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Abstract

LLMs are becoming increasingly capable and
widespread. Consequently, the potential and
reality of their misuse is also growing. In
this work, we address the problem of detect-
ing LLM-generated text that is not explicitly
declared as such. We present a novel, general-
purpose, and supervised LLM text detector,
SElected-Next-Token tRAnsformer (SENTRA ).
SENTRA is a Transformer-based encoder
leveraging selected-next-token-probability se-
quences and utilizing contrastive pre-training
on large amounts of unlabeled data. Our exper-
iments on three popular public datasets across
24 domains of text demonstrate SENTRA is
a general-purpose classifier that significantly
outperforms several popular baselines in the
out-of-domain setting.

1 Introduction

The problem of determining whether a text has
been generated by an LLM or written by a human
has been widely studied in both academia (Tang
et al., 2024) and industry. Several commercial-
level automated text detection systems have been
developed, including GPTZero (Tian and Cui,
2023), Originality (Originality.Al, 2025), Sapling
(Sapling Al 2025), and Reality Defender (Real-
ity Defender, 2025). Although significant progress
has been made in detecting LLM-generated text
over the past several years, these systems remain
far from perfect and are often unreliable. A ma-
jor limitation is their brittleness: they can perform
well on certain types of LLM-generated text but
fail catastrophically in other cases (Dugan et al.,
2024). This issue is particularly pronounced when
operating in a real world scenario, where models
must handle out-of-domain (OOD) data, different
LLM generators, or various LLM "attacks" (Dugan
et al., 2024; Zhou et al., 2024). Therefore, it is
crucial to develop more generalizable methods that
deliver reliable performance across these settings.

Because the space of possible domains is much
larger than the number of known LLM generators
or attacks, this work focuses on generalization to
unseen domains since this type of generalization
constitutes one of the most crucial issues facing the
LLM text detectors.

The probability assigned by an LLM to a docu-
ment can be measured by auto-regressively feeding
the document’s tokens into the LLLM and observ-
ing the predicted probabilities for each token. This
process produces a sequence of values that we de-
note as selected-next-token-probabilities (SNTP).
SNTP have been extensively used in prior work on
LLM-generated text detection (Guo et al., 2023;
Hans et al., 2024; Verma et al., 2024). These prior
works primarily rely on either heuristics (hand-
crafted functions) applied to SNTP sequences or
linear models trained on expert-derived features
(Hans et al., 2024; Verma et al., 2024). In con-
trast, our approach encodes SNTP sequences us-
ing a Transformer model pre-trained on unlabeled
data, leveraging the expressivity of Transformers
to directly learn a representation of the probability
that a single or a pair of LLMs assign to tokens in
a document. In this paper, we propose SElected-
Next-Token tRAnsformer (SENTRA ), a method for
detecting LLM-generated text that directly learns
a detection function in a supervised manner from
SNTP sequences. This method utilizes a novel
Transformer-based architecture with a contrastive
pre-training mechanism. The learned representa-
tion can be fine-tuned on labeled data to create a su-
pervised model that distinguishes LLM-generated
texts from human-written texts.

For the LLM-text-detection task, supervised
detectors have been shown to generalize poorly
outside the training distribution (Dugan et al.,
2024). Our SENTRA network addresses this is-
sue by learning generalizable functions on SNTP.
We show empirically that the supervised method
presented in this paper generalizes to unseen do-



mains better than both supervised and unsupervised
baselines by leveraging our proposed Transformer-
based architecture, thus demonstrating greater gen-
eralization to distribution shifts.

In this paper, we demonstrate:

* Detectors utilizing SENTRA as their encoder
generalize well to domains outside of the train-
ing distribution(s).

* Contrastive pre-training of SENTRA leads to
improved generalization results on new do-
mains.

* SENTRA outperforms all studied baselines
in out-of-domain evaluations on three widely
used benchmark datasets.

2 Related Work

With the rise of LLMs, significant research has
been conducted on accurately detecting text gener-
ated by these models (Tang et al., 2024). At a high
level, these detectors can be categorized into three
approaches: watermarking, unsupervised (or zero-
shot) detection, and supervised detection. Water-
marking generally relies on the LLM deliberately
embedding identifiable traces in its output (Liu
et al., 2025). In this work, we focus on the general
detection problem, including cases involving non-
cooperative LLMs; therefore, we do not consider
watermarking as a point of comparison. Unsuper-
vised methods typically leverage metrics computed
by an LLM on the target document. These meth-
ods can be further divided into white-box detection,
where the candidate LLM is known (Mitchell et al.,
2023), and black-box detection, where the candi-
date LLM is unknown (Tang et al., 2024). Given
our focus on the general detection problem, we pri-
oritize black-box detection methods. Supervised
methods, on the other hand, involve collecting a
corpus of human-written and LLM-generated text
samples, which are then used to train the detection
models (Verma et al., 2024; Soto et al., 2024).
Selected-next-token-probabilities (SNTP) have
been widely used for LLM detection in both white
and black box settings (Guo et al., 2023; Hans et al.,
2024; Verma et al., 2024). Perplexity (Jelinek et al.,
1977) is a commonly used metric to evaluate an
LLM’s ability to model a given dataset. In the con-
text of Al detection, a lower perplexity score on
a document indicates an LLM "fits" a document
and this indicates a higher likelihood the document
was LLM-generated. Conversely, a higher perplex-
ity score suggests the LLM’s probability model

does not fit or accurately represent the candidate
text, implying a lower likelihood that the text was
generated by the LLM (Guo et al., 2023).

