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Abstract

LLMs are becoming increasingly capable and001
widespread. Consequently, the potential and002
reality of their misuse is also growing. In003
this work, we address the problem of detect-004
ing LLM-generated text that is not explicitly005
declared as such. We present a novel, general-006
purpose, and supervised LLM text detector,007
SElected-Next-Token tRAnsformer (SENTRA).008
SENTRA is a Transformer-based encoder009
leveraging selected-next-token-probability se-010
quences and utilizing contrastive pre-training011
on large amounts of unlabeled data. Our exper-012
iments on three popular public datasets across013
24 domains of text demonstrate SENTRA is014
a general-purpose classifier that significantly015
outperforms several popular baselines in the016
out-of-domain setting.017

1 Introduction018

The problem of determining whether a text has019

been generated by an LLM or written by a human020

has been widely studied in both academia (Tang021

et al., 2024) and industry. Several commercial-022

level automated text detection systems have been023

developed, including GPTZero (Tian and Cui,024

2023), Originality (Originality.AI, 2025), Sapling025

(Sapling AI, 2025), and Reality Defender (Real-026

ity Defender, 2025). Although significant progress027

has been made in detecting LLM-generated text028

over the past several years, these systems remain029

far from perfect and are often unreliable. A ma-030

jor limitation is their brittleness: they can perform031

well on certain types of LLM-generated text but032

fail catastrophically in other cases (Dugan et al.,033

2024). This issue is particularly pronounced when034

operating in a real world scenario, where models035

must handle out-of-domain (OOD) data, different036

LLM generators, or various LLM "attacks" (Dugan037

et al., 2024; Zhou et al., 2024). Therefore, it is038

crucial to develop more generalizable methods that039

deliver reliable performance across these settings.040

Because the space of possible domains is much 041

larger than the number of known LLM generators 042

or attacks, this work focuses on generalization to 043

unseen domains since this type of generalization 044

constitutes one of the most crucial issues facing the 045

LLM text detectors. 046

The probability assigned by an LLM to a docu- 047

ment can be measured by auto-regressively feeding 048

the document’s tokens into the LLM and observ- 049

ing the predicted probabilities for each token. This 050

process produces a sequence of values that we de- 051

note as selected-next-token-probabilities (SNTP). 052

SNTP have been extensively used in prior work on 053

LLM-generated text detection (Guo et al., 2023; 054

Hans et al., 2024; Verma et al., 2024). These prior 055

works primarily rely on either heuristics (hand- 056

crafted functions) applied to SNTP sequences or 057

linear models trained on expert-derived features 058

(Hans et al., 2024; Verma et al., 2024). In con- 059

trast, our approach encodes SNTP sequences us- 060

ing a Transformer model pre-trained on unlabeled 061

data, leveraging the expressivity of Transformers 062

to directly learn a representation of the probability 063

that a single or a pair of LLMs assign to tokens in 064

a document. In this paper, we propose SElected- 065

Next-Token tRAnsformer (SENTRA), a method for 066

detecting LLM-generated text that directly learns 067

a detection function in a supervised manner from 068

SNTP sequences. This method utilizes a novel 069

Transformer-based architecture with a contrastive 070

pre-training mechanism. The learned representa- 071

tion can be fine-tuned on labeled data to create a su- 072

pervised model that distinguishes LLM-generated 073

texts from human-written texts. 074

For the LLM-text-detection task, supervised 075

detectors have been shown to generalize poorly 076

outside the training distribution (Dugan et al., 077

2024). Our SENTRA network addresses this is- 078

sue by learning generalizable functions on SNTP. 079

We show empirically that the supervised method 080

presented in this paper generalizes to unseen do- 081
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mains better than both supervised and unsupervised082

