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Abstract

The operations and maintenance of satellite networks heavily depend on traffic mea-
surements. Due to the large-scale and highly dynamic nature of satellite networks,
global measurement encounters significant challenges in terms of complexity and
overhead. Estimating global network traffic data from partial traffic measurements
is a promising solution. However, the majority of current estimation methods con-
centrate on low-rank linear decomposition, which is unable to accurately estimate.
The reason lies in its inability to capture the intricate nonlinear spatio-temporal
relationship found in large-scale, highly dynamic traffic data. This paper proposes
Satformer, an accurate and robust method for estimating traffic data in satellite
networks. In Satformer, we innovatively incorporate an adaptive sparse spatio-
temporal attention mechanism. In the mechanism, more attention is paid to specific
local regions of the input tensor to improve the model’s sensitivity on details and
patterns. This method enhances its capability to capture nonlinear spatio-temporal
relationships. Experiments on small, medium, and large-scale satellite networks
datasets demonstrate that Satformer outperforms mathematical and neural baseline
methods notably. It provides substantial improvements in reducing errors and main-
taining robustness, especially for larger networks. The approach shows promise for
deployment in actual systems.

1 Introduction

As a potential complement to terrestrial networks, satellite networks are envisioned to provide
broadband connectivity with seamless coverage and in a cost-effective manner. Internet service and
content providers are interested in satellite networks due to their wide international coverage and
lower entry costs in rural and underdeveloped areas [1].

Traffic engineering [2, 3, 4] and topology engineering [5] of satellite networks, such as access control,
routing and congestion control, are key to achieve efficient control of satellite networks, which rely
on real-time perception of global traffic data [6]. Timely and accurate traffic measurements beyond
basic metrics are undoubtedly beneficial for such applications.

However, it is troublesome and costly to collect massive traffic data by measuring all transmission
pairs directly [7], since traffic data is naturally distributed throughout the entire network. In order
to support the network operation of the emerging mega-constellations, there is an urgent need to
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explore cost-effective traffic measurement methods. Traffic data estimation is a feasible approach
for large-scale satellite networks, where the global traffic data can be estimated according to partial
traffic sampling and measurement [8].

Due to inherently dynamic natures of spatial distances and orbital positions in satellite networks,
traffic volumes and patterns vary over time [9]. Emerging mega-constellations networks typically
involve numerous satellites, so the dynamic traffic data between satellite pairs can be represented as
high-dimensional matrices or tensors. This complexity makes it difficult to capture the complicated
relationships within the data [10]. Furthermore, the instability of inter-satellite and satellite-ground
links often leads to the loss of traffic data during transmission. It should also be noted that not all
satellite pairs have constant communication demands. As a result, the measured traffic data is often
sparse and incomplete, making traffic data estimation complex [1]. Therefore, the primary challenge
in accurately and robustly estimating satellite network traffic data lies in effectively capturing
the complex and nonlinear spatio-temporal correlations while maintaining robustness for varying
sequence lengths [11].

Indeed, most efforts in traffic data estimation focus solely on low-rank linear decomposition, which
cannot effectively capture the nonlinear spatio-temporal correlations among large-scale and dynamic
traffic data, leading to inaccurate estimations. Therefore, developing a novel approach is crucial for
enhancing traffic estimation performance to effectively extract and utilize the complex and nonlinear
spatio-temporal correlations among inter-satellite traffic data.

For large-scale and highly dynamic satellite network traffic data, we propose Satformer, a new neural
network architecture designed for accurate and robust traffic estimation. Satformer systematically
constructs encoder-decoder components with stacked spatio-temporal modules to effectively capture
complex spatio-temporal correlations in traffic data. Within each module, an adaptive sparse spatio-
temporal attention mechanism (ASSIT) is adopted to extract key features from numerous sparse
inputs by focusing on specific local regions. This enables Satformer to capture nuanced traffic
patterns essential for accurate estimation. This is particularly useful in satellite networks where traffic
may be concentrated in certain areas due to regional demand or satellite coverage. Additionally,
ASSIT is more robust to sparsity as it can identify and focus on areas with higher data density,
which may contain more informative traffic features, rather than being overwhelmed by overall
sparsity. Simultaneously, we utilize a graph embedding module to effectively process non-Euclidean
data through a Graph Convolutional Network (GCN). These components in spatio-temporal module
enhance Satformer’s ability to capture and exploit the nonlinear and complex information present in
traffic data. Furthermore, a transfer module is incorporated to disseminate global context information
throughout the model.

Our contributions are as follows:

• We designed ASSIT, which adopts a multi-head self-attention structure. It can learn the
correlation representation of traffic data at different spatial and temporal scales. We added
a sparsity threshold to the attention matrix to efficiently process a large number of sparse
inputs. By dynamically adjusting the threshold value, ASSIT adapts to the sparsity levels of
various datasets, thereby enhancing the model’s inference efficiency. Additionally, ASSIT
allows the model to dynamically allocate computational resources to regions of interest,
making the model operate more efficiently and enhancing its scalability.

• To process non-Euclidean structured data, we introduce a graph embedding module within
each module via GCN. Since the graph embedding module learns the relationship between
nodes and neighbors adequately, it can extract the local and global information of nodes
from non-Euclidean structured data. It improves the ability of the model to extract nonlinear
spatio-temporal correlation.

• We add a transfer module to the Satformer framework, which can blend and reshape the
traffic representation learned by the previous modules, conveying a global temporal and
spatio perspective, while also helping to strengthen the generalization ability of the model
on different types of datasets

This paper is structured as follows. Section 2 surveys relevant research. Section 3 explains our
proposed Satformer methodology. Section 4 presents experimental verification and comparisons.
Section 5 makes a discussion and concludes this paper.
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2 Related Works

We provide a review of the existing work on network traffic estimation. Existing traffic data estimation
methods can be mainly divided into matrix completion based, tensor completion based and neural
network based methods.

Matrix Completion (MC) methods have found widespread application in the estimation of traffic
data. Some algorithms, such as the convex relaxation method based on minimum nuclear norm
approximation [12] and matrix factorization-based methods [13], leverage the linear spatiotemporal
characteristics of traffic data to infer missing values. However, these methods are often too simplistic,
which can lead to inaccurate estimations when applied to large-scale traffic data.

As an extension of matrix completion, the goal of tensor completion aims to reconstruct low-rank
tensors based on sparse observations of their entries. Several studies have adopted tensor completion,
including recent works [14, 15, 16].To achieve higher accuracy in traffic data estimation, these
works propose the use of tensor completion methods, which can more comprehensively capture
spatio-temporal features in traffic data, effectively. A typical work of such a method is LTC [17],
which leverages the strong local correlation of the data to identify and complete each subtensor
with low rank. However, many traffic estimation algorithms based on tensor completion rely on
CANDECOMP/PARAFAC (CP) or Tucker decompositions, commonly using inner products as
interaction functions. This approach can often reduce estimation performance to some extent due to
its limited ability to capture both linear and nonlinear correlations in traffic data.

