B2 > B1 R1 > R2 > R3 > R4 > R5 > R6 > R7. The metrics
include (a) gradient dominance: gradient magnitude similarity; (b) gradient conflict: gradient cosine
similarity; (c) training stability: condition number; (d,e) training progress: inverse learning rate, loss
descending rate; (f) loss balance: relative loss scale. ⋆Unless specified, the metric values represent the average across
tasks (or task pairs for metrics like similarity); captions with ”std” indicate the standard deviation across tasks. The performance is ranked by
∆m: measuring the average performance drop across tasks, as detailed in Section 5.

quantify the degree of these issues. In our work, we hypothesize that these metrics could be useful
to guide the search for optimal linear scalarization weights.

As a first step, we summarize and categorize the metrics proposed by previous MTO studies in the
following section.

3.1 MTL METRICS SUMMARY

Gradient Dominance. Gradient magnitude ratio |g1|
|g2| between a pair of tasks has been used com-

monly to measure gradient dominance (Huang et al., 2023). Yu et al. (2020) proposes to quantify
the gradient dominance of a pair of tasks via gradient magnitude similarity 2|g1|·|g2|

|g1|2+|g2|2 ∈ (0, 1]. A
higher value indicates higher gradient magnitude similarity (thus less dominance), while a lower
value reflects greater dominance.

Gradient Conflict. Previous works commonly define gradient conflict as when the cosine similarity
between two task gradients is negative, gi·gj

|gi||gj | < 0 (Suteu & Guo, 2019; Senushkin et al., 2023; Yu
et al., 2020). In addition, Suteu & Guo (2019) proposes quantifying this issue via the standard
deviation and mean over cosine similarities during training. Minimal conflict is indicated by both a
low standard deviation and a mean close to zero. One could also measure gradient conflict by the
cosine similarity between the task gradient and the update gradient (Liu et al., 2021b). We interpret
negative values as the task receiving negative updates.

Imbalanced Convergence Speed. The convergence speed is defined in various ways. Grad-
Norm (Chen et al., 2018) quantifies this via the inverse training rate, calculated as the ratio of the
current training loss to the initial loss lt/l0. DWA (Liu et al., 2019) employs the ratio of losses be-
tween two consecutive epochs lt/lt−1, referred to as the loss descending rate. Similarly, FAMO (Liu
et al., 2024) introduces the improvement ratio (lt− lt−1)/lt−1, which reflects the percentage change
in training loss between successive epochs. Javaloy & Valera (2021) uses the rate of change in
gradient magnitude to define task convergence speed. Guo et al. (2018) defines training progress
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(a) Gradient magnitude similarity (b) Condition number (c) Std of relative loss

Figure 3: Performance (∆m ↓: average of performance drop compared to single-task learning,
lower value indicate higher performance, as detailed in Section 5) vs. metrics values (average over
training iterations) of 19 weight sets of linear scalarization. The plots illustrate a clear correlation
between high performance and high gradient magnitude similarity, low condition number, and low
standard deviation of relative loss among tasks.

using the notion of key performance indicator (KPI), in the range of [0, 1], where values closer to 1
indicate higher progress. On the other hand, Yun & Cho (2023) views the performance of a single-
task network as the optimal benchmark and uses the ratio between current multi-task performance
and single-task performance to balance training. Likewise, Jacob et al. (2023) trains multi-task and
single-task networks concurrently and use the ratio of their per-epoch performance as the conver-
gence indicator.

Loss Balance. Different tasks in MTL can have loss terms with a wide range of scales. For example,
the cross entropy loss applied for classification problems (Krizhevsky et al., 2012) typically falls
under 1, whereas L2 loss for depth estimation (Zhang et al., 2023) could have much larger values,
particularly when using millimeter units. One way to quantify loss balance is by the ratio between
the losses of two tasks. Alternatively, one could define loss similarity by replacing the gradient
magnitude |gi| to loss values li > 0 in gradient magnitude similarity (Yu et al., 2020).

Training Stability. Senushkin et al. (2023) highlights the importance of training stability, which
they measure using the condition number of the gradient matrix.

A complete list of metric summaries with mathematical formulas is provided in Appendix C.

3.2 SCALARIZATION WEIGHTS AND MTL METRICS

To investigate whether linear scalarization correlates with various metrics proposed by MTOs, we
conduct extensive experiments using wide range of scalarization weights, observing the trajectories
of MTL metrics during training as shown in Figure 2.

Surprisingly, we find that certain metrics, including gradient magnitude similarity, condition num-
ber, inverse learning rate and relative loss scale, serve as good indicators of performance, with clear
patterns distinguishing goodhigh-performance from badlow-performance linear scalarization sets.
Specifically, the better-performing weight sets exhibit higher gradient magnitude similarity (Fig-
ure 2a). For training stability, the condition number of the best-performing linear scalarization is the
lowest, approaching to 1 (Figure 2c). Regarding the training progress and loss balance, good weights
lead to a more balanced convergence and loss scale across tasks, as reflected by smaller standard de-
viations in inverse learning rates (Figure 2d) and relative loss scales (Figure 2f). Figure 3 further
illustrates the clear correlations between linear scalarization performance and key MTO metrics over
19 runs with different weight sets.