Some detectors use multiple sequences of STNP
for the detection task (Verma et al., 2024; Hans
et al., 2024). Verma et al. (2024) leveraged SNTPs
from two Markov models, along with an LLM’s
SNTP, extracted features, and a forward feature
selection scheme as inputs to a linear classifier. In
contrast to Guo et al. (2023), Hans et al. (2024)
argued that relying solely on the perplexity score
for LLM-generated content detection can be mis-
leading. Although human-authored text generally
results in higher perplexity, prompts can signifi-
cantly influence perplexity values. The authors
highlighted the "capybara problem", where the ab-
sence of a prompt can cause an LLM-generated
response to have higher perplexity, leading to false
detections. They addressed this issue by introduc-
ing cross-perplexity as a normalizing factor to cali-
brate for prompts that yield high perplexity. GLTR
(Gehrmann et al., 2019) is a detection method that
leverages SN'TP along with other metrics, such as
the rank of the selected word within the next-token
distribution and the entropy of the next-token dis-
tribution (Gehrmann et al., 2019). These metrics
target LLM decoding strategies, including greedy
decoding, top-k sampling, and beam search.

DetectGPT is an unsupervised method based on
the idea that texts generated by LLMs tend to "oc-
cupy negative curvature regions of the model’s log
probability function" (Mitchell et al., 2023). The
method generates perturbations of the sample text
using a smaller model and compares the log prob-
ability of the sample text to that of the perturba-
tions. Fast-DetectGPT replaces the perturbations
in DetectGPT with a more efficient sampling step
(Bao et al., 2024). Nguyen-Son et al. (2024) ob-
served that the similarity between a sample and
its counterpart generation is notably higher than
the similarity between the counterpart and another
independent regeneration. They demonstrated that
this difference in similarity is useful for detection.
Other works (Hao et al., 2024) have also explored
the idea of "rewriting" text using LLMs to aid de-
tection methods. In their study, they trained an
LLM to maximize the edit distance from rewrit-
ing human-written texts while minimizing the edit
distance from rewriting LLM-generated texts.

The most common supervised baseline for LLM-
generated text detection is a RoBERTa classifier
(Liu et al., 2019) trained on a corpus of labeled
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Figure 1: SENTRA leverages the selected-next-token-probabilities from two frozen LLMs. These two sequences
of logits are concatenated into a vector. Each of these vectors are projected to the dimension of the bi-directional

transformer.

text, where each document is marked as either
human-written or LLM-generated. Several stud-
ies have expanded on this approach to supervised
text-based classification. Yu et al. (2024) trained
a feed-forward classifier with two hidden layers
using intrinsic features derived from Transformer
hidden states, determined via KL-divergence. Tian
et al. (2024) address the challenge of detecting
short texts by treating short samples in the training
corpus as partially "unlabeled". Hu et al. (2023)
employed adversarial learning to enhance the ro-
bustness of their RoOBERTa-based classifier against
paraphrase attacks.

Several publications have explored contrastive
training for the LLM detection task (Bhattachar-
jee et al., 2023, 2024; Soto et al., 2024; Guo
et al., 2024). These studies use contrastive pre-
training for a text transformer, which is chosen to
be RoBERTa (Liu et al., 2019) in many cases, to
guide the network toward a representation more
useful for LLM-generated text detection. Further-
more, many prior contrastive training strategies fo-
cus on identifying stylometric features (Soto et al.,
2024; Guo et al., 2024), while other studies extract
stylometric features directly and train classifiers us-
ing those features (Kumarage et al., 2023a). Rather
than focusing on text representations, our method
is primarily designed to produce useful SNTP rep-
resentations and, thus, proposes a different con-
trastive pre-training scheme, one that compares tex-
tual representations with those of the SNTP trans-
former.

However, SNTP and supervised methods have
been shown, both intuitively and empirically, to
struggle with generalization to unseen domains (Li
et al., 2024; Roussinov et al., 2025). This challenge
has led to a series of studies aiming at improv-

ing generalization. For instance, Lai et al. (2024)
applied adaptive ensemble algorithms to enhance
model performance in OOD scenario. Meanwhile,
Guo et al. (2024) and Soto et al. (2024), recogniz-
ing the limited number of widely adopted general-
purpose Al assistants, proposed to train an embed-
ding model to learn the writing style of LLMs, and
thereby improving the detection accuracy.

Prior work has shown SNTP to be an effective in-
put for identifying LLM generated text (Guo et al.,
2023; Hans et al., 2024; Verma et al., 2024), but
they rely on relatively simple metrics or heuris-
tics. In this work, we show Transformer networks,
specifically SENTRA, can learn a representation of
SNTP sequences that can be used to train detection
models that better generalize to unseen domains.

3 Methodology
3.1 Overview of Our Method: SENTRA

Consider a document ¢ consisting of an input se-
quence of T tokens t = (t1,t2,--- ,t7). Assum-
ing an LLM has parameters 6, the probability of
document ¢ given this LLM can be specified as

T
P(t17t27 atT|0):Hq1(9)a (1)
t=1
where
qi(0) = P(t; | t1,ta,- -+ ,ti—1;0) 2)

is the probability of token ¢;, given the pre-
ceding tokens (t1,t2,---,t;i—1). We denote
the observed sequence of selected-next-token-
probabilities (SNTP) as

q(0) = (1(0),42(0),--- ,qr(0)).  (3)
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Figure 2: Pre-training: the outputs of SENTRA and a frozen text encoder go through linear layers, (W, and ;)
respectively, and normalization before a matrix multiplication (matmul) operation to produce the similarity matrix

M.