In recent years, deep learning methods have shown notable advancements in traffic network analysis.
Notably, research such as NTF [18] and [19] have explored the application of deep learning models,
including Recurrent Neural Networks (RNNs), to achieve adaptive grouping and prediction of
traffic tensors within large-scale networks. Noteworthy among these efforts is CoSTCo [20], which
incorporates two convolutional layers to extract features from stacked embeddings, enhancing
awareness of network dynamics through the acquisition of complex spatio-temporal features. Recent
studies [21, 22] employ meta-learning and other algorithms, alongside attention mechanisms, to
dynamically adapt to rapid changes in traffic patterns within the network. However, current deep
learning models may focus more on global features, while neglecting the local and hidden spatio-
temporal correlations in traffic data, which may lead to suboptimal estimation effects

3 Estimation Model: Satformer

3.1 System Model & Problem Definition

In satellite networks, inter-satellite traffic data can be modeled as a time-space matrix, which reflects
the data volume to be transmitted between all node-node pairs over satellite networks. For the problem
statement of traffic estimation over satellite networks, we introduce the following symbols: N :
Number of satellites, T : Discrete time steps, we define the inter-satellite traffic matrix Y ∈ RI×J×T ,
where Yijt represents the data transmission from satellite i to satellite j at time step t. The t-th layer
of this matrix represents a discrete time step.

Considering the influence of spatio distance and transmission delay in satellite networks, we can
adjust the inter-satellite traffic by introducing a weight matrix. LetW ∈ RN×N be the weight matrix
representing spatial distance and transmission delay, whereWij denotes the weight from satellite i to
satellite j. Thus, the adjusted inter-satellite traffic data matrix can be represented as Ẋ = Y �W ,
where � denotes element-wise multiplication. Taking into account these factors, the mathematical
modeling of inter-satellite traffic data can be expressed as follows:

Ẋijt = Yijt · Wij (1)

where i, j = 1, 2, . . . , N , and t = 1, 2, . . . , T . This model considers the spatio distance and
transmission delay between satellites, allowing the traffic data matrix to more accurately reflect the
actual communication scenarios in the satellite networks. In the process of sampling and recovering
inter-satellite traffic data, we begin by introducing the sampling matrix S, the sampled data X , and
the nonlinear estimation function F . The sampling process can be expressed using mathematical
notation: X = Ẋ � S.

3



This process retains elements in the inter-satellite traffic matrix Ẋ where the corresponding positions
in the sampling matrix S are 1, while setting other positions to zero, resulting in the sampled data
matrix X . To recover complete traffic data from the sampled data, we introduce a nonlinear estimation
function F . This function involves a complex nonlinear mapping to better estimate actual traffic data.

X̃ = F (X ) (2)

where X represents sampled data, and X̃ is the recovered data obtained through the non-linear
estimation function F .

3.2 Satformer Overview

Figure 1: (a) Overall framework of our Satformer. (b) Details of a Satformer block. (c) Satellite
network traffic data generation. (d) Details of a graph embedding module. (e) Details of an ASSIT
block.
We design Satformer, a tensor completion model designed for the accurate and robust estimation of
global traffic data in satellite networks. As illustrated in Fig. 1, Satformer is structured as an encoder-
decoder architecture, with both components featuring multiple spatio-temporal modules. Residual
connections interlink these modules to prevent neural network degradation. Each spatio-temporal
module comprises a Graph Embedding Module and a Satformer Block. The key of Satformer to
improve the estimation accuracy is that it can extract features efficiently and accurately from a large
number of sparse satellite network traffic data. This is achieved through adaptive sparse spatio-
temporal attention inside each Satformer block, facilitating the estimation of traffic data. A transfer
module facilitates the seamless transmission of features from the encoder to the decoder. The encoder
encodes the input traffic information, while the decoder is tasked with estimating the missing traffic
data. The subsequent section provides a detailed description of each module.

3.3 Spatio-Temporal Module

Satformer utilizes spatio-temporal modules to extract spatio-temporal features from input tensors;
this module primarily consists of graph embedding components and Satformer blocks.

Graph Embedding: The Spatio-Temporal module serves the goal of extracting spatio-temporal
features from input tensor. Considering the inherent high sparsity of observed traffic data in real-
world, it becomes imperative to represent tensors as low-dimensional vectors. Through the learning
of embedded representations for nodes, the model inherently captures both structural and semantic
information of nodes within the graph. This capability enables the model to comprehend relationships
between nodes more effectively, facilitating the extraction of meaningful features from the X ∈
RI×J×T . Each Origin-Destination (OD) pair corresponds to an origin node, a destination node, and
the traffic of the OD pair. To address the non-Euclidean nature of the data, particularly the spatio
relationships within each OD pair, we employ Graph Embedding through Graph convolutional neural
network (GCN), which has been widely used in many works [23, 24]. This approach allows the
model to effectively handle non-Euclidean data, enhancing its capacity to capture and utilize the
structural information present in the tensor X ∈ RI×J×T .
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In Satformer, each Spatio-Temporal module contains a GCN model. A GCN model contains two
layers of convolutional layer, the feature propagation rule can be stated as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (3)

Ã = A+ I , D̃ =
∑
j

Ãij (4)

Z = f(X , A) = σ(D̃−
1
2 ÃD̃−

1
2 ReLu(D̃−

1
2 ÃD̃−

1
2XW (0))W (1)) (5)

where, H(l) signifies the node embedding matrix for layer l, A represents the adjacency matrix and
I represents the self-connections matrix of A. Ã ∈ RI×J represents the adjacency matrix with
self-connections. D̃ ∈ RI×I denotes the degree matrix, which is a diagonal matrix with each element
on the diagonal representing the sum of the corresponding row in Ã. The weight matrix for layer
l is denoted as W (l) ∈ RI×M , and H(l+1) ∈ RI×J×M represents the node embedding matrix for
layer l + 1. W (0) ∈ RK×L denotes the weight matrix from the input layer to the hidden layer,
and W (1) ∈ RK×L denotes the weight matrix from the hidden layer to the output layer. Both σ(·)
and ReLU are activation functions employed in the model. Z ∈ RI×M×K represents the output
embedding tensor.

Satformer Block: As shown in Fig. 1 (b), in each Satformer block, we use a layer normalization
at the beginning to normalize the input embedding tensor. We then apply an ASSIT mechanism
and a 2-layer MLP module for sparse spatio-temporal feature modeling and per-location embedding,
respectively.

In the domain of communication network tensor completion, the spatio-temporal relationships among
traffic data are complex, and it is necessary to model these relationships effectively. Traditional atten-
tion mechanisms, with their intensive nature, may encounter challenges related to high computational
complexity and difficulties in capturing global relationships in such intricate scenarios. Several works
proposed different sparse attention mechanism to mitigate such issue either relay on static patterns or
skip computations in specific regions. As shown in Fig. 1(e), in this work, we explore an adaptive,
sparse spatio-temproal mechanism. Detailed descriptions are as follows:

Given an input embedding feature tensor Z ∈ RI×M×K . First we divide the tensor slice into several
local regionsZdiv, each of which has a size of D ×D. In our module, Q, K and V respectively
represent query, key, and value, which are used to calculate attention weights and generate the final
output[25]. Then we calculateQ,K and V tensor with linear projections for each region:

Q = ZdivW q K = ZdivW k V = ZdivW v (6)

where W q, W k and W v are projection weights for queryQ, keyK and value V respectively. We
then consider introducing a local attention mechanism when calculating the attention score α to make
the model pay more attention to each local region in the input tensor. This improvement is designed
to sharpen the model’s attention specifically on local regions within the input sequence. The goal is to
augment the expressiveness and robustness of the model by enabling it to capture and leverage more
nuanced details and patterns present in localized segments of the input data. The implementation
involves incorporating a position-related weight when calculating attention scores. The local attention
in each region is operationalized through the use of a two-dimensional mask matrix Ψ ∈ RD×D,
wherein, elements inside a defined center window H are retained, while elements in other positions
are set to zero. The size of the center window H is a hyperparameter of the model, and its optimal
value is determined through experiments on different datasets. The calculation of attention score αi
for each region can be denoted as follows:

αi = softmax(
QKT

√
C
�Ψ) (7)

αsi = softmax(W sReLU(1−W rαi)� V ) (8)

where � is an element-wise product and C is scaling factor. And the final output αt are computed as:

αt = concat(αsi) (9)

To regulate the sparsity of the attention scores and channel the model’s focus onto specific portions of
the input, an adaptive sparse regularization term is introduced. This involves applying L1 regulariza-
tion to each element of the attention score matrix. The utilization of ReLU operations ensures that the
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attention scores remain non-negative. Thus the sparse mask can be denoted as: ReLU(1−W rαi).
Finally, we apply the weighted Value to the attention score, while introducing additional learnable
parameters to allow the model to adaptively learn the weighted sum of each position, resulting in the
final output αt, as shown in Eq. 9. Where, W r is the weighted matrix of L1 regularization, W s is
the scaling matrix, both W r and W s are trainable parameters.

3.4 Transfer Module

Figure 2: Left Details of transfer module. (a) Attention weight. (b) Attention score.

The conventional information transfer between the encoder and decoder typically relies on the output
of the last layer of encoder. However, this approach may fall short in adequately conveying global
context information, particularly when dealing with input tensors spanning a large number of time
slices. The accumulation of errors over time can become a challenge. Consequently, it is necessary
to add a module between encoder and decoder to effectively transfer the information. Satformer
incorporates a self-attention-based transfer module between the encoder and the decoder. This module
leverages Self-Attention, enabling the seamless transfer of globally contextual information learned
in the encoder to the decoder. This augmentation empowers the decoder to more comprehensively
consider information from the entire input sequence when generating output for each time slice,
thus enhancing the estimation accuracy of missing values. Moreover, the transfer module enables
the model to integrate spatio-temporal information in a more fine-grained manner, improving its
adaptability to patterns across different temporal and spatio scales. The mathematical description of
the Transfer Module is as follows:

Suppose the encoder outputs an eigenvector et for each time step t input xt, where t = 1, 2, . . . , T ,
then the output sequence of the encoder is E = e1, e2, . . . , eT . The goal of Transfer Module is to
convert the output of the encoder E to a new set of feature vector D = d1, d2, . . . , dT , where each dt
is a feature enhanced representation corresponding to time step t. This process is achieved through
the following self-attention mechanisms:

• Calculate Query, Key, and Value: The query vector Q = EWQ represents the query of
future time points against past time points. The key vector K = EWK represents the
encoding of a past point in time. The value vector V = EWV represents the specific
characteristics of past time points. WQ, WK , and WV are learnable weight matrices.

• Calculate attention weight: Calculate the attention weight αt,t−1 of each time step t and
consider the effect that past attention scores exert on the present. Ct is scaling factor at
time step t, i belongs to 1 to t− 1, p and q are parameters to control the effort of past time
attention scores.

αt,t−1 = softmax(p

t−1∑
i=1

Qi
KT
i√
Ci

+ qQt
KT
t√
Ct

)Vt (10)
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• Generate transformation feature vector: Based on weights, attention to each time step t to
generate a new feature vector dt.

dt =
1

1 + e−αt,t−1
(11)

This process enables the Transfer Module to accurately measure the relationship between each future
time point and all past time points, and to generate a new set of features that represent valuable
information for future predictions.

3.5 Loss Function

During the training stage, the primary objective is to minimize the discrepancy between the actual
and predicted traffic data. To achieve this, the loss function employed by Satformer is the mean
square error (MSE), as expressed in Eq. 12. Additionally, to curtail the growth of model weights and
mitigate the risk of overfitting, a penalty term is incorporated into the loss function.

L(θ) =
1∣∣Ā∣∣ ∑(i,j,t)∈Ā

(χijt − χ̃ijt) + λ
∑

i
(θi) (12)

where Ā denotes the set of observed traffic data, χijk and χ̂ijk are the truth and estimated traffic data
respectively, θ represents all trainable parameters in Satformer, λ is weight decay coefficient.

4 Experiments

4.1 Experimental Settings

Datasets. To assess the performance of Satformer, we employ it on three real-world satellite networks:
Iridium, Telesat, and Starlink, thereby evaluating its capabilities across varying network scales: small-
scale, medium-scale, and large-scale environments. Given the ongoing construction and utilization of
many satellite networks, acquiring actual traffic data proves to be challenging. Thus, we generate
corresponding traffic datasets using real satellite parameters and ground station coordinates. Similar
methods have been used in many previous studies, and the specific details of this process are explained
in the Appendix A. The traffic data collection interval was 1 second for all three datasets.

• Iridium [26]: The Iridium constellation comprising a total of 66 satellites uniformly dis-
tributed across 6 orbital planes. For our experimentation, we focus on the initial six periods,
encompassing 36,000 time slices.

• Telesat [27]: It collects traffic data from the Telesat constellation which has a total of 298
satellites distributed in 26 orbital planes. We select the first five periods about 31500 time
slots in our experiment.

• Starlink [28]: The traffic data recording originates from the Starlink constellation, compris-
ing 1584 Low Earth Orbit (LEO) satellites evenly dispersed across 72 orbital planes. The
first six periods about 32400 time intervals in our experiment.

For all three datasets, we divided the original dataset into a training set and a test set in an 8:2 ratio
using the time slice partitioning method. We then used the training set for model training and the
validation set for model validation and tuning. Subsequently, we constructed the test set by randomly
masking portions of the training and validation sets that were not used for training. This approach
ensures that the model is trained and validated on distinct segments of the data, which can help
prevent overfitting and improve the model’s ability to generalize to new, unseen data.

Baselines. For comparative analysis against our Satformer model, we select the following baseline
models: three mathematical tensor completion models, namely HaLRTC, LATC and LETC, and
four state-of-the-art neural network-based tensor completion models, CoSTCo, DAIN, SPIN and
STCAGCN.

• HaLRTC [29]: A prototypical high-accuracy low-rank tensor completion algorithm utilizes
the Alternating Direction Method of Multipliers (ADMMs) to attain precise outcomes,
effectively managing dependencies among various constraints.
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• LATC [30]: It introduces a novel regularization term, integrating temporal variation, into a
third-order tensor completion model.

• LETC [31]: a Laplacian enhanced low-rank tensor completion framework for large-scale
traffic speed kriging.

• CoSTCo [20]: An innovative Convolutional Neural Network (CNN)-based model developed
for tensor completion to overcome the limitations associated with traditional low-rank tensor
factorization approaches.

• CDSA [32]: A novel cross-dimensional self-attention approach for imputing missing values
in multivariate, geo-tagged time series data.

• DAIN [33]: This method explicitly crafted to enhance the accuracy of neural tensor comple-
tion methods when predicting missing values within sparse, multi-dimensional datasets.

• SPIN [34]: An attention-based architecture using spatiotemporal graphs and autoregressive
models for effectively reconstructing missing data in sparse, multivariate time series.