Conversely, the loss descending rate is less informative and could be discarded as a performance
indicator (Figure 2e). Additionally, since linear scalarization only scales per-task loss, it does not
affect the angle (cosine similarity) of the gradients between tasks (Figure 2b).

More MTO metrics visualization are provided in Appendix B.
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4 METHOD

Given the strong relationship between linear scalarization performance and the key MTO metrics,
where high performance corresponds to optimal MTO metric values, we hypothesize that the reverse
also holds: linear scalarization with task weights that is expected to produce optimal MTO metrics
values will lead to high performance. We can then leverage this to localize the optimal task weights
by optimizing the key metric value. To formalize this, we express this in optimization terms as
follows:

w∗ = argmin
w

E[F(w|{G}, {L})], s.t.
K∑
i=1

wi = K, (1)

Algorithm 1 AutoScale.

Require: Existing MTOs (e.g., PcGrad, IMTL-G), total
iterations T , exploration ratio α, window size τ , cost
function F(w), weight predictor function f
/* Phase 1: Exploration */
Gradient set G, Loss set L ← ∅
for t← 1 : αT do

Run MTOs(L)→manipulate gradient g / weight w
G ← G ∪ {gt}, L ← L ∪ {lt}

end for
/* Phase 2: Linear Scalarization */
Calculate weight for each sliding window of size τ
for i = 1 : αT/τ do

wi ← argminw F(w|{gi : gi+τ}, {li : li+τ})
end for
Determine fixed weight for rest (1− α)T iterations
ŵ∗ ← f({w1, w2, ..., wαT/τ})
for t← αT + 1 : T do

Run linear scalarization using ŵ∗

end for

where w = [w1 w2 ... wK ]T

is the vector of K task weights for
linear scalarization. {G} and {L}
are the sets of task-wise gradients
w.r.t. the shared model parameters,
and task losses, collected over mul-
tiple training iterations. F(w) is a
generalized cost function condition-
ing on data including task gradients
and losses. It assigns lower val-
ues (rewards) to weights that produce
MTO metric values positively cor-
related with high performance, and
higher values (penalties) to those as-
sociated with negative performance,
as suggested in Figure 3. For in-
stance, a potential cost function could
penalize weights that result in im-
balanced magnitudes of scaled gra-
dients across tasks. In Section 4.1,
we define our proposed cost functions
F(w) for three key MTO metrics.

One could optimize Equation (1) over multiple training iterations, or across an entire training, or
even by leveraging data from multiple runs to account for network randomness during training, to
get a precise and robust optimal weight for a specific combination of dataset, tasks, and model.
However, note that more iterations or runs mean increased computational costs.

We then propose AutoScale, an efficient and practical two-stage pipeline that partitions a single
training run into two phases. The idea is to use the first phase’s statistics to calculate an approximated
optimal weight ŵ∗, which is then applied for linear scalarization in the remaining second phase. A
summary of AutoScale is provided in Algorithm 1.

Specifically, in the first Eexploration phase, we run a selected MTO algorithm (e.g. PCGrad, IMTL-
G) to collect training statistics, including gradients and losses, required for later weight optimization.
We divide the Eexploration iterations into disjoint windows. For each window with index i, a local
optimal weight set wi is calculated by optimizing key MTO metrics through minimizing the cost
function F(w). Using the local weight sets calculated for each window in the Eexploration phase,
we estimate an optimal weight set to be used in the subsequent Llinear Sscalarization phase. To do
this, we apply a predictor, f : {wi} 7→ ŵ∗, which maps the derived local weight sets to a single
output as the approximation of optimal weight. In Section 4.2, we introduce the specific design of
the weight predictor f({wi}).

4.1 COST FUNCTIONS

We construct our cost function, which is by definition computed over τ iterations, as the average of
per iteration cost function Ft(w) at iteration t: F(w) = 1

τ

∑i+τ
t=i F

t(w). In this work, we propose
and analyze three cost functions, based on the observations from the linear scalarization experiments,
considering gradient magnitude similarity, loss similarity, and condition number.
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Gradient Magnitude Similarity Maximization (Equal |G|). We define Ft(w) = |Atw|, where
At ∈ R(

K
2)×K contains the magnitudes of task gradients, with each row concerns a pair of tasks.

Specifically,

At
row(i,j),k =


|gti | if k = i

−|gtj | if k = j

0 otherwise,
e.g. At|K=3 =

|gt1| −|gt2| 0
|gt1| 0 −|gt3|
0 |gt2| −|gt3|

 (2)

in which row(i, j) refers to the row index assigned to the task pair (i, j), i ̸= j. gti is the gradient of
task i at iteration t. With this construction, the cost is minimized when a set of task weights results
in equal magnitudes for all re-scaled task gradients.

