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Abstract

Entity Set Expansion (ESE) aims to find all
entities of one target semantic class with a
few seed entities describing it. However, ex-
isting ESE methods cannot express what en-
tities we explicitly dislike, and thus hinder
its application in real-world scenarios. In
this paper, to endow models with the capabil-
ity of understanding the “dislike” relationship
among seed entities, we express the target se-
mantic class with both positive and negative
seed entities. To this end, we propose an ef-
ficient and learnable negative-aware entity set
expansion framework, which is essentially a
retrieval model. To facilitate this study, a large-
scale Negative-aware ESE Dataset (NED) with
more than 1M entities is further collected and
annotated. Extensive experiments' on NED
show that the proposed framework can ef-
fectively understand the dislike relations ex-
pressed by the negative seeds and expand
fewer dislike entities than baseline methods.

1 Introduction

The Entity Set Expansion (ESE) task aims to find
all entities of one semantic class with a few seed
entities describing it. For example, given {“apple”,
“banana”, “pear”}, ESE tries to find other entities
in the target semantic class Fruit, such as “orange”
and “grape”. ESE benefits a variety of downstream
NLP and IR applications, such as web search(Chen
et al., 2016), question answering (Wang et al.,
2008), taxonomy construction(Velardi et al., 2013),
and semantic search(Xiong et al., 2017).

Though achieving reasonably good results on ex-
isting ESE datasets, current ESE methods can only
describe what entities we want, while failing to
express what we explicitly don’t want, which hin-
ders the application of ESE. For instance, when the
user wishes to expand Snacks without Peanuts (to
prevent food allergy), existing ESE methods can-
not express it and tend to return all snack entities
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Figure 1: Negative-aware entity set expansion.

from the candidate entity set without filtering those
containing peanuts. Obviously, it is natural and
necessary to endow ESE models with the capabil-
ity to understand the “dislike” relationship among
seed entities. To achieve this, we express the target
semantic class with both positive seeds and nega-
tive seeds as shown in Figure 1. Specifically, for
semantic class Snacks without Peanuts, we may use
{“yogurt”, “popcorn”} as positive seeds to describe
what we want; and use {“chocolate”, “Szechuan
sauce”} as negative seeds to express what we dis-
like (foods containing peanuts).

Compared with ESE, negative-aware entity set
expansion can better benefit some downstream
tasks. For example, in personalized recommen-
dation systems, a user can mark the recommen-
dation results as liked (positive seed entities) or
disliked (negative seed entities). Utilizing these
liked and disliked results, the system will be able
to understand the preference (target negative-aware
semantic class) of the user more accurately and
consequently give better results.

In this paper, we propose the NegESE, a learn-
able Negative-aware Entity Set Expansion frame-



work. Given the input of a few positive and nega-
tive seeds, NegESE learns to understand the target
negative-aware semantic class and find all entities
in this semantic class from the candidate entity
set. NegESE consists of three modules: (1) The
first, entity encoding module, maps each entity into
its dense representation using BERT(Devlin et al.,
2019) and the corpus. (2) The second, entity set
comprehension module, learns what kind of entities
are liked and disliked given positive and negative
seeds respectively, and combines these two require-
ments to model the target semantic class. (3) The
third, entity retrieval module, retrieves entities from
the candidate entity set with the semantic meaning
learned by the previous module.

To facilitate the study of negative-aware en-
tity set expansion, we construct the Negative-
aware ESE Dataset (NED) based on the En-
glish Wikipedia dump? and Harry Potter series.
Specifically, we first extract the candidate entity
set from the corpus and identify several coarse-
grained semantic classes like Chemical Elements,
Sport Leagues in it. We then annotate several
attributes (e.g., <is_radioactive>) for each en-
tity in these classes. Finally, we use these at-
tributes to automatically generate negative-aware
samples of different granularities such as Radioac-
tive Chemical Elements with attribute value set {
<is_radioactive>=True }. The full process is shown
in Figure 2 and will be introduced in Section 3.

In summary, our contributions are in three folds:

1. We propose NegESE, a simple and effective
learnable framework, to solve the negative-aware
entity set expansion task efficiently.

2. We construct NED, a large-scale negative
entity set expansion dataset with a great amount
of negative-aware semantic samples in different
granularities, based on general domain corpus and
domain-specific corpus.

3. We conduct comprehensive experiments on
NED, which demonstrate the effectiveness and effi-
ciency of NegESE in solving negative-aware entity
set expansion task.