• SAITS [35]: a self-attention-based method for multivariate time series imputation that uses
joint-optimization and diagonally-masked self-attention blocks.

• STCAGCN [36]: A graph-based deep learning method for traffic volume estimation by
utilizing a graph attention-based speed pattern-adaptive adjacency matrix and a customized
temporal attention mechanism.

Evaluation Metrics. Two widely employed metrics are applied to evaluate the estimation perfor-
mance of Satformer. The calculation equations for these metrics are presented as follows:

• Normalized Mean Absolute Error (NMAE):

NMAE =

∑
(i,j,t)∈Ā |χijt − χ̃ijt|∑

(i,j,t)∈Ā |χijt|
(13)

• Normalized Root Mean Squared Error (NRMSE):

NRMSE =

√√√√∑(i,j,t)∈Ā |χijt − χ̃ijt|
2∑

(i,j,t)∈Ā χ
2
ijt

(14)

where χijk and χ̃ijk represent the truth value and estimated value, Ā denotes the set of unob-
served traffic data. For both two metrics, the smaller they get to 0, the better the estimation
performance of the model.

4.2 Performance Comparison with Baselines

Compare Satformer with mathematical baselines. Table 1 provides a summary of the experimental
results for our Satformer and the mathematical tensor completion baselines, HaLRTC, LATC and
LETC. Performance evaluations, measured by NMAE and NRMSE, are conducted across three
datasets with sampling ratios ranging from 2% to 10%. Our Satformer consistently outperforms the
mathematical tensor completion algorithms, achieving significant improvements. Notably, even at
the minimal 2% sampling ratio, Satformer maintains proficient performance, with NMAE values
recorded as 0.098, 0.1017, and 0.1402 for the Iridium, Telesat, and Starlink datasets, respectively. In
comparison, the leading mathematical models exhibit higher NMAE values of 0.2782, 0.2723, and
0.3784 under the same 2% sampling ratio. The observed performance enhancement in Satformer
quantifies at 84.38%, 86.43%, and 106.77% for the respective datasets. Similar trends are also
observed in NRMSE. These results indicate that mathematical models based on Alternating Direction
Method of Multipliers or reliant on strong assumptions struggle to capture the complex spatio-
temporal characteristics. In contrast, neural network-based models such as Satformer demonstrate
formidable nonlinear representation capabilities, enabling effective extraction of spatio-temporal
features from traffic data.

Compare Satformer with neural network-based baselines. Our Satformer outperforms the neural
network-based baselines (CoSTCo, DAIN, SPIN, and STCAGCN) across all datasets, achieving the
best estimation performance, as shown in Table 1. Notably, even with a 2% traffic data sampling
rate, Satformer demonstrates significant improvements compared to the best-performing neural
network-based baselines. On the Iridium dataset (66 satellites), Satformer improves NMAE and
NRMSE by 8.57% and 8.95%, respectively. As the size of the dataset increases, performance
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Table 1: Estimation Performance of Satformer Compared with Baselines

Models NMAE on Iridium NRMSE on Iridium
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

HaLRTC 0.2782 0.2252 0.2044 0.1935 0.1886 0.3926 0.3381 0.3074 0.2888 0.2778
LATC 0.581 0.5809 0.5809 0.5809 0.5808 0.6009 0.5998 0.5997 0.5997 0.5996
LETC 0.1807 0.1672 0.1545 0.1439 0.1354 0.2591 0.2384 0.2203 0.1984 0.1861
Improve% 84.38% 71.83% 61.61% 60.06% 66.54% 116.82%100.84%90.24%79.71%84.44%
CoSTCo 0.1629 0.1623 0.16 0.1588 0.1435 0.5664 0.5644 0.5646 0.5621 0.5574
CDSA 0.1616 0.1601 0.1599 0.1598 0.1120 0.6632 0.6058 0.5219 0.5249 0.5103
DAIN 0.1159 0.1156 0.1150 0.1144 0.1126 0.1435 0.142 0.1391 0.1377 0.127
SPIN 0.1206 0.1185 0.1175 0.1170 0.1158 0.1302 0.1310 0.1291 0.1229 0.1181
SAITS 0.1106 0.1078 0.1075 0.1073 0.1051 0.1203 0.1201 0.1201 0.1174 0.1161
STCAGCN 0.1064 0.1059 0.1058 0.1049 0.1046 0.1847 0.1622 0.1523 0.1435 0.1203
Satformer 0.098 0.0973 0.0956 0.0899 0.0813 0.1195 0.1187 0.1158 0.1104 0.1009
Improve% 8.57% 8.84% 10.67% 16.69% 28.67% 8.95% 10.36% 11.49%11.32%17.05%

Models NMAE on Telesat NRMSE on Telesat
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

HaLRTC 0.2723 0.2723 0.259 0.2538 0.2267 0.5518 0.4402 0.421 0.3968 0.3632
LATC 0.6193 0.6181 0.6129 0.6031 0.6002 0.6367 0.6367 0.6367 0.6367 0.6368
LETC 0.1896 0.1794 0.1637 0.1583 0.1513 0.2946 0.2751 0.261 0.2635 0.2534
Improve% 86.43% 79.4% 68.58% 60.71% 66.99% 58.27% 50.49% 47.62%50.92%52.46%
CoSTCo 0.2256 0.2182 0.2013 0.1898 0.1864 0.6996 0.6716 0.6482 0.6033 0.5852
CDSA 0.2354 0.2218 0.1565 0.1916 0.1815 0.6712 0.6523 0.5449 0.5014 0.4987
DAIN 0.1387 0.1345 0.1328 0.1297 0.1211 0.2687 0.2679 0.2538 0.2499 0.2476
SPIN 0.1298 0.1286 0.1278 0.1274 0.1273 0.2378 0.2365 0.2353 0.2347 0.2344
SAITS 0.1267 0.1223 0.1218 0.1113 0.1112 0.2213 0.2207 0.2201 0.2109 0.2013
STCAGCN 0.1488 0.1474 0.1457 0.1412 0.1393 0.2198 0.2184 0.2173 0.2184 0.2170
Satformer 0.1017 0.1 0.0971 0.0985 0.0906 0.1862 0.1828 0.1768 0.1746 0.1662
Improve% 27.63% 28.6% 31.62% 29.34% 33.66% 18.05% 19.47% 22.91%25.09%30.57%

Models NMAE on Starlink NRMSE on Starlink
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