baselines by leveraging our proposed Transformer-083

based architecture, thus demonstrating greater gen-084

eralization to distribution shifts.085

In this paper, we demonstrate:086

• Detectors utilizing SENTRA as their encoder087

generalize well to domains outside of the train-088

ing distribution(s).089

• Contrastive pre-training of SENTRA leads to090

improved generalization results on new do-091

mains.092

• SENTRA outperforms all studied baselines093

in out-of-domain evaluations on three widely094

used benchmark datasets.095

2 Related Work096

With the rise of LLMs, significant research has097

been conducted on accurately detecting text gener-098

ated by these models (Tang et al., 2024). At a high099

level, these detectors can be categorized into three100

approaches: watermarking, unsupervised (or zero-101

shot) detection, and supervised detection. Water-102

marking generally relies on the LLM deliberately103

embedding identifiable traces in its output (Liu104

et al., 2025). In this work, we focus on the general105

detection problem, including cases involving non-106

cooperative LLMs; therefore, we do not consider107

watermarking as a point of comparison. Unsuper-108

vised methods typically leverage metrics computed109

by an LLM on the target document. These meth-110

ods can be further divided into white-box detection,111

where the candidate LLM is known (Mitchell et al.,112

2023), and black-box detection, where the candi-113

date LLM is unknown (Tang et al., 2024). Given114

our focus on the general detection problem, we pri-115

oritize black-box detection methods. Supervised116

methods, on the other hand, involve collecting a117

corpus of human-written and LLM-generated text118

samples, which are then used to train the detection119

models (Verma et al., 2024; Soto et al., 2024).120

Selected-next-token-probabilities (SNTP) have121

been widely used for LLM detection in both white122

and black box settings (Guo et al., 2023; Hans et al.,123

2024; Verma et al., 2024). Perplexity (Jelinek et al.,124

1977) is a commonly used metric to evaluate an125

LLM’s ability to model a given dataset. In the con-126

text of AI detection, a lower perplexity score on127

a document indicates an LLM "fits" a document128

and this indicates a higher likelihood the document129

was LLM-generated. Conversely, a higher perplex-130

ity score suggests the LLM’s probability model131

does not fit or accurately represent the candidate 132

text, implying a lower likelihood that the text was 133

generated by the LLM (Guo et al., 2023). 134

Some detectors use multiple sequences of STNP 135

for the detection task (Verma et al., 2024; Hans 136

et al., 2024). Verma et al. (2024) leveraged SNTPs 137

from two Markov models, along with an LLM’s 138

SNTP, extracted features, and a forward feature 139

selection scheme as inputs to a linear classifier. In 140

contrast to Guo et al. (2023), Hans et al. (2024) 141

argued that relying solely on the perplexity score 142

for LLM-generated content detection can be mis- 143

leading. Although human-authored text generally 144

results in higher perplexity, prompts can signifi- 145

cantly influence perplexity values. The authors 146

highlighted the "capybara problem", where the ab- 147

sence of a prompt can cause an LLM-generated 148

response to have higher perplexity, leading to false 149

detections. They addressed this issue by introduc- 150

ing cross-perplexity as a normalizing factor to cali- 151

brate for prompts that yield high perplexity. GLTR 152

(Gehrmann et al., 2019) is a detection method that 153

leverages SNTP along with other metrics, such as 154

the rank of the selected word within the next-token 155

distribution and the entropy of the next-token dis- 156

tribution (Gehrmann et al., 2019). These metrics 157

target LLM decoding strategies, including greedy 158

decoding, top-k sampling, and beam search. 159

DetectGPT is an unsupervised method based on 160

the idea that texts generated by LLMs tend to "oc- 161

cupy negative curvature regions of the model’s log 162

probability function" (Mitchell et al., 2023). The 163

method generates perturbations of the sample text 164

using a smaller model and compares the log prob- 165

ability of the sample text to that of the perturba- 166

tions. Fast-DetectGPT replaces the perturbations 167

in DetectGPT with a more efficient sampling step 168

(Bao et al., 2024). Nguyen-Son et al. (2024) ob- 169

served that the similarity between a sample and 170

its counterpart generation is notably higher than 171

the similarity between the counterpart and another 172

independent regeneration. They demonstrated that 173

this difference in similarity is useful for detection. 174

Other works (Hao et al., 2024) have also explored 175

the idea of "rewriting" text using LLMs to aid de- 176

tection methods. In their study, they trained an 177

LLM to maximize the edit distance from rewrit- 178

ing human-written texts while minimizing the edit 179

distance from rewriting LLM-generated texts. 180

The most common supervised baseline for LLM- 181

generated text detection is a RoBERTa classifier 182

(Liu et al., 2019) trained on a corpus of labeled 183
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Figure 1: SENTRA leverages the selected-next-token-probabilities from two frozen LLMs. These two sequences
of logits are concatenated into a vector. Each of these vectors are projected to the dimension of the bi-directional
transformer.

text, where each document is marked as either184

human-written or LLM-generated. Several stud-185

ies have expanded on this approach to supervised186

text-based classification. Yu et al. (2024) trained187

a feed-forward classifier with two hidden layers188

using intrinsic features derived from Transformer189

hidden states, determined via KL-divergence. Tian190

et al. (2024) address the challenge of detecting191

short texts by treating short samples in the training192

corpus as partially "unlabeled". Hu et al. (2023)193

employed adversarial learning to enhance the ro-194

bustness of their RoBERTa-based classifier against195

paraphrase attacks.196

Several publications have explored contrastive197

training for the LLM detection task (Bhattachar-198

jee et al., 2023, 2024; Soto et al., 2024; Guo199

et al., 2024). These studies use contrastive pre-200

training for a text transformer, which is chosen to201

be RoBERTa (Liu et al., 2019) in many cases, to202

guide the network toward a representation more203

useful for LLM-generated text detection. Further-204

more, many prior contrastive training strategies fo-205

cus on identifying stylometric features (Soto et al.,206

2024; Guo et al., 2024), while other studies extract207

stylometric features directly and train classifiers us-208

ing those features (Kumarage et al., 2023a). Rather209

than focusing on text representations, our method210

is primarily designed to produce useful SNTP rep-211

resentations and, thus, proposes a different con-212

trastive pre-training scheme, one that compares tex-213

tual representations with those of the SNTP trans-214

former.215

However, SNTP and supervised methods have216

been shown, both intuitively and empirically, to217

struggle with generalization to unseen domains (Li218

et al., 2024; Roussinov et al., 2025). This challenge219

has led to a series of studies aiming at improv-220

ing generalization. For instance, Lai et al. (2024) 221

applied adaptive ensemble algorithms to enhance 222

model performance in OOD scenario. Meanwhile, 223

Guo et al. (2024) and Soto et al. (2024), recogniz- 224

ing the limited number of widely adopted general- 225

purpose AI assistants, proposed to train an embed- 226

ding model to learn the writing style of LLMs, and 227

thereby improving the detection accuracy. 228

Prior work has shown SNTP to be an effective in- 229

put for identifying LLM generated text (Guo et al., 230

2023; Hans et al., 2024; Verma et al., 2024), but 231

they rely on relatively simple metrics or heuris- 232

tics. In this work, we show Transformer networks, 233

specifically SENTRA, can learn a representation of 234

SNTP sequences that can be used to train detection 235

models that better generalize to unseen domains. 236

3 Methodology 237

3.1 Overview of Our Method: SENTRA 238

Consider a document t consisting of an input se- 239

quence of T tokens t = (t1, t2, · · · , tT ). Assum- 240

ing an LLM has parameters θ, the probability of 241

document t given this LLM can be specified as 242

P (t1, t2, · · · , tT |θ) =
T∏
t=1

qi(θ), (1) 243

where 244

qi(θ) = P (ti | t1, t2, · · · , ti−1; θ) (2) 245

is the probability of token ti, given the pre- 246

ceding tokens (t1, t2, · · · , ti−1). We denote 247

the observed sequence of selected-next-token- 248

probabilities (SNTP) as 249

q(θ) = (q1(θ), q2(θ), · · · , qT (θ)) . (3) 250
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Figure 2: Pre-training: the outputs of SENTRA and a frozen text encoder go through linear layers, (Ws and Wt)
respectively, and normalization before a matrix multiplication (matmul) operation to produce the similarity matrix
M .