Loss Similarity Maximization (Equal |l|). The objective is to find a set of weights that optimally
balance the task loss scales. It follows the same formulation as Equation (2), with gradient magni-
tudes |gti | replaced by loss scales |lti |.
Condition Number Minimization (Low Cond.). We defined the cost function as: Ft(w) =
κ(Gt

w) = σmax

σmin
, where κ(X) denotes the condition number of a matrix X, and Gt

w =

[w1g
t
1 w2g

t
2 ... wKgtK ] is the gradient matrix consisting of scaled task gradients. Unlike Align-

MTL (Senushkin et al., 2023), which manipulates both the direction and magnitude of gradients, we
lower the condition number by rescaling the gradients using an optimal weight set.

4.2 WEIGHT PREDICTOR

Figure 4: Illustration of various f({w}).

In the second linear scalarization phase, as illus-
trated in Figure 4, we determine the weight for
the rest (1 − α)T iterations. We base the deci-
sion on the locally optimized weights set {w} =
{w1, w2, ..., wαT/τ} (marked as purple), calculated
from the collected gradients and losses during the
first αT iteration of exploration phase. We experi-
ment with five four simple methods, represented by
f : {wi} 7→ ŵ∗, as illustrated in Figure 4. 1) the av-
erage of all weight sets (Avg. W). 1

αT/τ

∑αT/τ
i=1 wi.

2) the weight set from the last window (Last. W).
wαT/τ . 3) the linearly extrapolated weight at iteration γT (L.E.). f({wi}) = f

{wi}
c (γT ), where

f
{wi}
c (x) = ax + b, is a line fitted using {wi}. γ represents the training progress ratio, γ ∈ [0, 1],

with γ = 0 at the start of training and γ = 1 at its completion. 4) the exponentially extrapo-
lated weight at iteration γT (E.E). Similar to 3), the linear equation is replaced with an exponential
equation fwi

c (x) = ae−bx + c, where a, b, and c ∈ R are the fitted curve parameters.

5 EXPERIMENT

We demonstrate the effectiveness of our proposed AutoScale compared with various baselines on
different benchmarks.

Datasets and Models. We use three supervised MTL benchmarks, with a diverse range of dataset
scales and number of tasks, to evaluate our proposed method: Nuscenes (2 tasks), CityScapes (3
tasks), and NYU-v2 (4 tasks). Nuscenes (Caesar et al., 2020) is a challenging large-scale outdoor
benchmark for various autonomous driving tasks, among which we adopt 3D object detection and
bird-eye-view (BEV) map segmentation. It contains more than 40k annotated multi-modality sample
frames, each with six camera images and a 32-beam LiDAR pointcloud. We use UniTR (Wang
et al., 2023) as the network architecture for our experiment. According to our knowledge, we are
the first to systematically benchmark different MTOs in this scale of autonomous driving dataset,
providing a wider cover of the study. CityScapes (Cordts et al., 2016) dataset contains 5k street-view
RGB-D images with per-pixel annotations. We follow Senushkin et al. (2023) to use PSPNet (Zhao
et al., 2017) on a three-task setup, namely disparity estimation, instance, and semantic segmentation.
NYU-v2 (Silberman et al., 2012) is an indoor dataset consisting of 1449 RGB-D images and dense
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Table 1: Perception of traffic sence (NUSCENES, two tasks, a
large scale dataset). We report Unitr (Wang et al., 2023) model
performance. Best scores are in gray , second-best in bold, and
third-best underlined. ⋆The performance reported for the searched weights repre-
sents the best result from 20 search trials. †s/iter denotes seconds per training iteration.

Method 3D Det.↑ Seg.↑ MR ∆mpos ∆m Time
mAP NDS mIoU ↓ % ↓ % ↓ s/iter† ↓

STL Baseline 0.693 0.725 0.701 - - -

MTOs
UM 0.681 0.716 0.698 5.5 1.91 0.95 0.455
Gradnorm 0.677 0.714 0.700 5.5 2.15 1.07 1.130
MGDA 0.647 0.696 0.660 10.0 11.15 5.57 1.157
PCGrad 0.671 0.711 0.657 9.5 8.82 4.41 1.170
IMTL-G 0.690 0.720 0.696 5.0 1.27 0.63 1.158
RLW 0.699 0.723 0.664 5.5 5.27 2.45 0.455
Aligned-MTL 0.664 0.706 0.680 8.5 6.50 3.25 1.213
FAMO 0.643 0.692 0.702 7.0 5.86 2.87 0.457

Linear Scalarization
Unitary 0.699 0.729 0.680 4.0 2.98 1.14 0.453Searched weights⋆ 0.695 0.725 0.706 2.5 0.00 -0.44

AutoScale (Ours) 0.684 0.718 0.711 3.0 1.12 -0.10 0.591

Figure 5: Performance (∆m%)
vs. training time for UniTR on
Nuscenes. ⋆The time for optimal weight
search is not included and was obtained after
20 search trials.

per-pixel labeling with 13 classes. We adopt TaskPrompter (Ye & Xu, 2023), a state-of-the-art
MTL model, and evaluate four scene understanding tasks: depth estimation, semantic segmentation,
surface normal estimation, and edge prediction tasks. Further details of the experiment setup can be
found in Appendix D.