HaLRTC 0.3784 0.3392 0.3116 0.282 0.2558 0.6148 0.4796 0.4398 0.4116 0.3778
LATC 0.5738 0.5733 0.5737 0.5437 0.5348 0.5984 0.5982 0.5937 0.5938 0.5928
LETC 0.2899 0.2803 0.272 0.2656 0.2546 0.4937 0.484 0.4722 0.4624 0.4571
Improve% 106.77%103.71%101.63%101.82%108.17% 79.26% 77.81% 77.78%74.23%75.33%
CoSTCo 0.2553 0.2479 0.2466 0.2462 0.2428 0.6635 0.6548 0.6531 0.6519 0.6498
CDSA 0.2567 0.2119 0.2198 0.1964 0.2047 0.7732 0.6034 0.6032 0.5987 0.5975
DAIN 0.237 0.2231 0.2346 0.2233 0.2172 0.431 0.4036 0.4114 0.4189 0.4186
SPIN 0.2398 0.2353 0.2353 0.2352 0.2216 0.3989 0.3961 0.3959 0.3942 0.3919
SAITS 0.2499 0.2498 0.2314 0.2291 0.2215 0.3471 0.3412 0.3401 0.3349 0.3312
STCAGCN 0.1944 0.1891 0.1802 0.1754 0.1685 0.3644 0.3611 0.3653 0.3644 0.3625
Satformer 0.1402 0.1376 0.1349 0.1316 0.1223 0.2754 0.2722 0.2656 0.2645 0.2607
Improve% 38.66% 37.43% 33.58% 33.28% 37.78% 32.32% 32.66% 37.54%37.77%39.05%

improvements continue and escalate. On the Telesat dataset (298 satellites), Satformer achieves
improvements of 27.63% in NMAE and 18.05% in NRMSE. For the Starlink dataset (1584 satellites),
Satformer exhibits even more substantial improvements, with NMAE and NRMSE increasing by
38.66% and 32.32%, respectively. These results highlight Satformer’s effectiveness in handling
large-scale datasets, suggesting potential deployment in real-world satellite networks. The limitations
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of CoSTCo are evident due to its exclusive reliance on two-dimensional convolution for spatial
feature extraction without explicitly modeling temporal features. DAIN falls short by not explicitly
modeling interactions between entities, which limits information utilization, despite its combination of
information for data augmentation. SPIN’s ability to handle sparsity or irregularly sampled data might
be limited, which could affect the accuracy of traffic estimation in satellite networks where data is
often incomplete. STCAGCN captures time-asynchronous correlations may not fully account for the
complex temporal dynamics in satellite network, leading to less accurate estimations. The architecture
of STCAGCN cannot ensure the information learned at earlier stages is preserved and utilized in later
stages. Although CDSA also utilizes the self-attention mechanism, its dimension-wise processing may
limit its ability to capture complex interactions. RNN-based models of SAITS are generally inferior to
Transformer architectures in terms of handling long-distance dependencies and efficiency. In contrast,
Satformer excels by explicitly incorporating both spatial and temporal features within each module.
The graph embedding captures nonlinear information, the Satformer module integrates the ASSIT,
and the transfer module seamlessly transmits global contextual information. This comprehensive
design enables Satformer to deliver exceptional performance in inter-satellite traffic data estimation,
effectively addressing the challenges of large-scale, sparsely populated datasets.

5 Conclusion and Discussion

This paper proposes Satformer, a novel traffic data estimation algorithm for large-scale satellite
networks, aiming at fast and accurate estimating global traffic matrix from partial sampling in a
cost-effective manner. Motivated by this, we design a region-aware sparse spatio-temporal attention
mechanism to concentrate on specific local regions of the input tensor, where the input tensor is
embedded in a graph convolutional neural network. Thus, spatio-temporal features from the traffic
matrix are effectively extracted with computational efficiency and robustness.

Extensive experiments with datasets of varying scales-small, medium, and large have shown that
Satformer has significant advantages on both accuracy and efficiency for traffic estimation compared
with baselines, particularly in larger networks. Moreover, we analyze the robustness of Satformer
under different conditions and further verify the role of each module through ablation studies. The
results demonstrate the potential of Satformer for deployment in actual systems.

Despite Satformer is effective adopted for traffic estimation, deep learning models for traffic estimation
remain mostly black boxes. It is quite important to understand the reasons behind inferences in
the satellite networking domain. In addition, although Satformer is cost-effective, it is necessary
to further reduce its computational complexity, considering the limited computational resources of
existing satellites.

Future works should prioritize enhancing computational efficiency. It is also important to explore
interpretability and decision basis of our deep learning model for traffic estimation. For example,
explanation techniques, such as a local interpretable model-agnostic explanation (LIME) [37], are
able to make a visual analysis of the model and analyze the internal working mechanism from specific
examples. Additional explanatory tools, such as feature importance analysis, will help users in
understanding the model’s workings.
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A Traffic Generator

To the best of our knowledge, there is no publicly available inter-satellite traffic data or literature
describing the traffic distribution for any existing satellite networks. This includes long-established
networks like Iridium, as well as those currently under development, such as Starlink. The character-
istics of traffic load borne by satellite networks are intricate. Satellites predominantly communicate
with terrestrial terminals via ground stations. Spatially, the distribution of ground stations is uneven
due to factors such as topography, economic considerations, and geopolitical influences. In regions
with extreme environmental conditions or economic underdevelopment, such as oceans, deserts, and
polar areas, the received traffic is significantly lower compared to more favorable environments,
contributing to an uneven spatial distribution of traffic in the satellite network. Furthermore, the global
distribution of earth stations spans various time zones, resulting in non-stationary traffic generation
at different times. This temporal variability leads to significant traffic variations among stations.
Additionally, to ensure link quality between satellites and ground stations and to mitigate the impact
of frequent satellite handoffs, ground stations must consider multiple factors, including elevation
angle, service time, and signal strength, when selecting communication satellites. This complexity
adds to the challenges associated with managing traffic in satellite networks.

Space

The coordinates of more than 1000 stations in SOD

Visibility analysis of ground stations and LEO satellites

Access selection between ground stations and LEO satellites

Generate traffic matrix sequence between ground 
stations under distributation of gravity

Traffic load of each ground station in different zones

Time

Sequence
of LEO
inter-

satellite
traffic

matrices

Figure 3: Traffic generation framework.

(a) (b)

Figure 4: (a) Global distribution of satellite ground stations. (b) Normalized one-day traffic variation
for ground station

The pivotal aspect in assessing the effectiveness of the proposed scheme is constructing a coherent
satellite network traffic model that accurately represents the traffic characteristics of the satellite
network. The devised traffic generation method, as illustrated in the accompanying figure, takes
into account the spatial distribution of ground stations, temporal characteristics, and satellite-ground
access. Although this approach primarily focuses on inter-satellite communication and excludes
satellite-ground communication, it offers comprehensive consideration of three key factors: spatial
distribution of ground stations, temporal dynamics, and satellite-ground access. The culmination of
these considerations results in the generation of a sequence of inter-satellite traffic matrices.

spatio distribution of ground stations. Due to limitations imposed by antenna size, equipment
volume, and quality, current user communications with satellites predominantly occur through ground
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(a) (b) (c)

Figure 5: (a)Iridium constellation. (b)Telesat constellation. (c)Starlink constellation

stations. The spatial distribution of traffic load in a satellite network is intricately linked to the global
geographical distribution of earth stations. In this work, ground stations are strategically positioned
based on the coordinates provided by the Standard Object Database (SOD) within the Satellite Tool
Kit (STK). The SOD database contains geographical location information for 1,016 Earth stations
worldwide, primarily situated in islands, mountainous areas, rural locales, and other remote regions
effectively served by satellites. In contrast to alternative assumptions regarding user distribution,
leveraging the SOD ensures a more accurate representation of user distribution and density, which is
crucial for this work. Consequently, this facilitates an effective depiction of the spatial distribution of
traffic load within the satellite network.