Prior work has crafted or discovered heuristic
functions on these sequences that are useful in de-
tecting LLM-generated text (Guo et al., 2023; Hans
et al., 2024). SENTRA replaces these heuristic
functions on SNTP sequence(s) with a neural net-
work.

Figure 1 illustrates our proposed method. We
leverage two LLMs with parameters #; and 65 to
produce SNTP sequences ¢g; and go for a candidate
document with tokens ¢. The two sequences are
concatenated to form a tensor of size [T, 2].

Instead of token embeddings often seen in Trans-
former architectures (Devlin et al., 2019), each ten-
sor slice of size two is independently projected
to an embedding dimension D using a fully con-
nected layer. This transformation results in a tensor
of size [T, D] for a single document. We then in-
sert a learned [CLS] tensor at the first position,
extending the sequence to size [T'+ 1, D]. Learned
positional embeddings are added to each vector
before passing the embedded sequence through a
bi-directional Transformer (Devlin et al., 2019),
producing a representation of size [T' + 1, D].

The output of SENTRA is a learned representa-
tion over SNTP, capturing the probability assigned
by two LLMs to the tokens in a document. For clas-
sification, we use the representation at the [CLS]
token and append a classification head.

In summary, our approach employs a
Transformer-based encoder to systematically
learn a useful representation of SNTP sequences.
Similar to many Transformer-based approaches
(Devlin et al., 2019; Radford et al., 2021), we
demonstrate in Section 3.2 that our method can
leverage large quantities of unlabeled data to
enhance this learned representation.

3.2 SENTRA Contrastive Pre-Training

We further explore the pre-training of SENTRA us-
ing unlabeled text data and find that it significantly
improves detection performance, see Section 4.3.
Figure 2 illustrates our concept for pre-training
SENTRA. We elected to leverage a mode of in-
formation with many available pre-trained repre-
sentations, text, to help pre-train SENTRA which
leverages a new mode of information, SNTP. A
document is encoded using both a pre-trained text
encoder (Devlin et al., 2019; Liu et al., 2019) and
our SENTRA network, producing representations
R; and R;. These representations are projected to
a joint embedding space, U, and S, using fully
connected layers Wy and W for the text and SNTP
representations respectively.

Ue = Wi(Ry)
Se = Ws(Rs)

After applying L2 normalization to U, and S, to
control for scaling, we then compute a comparison
matrix M

“)

M = (U.ST)er )

where r is learned temperature scalar.

The two encoders learn to match representations
of the same document within a batch B. Employ-
ing the contrastive learning objective, we then min-
imize the cross-entropy loss over the columns (text-
to-SNTP), and rows (SNTP-to-text) of the compar-
ison matrix M, using the ground truth text-SNTP
pairings in the batch, y = 0,1, ...B.

The pre-training scheme effectively enables
SENTRA to produce representations that align with
those generated by the frozen text encoder, thereby
yielding more useful representations of the ¢; and
@2 sequences.

Notably, this pre-training scheme is reminiscent
of CLIP (Radford et al., 2021). In their work, the



Dataset Size Domains LLMs Attks A.Tokens % LLM-Gen A.Train A.Val A.Test
RAID 500,000 8 11 11 712 97.16% 22,398 2,488 62,500
M4GT 267,863 6 14 0 471 67.6% 97,584 10,893 33,482
MAGE 430,630 10 27 0 267 34.86% 167,972 50,387 5,682

Table 1: Overview of datasets used in the study. Attks is the number of attacks included in the dataset. A.Tokens is
the average token length using the Falcon 1 tokenizer. A.Train, A.Val, and A.Test are the average train, validation,
test set sizes across all domain splits. The train and validation datasets are class balanced.

authors jointly trained text and image encoders
from scratch. Unlike CLIP, which deals with text
and images, we focus solely on text and on pre-
training only the SENTRA SNTP encoder. To do
this, we freeze a pre-trained text encoder and train
only SENTRA and the contrastive embedding pro-
jections.

3.3 Implementation

We implement our SENTRA model with eight at-
tention heads, eight layers, and a hidden dimension
of 768 for a total of 57M parameters. The Trans-
former architecture and positional embeddings fol-
low the same definitions as in BERT (Devlin et al.,
2019). Before pre-training, the SENTRA parame-
ters are randomly initialized. The frozen text en-
coder used for contrastive pre-training is initialized
from RoBERTa-base (Liu et al., 2019). SENTRA
is pre-trained on a 600K sample of Common Crawl
data from RedPajama (Weber et al., 2024). Pre-
training is conducted for 20 epochs with a batch
size of 256 and a maximum token length of 64. We
then continue contrastive training for 10 epochs
with a batch size of 128 and a maximum token
length of 512 to pre-train the later position embed-
dings. The peak learning rate was set to le — 4
for both phases. We use the AdamW (Loshchilov
and Hutter, 2019) optimizer with a weight decay of
le — 2 and set the contrastive learning temperature
to 0.007 (Chen et al., 2020). During fine-tuning,
we initialize SENTRA from the pre-trained model,
use a learning rate of le — 4, a weight decay of
le — 2, and apply early stopping with a patience of
two epochs on a validation dataset.