2 Related Work

2.1 Methods of ESE

ESE is a weakly supervised task, which is typi-
cally given seed entities as supervised signals and
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expands with new entities from the candidate en-
tity set. Research of ESE in the last decade can
be divided into two main categories: (1) One-time
ranking methods (Yu et al., 2019a) compute simi-
larity on the basis of semantic features of the seed
entities and expand a ranked list of new entities that
belong to the same semantic class. (2) Bootstrap-
based methods (Huang et al., 2020; Zhang et al.,
2020a; Shen et al., 2017a; Shi et al., 2014; He and
Xin, 2011; Mamou et al., 2018) iteratively select
context patterns around entities, and use extracted
patterns to find new entities.

It is worth mentioning that there has been some
work to incorporate negative entities (Jindal and
Roth, 2011; Gupta and Manning, 2014; Shi et al.,
2014; Curran et al., 2007), though the usage of neg-
ative entities in these methods is relatively naive.
Taking (Shi et al., 2014) as an example, they ex-
pand negative entities along with positive entities
in a symmetrical manner to improve the expansion
performance of positive entities.

We point out that the role of the negative entities
used in previous work is fundamentally different
from ours. Negative entities in previous work are
purely used to help determine the boundary of the
target set described by positive seeds. In contrast,
negative entities in our model are used to describe
the target negative-aware semantic classes that can-
not be characterized by positive seeds alone.

2.2 Data Resources of ESE

Common datasets used in ESE including CoNLL
(Zupon et al., 2019), OntoNotes(Zupon et al.,
2019), Wiki(Ling and Weld, 2012) and APR (Shen
et al., 2017a). There are three main limits with
these datasets: (1) Existing datasets use solely pos-
itive seed entities to describe the target semantic
class which is not sufficient if the user explicitly dis-
likes some entities (e.g. Snacks Without Peanuts).
(2) The semantic class granularity is coarse. Exist-
ing ESE datasets lack fine-grained semantic classes
like USA Software Companies while only contain-
ing coarse-grained semantic classes like Compa-
nies. (3) Few semantic classes. The most used two
datasets Wiki and APR contain only 3 and 8 classes
respectively, which is too small to be representative
for real scenarios.

3 NED Dataset

i, To facilitate the study of negative-aware entity set
expansion, we need a dataset that contains both
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Figure 2: Illustration of the NED dataset construction process. The whole process composes the Data Collection
and Annotation stage and the Negative-aware Samples Generation stage, and can be further divided into four steps.

positive and negative seed entities. However, to
the best of our knowledge, there is no such pub-
lic benchmark dataset. Therefore, we build the
NED, a large ESE dataset containing both positive
and negative seed entities involving negative-aware
semantic classes of different granularities.

To examine the universality of NegESE in differ-
ent scenarios, NED contains two sub-datasets with
entities from two different sources: Wikipedia and
Harry Potter series. We name the former one as
NED-wiki, and the latter one as NED-hp.

3.1 Dataset Construction

We first select corpora of NED and extract the can-
didate entities. Then we identify several coarse-
grained semantic classes based on existing ESE
datasets and Wikipedia Lists®. Finally, we anno-
tate a few attributes for each entity in these classes
and use the attribute values to generate fine-grained
negative-aware samples. We will introduce the de-
tail of the construction process in this section, and
Figure 2 is an illustration of it.

Step 1. Corpora Selection and Entity Set Ex-
traction. For NED-wiki, we use the corpus of SE2
(Shen et al., 2020) which is an English Wikipedia
dump as it provides enough general domain context
information for algorithms to explore. For NED-hp,
we use the popular Harry Potter series text as our
raw corpus, which further improves the domain di-
versity of our dataset. We extract all noun phrases
with frequency above 10 as the candidate entity set
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for both NED-wiki and NED-hp.

Step 2. Coarse-grained Semantic Class Selec-
tion. For NED-wiki, we identify 18 coarse-grained
semantic classes based on the APR (Shen et al.,
2017a) dataset, Wiki (Ling and Weld, 2012) dataset,
and Wikipedia Lists. For classes in existing
datasets, we just adopt the origin entity list. For
classes we newly introduced, such as Chemical El-
ements, we adopt the corresponding Wikipedia List
as its entity list. We filtered entities that cannot
be found in the candidate entity set (extracted in
Step 1) from these lists. For NED-hp, we select
Characters as the coarse-grained semantic class
and collected character names in the candidate en-
tity set as the entity list. These semantic classes on
average contains 198 entities, and the full list of
class sizes can be found in Table 8 in appendix.
Step 3. Entity Attribute Annotation. For
each coarse-grained semantic class C, we man-
ually select k independent attributes A4 =
{a1,as,--- ,ax} , which will be used to generate
negative-aware samples (introduced in next step).
Attributes of each coarse-grained class are shown
in Table 9 in appendix. To annotate the attributes
for each entity in C, we visit the corresponding
Wikipedia page* and manually extract the attribute
values from the page. Example of entity and at-
tribute values in class Company are shown in the
top-right of Figure 2.