temporal dynamics. The temporal variations in traffic load within non-geostationary orbit satellite
networks predominantly arise from two factors: the diurnal fluctuations induced by regional local
times and the geographic variations in daily traffic patterns influenced by global time zones. In the
foreseeable future, the satellite optical network is expected to handle a traffic load comparable to that
of the ground network, either matching, proportionally scaling, or exhibiting similar patterns. To
ensure accuracy and effectiveness in generating traffic scenarios, this paper employs the four-month
average daily traffic change trend from the GEANT network to characterize daily traffic variations.
Fig.4b depicts the normalized cumulative traffic load over a 24-hour period, with the highest peak
value normalized to 1. Notably, the flow intensity peaks around 12 noon, gradually diminishes, and
then experiences a subsequent rise around 5 AM the following day. In addressing geographical
variations, for the sake of model simplicity, the local time of a ground station within its respective
time zone is incremented by one hour for every 15 degrees of longitude eastward from Greenwich
Mean Time. This adjustment is contingent on the specific time zone associated with each ground
station.

satellite-ground access. The capability of a ground station to establish satellite-ground communi-
cation links with multiple satellites within a given time window is influenced by factors such as
satellite density and the coverage area of an individual satellite. Different satellite-ground access
methods introduce varying effects on the characteristics of traffic load. Utilizing visibility analysis
outcomes obtained through the Satellite Tool Kit (STK) and considering conditions for establishing
satellite-ground links, the service time offered by all satellites visible to a ground station in each
time window is computed. The satellite offering the longest service time is then selected for access,
allowing for the flexibility to choose alternative or custom-designed satellite-ground access methods
as needed. The ground station selects the destination node, following a uniform distribution. The
traffic density at the ground station is jointly determined by the local time within the time zone and
the spatial distribution of ground stations across each time zone.

Assuming the network time is based on GMT (Greenwich Mean Time) and considering the gener-
ation interval ∆t(s) of the traffic matrix, the computation process for the traffic matrix sequence
{F tter|t ∈ N∗} between ground stations is as follows:

For any time t, the total traffic Dt sent by all ground stations in the whole network is calculated as
Eq.15.

Dt = offerload×B × nter (15)

where, offerload is the network traffic load, B is the maximum bandwidth of the inter-satellite link,
and nter is the total number of ground stations.
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The latitude and longitude coordinates of any ground station i is (xi, yi), then the local time tm(h)
of the time zone m of any ground station i can be calculated by Eq.16:

tm =

⌊
t

3600

⌋
+
⌊xi

15

⌋
(16)

Combined with the normalized cumulative traffic load in 24 hours in Fig.4b, the traffic intensity
weight of the time zone m where the ground station i is located can be calculated:

wtm =
wtm
wtotal

, 0 ≤ m ≤ 23&m ∈ N∗ (17)

where, wtotal is the total traffic load and wtm is the load at time t corresponding to time zone m.

The traffic (f tm)z that a ground station i located in time zone m needs to send at time t can be
calculated by Eq.18 as follows. (

f tm
)
i

=
Dt × wtm
nm

(18)

where, nm denotes the number of ground stations in time zone m, and
23∑
m=0

nm = nter.

Since the destination node is selected by the ground station according to uniform distribution, the
traffic sent from the ground station i to the ground station j at time t can be calculated by Eq.19:

F (i, j)t = U(0.1, 1) ∗
(
f tm
)
i

(19)

where, F (i, j) denotes the traffic from the source ground station i to the destination ground station j,
and U(0.1, 1) represents the uniform distribution from 0.1 to 1.

By traversing all the ground stations in the network at each time interval, the traffic matrix sequence
{F tter|t ∈ N∗} between the ground stations can be calculated. According to the inter-satellite
visibility analysis results provided by STK, as shown in Fig.5, combined with the satellite-to-ground
access method described previously, the inter-satellite traffic matrix sequence {F tsatt ∈ N∗} can be
obtained.

B Theoretical Analysis

Lemma 1. Convergence of GCN Layer-wise Propagation.

Statement: For a multi-layer GCN with layer-wise propagation defined as H(l+1) =

σ(D−
1
2 ÃD−

1
2H(l)W (l)), the node embeddings H(l) converge as l increases, under mild condi-

tions on the activation function σ and weight matrices W (l). In our work, Lemma 1 supports the use
of two-layer convolutional layers in GCN to effectively propagate features, thereby validating the
capability of GCN to capture and utilize the structural information present in the input tensor.

Proof. Consider a GCN with L layers. The layer-wise propagation is given by:

H(l+1) = σ(D−
1
2 ÃD−

1
2H(l)W (l))

where H(l) ∈ RN×dl is the node feature matrix at layer l, D is the degree matrix, Ã = A+ I is the
adjacency matrix with self-loops, and W (l) ∈ Rdl×dl+1 is the weight matrix.

Assume the activation function σ is Lipschitz continuous with Lipschitz constant Lσ, i.e., for all
x, y ∈ R,

|σ(x)− σ(y)| ≤ Lσ|x− y|
Assume the weight matrices W (l) are bounded, i.e., there exists a constant M such that ‖W (l)‖ ≤M
for all Define the propagation operator Φ : RN×dl → RN×dl+1 as:

Φ(H) = σ(D−
1
2 ÃD−

1
2HW )
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To show Φ is a contraction, consider two node feature matrices H1, H2 ∈ RN×dl . We need to show
that:

‖Φ(H1)− Φ(H2)‖ ≤ k‖H1 −H2‖
for some 0 ≤ k < 1.

Compute the difference:

‖Φ(H1)− Φ(H2)‖ = ‖σ(D−
1
2 ÃD−

1
2H1W )− σ(D−

1
2 ÃD−

1
2H2W )‖

Using the Lipschitz continuity of σ:

‖Φ(H1)− Φ(H2)‖ ≤ Lσ‖D−
1
2 ÃD−

1
2 (H1 −H2)W‖

Apply the sub-multiplicative property of norms:

‖Φ(H1)− Φ(H2)‖ ≤ Lσ‖D−
1
2 ‖‖Ã‖‖D− 1

2 ‖‖H1 −H2‖‖W‖
Since D and Ã are derived from the graph structure and ‖W‖ is bounded by M :

‖D− 1
2 ‖‖Ã‖‖D− 1

2 ‖ ≤ λmax

where λmax is the largest eigenvalue of the normalized adjacency matrix.

Combining these, we get:

‖Φ(H1)− Φ(H2)‖ ≤ LσλmaxM‖H1 −H2‖
For Φ to be a contraction, we need:

LσλmaxM < 1

If LσλmaxM < 1, then Φ is a contraction mapping.By the Banach fixed-point theorem, every
contraction mapping on a complete metric space has a unique fixed point.Therefore, the node
embeddings H(l) will converge to a fixed point as l increases.

Lemma 2. Stability of Attention Mechanism with Masking.

Statement: The attention mechanism with a mask matrix focusing on the center region of the input
data remains stable and does not degrade performance, provided the mask matrix is appropriately
designed. Lemma 2 supports the introduction of a local attention mechanism in the adaptive sparse
spatio-temporal attention mechanism, enabling the model to better capture and utilize details and
patterns in localized regions of the input tensor.

Proof. The mask matrix M is designed such that Mij = 0 for elements outside the central region
and Mij = 1 within the central region.This implies that only the attention scores corresponding to
the central region are retained, effectively reducing the complexity of the attention mechanism by
filtering out less relevant data.Mathematically, M acts as a sparsity-inducing regularizer:

A′(X) = softmax(M � (XW1W
>
2 X

>))

By focusing on the central region, M ensures that the attention mechanism does not overfit to
peripheral noise, enhancing generalization.