The SENTRA encoder leverages two frozen
LLMs to produce sequences of SNTP. Following
Binoculars (Hans et al., 2024), we use Falcon-
7B ! and Falcon-7B-Instruct 2 (Almazrouei et al.,
2023) to produce these sequences. We used a se-
quence of two SNTP because Binoculars showed

"https://huggingface.co/tiiuae/falcon-7b
2https://huggingface.co/tiiuae/
falcon-7b-instruct

it is useful for the detector to compare both SNTP,
and we used the Falcon models specifically be-
cause Binoculars showed they worked well (Hans
et al., 2024).Thus far, we have described SEN-
TRA’s inputs as sequences of selected-next-token-
probabilities (SNTP). More precisely, we use se-
quences of cross-entropy loss values produced by
the LL.Ms for a given candidate text ¢. The proba-
bilities can be recovered from those loss values as
qi(0) = exp(—1;(0)), where ; is the loss value for
token ¢;. During SENTRA training, the SNTP se-
quences are precomputed and cached. At inference,
the computational complexity is dominated by the
Falcon models. Because we use the same LLMs as
Binoculars (Hans et al., 2024) and our SENTRA
encoder is small, our method has the same order
of complexity as Binoculars. See Appendix B for
additional details.

4 Experiments

4.1 Datasets

If we define text similar to the training data distribu-
tion as in-domain and text that is dissimilar as out-
of-domain, it is well established supervised LLM
detection methods perform significantly better in-
domain than out-of-domain (Dugan et al., 2024).
However, a model designed for LLM-generated
text detection in real world scenarios will inevitably
encounter out-of-domain texts. For this reason, this
work focuses on out-of-domain experiments, where
key subsets of data are withheld from the training
dataset.

To evaluate the effectiveness of our proposed
method, we used three publicly available datasets:
RAID (Dugan et al., 2024), M4GT (Wang et al.,
2024a) and MAGE (Li et al., 2024), focusing ex-
clusively on English-language data.

RAID The full RAID dataset contains over 6
million human- and LLM-generated texts spanning
8 domains, 11 LLM models, multiple decoding
strategies, penalties, and 11 adversarial attack types.
We down-sampled it to 500K instances before per-
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forming out-of-domain split sampling. With the
included attacks, the RAID dataset also assesses
the effectiveness of different supervised baseline
methods against adversarial attacks under the in-
attack setup.

MA4GT An extension of M4 (Wang et al., 2024b),
the M4GT dataset is a multi-domain and multi-
LLM-generator corpus comprising data from 6 do-
mains, 9 LLMs, and 3 different detection tasks.

MAGE The MAGE dataset covers 10 content
domains, with data generated by 27 LLMs using 3
different prompting strategies. It is specifically de-
signed to assess out-of-distribution generalization
capability. We use the "Unseen Domains" evalua-
tion from (Li et al., 2024).

Each dataset is further split into training, val-
idation and test sets. For MAGE, we used the
published split. To mitigate the label imbalance
problem, the train and validation splits are balance-
sampled to ensure an equal number of human- and
LLM-generated texts. This was achieved by down-
sampling the majority class to match the size of the
minority class within split. Addressing this imbal-
ance is crucial for two reasons: 1) the percentage
of LLM-generated text is over 97% in the RAID
dataset by design; 2) across the three datasets, the
proportion of LLM-generated text varies signifi-
cantly. The average train and validation set sizes
show how much data went into the training of the
supervised methods while ensuring class balance,
providing a clear comparison to the total dataset
size. The MAGE dataset has significantly shorter
texts and this adds difficulties in the detection task
(Tian et al., 2024; Fraser et al., 2024). Table 1 con-
tains detailed statistics on the evaluation datasets.

We use the first 512 tokens from the datasets
across all methods and baselines.

4.2 Baseline Methods

We evaluated and compared the performance of our
approach against multiple existing methods, includ-
ing zero-shot, embedding-based, and supervised
detectors. For zero-shot detectors, we selected per-
plexity (Guo et al., 2023), Fast-DetectGPT (Bao
et al., 2024), and Binoculars (Hans et al., 2024).
For embedding-based detectors, we selected UAR
(Soto et al., 2024) and evaluated both its Multi-
LLM and Multi-domain models. For supervised
detectors, we chose RoBERTa-base (Liu et al.,
2019) with direct fine-tuning, Ghostbuster (Verma
et al., 2024) which trains a logistic regression clas-
sifier on forward-selected crafted log-probability

features, and Text Fluoroscopy (Yu et al., 2024)
which utilizes intrinsic features. For ROBERTa, we
used the same settings as the fine-tuning of SEN-
TRA: a learning rate of 1le — 4, a weight decay of
le — 2, and a patience of two epochs.

We used Falcon-7B and Falcon-7B-Instruct
across all baseline methods that required LLMs,
except for Fast-DetectGPT where we followed its
black-box setting. Appendix C provides a detailed
description of the setup, assumptions and modifica-
tions made for each baseline method.

We compared aforementioned baseline meth-
ods with our proposed methods. We present re-
sults from two SENTRA encoder variations, R-
SENTRA and SENTRA. R-SENTRA has all non-
LLM weights in SENTRA encoder initialized at
random (without pre-training), whereas the full
SENTRA model has those weights pre-trained on
RedPajama data (Weber et al., 2024), as described
in Section 3.3.

4.3 Results

We measured performance of all methods on three
out-of-domain evaluations. For the supervised
methods, these evaluations assess how well the
LLM text detectors perform in real world scenar-
ios, where data distributions differ from the training
distribution. Detectors that remain more invariant
across these evaluations are considered more robust
to changes and variations in data, thus showing bet-
ter generalization to unseen domains. The results
for each domain split are presented in Table 2, 3
and 4, while the summary of overall relevant find-
ings is presented in Table 5. Note the data listed
in the column name in all these tables is withheld
from the training dataset, meaning the test dataset
consists entirely of data from the specified column
name.

Methods that are not zero-shot or linear models
are inherently more stochastic; therefore, the UAR,
RoBERTa, and SENTRA methods were ran over
three random seeds. The main results in Tables 2,
3, 4, 5 show the means over these seeds. Additional
details are shown in Appendix A.