Baseline. We compare our AutoScale with single-task learning (STL), UM (Kendall et al., 2018),
GradNorm (Chen et al., 2018), MDGA (Sener & Koltun, 2018), IMTL-G (Liu et al., 2021b), PC-
Grad (Yu et al., 2020), RLW (Lin et al., 2021), Aligned-MTL (Senushkin et al., 2023), FAMO (Liu
et al., 2024), unitary scalarization, and linear scalarization with the best set of task weights found by
grid search.

Evaluation Metrics. Following previous methods (Senushkin et al., 2023; Liu et al., 2024), we
use the Mean Rank (MR) and ∆m metrics to evaluate multi-task performance. 1) ∆m measures
the average performance drop relative to the single-task baseline across all tasks. ∆m =
1
K

∑K

k=1(−1)σkδmk. Here, we denote δmk = Mk−Bk

Bk
× 100 as the performance difference on

task k, where Mk and Bk are the kth task metric evaluated on a multi-task model and a single-task
baseline respectively. σk = 1 if Mk is higher the better, and σk = 0 otherwise. 2) Mean Rank
(MR) is the average ranking of performance across all tasks over all methods. For example, if a
method ranks first on one task but second on the other task, MR = (1 + 2)/2 = 1.5.

In addition to the above conventional metrics, we propose a new metric ∆mpos, which sums up
all positive per-task performance changes δm, that is, total performance degradation: ∆mpos =∑

K

k=1
max((−1)σkδmk, 0). This metric captures the total percentage of performance drops

((−1)σkδmk > 0) while disregarding improvements ((−1)σkδmk < 0). When ∆m is similar
across methods, ∆mpos helps distinguish which methods minimize degradation, offering a lower
bound on the percentage of tasks that perform worse. It offers valuable insight, particularly in
scenarios where minimizing overall performance drops is prioritized over sacrificing some tasks’
performance to enhance others.

Our Implementation. For all experiments on three benchmark datasets shown in Table 1 and
Table 2, we use the following settings for our AutoScale: in the first exploration phase, we run
IMTL-G (Liu et al., 2021b) to collect gradients and losses, with an exploration ratio α = 0.2,
window size τ = 50, and a Gradient Magnitude Similarity Maximization constraint function F(w)
(Equation 2). In the second linear scalarization phase, the weight function f is a linear fit at training
progress γ = 0.5.

Results. In most cases, the grid-searched linear scalarization weights yield the best performance
across datasets in terms of MR, ∆mpos%, and ∆m%. Our AutoScale achieves second-best perfor-
mance on the large-scale Nuscenes dataset, outperforming all other MTOs and coming closest to the

8
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Table 2: Scene understanding. CITYSCAPES: Three tasks with PSPNet (Zhao et al., 2017).
NYUV2: Four tasks with TaskPrompter (Ye & Xu, 2023). Best scores are in gray , second-best in
bold, and third-best underlined. ⋆The performance reported for the searched weights represents the
best result from 20 search trials, while for the others, it is the average of 3 random trials. †Gradnorm on
NYUv2 produces negative weights, so we adjusted it to remain non-negative.

Method
CITYSCAPES (three tasks) NYUV2 (four tasks)

Sem. Seg. Ins. Seg. Disp. MR ∆mpos ∆m Depth Edge Normal Sem. Seg. MR ∆mpos ∆m
mIoU ↑ L1 ↓ MSE ↓ ↓ % ↓ % ↓ RMSE ↓ L1 ↓ Mean ↓ mIoU ↑ ↓ % ↓ % ↓

STL Baseline 66.73 10.55 0.330 - - - 0.509 0.047 18.633 56.866 - - -

MTOs
UM 57.96 9.99 0.361 5.33 22.41 5.69 0.497 0.048 19.325 56.892 4.50 4.61 0.55
Gradnorm† 52.53 10.06 0.395 8.33 40.99 12.11 0.513 0.047 18.971 55.583 5.75 5.04 1.26
MGDA 67.29 17.77 0.333 6.00 69.49 22.88 0.521 0.048 19.801 54.378 9.50 13.76 3.44
PCGrad 54.52 10.04 0.385 6.33 35.02 10.07 0.500 0.048 19.099 56.681 5.25 3.79 0.52
IMTL-G 65.44 10.70 0.326 6.33 3.37 0.71 0.498 0.048 19.224 56.222 7.25 5.41 0.83
RLW 52.69 10.12 0.405 8.67 43.83 13.27 0.499 0.048 19.380 56.504 8.00 6.15 1.02
Aligned-MTL 66.05 10.69 0.324 5.00 2.33 0.16 0.501 0.048 19.192 56.364 7.75 4.88 0.83
FAMO 66.02 10.25 0.327 5.00 1.07 -0.92 0.495 0.047 19.196 56.842 3.00 3.66 0.25
Linear Scalarization
Unitary 54.16 9.96 0.392 6.33 37.47 10.62 0.499 0.048 19.150 56.765 5.75 4.12 0.56
Searched weights⋆ 66.27 10.36 0.320 4.00 0.69 -1.42 0.500 0.047 18.703 56.641 4.25 1.39 -0.07

AutoScale (Ours) 66.31 10.58 0.328 5.00 0.93 0.10 0.501 0.047 19.104 56.733 5.00 3.42 0.45

Figure 6: Ablation of using differ-
ent values of the exploration ratio
α. The red star is our setting.