Prior work has crafted or discovered heuristic251

functions on these sequences that are useful in de-252

tecting LLM-generated text (Guo et al., 2023; Hans253

et al., 2024). SENTRA replaces these heuristic254

functions on SNTP sequence(s) with a neural net-255

work.256

Figure 1 illustrates our proposed method. We257

leverage two LLMs with parameters θ1 and θ2 to258

produce SNTP sequences q1 and q2 for a candidate259

document with tokens t. The two sequences are260

concatenated to form a tensor of size [T, 2].261

Instead of token embeddings often seen in Trans-262

former architectures (Devlin et al., 2019), each ten-263

sor slice of size two is independently projected264

to an embedding dimension D using a fully con-265

nected layer. This transformation results in a tensor266

of size [T,D] for a single document. We then in-267

sert a learned [CLS] tensor at the first position,268

extending the sequence to size [T +1, D]. Learned269

positional embeddings are added to each vector270

before passing the embedded sequence through a271

bi-directional Transformer (Devlin et al., 2019),272

producing a representation of size [T + 1, D].273

The output of SENTRA is a learned representa-274

tion over SNTP, capturing the probability assigned275

by two LLMs to the tokens in a document. For clas-276

sification, we use the representation at the [CLS]277

token and append a classification head.278

In summary, our approach employs a279

Transformer-based encoder to systematically280

learn a useful representation of SNTP sequences.281

Similar to many Transformer-based approaches282

(Devlin et al., 2019; Radford et al., 2021), we283

demonstrate in Section 3.2 that our method can284

leverage large quantities of unlabeled data to285

enhance this learned representation.286

3.2 SENTRA Contrastive Pre-Training 287

We further explore the pre-training of SENTRA us- 288

ing unlabeled text data and find that it significantly 289

improves detection performance, see Section 4.3. 290

Figure 2 illustrates our concept for pre-training 291

SENTRA. We elected to leverage a mode of in- 292

formation with many available pre-trained repre- 293

sentations, text, to help pre-train SENTRA which 294

leverages a new mode of information, SNTP. A 295

document is encoded using both a pre-trained text 296

encoder (Devlin et al., 2019; Liu et al., 2019) and 297

our SENTRA network, producing representations 298

Rt and Rs. These representations are projected to 299

a joint embedding space, Ue and Se, using fully 300

connected layers Wt and Ws for the text and SNTP 301

representations respectively. 302

Ue = Wt(Rt)

Se = Ws(Rs)
(4) 303

After applying L2 normalization to Ue and Se to 304

control for scaling, we then compute a comparison 305

matrix M 306

M = (UeS
T
e )e

r (5) 307

where r is learned temperature scalar. 308

The two encoders learn to match representations 309

of the same document within a batch B. Employ- 310

ing the contrastive learning objective, we then min- 311

imize the cross-entropy loss over the columns (text- 312

to-SNTP), and rows (SNTP-to-text) of the compar- 313

ison matrix M , using the ground truth text-SNTP 314

pairings in the batch, y = 0, 1, ...B. 315

The pre-training scheme effectively enables 316

SENTRA to produce representations that align with 317

those generated by the frozen text encoder, thereby 318

yielding more useful representations of the q1 and 319

q2 sequences. 320

Notably, this pre-training scheme is reminiscent 321

of CLIP (Radford et al., 2021). In their work, the 322
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Dataset Size Domains LLMs Attks A.Tokens % LLM-Gen A.Train A.Val A.Test
RAID 500,000 8 11 11 712 97.16% 22,398 2,488 62,500
M4GT 267,863 6 14 0 471 67.6% 97,584 10,893 33,482
MAGE 430,630 10 27 0 267 34.86% 167,972 50,387 5,682

Table 1: Overview of datasets used in the study. Attks is the number of attacks included in the dataset. A.Tokens is
the average token length using the Falcon 1 tokenizer. A.Train, A.Val, and A.Test are the average train, validation,
test set sizes across all domain splits. The train and validation datasets are class balanced.