Tables 2, 3 and 4 present performance of dif-
ferent baselines, measured with the AUROC met-
ric, across different OOD test data for the RAID,
M4GT and MAGE datasets respectively. The
MEAN and WORST columns represent the aver-
age and the worst performance results of the base-
lines taken across the OOD test data, and the bold
numbers indicate the best-performing models (on



MEAN WORST | Abstracts Books News Poetry Recipes Reddit Reviews Wiki
RoBERTa [22] 90.9 84.4 93.1 87.0 91.4* 952% 84.4 93.9% 90.2 91.8
Text-Fluor. [40] 76.4 70.6 71.4 824 749  70.6 76.1 79.2 73.9 82.6
UAR-D [31] 81.7 71.4 71.4 852 845 73.2 89.5% 82.4 84.9 82.3
UAR-L [31] 87.3 76.3 89.6 91.1 89.8 763 85.3 88.8 88.1 89.3
PPL [10] 72.9 69.4 69.7 76.8 694 739 69.6 76.6 75.8 71.3
Binoculars [12] 82.0 79.4 83.2 84.3 80.2 835 79.4 83.2 82.1 80.2
F-DetectGPT [2] | 78.6 75.6 80.0 80.1 779 771 75.6 78.8 80.0 79.4
Ghostbuster [35] 84.7 74.1 88.0 914 81.6 882 74.1 85.0 81.7 87.8
R-SENTRA 90.9 85.5 94.6 95.1* 884 925 85.5 91.7 87.8 91.8
SENTRA 92.5 87.0 95.1°% 94.1 91.3 95.0 87.0 93.7 90.4*  93.2%

Table 2: AUROC Metric Performance for for the RAID OOD evaluation. The best mean and worst-case performance
are in bold. The best result in each domain are marked by *.

MEAN WORST | arXiv OUTFOX PeerRead Reddit wikiHow Wikipedia
RoBERTa [22] 88.2 82.8 97.8% 84.9 82.8 89.6 85.5 88.5
Text-Fluor. [40] 83.2 78.1 84.7 84.8 89.2 83.9 78.1 78.3
UAR-D [31] 75.3 63.9 73.3 83.9 65.7 86.1 63.9 78.9
UAR-L [31] 84.7 71.0 93.8 87.6 87.1 80.3 71.0 88.4
PPL [10] 87.0 81.7 83.6 85.7 94.2 89.7 81.7 87.1
Binoculars [12] 89.1 79.0 93.1 82.6 90.5 93.8 79.0 95.4
F-DetectGPT [2] | 87.4 79.1 91.9 80.3 88.2 91.0 79.1 93.7
Ghostbuster [35] 87.8 73.3 94.3 87.3 81.9 95.4 73.3 94.5
R-SENTRA 92.8 83.9 94.6 88.4% 94.9 97.7% 83.9 97.4
SENTRA 93.0 87.1 923 88.0 95.0%* 97.7* 87.1% 97.7*

Table 3: AUROC Metric Performance for the MAGT OOD evaluation. The best mean and worst-case performance
are in bold. The best result in each domain are marked by *.

average and in the worst case) in these tables. Also,
the asterisks (*) indicate the best-performing mod-
els for each test case.

As Tables 2, 3 and 4 show, SENTRA outper-
formed all the baselines on average and in the
worst case across the three datasets RAID, M4GT
and MAGE. Also, SENTRA and R-SENTRA mod-
els outperformed the baselines in most of the test
cases (across the specific columns since most of
the asterisks are associated with the SENTRA
and R-SENTRA models in the columns of these
tables). In a few specific domain splits where
SENTRA/R-SENTRA lost to other baselines (usu-
ally RoBERTa), the performance loss was marginal
(e.g., 91.3 vs. 91.4 for News, 95.0 vs. 95.2 for
Poetry and 93.7 vs. 93.9 for Reddit for RAID eval-
uations - see Table 2).

Table 5 summarizes the AUROC OOD per-
formance results taken directly from the MEAN
columns of Tables 2, 3 and 4. It demonstrates SEN-
TRA outperforms all other baselines for the three
datasets RAID, M4GT and MAGE by 1.8%, 5.4%
and 6.7% respectively, as compared to the second-
best performing baseline.

All these results show SENTRA serves as a gen-
eralizable encoder for LLM detection models when
one considers likely OOD distribution shifts. As
Table 5 also shows, SENTRA’s performance im-
proves after pre-training: it is 92.5 vs. 90.9 on the
RAID dataset, 93.0 vs. 92.8 on M4GT, and 94.2 vs.
93.8 on the MAGE dataset. The improved OOD
performance indicates pre-training helps SENTRA
learn a more generalizable representation to shifts
in the data and demonstrates the effectiveness of
our contrastive pre-training method for SENTRA.

Since LLMs became increasingly more available
and their usage has surged, interest in detection
tools, such as those presented in this paper, has
grown (Wu et al., 2023). At the same time, counter-
measures have emerged to attack these LLM text
detectors, typically by altering LLM-generated text
to elicit false negatives (Koike et al., 2024). Dugan
et al. (2024) demonstrated many attacks can sig-
nificantly degrade detector performance. In that
study, the best open-source tool, Binoculars (Hans
et al., 2024), exhibited much stronger performance
on non-attacked data than on attacked data. For un-
supervised methods, (Guo et al., 2023; Hans et al.,