Figure 7: Weights computed
with different MTOs in the 1st
phase show notable differences.

Table 3: Ablation over differ-
ent MTO algorithms selection
in the first Exploration phase.
IMTL-G shows good perfor-
mance across metrics. Our default
setting is marked in gray .

MTOs ∆mpos% ↓ ∆m% ↓
Unitary 11.52 2.63
PCGrad 7.73 2.53
Align-MTL 2.10 0.63
IMTL-G 0.93 0.10
FAMO 1.74 0.00

results of the searched weights in Table 1. For Cityscapes and NYUv2 datasets, as shown in Table 2,
we achieved state-of-the-art results comparable to FAMO, trailing only the searched weights. In
particular for the ∆mpos%, AutoScale outputforms MTOs consistently.

Efficiency. Regarding training time, as shown in Figure 5 on large-scale dataset Nuscenes, gradient
manipulating MTOs including GradNorm, MGDA, PCGrad, IMTL-G, and Aligned-MTL require
three times the training time compared to linear scalarization, UM, random weight, or FAMO. Since
our AutoScale uses IMTL-G in the exploration phase with α = 0.2, its training time is slightly longer
than linear scalarization methods but it significantly reduce training time by over 45% compared with
gradient manipulating MTOs, while delivering performance just behind the searched weights. The
efficiency of AutoScale on the NYUv2 and CityScapes datasets is presented in Appendix D.1.

5.1 ABLATION STUDY

We conduct an extensive ablation of our AutoScale using the default setting outlined in Section 5.
If not otherwise stated, the following experiments are based on CityScapes dataset (Cordts et al.,
2016) with PSPnet (Zhao et al., 2017).

Ablation on exploration ratio α. Figure 6 shows the impact of α on both performance and average
training iteration time. A higher α results in the higher portion of training iterations being allocated
to running MTOs and to collect loss and gradients for the exploration phase, which is computa-
tionally more demanding. We empirically find that an α of 0.2 strikes a good balance between
computational time and performance. Though high α in general induces better performance than
low α, we argue that it would sacrifice the efficiency benefit of linear scalarization and therefore
considered sub-optimal. Note that when α = 1, it is equivalent to running the chosen MTO for the
entire training.

9
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MTOs selection in exploration phase. Since the selected MTO fascilitates the training of the
network during early iterations in exploration phase, we argue that the choice of such MTOs is
important that it does not drive the network to a poor local minimum. To illustrate this point, we
perform ablation with five MTO methods: unitary scalarization, PCGrad (Yu et al., 2020), Aligned-
MTL (Senushkin et al., 2023), IMTL-G (Liu et al., 2021b), and FAMO (Liu et al., 2024). The
results, shown in Table 3 and Figure 7, reveal that different methods yield varying outcomes. The
performance gap is clear: unitary scalarization and PCGrad perform noticeably worse compared
to Aligned-MTL, IMTL-G, and FAMO, with IMTL-G and FAMO slightly outperforming Aligned-
MTL. Aligned with the table results, Figure 7 also shows two distinct trends in the calculated weights
based on the gradients collected during the exploration phase: unitary scalarization and PCGrad be-
have similarly, while the other three methods follow a different pattern. It highlights the importance
of MTOs selection, as some methods are more prone to pitfalls such as converging to a subop-
timal local minimum. Additionally, our findings suggest that certain MTO methods enhance our
AutoScale pipeline’s performance, offering evidence against earlier debates on the effectiveness of
MTOs by helping avoid suboptimal solutions and improving optimization.

Different constrain function F(w). To calculate the optimized weight for the gradients and losses
collected in the exploration phase, we experiment on different cost functions F(w), including opti-
mizing for low condition number, equal loss scale |L| and equal gradient magnitude |g| among tasks.
The results in Table 4 shows that using equal gradient magnitude gets a robust good performance
over different datasets.

Ablation on f({w}). We ablate five different weight predictors as introduced Section 4.2. Addi-
tionally, we test on the continuous linear fit until γ = 0.5 (L.E.†). As shown in Table 5, different
datasets prefer different f(w) methods. Overall, based on the mean rank (MR) across three datasets,
the linear extrapolated value at a fixed point γ shows the most robust and consistent performance.