Step 4. Generation of Negative-aware Samples.

*For the harry potter sub-dataset, we use http://magical-
menagerie.com/ as data source.
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Figure 3: The architecture of the processed NegESE framework, which consists an Entity Encoding Module (EEM),
an Entity Set Comprehension Module (ESCM) and an Entity Retrieval Module (ERM). EEM takes the context
sentences of candidate entities and seed entities to generate features for them separately. ESCM takes the seed
features generated by EEM to learn a query vector representing the semantic meaning of input seed entities (i.e.
the query). ERM computes a score for each candidate entity given the candidate features and query vector to

generate a ranked list of candidate entities.

We designed an algorithm to automatically gener-
ate negative-aware samples of different granulari-
ties based on the selected coarse-grained semantic
classes,where each sample describes a certain se-
mantic class. The overview of this algorithm is
shown in Figure 2.

For each coarse-grained semantic class C' and its
attributes A, we sample 7, attributes as positive
(denoted as A,,s) and 1,4 attributes as negative
(denoted as Aj.4). We then select one value for
each attribute from the attribute annotations of en-
tities in C'. In this way, we can get a list of posi-
tive values V,,, and a list of negative values V4
describing the “like” and “dislike” requirement re-
spectively. We use P to represent the entities in
the candidate set that satisfy both the “like” and
“dislike” requirements, and use " to represent the
explicitly disliked (negative) entities in the set. We
then randomly pick five positive seed entities and
three negative seed entities from P and A respec-
tively to form a query. For instance (shown in Fig-
ure 2), using Company as the base coarse-grained
semantic class, we can generate a negative-aware
sample describing Not Closed Chinese Company
with Vs = (<Country> = “China”) and Vyeq =
(<Closed> = Yes).

A large number of samples can be automatically
generated by changing the attributes or the val-
ues of attributes. We can also produce samples
of different granularities by changing the size of
Apos and A,,.4. Note to mention that A,,.4 can be
empty to represent the case in which no “dislike” re-

Dataset #Classes  #Samples
APR (Shen et al., 2017a). 3 15
Wiki (Ling and Weld, 2012) 8 40
SE2 (Zhang et al., 2020b) 60 1,200
NED-wiki 1,473 34,721
NED-hp 35 890

Table 1: Number of semantic classes and samples in
NED and other ESE datasets

quirement is needed. By changing the seed entities
picked from P and \V, we can also generate mul-
tiple queries describing the same negative-aware
semantic class, which consequently forms multiple
samples describing the same semantic class.

3.2 Dataset Analysis

We analyze some properties of the NED dataset
from the following aspects.

Dataset Scale. NED-wiki corpus provides 149 mil-
lion sentences and 1.57 million candidate entities.
NED-hp provides 66,518 sentences and 1,967 can-
didate entities. We annotate 3,628 entities with
12,894 attribute values for 18 coarse-grained se-
mantic classes in NED-wiki and 122 entities with
488 attribute values for the coarse-grained semantic
class in NED-hp.

Number of Samples and Semantic Classes. For
NED-wiki, we generated 34,721 negative-aware
samples describing 1,473 distinct semantic classes.
These semantic classes consist on average 76 enti-



ties in P and 41 entities in \/. For NED-hp, we gen-
erated 890 negative-aware samples describing 35
distinct semantic classes, which consist on average
55 entities in P and 28.6 entities in N'. We com-
pare the number of samples and semantic classes
of NED and existing ESE datasets in Table 1. For
NED-wiki, we split 34,429, 128, 164 samples into
the train, val and test split respectively (represent-
ing 1,294, 101, 78 distinct semantic classes without
overlap). For NED-hp, we split 726, 80, 84 sam-
ples into the train, val and test split respectively
(representing 20, 5, 10 distinct semantic classes
without overlap).

Semantic Class Granularity. By changing the
size of Ajcq and A5, we can get samples of differ-
ent granularities. The detail distribution of numbers
of distinct semantic classes in different granularity
is shown in Figure 5 and Figure 6 in appendix.

4 NegESE

In this section, we introduce the proposed
NegESE framework in detail. First, we present the
entity encoding module in Section 4.1. Then, we
discuss our entity set comprehension module and
entity retrieval module in Section 4.2 and Section
4.3 respectively. Finally, we introduce the training
and inference process in Section 4.4.