MEAN WORST | CMV ELI5S HSWAG ROCT SciGen SQuAD TL:DR WP XSum Yelp
RoBERTa [22] 88.3 74.4 948 929 87.4% 88.8% 84.3 93.3 85.7 903 744 913
Text-Fluor. [40] 63.9 47.8 62.1 619 69.5 71.6 79.1 533 732 56.5 478 643
UAR-D [31] 63.4 40.5 80.2 744 63.5 61.5 56.5 59.6 60.1 67.8 405 703
UAR-L [31] 76.4 61.2 90.1 819 61.2 73.5 80.6 76.1 66.3 882 69.0 775
PPL [10] 572 45.7 579 614 73.8 61.2 494 48.3 62.9 594 457 519
Binoculars [12] 61.7 529 71.0 70.2 59.3 529 59.7 553 63.4 672 576 605
F-DetectGPT [2] | 63.0 54.9 713 70.1 66.1 60.5 56.4 574 66.2 645 549 621
Ghostbuster [35] 79.2 65.0 90.5  86.0 66.2 65.0 83.6 78.8 74.0 94.1 724 80.9
R-SENTRA 93.8 84.6 985 952 84.6 87.3 97.9% 94.1% 93.4 986 938 944
SENTRA 94.2 86.0 98.6% 95.4* 86.0 88.2 97.6 93.9 94.1¥  98.9% 94.4*% 951%

Table 4: AUROC Metric Performance for the MAGE OOD evaluation. The best mean and worst-case performance
are in bold. The best result in each domain are marked by *.

RAID M4GT MAGE
RoBERTa [22] 90.9 88.2 88.3
Text-Fluor. [40] 76.4 83.2 63.9
UAR-D [31] 81.7 753 63.4
UAR-L [31] 87.3 84.7 76.4
PPL [10] 72.9 87.0 572
Binoculars [12] 82.0 89.1 61.7
F-DetectGPT [2] 78.6 87.4 63.0
Ghostbuster [35] 84.7 87.8 79.2
R-SENTRA 90.9 92.8 93.8
SENTRA 92.5(+1.8)*  93.0(+5.4)* 94.2(+6.7)*

Table 5: Evaluation Summary: Expected performance
results (mean AUROC) across domains for our three
evaluations. The best results are marked in bold. The
percentage change of the best model over the best base-
line is shown in parenthesis.

2024; Bao et al., 2024), it is not immediately clear
how to adapt the approach to a known attack. In
contrast, for supervised methods, the adaptation
strategy is straightforward: train on attacked data.
The results on the RAID dataset in Table 2 include
11 forms of attack. When the attack type is known
and models are trained on the attacked data, Table
2 suggests SENTRA is the most effective method
at adapting to those attacks.

5 Conclusions

In this paper, we proposed a novel general pur-
pose supervised LLLM text detector method SEN-
TRA that is a transformer-based encoder leverag-
ing SNTP sequences and utilizing contrastive pre-
training on large amounts of unlabeled data. Since,
supervised detectors tend to perform better on data
that is similar to their training distributions (Dugan
et al., 2024), it is essential to include a wide vari-
ety of domains when testing such general-purpose
detectors. Therefore, we tested the performance of
SENTRA on three public datasets RAID, M4GT
and MAGE containing a broad range of different
domains (24 in total) across various experimental

settings and compared its performance with eight
popular baselines.

We empirically demonstrated SENTRA signifi-
cantly outperformed all baselines in most of the
experimental settings: it achieved AUROC per-
formance improvements of 1.8%, 5.4% and 6.7%
for RAID (Dugan et al., 2024), M4GT (Wang
et al., 2024a) and MAGE (Li et al., 2024) out-
of-domain datasets respectively, as compared to
the second-best performing baseline. On our three
evaluation datasets, SENTRA outperformed all
eight popular baselines in expected and worst-
case out-of-domain performance, and SENTRA/R-
SENTRA was also the best model in 17 out of 24
of the domain specific experiments. Even in the
few cases when SENTRA/R-SENTRA (SENTRA
without pre-training) lost to particular baselines
(mostly RoBERTa), the performance loss was usu-
ally marginal (e.g., 91.3 vs. 91.4 for News, 95.0
vs. 95.2 for Poetry and 93.7 vs. 93.9 for Reddit
domains for RAID evaluations).

This shows SENTRA is a strong method for
training LLLM text detectors that can generalize to
unseen domains. We also demonstrated our con-
trastive pre-training strategy increased the perfor-
mance of SENTRA on these out-of-domain evalu-
ations. Domain generalization is one of the most
critical issues for LLM text detectors. These results
demonstrate that SENTRA is a general purpose en-
coder that can serve as a foundation for LLM text
detector models.

6 LLM Acknowledgment

We used ChatGPT for generating first iterations of
some software snippets. We also consulted Chat-
GPT on the phrasing of some points in the paper
and for catching some grammatical errors.



7 Limitations

In this work, we studied the effects of domain
shifts on detection models. While these have sig-
nificant impacts on detector performance, other
factors can also influence results. Notably, prompt
variation can have a large effect on detectors (Ku-
marage et al., 2023b). Many LLM detection bench-
mark datasets use prompt templates (Dugan et al.,
2024) to generate their samples. However, these
templates exhibit significantly less prompt variety
than what a real-world detector is likely to en-
counter. Benchmark datasets with a broader range
of prompting strategies are needed to further assess
the robustness of detection methods.

In this work, we followed Binoculars (Hans et al.,
2024) in choosing Falcon (Almazrouei et al., 2023)
models as the SNTP generators. This decision was
primarily based on Binoculars’ strong performance,
allowing for a direct and fair comparison. How-
ever, it is important to note SENTRA is a general
methodology, and other SNTP generators may per-
form better or more efficiently than Falcon models.