How metrics evolve during AutoScale training? In Figure 2 and Appendix B.2, we show certain
metrics evolve during different weight sets of linear scalarization. We also provide the key metrics
trend during the training of AutoScale as shown in Appendix A. AutoScale exhibits favorable trends
across different metrics, including a low condition number, balanced convergence speed (inverse
learning rate), balanced loss scale, and equal angles to the final aggregated gradient, even when
using the default cost function of equal gradient magnitude. It shows that these metrics are not
independent, suggesting potential future work can be explored.

Table 4: Ablation over constrain function F(w).
We show the performance of optimizing differ-
ent metrics including low condition number, equal
loss scale, and equal gradient magnitude over
three datasets. Our default setting is marked in gray .

Cost Function ∆m% ↓
Nuscenes NYUv2 CityScapes

Low Cond. 0.18 0.51 1.63
Equal |l| 0.63 1.13 0.08
Equal |g| -0.10 0.45 0.10

Table 5: Ablation on f(w) when γ = 0.5.
⋆MR here refers to the average ranking of
∆m% across three datasets, not among dif-
ferent metrics. Our default setting is marked in gray .

f(w)
∆m% ↓ MR⋆ ↓Nuscenes NYUv2 CityScapes

Avg. W 0.37 0.69 -0.03 3.0
Last W 0.25 0.82 -0.10 2.7

L.E. -0.10 0.45 0.10 2.3
L.E.† 0.43 0.24 0.89 3.3
E.E. 0.95 0.36 0.26 3.7

6 CONCLUSION

In this work, we propose a novel perspective on the ongoing debate between MTO algorithms and
linear scalarization. Through a comprehensive set of experiments, we identify that well-performing
linear scalarization aligns with specific characteristics of certain MTO metrics, including high gra-
dient magnitude similarity, low condition number, and more balanced loss scale across tasks. These
findings help bridge the gap between linear scalarization and existing MTOs, highlighting the im-
portance of both in addressing MTL training challenges. Building on the insights, we introduce
AutoScale, an efficient pipeline which combines both: determine the optimal linear scalarization
weights using MTL metrics in a two-phase way. AutoScale achieves state-of-the-art performance
across a wide range of benchmarks including a large-scale modern autonomous driving dataset,
trailing only the searched weights, but without the need of grid search.
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A HOW METRICS EVOLVE DURING AutoScale TRAINING?

We add the key metrics trajectories during the training of our AutoScale, based on Figure 2. As
shown in below figure, AutoScale exhibits favorable trends across different metrics, including a low
condition number, balanced convergence speed (inverse learning rate), balanced loss scale, and equal
angles to the final aggregated gradient, even when using the default cost function of equal gradient
magnitude. It is evident that these metrics are not independent, suggesting potential future work can
be explored.

Additionally, we observe an interesting pattern with IMTL-G. When IMTL-G is used during the first
20% of the exploration phase (α = 0.2), it achieves near-perfect gradient magnitude similarity (close
to 1) and gradient cosine similarity with the final aggregated gradient (with low standard deviation
among tasks). This aligns with IMTL-G’s objective of enforcing equal gradient magnitudes and
angle with the aggregated gradient. However, it sacrifices loss scale balance, as indicated by a high
standard deviation in the relative loss scale among tasks during this phase.
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Figure 8: How metrics evolve during AutoScale training? In addition to the seven linear scalarization
weight sets on the CityScapes dataset in Figure 2 : three with good performance (G), one moderate
(M), and three with bad performance (B) , we include our AutoScale to observe how metrics behave.
The performance ranking of all runs based on ∆m is: R1 > G2 > ours > G3 > M > B3 > B2
> B1 R1 > R2 > ours > R3 > R4 > R5 > R6 > R7. AutoScale exhibits favorable trends across
different metrics.

B MORE METRICS VISUALIZATION IN LINEAR SCALARIZATION ACROSS
VARIOUS DATASETS

B.1 CITYSCAPES

In addition to the metrics presented in Figure 2 in CityScapes, track patterns of other metrics across
multiple linear scalarizations runs with different task weights, as shown below.
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Figure 9: Evaluation on different metrics and how they evolve during the training process of seven
linear scalarization weight sets on the CityScapes dataset : three with good performance (G), one
moderate (S), and three with bad performance (B) , with the performance ranking: G1 > G2 > G3
> M > B3 > B2 > B1 R1 > R2 > R3 > R4 > R5 > R6 > R7. The metrics shown include: (a) co-
sine similarity between per-task gradient and final gradient (aggregated gradient from the weighted
sum loss), (b) projected gradient magnitude of final gradient onto per-task gradient direction; (c)
improvement ratio; and (d) loss scale variance. The figures illustrate how these metrics evolve dur-
ing the training process on the CityScapes dataset. It is evident that cosine similarity with final and
projected magnitude correlates with the performance of linear scalarization, whereas the loss im-
provement ratio and variance do not show such correlations.

B.2 NUSCENES AND NYUV2

We present the behavior of various MTO metrics during linear scalarization on the Nuscenes and
NYUv2 datasets below, similar to Figure 2 and Figure 3 on the CityScapes dataset.