The central region often contains the most informative parts of the data, as observed in empirical
studies (e.g., Fig.9(a)).

By applying M , the attention mechanism A′(X) prioritizes the computation of attention scores
within this region, thus capturing critical local patterns:

A′(X)ij =
exp((M � (XW1W

>
2 X

>))ij)∑
k exp((M � (XW1W>2 X

>))ik)

This prioritization ensures that the most relevant features are emphasized, leading to improved
prediction accuracy.

To show that the deviation introduced by M is bounded, consider the difference between the original
and masked attention mechanisms:
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∆A = A(X)−A′(X)

Since Mij ∈ {0, 1}, it acts as a binary mask, thus the modification is limited to setting some attention
scores to zero while retaining the rest:

‖∆A‖F = ‖softmax(XW1W
>
2 X

>)− softmax(M � (XW1W
>
2 X

>))‖F
Given that softmax is a Lipschitz continuous function with constant 1, the Frobenius norm ‖∆A‖F
is bounded by the norm of the difference in the inputs:

‖∆A‖F ≤ ‖(1−M)� (XW1W
>
2 X

>)‖F
Since M zeros out peripheral entries, the difference is confined to the less relevant regions, ensuring
that the overall deviation remains controlled.

C Implemenation Details

Table 2: Hyper Parameter Settings

Dataset Model lr epochs batch size

Iridium

CoSTCo 0.001 100 64
DAIN 0.0001 50 256
SPIN 0.0008 50 32
STCAGCN 0.0005 50 32
Satformer 0.001 200 128

Telesat

CoSTCo 0.001 100 64
DAIN 0.0001 100 256
SPIN 0.0008 50 32
STCAGCN 0.0005 100 32
Satformer 0.001 200 128

Starlink

CoSTCo 0.001 100 64
DAIN 0.0001 50 1024
SPIN 0.0008 100 64
STCAGCN 0.0005 150 32
Satformer 0.001 300 128

Satformer and the neural network-based baselines are implemented in PyTorch, while the mathe-
matical baselines are implemented using Numpy. We evaluated Satformer against the baselines on a
server equipped with an NVIDIA RTX 2080Ti GPU, 128 GB DDR4 RAM, and an Intel Xeon Silver
4208 CPU, running the Ubuntu 18.04 operating system. All models are trained for a range of 50 to
300 epochs with the first 5 epochs designated for warmup, and early stopping is adopted during the
training process. The Adam optimizer [38] is used to optimize our model. A grid search strategy
is applied to determine the best learning rate, epochs, and batch size. Based on the results of the
grid search strategy, the optimal hyperparameters for the Satformer model and the neural network
baselines are presented in Table 2, with the best weight decay determined to be 0.00001. We run each
model 10 times with the same parameters and record the mean results in Table 1.

D Model Parameter Selection

Impact of module number. The module number indicates how many spatio-temporal modules
should be contained in Satformer. It significantly impacts the computational efficiency and accuracy
of Satformer. We adjust the number of modules from 1 to 20 and record the NMAE and NRMSE for
each dataset, set the sample ratio to 2% and maintain the other hyperparameters constant. As shown
in Fig.6, we observe that the error of Satformer continually decreases as the number of modules
increases, up to a point (10 for all three datasets), after which it begins to increase. The reason is that
increasing the number of modules enhances Satformer’s ability to extract spatio-temporal features,

18



Figure 6: Analysis of hyper-parameters

while an excessive number of modules can lead to model overfitting and increased complexity.
Consequently, we select a module number of 10 for all three datasets.

Impact of centre window size. The centre window size indicates how many elements should be
retained in a mask matrix. It also significantly influences the accuracy of Satformer. It is another
crucial hyperparameter of Satformer. The results in Fig. 6 show that, for Iridium and Telesat, the
estimation performance of Satformer continues to improve until it starts to decrease at a certain point
(16 for Iridium and 32 for Telesat). Conversely, for Starlink, the estimation performance continues to
increase. It can be observed that the window size is proportional to the dataset’s scale. For small and
medium-scale datasets, the model may extract useful information with a small center window size,
thereby improving computational efficiency. However, for large-scale datasets, a larger center window
size enables the model to extract more features while maintaining high accuracy. Accordingly, we set
the center window size to 16 for Iridium, 32 for Telesat, and 64 for Starlink.

E Robustness Analysis

Figure 7: Analysis of robustness

19



To thoroughly evaluate the robustness and performance of Satformer, we conducted a comprehensive
comparison of its Normalized Absolute Error (NMAE) and Normalized Root Mean Squared Error
(NRMSE) metrics against all six baseline models across three diverse datasets. These datasets
encompass varying numbers of time slices, ranging from 100 to 1500, providing a broad spectrum
of temporal scales for analysis. As the number of time slices of the output increases, the accuracy
will inevitably decrease, mainly because the complexity of the data increases exponentially with
each additional dimension, making it harder to model and predict accurately [39]. In addition, In the
process of tensor completion, especially over many time slices, there can be a loss of information that
is critical for making accurate predictions. Each step in the prediction process may introduce slight
inaccuracies, which accumulate over time [40]. The results from our experiments unequivocally
demonstrate the superior and consistent performance of Satformer across all datasets, irrespective of
the number of time slices involved. Notably, as the number of input time slices increases, Satformer
consistently outperforms other models in terms of reliability, maintaining consistently low NMAE
and NRMSE indicators. Importantly, even with the escalation of the temporal dimension and the
expansion of dataset sizes, Satformer exhibits remarkable stability in its results. These findings
underscore the robustness and scalability of Satformer, rendering it not only valuable in theoretical
contexts but also highly applicable in real-world engineering scenarios.

F Ablation Study

Figure 8: Ablation Study on Satformer

To assess the impact of our graph embedding module (GE), ASSIT module, and transfer module on
Satformer’s performance, we conducted ablation experiments, systematically removing these key
components to create various model variants. Specifically, we evaluated the following variants: 1)
Satformer-GE omits the graph embedding module; 2) Satformer-AT removes the adaptive sparse
spatio-temporal attention mechanism module; 3) Satformer-TM does not incorporate the transfer
module.

Experimental results consistently demonstrate the superior performance of the complete model as
compared to the variant models from which crucial components have been removed, across three
datasets that have varying sampling rates. Notably, the absence of the graph embedding module
hinders the effective capture of topological structure information, underscoring its pivotal role in
augmenting overall model performance. The significance of the ASSIT module becomes evident in
addressing sparsity issues within spatio-temporal data; when it is absent, the model experiences a
noticeable decline in performance, validating its effectiveness in uncovering temporal and spatial
dependencies. Furthermore, the transfer module plays a crucial role in facilitating the conversion of
information between different feature spaces, thereby enhancing the model’s capability in feature
representation.
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G Runtime Analysis

Table 3: Training & Inference Time

Model Iridium Telesat Starlink
Training (s) Inference (s) Training (s) Inference (s) Training (s) Inference (s)

HaLRTC / 123.9s / 520.6s / 2673.2s
LATC / 209.2s / 748.3s / 3350.1s
LETC / 62.4s / 253.4s / 1147.5s
CoSTCo 164.6s 0.200s 570.4s 0.274s 1582.3s 0.314s
CDSA 180.43s 0.210s 523.57s 0.290s 1478.37s 0.308s
DAIN 255.7s 1.164s 767.2s 3.722s 3254.8s 13.475s
SPIN 169.43s 0.794s 923.86s 2.858s 2566.5s 3.291s
SAITS 163.85s 0.476s 687.30s 2.256s 1879.57s 3.433s
STCAGCN 330.9s 0.422s 824.6s 3.872s 3993.8s 3.8795s
Satformer 80.3s 0.082s 168.9s 0.194s 879.5s 0.477s

Table 3 presents a comparison of the training and inference times of Satformer with various baseline
models. Although SPIN incorporates a sparse attention mechanism, it can be computationally
intensive. This may lead to longer processing times. Notably, Satformer demonstrates the fastest
training and inference times, which makes it particularly well-suited for real-world deployment. The
significant reduction in these times is primarily attributed to the adaptive spatio-temporal attention
mechanism, which introduces strategic sparsity in the sampling of input tensors and markedly reduces
the number of parameters, offering a substantial time-saving advantage.