We pre-trained our model on a relatively small
sample of Common Crawl data. The volume of
data and the amount of compute used for pre-
training were small relative to what is typically
used for foundation models (Liu et al., 2019; Rad-
ford et al., 2021). It is very likely SENTRA
could be significantly improved with additional
pre-training on larger datasets.

8 Ethical Considerations

In this study, we did not observe any detector
achieving perfect performance on any slice of data.
Therefore, any detector will inherently make trade-
offs between false positives and false negatives
when deployed in real-world scenarios, such as
plagiarism detection. Users of LLM detection tech-
nology should be aware that these detectors are not
perfect.
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A Additional Results and Experimental
Notes

The datasets used in this work were used for re-
search purposes. This aligns with their intended
use and licenses.

Here we show the mean and standard deviation
across three runs, (random seeds 42,43,44) for the
methods that are not zero shot or logistic regres-
sion based. Note there were three M4GT and four
RAID samples where Ghostbuster could not make
an inference due to the low number of tokens in the
document. For this documents, we infilled a low
prediction score indicating human prediction. For
the RAID dataset, we used the Binoculars for each
document released by (Dugan et al., 2024).

B Computational Complexity

LLM generators are computationally expensive.
Unfortunately, methods that rely on SNTP inputs
depend on LLM inference, making it the most
costly component of all detection methods stud-
ied in this work. However, SENTRA is a relatively
small model with only eight Transformer layers,
meaning that computational costs at inference are
dominated by the production of SNTP inputs. Dur-
ing training, we cache the SN'TP sequences so that
the LLMs are run only once per sample. SENTRA
uses the same LLMs as Binoculars (Hans et al.,
2024), and because the cost of the SENTRA en-
coder is minimal compared to LLM inference, the
overall computational complexity of SENTRA is
roughly equivalent to that of the Binoculars method.
Refer to Table 9 for detailed number of parameters.
Pre-training took approximately 36 hours on a
GH200 GPU. We also fine-tuned RoBERTa and
SENTRA models on GH200 instances. Fine-tuning
for each data split too between .5 and 12 hours.

C Baseline Assumptions and Setups

This section details the assumptions and setups for
all baseline methods if we have made modifica-
tions.

For UAR, the original paper compares the dis-
tance between the input query and the closest
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abstracts books news poetry recipes reddit reviews wiki
RoBERTa 93.1+1.2  87.0£2.1 91.4434* 95241.3* 84.4£169 93.9+1.2% 90.24+23  91.8£2.8
Text-Fluor. 714+£0.0 824400 749+£0.0 70.6£0.0 76.1+0.0 79.2+0.0 73.9£0.0 82.6+0.0
UAR-D 71.4+44 852408 84.5+1.2 73.24+0.5 89.5+£0.8* 82.4+03 84.9+1.1 82.3+0.2
UAR-L 89.6+£2.0 91.1£0.2 89.8£04  76.3+£2.6 853%1.2 88.8+0.7 88.1+04  89.3+0.5
PPL 69.7+£0.0 76.8+£0.0 69.4+£0.0 73.9+0.0 69.6+£0.0 76.6+£0.0 75.8+£0.0 71.3£0.0
Binoculars 83.24+0.0 84.3£0.0 80.2+£0.0 83.5+0.0 79.4+0.0 83.2+0.0 82.1£0.0  80.2+0.0
Fast-DetectGPT | 80.0+0.0  80.1+0.0 77.9+£0.0 77.1£0.0 75.6£0.0 78.8£0.0  80.0+0.0 = 79.44+0.0
Ghostbuster 88.0+£0.0 91.4£0.0 81.6+£0.0 88.2+0.0 74.1£0.0 85.0+0.0 81.7£0.0  87.8+0.0
R-SENTRA 94.6+0.3 95.1+£0.3* 88.4+0.5 92.5+£2.2  85.5+09 91.7+£0.1 87.84+0.5 91.8£0.3
SENTRA 95.1+0.1*% 94.1£1.6  91.3+0.5 95.0+0.8 87.0£1.5 93.7£0.5 90.4+£0.9* 93.2+0.7*

Table 6: Mean and standard deviation of the AUROC across random seeds on the RAID dataset.

arxiv outfox peerread reddit wikihow  wikipedia
RoBERTa 97.8+£0.3* 84.9+22 82.8418.6 89.6+39 85.5£23  88.5+3.9
Text-Fluor. 84.7+0.0 84.84£0.0 89.2+0.0 83.9+0.0 78.1£0.0 78.3£0.0
UAR-D 73.3+6.7 839+0.2 65.7£1.0 86.1£1.0 63.9+0.6 789+2.2
UAR-L 93.8+1.2 87.6+£0.6 87.1+£0.4  80.3£1.1 71.0£2.4  88.4+0.7
PPL 83.6£0.0 85.7£0.0 94.2+0.0 89.7£0.0 81.7£0.0 87.1+0.0
Binoculars 93.1£0.0 82.6+0.0 90.5£0.0 93.8+0.0 79.0£0.0  95.4+£0.0
Fast-DetectGPT | 91.9+0.0 80.3+£0.0 88.2+0.0 91.0+0.0  79.1£0.0  93.7£0.0
Ghostbuster 943+0.0 87.3+£0.0 81.9+£0.0 954+00 73.3+£0.0 94.5+0.0
R-SENTRA 94.6+0.5 88.4£0.4* 94.94+0.2 97.7£0.3* 83.9£1.3 97.4+0.3
SENTRA 923+1.0 88.0+0.1 95.0+£0.3* 97.7+£0.2 87.1£1.7* 97.7+0.3*

Table 7: Mean and standard deviation of the AUROC across random seeds on the M4GT dataset.