Certain MTO metrics, including gradient magnitude similarity and condition number, consistently
show strong correlations with the performance across both datasets. Poor-performing linear scalar-
ization runs are always associated with highly unbalanced loss scales. In contrast, metrics such as
loss variance and gradient cosine similarity (as linear scalarization does not alter per-task gradient
directions) consistently show no correlation with performance.

(a) Gradient magnitude
similarity

(b) Gradient cosine simi-
larity

(c) Condition number (d) Loss variance

(e) Std of inverse learning
rate

(f) Std of gradient cosine
similarity w. final

(g) Std of projected mag-
nitude

(h) Std of raw loss

Figure 10: Evaluation on different metrics and how they evolve during the training process of seven
linear scalarization weight sets on the Nuscenes dataset, with the performance ranking: R1 > R2 >
R3 > R4 > R5 > R6 > R7.
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(a) Gradient magnitude similarity (b) Condition number (c) Std of relative loss

Figure 11: Nuscenes: Performance (∆m ↓) vs. metrics values (average over training iterations) of
16 weight sets of linear scalarization.

(a) Gradient magnitude
similarity

(b) Gradient cosine simi-
larity

(c) Condition number (d) Loss variance

(e) Std of inverse learning
rate

(f) Std of gradient cosine
similarity w. final

(g) Std of projected mag-
nitude

(h) Std of raw loss

Figure 12: Evaluation on different metrics and how they evolve during the training process of seven
linear scalarization weight sets on the NYUv2 dataset, with the performance ranking: R1 > R2 >
R3 > R4 > R5 > R6 > R7.

(a) Gradient magnitude similarity (b) Condition number (c) Std of relative loss

Figure 13: NYUv2: Performance (∆m ↓) vs. metrics values (average over training iterations) of 16
weight sets of linear scalarization.

C LIST OF METRICS

We list the various metrics to quantify the degree of categorized multi-task training issues, with their
mathematical formulas below.

Note that we will omit the iteration index t whenever we use all items from the same iteration.
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Symbol Description

li(t) The loss of task i at time t >= 0.
gi(t) The gradient of li(t) w.r.t. the shared parameters θshared.
K The total number of tasks.
|x| The Euclidean norm of a vector x.
θi,j The angle (in radians) between two task gradient vectors gi and gj .

Table 6: Notations

C.1 GRADIENT DOMINANCE

Gradient Magnitude Ratio (γi,j) (Huang et al., 2023)

γi,j =
|gi|
|gj |

, s.t. |gi| <= |gj |

Gradient Magnitude Similarity (Φ(gi, gj)) (Yu et al., 2020)

Φ(gi, gj) =
2|gi||gj |
|gi|2 + |gj |2

C.2 GRADIENT CONFLICT

Cosine Similarity to Average Gradient Direction (cos(θi)) (Javaloy & Valera, 2021)

cos(θ̄i) = (
gTi ḡ

|gi||ḡ|
),

where ḡ = 1
K

∑K
j=1 gj

Cosine Similarity (cos(θi,j)) (Yu et al., 2020)

cos(θi,j) =
gTi gj
|gi||gj |

Cosine Similarity to Final Gradient ( ˆcos(θi)) (Liu et al., 2021b)

ˆcos(θ̂i) = (
gTi ḡ0
|gi||ḡ0|

),

where ḡ0 is the final gradient used to update the shared network parameters, for example, under
linear scalarization, ḡ0 =

∑K
j=1 wjgj

C.3 IMBALANCED CONVERGENCE SPEED

Inverse Training Rate (ri(t)) (Chen et al., 2018)

ri(t) =
li(t)

li(0)

Loss Descending Rate (ηi(t)) (Liu et al., 2019)

ηi(t) =
li(t)

li(t− 1)

Note that in our implementation, to obtain a more meaningful and stable trajectory, we use the losses
computed over a window of size τ , that is:

η†i (t) =
l̂i(t)

l̂i(t− 1)
,
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where

l̂i(t) =
1

τ

t+τ∑
n=t

li(n).

Improvement Ratio (r̄i(t)) (Liu et al., 2024)

r̄i(t) =
li(t)− li(t+ 1)

li(t)

Note that in our implementation, similar to the Loss Descending Rate, we use loss over a window
for the stability of the metric values:

r̄†i (t) =
l̂i(t)− l̂i(t+ 1)

l̂i(t)

Relative Inverse Training Rate (r̃i) (Chen et al., 2018)

r̃i =
K · ri∑K
j=1 rj

Note that using this idea, we can compute any normalized (i.e. relative) task-wise metrics in the
following general form:

β̃i =
K · βi∑K
j=1 βj

,

where βi is some metric computed for task i.

Task Loss Variance (σ2
i (t)) (Kumar et al., 2021)

σ2
i (t) =

1

τ − 1

τ−1∑
k=0

(li(t− k)− l̄i(t))
2,

where l̄i(t) is the mean loss within the window:

l̄i(t) =

τ−1∑
k=0

li(t− k)/τ,

and τ is the window size.