authors jointly trained text and image encoders323

from scratch. Unlike CLIP, which deals with text324

and images, we focus solely on text and on pre-325

training only the SENTRA SNTP encoder. To do326

this, we freeze a pre-trained text encoder and train327

only SENTRA and the contrastive embedding pro-328

jections.329

3.3 Implementation330

We implement our SENTRA model with eight at-331

tention heads, eight layers, and a hidden dimension332

of 768 for a total of 57M parameters. The Trans-333

former architecture and positional embeddings fol-334

low the same definitions as in BERT (Devlin et al.,335

2019). Before pre-training, the SENTRA parame-336

ters are randomly initialized. The frozen text en-337

coder used for contrastive pre-training is initialized338

from RoBERTa-base (Liu et al., 2019). SENTRA339

is pre-trained on a 600K sample of Common Crawl340

data from RedPajama (Weber et al., 2024). Pre-341

training is conducted for 20 epochs with a batch342

size of 256 and a maximum token length of 64. We343

then continue contrastive training for 10 epochs344

with a batch size of 128 and a maximum token345

length of 512 to pre-train the later position embed-346

dings. The peak learning rate was set to 1e − 4347

for both phases. We use the AdamW (Loshchilov348

and Hutter, 2019) optimizer with a weight decay of349

1e− 2 and set the contrastive learning temperature350

to 0.007 (Chen et al., 2020). During fine-tuning,351

we initialize SENTRA from the pre-trained model,352

use a learning rate of 1e − 4, a weight decay of353

1e− 2, and apply early stopping with a patience of354

two epochs on a validation dataset.355

The SENTRA encoder leverages two frozen356

LLMs to produce sequences of SNTP. Following357

Binoculars (Hans et al., 2024), we use Falcon-358

7B 1 and Falcon-7B-Instruct 2 (Almazrouei et al.,359

2023) to produce these sequences. We used a se-360

quence of two SNTP because Binoculars showed361

1https://huggingface.co/tiiuae/falcon-7b
2https://huggingface.co/tiiuae/

falcon-7b-instruct

it is useful for the detector to compare both SNTP, 362

and we used the Falcon models specifically be- 363

cause Binoculars showed they worked well (Hans 364

et al., 2024).Thus far, we have described SEN- 365

TRA’s inputs as sequences of selected-next-token- 366

probabilities (SNTP). More precisely, we use se- 367

quences of cross-entropy loss values produced by 368

the LLMs for a given candidate text t. The proba- 369

bilities can be recovered from those loss values as 370

qi(θ) = exp(−li(θ)), where li is the loss value for 371

token ti. During SENTRA training, the SNTP se- 372

quences are precomputed and cached. At inference, 373

the computational complexity is dominated by the 374

Falcon models. Because we use the same LLMs as 375

Binoculars (Hans et al., 2024) and our SENTRA 376

encoder is small, our method has the same order 377

of complexity as Binoculars. See Appendix B for 378

additional details. 379

4 Experiments 380

4.1 Datasets 381

If we define text similar to the training data distribu- 382

tion as in-domain and text that is dissimilar as out- 383

of-domain, it is well established supervised LLM 384

detection methods perform significantly better in- 385

domain than out-of-domain (Dugan et al., 2024). 386

However, a model designed for LLM-generated 387

text detection in real world scenarios will inevitably 388

encounter out-of-domain texts. For this reason, this 389

work focuses on out-of-domain experiments, where 390

key subsets of data are withheld from the training 391

dataset. 392

To evaluate the effectiveness of our proposed 393

method, we used three publicly available datasets: 394

RAID (Dugan et al., 2024), M4GT (Wang et al., 395

2024a) and MAGE (Li et al., 2024), focusing ex- 396

clusively on English-language data. 397

RAID The full RAID dataset contains over 6 398

million human- and LLM-generated texts spanning 399

8 domains, 11 LLM models, multiple decoding 400

strategies, penalties, and 11 adversarial attack types. 401

We down-sampled it to 500K instances before per- 402
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forming out-of-domain split sampling. With the403