cmv elis hswag roct sci_gen squad tldr wp Xsum yelp
RoBERTa 94.8+1.0 929407 87.4+4.2* 88.8+1.0%* 84.3+6.5 93.3+1.0 857+51 90.3+1.5 744434  91.3%1.6
Text-Fluoroscopy | 62.1+£0.0  61.9£0.0  69.5+£0.0  71.6£0.0  79.1+0.0 53.3+0.0 732+0.0 56.5+0.0 47.8£0.0 64.3+0.0
UAR-D 80.2+1.8 744417 635+23 615425 56.5+47 59.6+34  60.1+1.7 67.843.3 405409  70.3+£0.4
UAR-L 90.1£0.7 819407 61.2424 735+1.0 80.6+1.7 76.1£08 66.3+2.8 882409 69.0+£1.9 77.5+1.3
PPL 57.9£0.0 61.44+0.0 73.820.0 612+0.0 494400 483+0.0 629+0.0 59.4+00 457+0.0 51.940.0
Binoculars 71.0+£0.0  70.2+0.0  59.3+£0.0  52.9+0.0 59.7+£0.0  55.34+0.0 63.4+0.0 67.2+0.0 57.6+£0.0  60.5+0.0
Fast-DetectGPT 71.3£0.0  70.1+£0.0 66.1£0.0  60.5£0.0 56.4+0.0 57.4+0.0 66.2+0.0 64.5£0.0 54.9+0.0 62.14+0.0
Ghostbuster 90.5£0.0 86.0+0.0 66.2+0.0 65.0+£0.0 83.6+0.0 78.8+0.0 74.0+0.0 94.1£0.0 72.4+0.0 80.940.0
R-SENTRA 98.5£0.2 95240.7 84.6£0.6 87.3+£0.6 97.9+£0.1* 94.1+0.3* 934403 98.6£0.3 93.8+1.7 94.440.2
SENTRA 98.6+0.2* 954+04* 86.0+£0.3  88.24+0.5 97.6+0.8 93.9+0.6 94.1+0.4* 98.9+0.1* 94.4+1.0* 95.1+0.2*

Table 8: Mean and standard deviation of the AUROC across random seeds on the MAGE dataset.
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Method Parameter Count
RoBERTa-base 124M

Text Fluoroscopy 7B (LLM) + 5.1M (FCN) ~ 7B
UAR 82M

Perplexity 7B (LLM)

Binoculars 14B (2 LLMs)
Fast-DetectGPT 2.7B + 6B (2 LLMs) = 8.7B
Ghostbuster 7B (LLM) + N (LR, N « 7B) =~ 7B
SENTRA 57M (training), 14B (inference)
R-SENTRA 57M (training), 14B (inference)

Table 9: Parameter count of all methods with the actual LLM(s) used in evaluation. LR stands for logistic regression,
FCN stands for fully connected network. For Ghostbuster, we observed NN to be between 20 to 40.

machine support query against the distance be-
tween the closest machine support query and the
closest human support query. Mathematically
speaking, given () the input query, H the clos-
est human support query, and M is the seeded
machine support queries, the distance dy
min,,enm[d(Q, m),d(H,m)] is used as the predic-
tion. Though this allows d¢ to be directly usable
for metric calculation, this is less trivial than a sim-
ple nearest neighbor classification where we cal-
culate the percentage of machine support queries
among k as the prediction. in our baseline, we em-
ployed the simple nearest neighbor approach with
k = 10 and cosine similarity distance measure. For
each domain, we randomly sampled 1,000 human
and machine texts respectively to form the kNN
seed corpus. We did not group texts into episodes
and kept episode size of 1 due to the generally
longer text lengths compared to twitter posts.

For Text Fluoroscopy, we switched the model
from gte-Qwenl.5-7B-instruct to Falcon-7B-
Instruct to better align with other baselines by elim-
inating the effect of model selection. With this
change, we modified the input dimension to the
feed forward network from 4096 to 4454 due to
falcon models hidden state sizes. Despite the possi-
bilities of under-training, we followed their imple-
mentation and sampled 160 data points for training,
and 20 for validation (during training). The test
set metric at the earliest highest validation accu-
racy was reported. We also optimized the feature
selection script for more efficient batch processing.

For Ghostbuster, we included a minimum accu-
racy score improvement threshold of 1e—4 to avoid
over-fitting and allow early stopping for MAGE
dataset where we observed significantly more fea-
ture selection iterations compared to the other two
datasets. In the case of least square convergence
failure (max_iter=1000) in Logistic Regression
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fitting, the current feature list is taken as the best
features for evaluation.

D Hyper-parameter Selection

For RoBERTa, we chose one domain from the
MAGE dataset to tune the learning rate. With
this learning rate, the ROBERTa diverged before
the first epoch on one MAGE split and one RAID
split. We then turned down the learning rate for
these two splits and reran ROBERTa, but the models
still diverged. It is possible with additional tuning,
RoBERTa could better fit these datasets, but we did
not want to pay special attention to the fine-tuning
any one method.

For SENTRA, we did a small search over the
number of layers, {2,4,8}, for the CMV-MAGE
data split by looking at the in-domain develop-
ment loss. We found four layers to work best.
We later found SENTRA had trouble fitting the
in-distribution validation data of a data. We found
that varying the LR and batch size on this dataset
had no significant effect, so we kept the defaults
of a LR of le — 4 and a batch size of 128 which
were the defaults from RoBERTa. We then manu-
ally tuned the pre-training model while looking at
this in-distribution loss. We ultimately found that
eight layers and and two pre-training phases pro-
duced the best performance on this in distribution
validation dataset.
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