4.1 Entity Encoding Module

We apply a BERT model (Devlin et al., 2019) with
the pre-trained weight in (Wolf et al., 2020) to ex-
tract entity features from the corpus. Specifically,
for each entity e;, we first sample at most ks sen-
tences containing e; from the corpus as its context
features. For each sentence s, j € [1, k], we pass
the text into the BERT model to get one feature
vector v; using the outputs of ;. We then take the
normalized average of all vectors of e; as the fea-
ture x; € R%, where d is the output size of BERT.

4.2 Entity Set Comprehension Module

The seed comprehension module inputs a small
collection of positive (negative) seed entities Spos
(Sneg) and output the vector representation for the
positive (negative) seed set.

We first define a basic encoding operation f as:

fo(v) = MLPy(v) + v (1)

where MLPy is a two layer perception with dropout
and non-linear activation. For seed set .S, we gen-
erate its set representation using a Deep Set model
(Zaheer et al., 2018):

S = fe( Y fae(Wixi+b1)) (2

e; €S

where W; € R*d ig 3 learnable matrix, b; € R
is a bias vector, H is the hidden size. f,.+ and
fele are two different trainable module using the
structure defined in Equation (1). We then further
normalize S,,s and S,,c4 using a layer normaliza-
tion module (Ba et al., 2016) to help the model
coverage faster.

As mentioned before, the input positive and neg-
ative seed entities describe a negative-aware seman-
tic class. Next, we explore the semantic meaning of
this class. We first concatenate the positive set rep-
resentation S, and the negative set representation
Syeq» and then embed the result into q € R use a
simple two-layer MLP introduced in Equation (1):

q= MLP([Spos; Sneg]) 3)
4.3 Entity Retrieval

For each entity e; in the candidate entity set £, we
encode it using the module defined in Equation(1):

€ = fcandidate (Xj) (4)

With e; and query representation q, we can cal-

culate score for each entity e; using the cosine
similarity between e; and q:

s; =<4q,e; > 5)

4.4 Training and Inference

In general, the performance of a model will benefit
from enough negative entities during the training
stage. Therefore, besides the negative candidate
entities in A/, we also further sample k. entities
from the candidate set for each sample to provide
additional supervision. We use A/ to represent the
union of sampled entities and entities in V. Given
the positive entity set P, the negative entity set N’
and score for each entity in these sets, we adopt a
binary cross-entropy loss to formulate our training
objective L as:

L=-> logs;— Y log(1—s;) (6)

e;€P EjEN’

During the inference stage, we compute s; for
all entities in the candidate entity set £, and sort
them in descending manner to get the ranked list
L, of all candidate entities.



NED-wiki MAP @kt

NED-hp MAP@k?

Method
k=10 k20 k=50 k=100 k=10 k20 k=50 k=100
SetExpan (Shen et al., 2017b) 1253 10.04 5.93 4.19 1997 1134  7.04 6.97
CaSE (Yu et al., 2019b) 2629 1845 1230 830 2671 1826 13.02 9.84
CGExpan (Zhang et al., 2020b)  37.58 31.68 23.14 - 1531 14.61 13.15 12.84
NegESE 40.67 38.54 33.79 2641 67.88 68.60 7035 67.85
Table 2: Overall performance comparison with state-of-the-arts on NED
Method NED-wiki NED-hp
MeanNeg@100] MeanNeg@200, MeanNeg@20], MeanNeg@50]
SetExpan (Shen et al., 2017b) 24.53 3491 42.50 57.50
CaSE (Yu et al., 2019b) 22.43 25.23 32.50 67.50
CGExpan (Zhang et al., 2020b) 42.05* - 27.50 100.0
NegESE 8.33 11.11 20.00 40.00

Table 3: Negative candidate entity intrusion result comparison with state-of-the-arts on NED. Since CGExpan only
expand 50 entities in our experiments, we use the MeanNeg @50 score which is strictly smaller than or equals to

the expected MeanNeg @ 100 score in this table.

5 Experiments

In this section, we first compare the performance
of NegESE with existing state-of-the-art models on
NED. We then analyze the effectiveness of negative
seed entities, expansion performance on different-
grained semantic classes, and the efficiency of
NegESE. Finally, we present a real case produced
by NegESE on NED-wiki. All results shown in
this section is conducted on NED-wiki test split
and NED-hp test split.

5.1 Compared Methods

We compare NegESE with the following methods:
(1) SetExpan (Shen et al., 2017b) is a bootstrap-

based method that utilize a rank ensemble mecha-

nism to select entities in each bootstrap iteration.

(2) CaSE (Yu et al., 2019b) is an efficient one-
time ranking method based on SetExpan utilizing
lexical features as well as pretrained distributed
representations of entities.