included attacks, the RAID dataset also assesses404

the effectiveness of different supervised baseline405

methods against adversarial attacks under the in-406

attack setup.407

M4GT An extension of M4 (Wang et al., 2024b),408

the M4GT dataset is a multi-domain and multi-409

LLM-generator corpus comprising data from 6 do-410

mains, 9 LLMs, and 3 different detection tasks.411

MAGE The MAGE dataset covers 10 content412

domains, with data generated by 27 LLMs using 3413

different prompting strategies. It is specifically de-414

signed to assess out-of-distribution generalization415

capability. We use the "Unseen Domains" evalua-416

tion from (Li et al., 2024).417

Each dataset is further split into training, val-418

idation and test sets. For MAGE, we used the419

published split. To mitigate the label imbalance420

problem, the train and validation splits are balance-421

sampled to ensure an equal number of human- and422

LLM-generated texts. This was achieved by down-423

sampling the majority class to match the size of the424

minority class within split. Addressing this imbal-425

ance is crucial for two reasons: 1) the percentage426

of LLM-generated text is over 97% in the RAID427

dataset by design; 2) across the three datasets, the428

proportion of LLM-generated text varies signifi-429

cantly. The average train and validation set sizes430

show how much data went into the training of the431

supervised methods while ensuring class balance,432

providing a clear comparison to the total dataset433

size. The MAGE dataset has significantly shorter434

texts and this adds difficulties in the detection task435

(Tian et al., 2024; Fraser et al., 2024). Table 1 con-436

tains detailed statistics on the evaluation datasets.437

We use the first 512 tokens from the datasets438

across all methods and baselines.439

4.2 Baseline Methods440

We evaluated and compared the performance of our441

approach against multiple existing methods, includ-442

ing zero-shot, embedding-based, and supervised443

detectors. For zero-shot detectors, we selected per-444

plexity (Guo et al., 2023), Fast-DetectGPT (Bao445

et al., 2024), and Binoculars (Hans et al., 2024).446

For embedding-based detectors, we selected UAR447

(Soto et al., 2024) and evaluated both its Multi-448

LLM and Multi-domain models. For supervised449

detectors, we chose RoBERTa-base (Liu et al.,450

2019) with direct fine-tuning, Ghostbuster (Verma451

et al., 2024) which trains a logistic regression clas-452

sifier on forward-selected crafted log-probability453

features, and Text Fluoroscopy (Yu et al., 2024) 454

which utilizes intrinsic features. For RoBERTa, we 455

used the same settings as the fine-tuning of SEN- 456

TRA: a learning rate of 1e− 4, a weight decay of 457

1e− 2, and a patience of two epochs. 458

We used Falcon-7B and Falcon-7B-Instruct 459

across all baseline methods that required LLMs, 460

except for Fast-DetectGPT where we followed its 461

black-box setting. Appendix C provides a detailed 462

description of the setup, assumptions and modifica- 463

tions made for each baseline method. 464

We compared aforementioned baseline meth- 465

ods with our proposed methods. We present re- 466

sults from two SENTRA encoder variations, R- 467

SENTRA and SENTRA. R-SENTRA has all non- 468

LLM weights in SENTRA encoder initialized at 469

random (without pre-training), whereas the full 470

SENTRA model has those weights pre-trained on 471

RedPajama data (Weber et al., 2024), as described 472

in Section 3.3. 473

4.3 Results 474

We measured performance of all methods on three 475

out-of-domain evaluations. For the supervised 476

methods, these evaluations assess how well the 477

LLM text detectors perform in real world scenar- 478

ios, where data distributions differ from the training 479

distribution. Detectors that remain more invariant 480

across these evaluations are considered more robust 481

to changes and variations in data, thus showing bet- 482

ter generalization to unseen domains. The results 483

for each domain split are presented in Table 2, 3 484

and 4, while the summary of overall relevant find- 485

ings is presented in Table 5. Note the data listed 486

in the column name in all these tables is withheld 487

from the training dataset, meaning the test dataset 488

consists entirely of data from the specified column 489

name. 490

Methods that are not zero-shot or linear models 491

are inherently more stochastic; therefore, the UAR, 492

RoBERTa, and SENTRA methods were ran over 493

three random seeds. The main results in Tables 2, 494

3, 4, 5 show the means over these seeds. Additional 495

details are shown in Appendix A. 496

Tables 2, 3 and 4 present performance of dif- 497

ferent baselines, measured with the AUROC met- 498

ric, across different OOD test data for the RAID, 499

M4GT and MAGE datasets respectively. The 500

MEAN and WORST columns represent the aver- 501

age and the worst performance results of the base- 502

lines taken across the OOD test data, and the bold 503

numbers indicate the best-performing models (on 504

6



MEAN WORST Abstracts Books News Poetry Recipes Reddit Reviews Wiki
RoBERTa [22] 90.9 84.4 93.1 87.0 91.4* 95.2* 84.4 93.9* 90.2 91.8
Text-Fluor. [40] 76.4 70.6 71.4 82.4 74.9 70.6 76.1 79.2 73.9 82.6
UAR-D [31] 81.7 71.4 71.4 85.2 84.5 73.2 89.5* 82.4 84.9 82.3
UAR-L [31] 87.3 76.3 89.6 91.1 89.8 76.3 85.3 88.8 88.1 89.3
PPL [10] 72.9 69.4 69.7 76.8 69.4 73.9 69.6 76.6 75.8 71.3
Binoculars [12] 82.0 79.4 83.2 84.3 80.2 83.5 79.4 83.2 82.1 80.2
F-DetectGPT [2] 78.6 75.6 80.0 80.1 77.9 77.1 75.6 78.8 80.0 79.4
Ghostbuster [35] 84.7 74.1 88.0 91.4 81.6 88.2 74.1 85.0 81.7 87.8
R-SENTRA 90.9 85.5 94.6 95.1* 88.4 92.5 85.5 91.7 87.8 91.8
SENTRA 92.5 87.0 95.1* 94.1 91.3 95.0 87.0 93.7 90.4* 93.2*

Table 2: AUROC Metric Performance for for the RAID OOD evaluation. The best mean and worst-case performance
are in bold. The best result in each domain are marked by *.

MEAN WORST arXiv OUTFOX PeerRead Reddit wikiHow Wikipedia
RoBERTa [22] 88.2 82.8 97.8* 84.9 82.8 89.6 85.5 88.5
Text-Fluor. [40] 83.2 78.1 84.7 84.8 89.2 83.9 78.1 78.3
UAR-D [31] 75.3 63.9 73.3 83.9 65.7 86.1 63.9 78.9
UAR-L [31] 84.7 71.0 93.8 87.6 87.1 80.3 71.0 88.4
PPL [10] 87.0 81.7 83.6 85.7 94.2 89.7 81.7 87.1
Binoculars [12] 89.1 79.0 93.1 82.6 90.5 93.8 79.0 95.4
F-DetectGPT [2] 87.4 79.1 91.9 80.3 88.2 91.0 79.1 93.7
Ghostbuster [35] 87.8 73.3 94.3 87.3 81.9 95.4 73.3 94.5
R-SENTRA 92.8 83.9 94.6 88.4* 94.9 97.7* 83.9 97.4
SENTRA 93.0 87.1 92.3 88.0 95.0* 97.7* 87.1* 97.7*

Table 3: AUROC Metric Performance for the M4GT OOD evaluation. The best mean and worst-case performance
are in bold. The best result in each domain are marked by *.