H Virtual Attention

The adaptive sparse spatio-temporal attention mechanism allows Satformer to focus on specific local
regions of the input tensor, which is particularly beneficial for handling the large-scale and highly
dynamic nature of satellite networks. We visualize the attention mechanism in Satformer to verify
whether the functionality is achieved, as shown in Fig.9.

Fig.9(a) presents the initial traffic matrices for Iridium, Telesat, and Starlink satellite constellations.
Each matrix’s dimension is determined by the number of satellite nodes, denoted as N, with each
point representing the volume of traffic between respective node pairs. Fig.9(b) illustrates the traffic
matrices after applying a 10% sample rate to the three datasets, demonstrating a clear reduction in
data density. Fig.9(c) displays the attention map, which are derived from the Satformer module using
the attention scores, αs, as defined by Eq.9. The attention map’s dimensions are R (D ×D×heads),
which is then averaged across the head dimension and scaled to N ×N in the D×D dimensions for
visualization purposes. This scaling process is designed to be intuitive without altering the inherent
relationships within the tensors. Finally, Fig.9(d) represents the estimated traffic matrices, which are
the reconstructed traffic data from the sampled data.

Upon examining the initial traffic matrix for Iridium constellation, a notable volume of traffic is
evident within the red-boxed area. After sampling, only sparse data points remain, yet the attention
map successfully captures the significance of this high-traffic area, as indicated by the high attention
scores. The estimated traffic matrix aligns well with the actual traffic in this region. Similar
observations can be made for the Telesat and Starlink datasets, where the attention mechanism
effectively identifies and emphasizes critical traffic areas, leading to accurate estimations within the
reconstructed traffic matrices.

I General Tensor Completation Tasks

Although Satformer was developed to address traffic data estimation in satellite networks, the core
strengths of its methodology endow it with the potential to be applied to other tensor completion
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Figure 9: Visualization of adaptive sparse spatio-temporal attention mechanism

tasks requiring the handling of large-scale, sparse, and complex spatio-temporal characteristics. This
includes, but is not limited to, social network analysis, environmental monitoring, bioinformatics,
and other domains that necessitate the reconstruction and analysis of multidimensional data.

Table 4: Performance Under Foursquare tensor dataset

Models NMAE on Foursquare NRMSE on Foursquare
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

CoSTCo 0.1465 0.1460 0.1454 0.1449 0.1438 0.2548 0.2513 0.2493 0.2425 0.2402
DAIN 0.1464 0.1460 0.1453 0.1450 0.1439 0.2434 0.2412 0.2401 0.2396 0.2368
SPIN 0.1322 0.1317 0.1308 0.1293 0.1291 0.1998 0.1973 0.1936 0.1922 0.1913
STCAGCN 0.1328 0.1321 0.1309 0.1296 0.1291 0.1999 0.1974 0.1933 0.1929 0.1918
Satformer 0.1320 0.1311 0.1304 0.1295 0.1294 0.1996 0.1967 0.1936 0.1920 0.1913

Models NRMSE on PeMS-Bay NMAE on PeMS-Bay
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

CoSTCo 0.1513 0.1487 0.1461 0.1445 0.1432 0.2603 0.2499 0.2445 0.2400 0.2356
DAIN 0.1476 0.1462 0.1446 0.1430 0.1414 0.2447 0.2403 0.2358 0.2303 0.2249
SPIN 0.1357 0.1343 0.1329 0.1313 0.1299 0.2051 0.1997 0.1943 0.1889 0.1835
STCAGCN 0.1335 0.1321 0.1306 0.1290 0.1274 0.2012 0.1958 0.1904 0.1850 0.1796
Satformer 0.1308 0.1294 0.1280 0.1265 0.1249 0.1984 0.1930 0.1876 0.1822 0.1768

We use the Foursquare [33] and PeMS-Bay [41] tensor dataset to evaluate Satformer’s performance
on general tensor completion tasks. The Foursquare dataset is a point-of-interest tensor defined by
user, location, and timestamp. Utilizing this dataset allows researchers and developers to gain insights
into the dynamics of geographic social networks and to develop innovative applications and services
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based on these insights. The PeMS-Bay data collect this traffic volume data from 325 loop sensors in
the San Francisco bay area, ranging from January to March 2018 with a 5-min time interval.

The test results on two general datasets demonstrate the applicability of the Satformer method to
other general tensor completion tasks. These positive results indicate that Satformer can serve as
a powerful tool across various fields that involve complex spatio-temporal data, including social
network analysis, traffic flow forecasting, environmental monitoring, and others. Naturally, additional
adjustments and optimizations may be necessary for different application scenarios to achieve optimal
performance.

J Broader Impacts

Satformer is primarily used in emerging large-scale satellite communication networks. Currently,
optimizing satellite network traffic engineering [6], [10] or topology engineering [11] relies on
real-time collection of global traffic data. However, due to the limitations of satellite networks,
real-time collection of comprehensive traffic status information incurs significant costs and overhead,
making it nearly impossible to achieve, which further hinders the deployment of these solutions.
Satformer addresses this issue by recovering global traffic data from a low sample rate (2%), which
significantly reducing costs and overhead, thereby enabling the deployment of these solutions in
real satellite networks. Additionally, Satformer helps improve network administrators’ awareness of
network states, optimizing network operations and maintenance. Beyond satellite communication
networks, Satformer has the potential to be extended to other scenarios, such as transportation
networks, the Internet of Things (IoT), and image processing. We have validated this in Appendix I.
However, Satformer also presents interpretability risks. We recommend that researchers focus on
interpretability when using Satformer, enhancing the transparency of application decisions related to
traffic scheduling, routing, and congestion control.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make clearly states about contributions and assumptions in abstract and
Introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitions of this work in section 5 .
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the theoretical results in Appendix B.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the method clearly and fully in section 3. In addition, we
provide the ways to construct the datasets in Appendix A.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided the code and data of this paper in supplemental material.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have presented all training and test details in section 4 and Appendix C, D,
E, F, G, H and I.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have stated the appropriate information about the statistical significance of
the experiments in section 4.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the sufficient information on computer resources in Ap-
pendix C.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed both potential societal impacts in Appendix J.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The existing assets used in this paper are the license and terms of use explicitly
mentioned and properly respected.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

28

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code of this paper is well structured.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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