Focal Loss (FL(k̄i, αi)) (Guo et al., 2018)

FL(k̄i, αi) = −(1− k̄αi
i ) · log(k̄i)

where k̄i is the KPI of task i, defined to be within the range of (0, 1), higher value should indicate
better performance at time t. αi is the focusing factor for task i, which adjusts the rate at which easy
(good performance) tasks are down-weighted.

Achievement (ai) (Yun & Cho, 2023)

ai = (1− Acci
m · pi

)γ

, where pi is the potential of task i, usually defined as the single task accuracy. m defines a safety
margin considering the multi-task performance can potentially become larger than that of the poten-
tial. γ is the focusing factor as in the focal loss.

Training Progress (mi) (Jacob et al., 2023)

mi =
lMTL
i

lSTL
i

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Relative Training Progress (λi) (Jacob et al., 2023)

λi = K
exp(mi/τ)∑K

j=1 exp((mj/τ))

Relative Gradient Magnitude (ḡi(t)) (Javaloy & Valera, 2021)

g̃i(t) =
|gi(t)|
|gi(0)|

C.4 LOSS SCALE BALANCE

Relative Loss Scale (l̃i)

l̃i =
li∑T
j=1 lj

or

l̃i =
exp{li}∑T
j=1 exp{lj}

Loss Ratio (rl(i,j))

rl(i,j) =
li
lj

C.5 TRAINING STABILITY

Condition Number (k(G)) (Senushkin et al., 2023)

k(G) =
σmax

σmin
,

where σ are the singular values of the gradient matrix G.

D EXPERIMENT DETAILS

Nuscenes For UniTR (Wang et al., 2023), while the model is designed to support both 3D detec-
tion and map segmentation, these tasks are not trained jointly. The reported results are based on
single-task training, each optimized with different hyperparameters, such as varying epochs (10 for
detection, 20 for segmentation), learning rates (3e-3 vs. 1e-3), and distinct data augmentations for
detection and segmentation. To ensure that all of the experiments are conducted under the same
training conditions, we apply the original detection configuration to both tasks: 10 epochs with a
learning rate of 3e-3. Note that with this setup, we observe a performance drop in map segmentation
compared to the original UniTR results, with mIoU decreasing from 0.732 to 0.701. We modify the
network to include both task heads and train them simultaneously using the same configuration for
the multi-task learning experiments. All experiments are done with 8 × A100 GPUs.

CityScapes We adopt the same experiment setup as in Senushkin et al. (2023). The PSPNet (Zhao
et al., 2017) is trained for 100 epochs with a learning rate of 1e-4 and a batch size of 8 on a single
A100 GPU.

NYUv2 We adopt TaskPrompter (Ye & Xu, 2023) for our experiments on NYUv2 dataset. The net-
work is trained for 40000 iterations, with a learning rate of 1e-3, polynomial learning rate scheduling
with weight decay of 1e-6, and a batch size of 2 on a single A100 GPU.

D.1 RUNTIME

We present the runtime table across various datasets below. As AutoScale has in two
phases—running an existing MTO in the exploration phase and using pure linear scalarization in
the second phase—its runtime varies depending on the selected MTO. Generally, AutoScale is more
efficient than gradient manipulating MTO algorithms such as GradNorm, MGDA, IMTL-G, and
Aligned-MTL, which require gradient computation throughout the entire training process.
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Method Nuscenes† CityScapes NYUv2
Iter. Time

(s)
Relative

Time
Iter. Time

(s)
Relative

Time
Iter. Time

(s)
Relative

Time
Linear Scalization

0.453 1.00 0.195 1.00 0.298 1.00Unitary
Searched weights‡

MTOs
UM 0.455 1.01 0.199 1.02 0.367 1.23
Gradnorm 1.130 2.50 0.572 2.93 0.790 2.65
MGDA 1.157 2.56 0.446 2.29 0.747 2.51
PCGrad 1.170 2.59 0.416 2.13 0.765 2.57
IMTL 1.158 2.56 0.422 2.16 0.829 2.78
RLW 0.455 1.01 0.190 0.97 0.287 0.96
Aligned-MTL 1.213 2.68 0.430 2.21 4.144 13.91
FAMO 0.457 1.01 0.198 1.02 0.290 0.97
AutoScale⋆ (Ours) 0.591 1.31 0.261 1.34 0.431 1.45

Table 7: Runtime comparison. ⋆ The runtime for AutoScale depends on the choice of MTO algo-
rithm in the exploration phase. By default, it uses IMTL-G, resulting in a total runtime of approxi-
mately 20% of IMTL-G’s time plus 80% of linear scalarization’s time. † The runtime for Nuscenes
is measured on 8 GPUs, while the others use a single GPU. ‡ For the searched weights, the runtime
increases when the number of search trials increases. “Iter. Time” refers to the training iteration
time.
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