average and in the worst case) in these tables. Also,505

the asterisks (*) indicate the best-performing mod-506

els for each test case.507

As Tables 2, 3 and 4 show, SENTRA outper-508

formed all the baselines on average and in the509

worst case across the three datasets RAID, M4GT510

and MAGE. Also, SENTRA and R-SENTRA mod-511

els outperformed the baselines in most of the test512

cases (across the specific columns since most of513

the asterisks are associated with the SENTRA514

and R-SENTRA models in the columns of these515

tables). In a few specific domain splits where516

SENTRA/R-SENTRA lost to other baselines (usu-517

ally RoBERTa), the performance loss was marginal518

(e.g., 91.3 vs. 91.4 for News, 95.0 vs. 95.2 for519

Poetry and 93.7 vs. 93.9 for Reddit for RAID eval-520

uations - see Table 2).521

Table 5 summarizes the AUROC OOD per-522

formance results taken directly from the MEAN523

columns of Tables 2, 3 and 4. It demonstrates SEN-524

TRA outperforms all other baselines for the three525

datasets RAID, M4GT and MAGE by 1.8%, 5.4%526

and 6.7% respectively, as compared to the second-527

best performing baseline.528

All these results show SENTRA serves as a gen- 529

eralizable encoder for LLM detection models when 530

one considers likely OOD distribution shifts. As 531

Table 5 also shows, SENTRA’s performance im- 532

proves after pre-training: it is 92.5 vs. 90.9 on the 533

RAID dataset, 93.0 vs. 92.8 on M4GT, and 94.2 vs. 534

93.8 on the MAGE dataset. The improved OOD 535

performance indicates pre-training helps SENTRA 536

learn a more generalizable representation to shifts 537

in the data and demonstrates the effectiveness of 538

our contrastive pre-training method for SENTRA. 539

Since LLMs became increasingly more available 540

and their usage has surged, interest in detection 541

tools, such as those presented in this paper, has 542

grown (Wu et al., 2023). At the same time, counter- 543

measures have emerged to attack these LLM text 544

detectors, typically by altering LLM-generated text 545

to elicit false negatives (Koike et al., 2024). Dugan 546

et al. (2024) demonstrated many attacks can sig- 547

nificantly degrade detector performance. In that 548

study, the best open-source tool, Binoculars (Hans 549

et al., 2024), exhibited much stronger performance 550

on non-attacked data than on attacked data. For un- 551

supervised methods, (Guo et al., 2023; Hans et al., 552
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MEAN WORST CMV ELI5 HSWAG ROCT SciGen SQuAD TL;DR WP XSum Yelp
RoBERTa [22] 88.3 74.4 94.8 92.9 87.4* 88.8* 84.3 93.3 85.7 90.3 74.4 91.3
Text-Fluor. [40] 63.9 47.8 62.1 61.9 69.5 71.6 79.1 53.3 73.2 56.5 47.8 64.3
UAR-D [31] 63.4 40.5 80.2 74.4 63.5 61.5 56.5 59.6 60.1 67.8 40.5 70.3
UAR-L [31] 76.4 61.2 90.1 81.9 61.2 73.5 80.6 76.1 66.3 88.2 69.0 77.5
PPL [10] 57.2 45.7 57.9 61.4 73.8 61.2 49.4 48.3 62.9 59.4 45.7 51.9
Binoculars [12] 61.7 52.9 71.0 70.2 59.3 52.9 59.7 55.3 63.4 67.2 57.6 60.5
F-DetectGPT [2] 63.0 54.9 71.3 70.1 66.1 60.5 56.4 57.4 66.2 64.5 54.9 62.1
Ghostbuster [35] 79.2 65.0 90.5 86.0 66.2 65.0 83.6 78.8 74.0 94.1 72.4 80.9
R-SENTRA 93.8 84.6 98.5 95.2 84.6 87.3 97.9* 94.1* 93.4 98.6 93.8 94.4
SENTRA 94.2 86.0 98.6* 95.4* 86.0 88.2 97.6 93.9 94.1* 98.9* 94.4* 95.1*

Table 4: AUROC Metric Performance for the MAGE OOD evaluation. The best mean and worst-case performance
are in bold. The best result in each domain are marked by *.

RAID M4GT MAGE
RoBERTa [22] 90.9 88.2 88.3
Text-Fluor. [40] 76.4 83.2 63.9
UAR-D [31] 81.7 75.3 63.4
UAR-L [31] 87.3 84.7 76.4
PPL [10] 72.9 87.0 57.2
Binoculars [12] 82.0 89.1 61.7
F-DetectGPT [2] 78.6 87.4 63.0
Ghostbuster [35] 84.7 87.8 79.2
R-SENTRA 90.9 92.8 93.8
SENTRA 92.5(+1.8)* 93.0(+5.4)* 94.2(+6.7)*

Table 5: Evaluation Summary: Expected performance
results (mean AUROC) across domains for our three
evaluations. The best results are marked in bold. The
percentage change of the best model over the best base-
line is shown in parenthesis.

2024; Bao et al., 2024), it is not immediately clear553

how to adapt the approach to a known attack. In554

contrast, for supervised methods, the adaptation555

strategy is straightforward: train on attacked data.556

The results on the RAID dataset in Table 2 include557

11 forms of attack. When the attack type is known558

and models are trained on the attacked data, Table559

2 suggests SENTRA is the most effective method560

at adapting to those attacks.561

5 Conclusions562

In this paper, we proposed a novel general pur-563

pose supervised LLM text detector method SEN-564

TRA that is a transformer-based encoder leverag-565

ing SNTP sequences and utilizing contrastive pre-566

training on large amounts of unlabeled data. Since,567

supervised detectors tend to perform better on data568

that is similar to their training distributions (Dugan569

et al., 2024), it is essential to include a wide vari-570

ety of domains when testing such general-purpose571

detectors. Therefore, we tested the performance of572

SENTRA on three public datasets RAID, M4GT573

and MAGE containing a broad range of different574

domains (24 in total) across various experimental575

settings and compared its performance with eight 576

popular baselines. 577

We empirically demonstrated SENTRA signifi- 578

cantly outperformed all baselines in most of the 579

experimental settings: it achieved AUROC per- 580

formance improvements of 1.8%, 5.4% and 6.7% 581

for RAID (Dugan et al., 2024), M4GT (Wang 582

et al., 2024a) and MAGE (Li et al., 2024) out- 583

of-domain datasets respectively, as compared to 584

the second-best performing baseline. On our three 585

evaluation datasets, SENTRA outperformed all 586

eight popular baselines in expected and worst- 587

case out-of-domain performance, and SENTRA/R- 588

SENTRA was also the best model in 17 out of 24 589

of the domain specific experiments. Even in the 590

few cases when SENTRA/R-SENTRA (SENTRA 591

without pre-training) lost to particular baselines 592

(mostly RoBERTa), the performance loss was usu- 593

ally marginal (e.g., 91.3 vs. 91.4 for News, 95.0 594

vs. 95.2 for Poetry and 93.7 vs. 93.9 for Reddit 595

domains for RAID evaluations). 596

This shows SENTRA is a strong method for 597

training LLM text detectors that can generalize to 598

unseen domains. We also demonstrated our con- 599

trastive pre-training strategy increased the perfor- 600

mance of SENTRA on these out-of-domain evalu- 601

ations. Domain generalization is one of the most 602

critical issues for LLM text detectors. These results 603

demonstrate that SENTRA is a general purpose en- 604

coder that can serve as a foundation for LLM text 605

detector models. 606

6 LLM Acknowledgment 607

We used ChatGPT for generating first iterations of 608

some software snippets. We also consulted Chat- 609

GPT on the phrasing of some points in the paper 610

and for catching some grammatical errors. 611
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7 Limitations612

In this work, we studied the effects of domain613

shifts on detection models. While these have sig-614

nificant impacts on detector performance, other615

factors can also influence results. Notably, prompt616

variation can have a large effect on detectors (Ku-617

marage et al., 2023b). Many LLM detection bench-618

mark datasets use prompt templates (Dugan et al.,619

2024) to generate their samples. However, these620

templates exhibit significantly less prompt variety621

than what a real-world detector is likely to en-622

counter. Benchmark datasets with a broader range623

of prompting strategies are needed to further assess624

the robustness of detection methods.625

In this work, we followed Binoculars (Hans et al.,626

2024) in choosing Falcon (Almazrouei et al., 2023)627

models as the SNTP generators. This decision was628

primarily based on Binoculars’ strong performance,629

allowing for a direct and fair comparison. How-630

ever, it is important to note SENTRA is a general631

methodology, and other SNTP generators may per-632

form better or more efficiently than Falcon models.633

We pre-trained our model on a relatively small634

sample of Common Crawl data. The volume of635

data and the amount of compute used for pre-636

training were small relative to what is typically637

used for foundation models (Liu et al., 2019; Rad-638

ford et al., 2021). It is very likely SENTRA639

could be significantly improved with additional640

pre-training on larger datasets.641

8 Ethical Considerations642

In this study, we did not observe any detector643

achieving perfect performance on any slice of data.644

Therefore, any detector will inherently make trade-645

offs between false positives and false negatives646

when deployed in real-world scenarios, such as647

plagiarism detection. Users of LLM detection tech-648

nology should be aware that these detectors are not649

perfect.650
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A Additional Results and Experimental 894

Notes 895

The datasets used in this work were used for re- 896

search purposes. This aligns with their intended 897

use and licenses. 898

Here we show the mean and standard deviation 899

across three runs, (random seeds 42,43,44) for the 900

methods that are not zero shot or logistic regres- 901

sion based. Note there were three M4GT and four 902

RAID samples where Ghostbuster could not make 903

an inference due to the low number of tokens in the 904

document. For this documents, we infilled a low 905

prediction score indicating human prediction. For 906

the RAID dataset, we used the Binoculars for each 907

document released by (Dugan et al., 2024). 908

B Computational Complexity 909

LLM generators are computationally expensive. 910

Unfortunately, methods that rely on SNTP inputs 911

depend on LLM inference, making it the most 912

costly component of all detection methods stud- 913

ied in this work. However, SENTRA is a relatively 914

small model with only eight Transformer layers, 915

meaning that computational costs at inference are 916

dominated by the production of SNTP inputs. Dur- 917

ing training, we cache the SNTP sequences so that 918

the LLMs are run only once per sample. SENTRA 919

uses the same LLMs as Binoculars (Hans et al., 920

2024), and because the cost of the SENTRA en- 921

coder is minimal compared to LLM inference, the 922

overall computational complexity of SENTRA is 923

roughly equivalent to that of the Binoculars method. 924

Refer to Table 9 for detailed number of parameters. 925

Pre-training took approximately 36 hours on a 926

GH200 GPU. We also fine-tuned RoBERTa and 927

SENTRA models on GH200 instances. Fine-tuning 928

for each data split too between .5 and 12 hours. 929

C Baseline Assumptions and Setups 930

This section details the assumptions and setups for 931

all baseline methods if we have made modifica- 932

tions. 933

For UAR, the original paper compares the dis- 934

tance between the input query and the closest 935
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abstracts books news poetry recipes reddit reviews wiki
RoBERTa 93.1±1.2 87.0±2.1 91.4±3.4* 95.2±1.3* 84.4±16.9 93.9±1.2* 90.2±2.3 91.8±2.8
Text-Fluor. 71.4±0.0 82.4±0.0 74.9±0.0 70.6±0.0 76.1±0.0 79.2±0.0 73.9±0.0 82.6±0.0
UAR-D 71.4±4.4 85.2±0.8 84.5±1.2 73.2±0.5 89.5±0.8* 82.4±0.3 84.9±1.1 82.3±0.2
UAR-L 89.6±2.0 91.1±0.2 89.8±0.4 76.3±2.6 85.3±1.2 88.8±0.7 88.1±0.4 89.3±0.5
PPL 69.7±0.0 76.8±0.0 69.4±0.0 73.9±0.0 69.6±0.0 76.6±0.0 75.8±0.0 71.3±0.0
Binoculars 83.2±0.0 84.3±0.0 80.2±0.0 83.5±0.0 79.4±0.0 83.2±0.0 82.1±0.0 80.2±0.0
Fast-DetectGPT 80.0±0.0 80.1±0.0 77.9±0.0 77.1±0.0 75.6±0.0 78.8±0.0 80.0±0.0 79.4±0.0
Ghostbuster 88.0±0.0 91.4±0.0 81.6±0.0 88.2±0.0 74.1±0.0 85.0±0.0 81.7±0.0 87.8±0.0
R-SENTRA 94.6±0.3 95.1±0.3* 88.4±0.5 92.5±2.2 85.5±0.9 91.7±0.1 87.8±0.5 91.8±0.3
SENTRA 95.1±0.1* 94.1±1.6 91.3±0.5 95.0±0.8 87.0±1.5 93.7±0.5 90.4±0.9* 93.2±0.7*

Table 6: Mean and standard deviation of the AUROC across random seeds on the RAID dataset.

arxiv outfox peerread reddit wikihow wikipedia
RoBERTa 97.8±0.3* 84.9±2.2 82.8±18.6 89.6±3.9 85.5±2.3 88.5±3.9
Text-Fluor. 84.7±0.0 84.8±0.0 89.2±0.0 83.9±0.0 78.1±0.0 78.3±0.0
UAR-D 73.3±6.7 83.9±0.2 65.7±1.0 86.1±1.0 63.9±0.6 78.9±2.2
UAR-L 93.8±1.2 87.6±0.6 87.1±0.4 80.3±1.1 71.0±2.4 88.4±0.7
PPL 83.6±0.0 85.7±0.0 94.2±0.0 89.7±0.0 81.7±0.0 87.1±0.0
Binoculars 93.1±0.0 82.6±0.0 90.5±0.0 93.8±0.0 79.0±0.0 95.4±0.0
Fast-DetectGPT 91.9±0.0 80.3±0.0 88.2±0.0 91.0±0.0 79.1±0.0 93.7±0.0
Ghostbuster 94.3±0.0 87.3±0.0 81.9±0.0 95.4±0.0 73.3±0.0 94.5±0.0
R-SENTRA 94.6±0.5 88.4±0.4* 94.9±0.2 97.7±0.3* 83.9±1.3 97.4±0.3
SENTRA 92.3±1.0 88.0±0.1 95.0±0.3* 97.7±0.2 87.1±1.7* 97.7±0.3*

Table 7: Mean and standard deviation of the AUROC across random seeds on the M4GT dataset.

cmv eli5 hswag roct sci_gen squad tldr wp xsum yelp
RoBERTa 94.8±1.0 92.9±0.7 87.4±4.2* 88.8±1.0* 84.3±6.5 93.3±1.0 85.7±5.1 90.3±1.5 74.4±3.4 91.3±1.6
Text-Fluoroscopy 62.1±0.0 61.9±0.0 69.5±0.0 71.6±0.0 79.1±0.0 53.3±0.0 73.2±0.0 56.5±0.0 47.8±0.0 64.3±0.0
UAR-D 80.2±1.8 74.4±1.7 63.5±2.3 61.5±2.5 56.5±4.7 59.6±3.4 60.1±1.7 67.8±3.3 40.5±0.9 70.3±0.4
UAR-L 90.1±0.7 81.9±0.7 61.2±2.4 73.5±1.0 80.6±1.7 76.1±0.8 66.3±2.8 88.2±0.9 69.0±1.9 77.5±1.3
PPL 57.9±0.0 61.4±0.0 73.8±0.0 61.2±0.0 49.4±0.0 48.3±0.0 62.9±0.0 59.4±0.0 45.7±0.0 51.9±0.0
Binoculars 71.0±0.0 70.2±0.0 59.3±0.0 52.9±0.0 59.7±0.0 55.3±0.0 63.4±0.0 67.2±0.0 57.6±0.0 60.5±0.0
Fast-DetectGPT 71.3±0.0 70.1±0.0 66.1±0.0 60.5±0.0 56.4±0.0 57.4±0.0 66.2±0.0 64.5±0.0 54.9±0.0 62.1±0.0
Ghostbuster 90.5±0.0 86.0±0.0 66.2±0.0 65.0±0.0 83.6±0.0 78.8±0.0 74.0±0.0 94.1±0.0 72.4±0.0 80.9±0.0
R-SENTRA 98.5±0.2 95.2±0.7 84.6±0.6 87.3±0.6 97.9±0.1* 94.1±0.3* 93.4±0.3 98.6±0.3 93.8±1.7 94.4±0.2
SENTRA 98.6±0.2* 95.4±0.4* 86.0±0.3 88.2±0.5 97.6±0.8 93.9±0.6 94.1±0.4* 98.9±0.1* 94.4±1.0* 95.1±0.2*

Table 8: Mean and standard deviation of the AUROC across random seeds on the MAGE dataset.
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Method Parameter Count
RoBERTa-base 124M
Text Fluoroscopy 7B (LLM) + 5.1M (FCN) ≈ 7B
UAR 82M
Perplexity 7B (LLM)
Binoculars 14B (2 LLMs)
Fast-DetectGPT 2.7B + 6B (2 LLMs) = 8.7B
Ghostbuster 7B (LLM) + N (LR, N « 7B) ≈ 7B
SENTRA 57M (training), 14B (inference)
R-SENTRA 57M (training), 14B (inference)

Table 9: Parameter count of all methods with the actual LLM(s) used in evaluation. LR stands for logistic regression,
FCN stands for fully connected network. For Ghostbuster, we observed N to be between 20 to 40.

machine support query against the distance be-936

tween the closest machine support query and the937

closest human support query. Mathematically938

speaking, given Q the input query, H the clos-939

est human support query, and M is the seeded940

machine support queries, the distance dQ =941

minm∈M[d(Q,m), d(H,m)] is used as the predic-942

tion. Though this allows dQ to be directly usable943

for metric calculation, this is less trivial than a sim-944

ple nearest neighbor classification where we cal-945

culate the percentage of machine support queries946

among k as the prediction. in our baseline, we em-947

ployed the simple nearest neighbor approach with948

k = 10 and cosine similarity distance measure. For949

each domain, we randomly sampled 1,000 human950

and machine texts respectively to form the kNN951

seed corpus. We did not group texts into episodes952

and kept episode size of 1 due to the generally953

longer text lengths compared to twitter posts.954

For Text Fluoroscopy, we switched the model955

from gte-Qwen1.5-7B-instruct to Falcon-7B-956

Instruct to better align with other baselines by elim-957

inating the effect of model selection. With this958

change, we modified the input dimension to the959

feed forward network from 4096 to 4454 due to960

falcon models hidden state sizes. Despite the possi-961

bilities of under-training, we followed their imple-962

mentation and sampled 160 data points for training,963

and 20 for validation (during training). The test964

set metric at the earliest highest validation accu-965

racy was reported. We also optimized the feature966

selection script for more efficient batch processing.967

For Ghostbuster, we included a minimum accu-968

racy score improvement threshold of 1e−4 to avoid969

over-fitting and allow early stopping for MAGE970

dataset where we observed significantly more fea-971

ture selection iterations compared to the other two972

datasets. In the case of least square convergence973

failure (max_iter=1000) in Logistic Regression974

fitting, the current feature list is taken as the best 975

features for evaluation. 976

D Hyper-parameter Selection 977

For RoBERTa, we chose one domain from the 978

MAGE dataset to tune the learning rate. With 979

this learning rate, the RoBERTa diverged before 980

the first epoch on one MAGE split and one RAID 981

split. We then turned down the learning rate for 982

these two splits and reran RoBERTa, but the models 983

still diverged. It is possible with additional tuning, 984

RoBERTa could better fit these datasets, but we did 985

not want to pay special attention to the fine-tuning 986

any one method. 987

For SENTRA, we did a small search over the 988

number of layers, {2,4,8}, for the CMV-MAGE 989

data split by looking at the in-domain develop- 990

ment loss. We found four layers to work best. 991

We later found SENTRA had trouble fitting the 992

in-distribution validation data of a data. We found 993

that varying the LR and batch size on this dataset 994

had no significant effect, so we kept the defaults 995

of a LR of 1e − 4 and a batch size of 128 which 996

were the defaults from RoBERTa. We then manu- 997

ally tuned the pre-training model while looking at 998

this in-distribution loss. We ultimately found that 999

eight layers and and two pre-training phases pro- 1000

duced the best performance on this in distribution 1001

validation dataset. 1002

13


	Introduction
	Related Work
	Methodology
	Overview of Our Method: SENTRA
	SENTRA Contrastive Pre-Training
	Implementation

	Experiments
	Datasets
	Baseline Methods
	Results

	Conclusions
	LLM Acknowledgment
	Limitations
	Ethical Considerations
	Additional Results and Experimental Notes
	Computational Complexity
	Baseline Assumptions and Setups
	Hyper-parameter Selection