(3) CGExpan (Zhang et al., 2020b) is one of the
state-of-the-art models for ESE. It queries BERT
(Devlin et al., 2019) to generate the name of the
target semantic class and iteratively extends the set
of entities employing class names. Note to mention
that CGExpan is too slow and costs tremendous
running memory, so we only expand 50 and 100
entities for samples in NED-wiki and NED-hp re-
spectively to make the running time affordable. We
also reduce the size of candidate entity set £ to

be one-third for NED-wiki to save running mem-
ory and make it runnable on a machine with 256G
RAM. When reducing the candidate entity set &,
we keep all entities in any P, and consequently
only make the expansion easier for CGExpan.

5.2 Evaluation Metrics

Following previous work, we use MAP@k (Mean
Average Precision) to measure the performance of
the retrieved top-k entities:

MAP@k = 100 X — > APy (Lg,P) (1)

1
Al =
where () stands for the set of all queries. For each
query ¢, we use APy, (Lg, P) to denote the tradi-
tional average precision at position k£ given the
ranked list of candidate entities and a ground-truth
set of target semantic class P. Methods that recall
candidate entities in P more accurately will get
higher MAP@k scores.

In addition, to measure the intrusion of nega-
tive candidate entities in A/ which are obviously
disliked by the user, we design the MeanNeg@k
metric based on the implementation of Top-k met-
ric in (Karpukhin et al., 2020):

MeanNeg@k = 100 x ﬁ Z Negi(Lqg,N)  (8)
q€Q



NED-wiki MAP@kt

NED-hp MAP@kt

Method

k=10 k20 k=50 k=100 k=10 k20 k=50 k=100
NegESE(w.o. neg) 33.28 29.02 2526 20.16 65.14 67.05 6750 6547
NegESE 40.67 38.54 33.79 2641 67.88 68.60 7035 67.85

Table 4: Comparing entity set expansion performance of NegESE(w.o. neg) and NegESE on NED

Method NED-wiki NED-hp
k=100 k=200 k=20 k=50

NegESE(w.o. neg) 13.89 1852 25.00 50.00

NegESE 8.33 11.11  20.00 40.00

Table 5: Comparing negative candidate entity intrusion
result of NegESE(w.o. neg) and NegESE on NED. The
metric used in this table is MeanNeg @k.

where Negy returns 1 if top-k entities in L, con-
tains at least one entity in A/, otherwise 0. Higher
NegMean@k scores mean the method tends to re-
call “disliked” entities for more queries (samples).

5.3 Implementation Details

To ensure fairness of comparison, we report exper-
iment results of £ = 10, 20, 50, 100 for MAP@k
as previous works and use k£ = 20, 50, 100, 200 for
NegMean@k. More details are shown in Table 10.

5.4 Main Results

We evaluate our proposed NegESE framework and
existing state-of-the-art methods on NED and the
overall results are recorded in Table 2.

Overall Analysis: Surprisingly, we observe that
on both datasets, NegESE outperforms the state-of-
the-art ESE method with a large margin across all
metrics. We attribute this improvement to the uti-
lization of negative seeds and the learnable frame-
work of NegESE since it performs much better than
another BERT-based method CGExpan.

Domain Adaptability: When coming to the
domain-specific scenario (i.e. on NED-hp), the ad-
vantages of the learnable framework become more
prominent. Since the pre-trained BERT contains
less knowledge about the Harry Potter series, the
performance of CGExpan drops significantly from
NED-wiki to NED-hp, and even worse than CaSE.
On the contrary, NegESE performs very well in
this domain-specific scenario, demonstrating that a
learnable framework is more preferable when ESE
needs to be applied to a specific domain.

Negative Entity Intrusion: We also investigate
the intrusion of negative entities, which is the main
problem in this paper. The results are recorded
in Table 3, higher NegMean@k scores means the
method tends to recall disliked entities described
the negative seed entities for more samples. We
find that NegESE gives the lowest scores com-
pared to other ESE methods on both datasets. We
attribute this to the utilization of negative seed
entities, as existing methods lack the capability
to utilize the negative seed entities conveying
the “dislike” requirement and consequently give
higher NegMean@k scores. For example, though
achieves decent MAP@k performance, CGExpan
gets poor MeanNeg@k scores, because it ignores
the negative seed entities.

5.5 Further Analysis

Effectiveness of Negative Seed Entities. We de-
velop a baseline model NegESE(w.o. neg) to
find out the importance of negative seeds in ex-
pansion, which has the same architecture with
NegESE while do not use the negative seed en-
tities during expansion. To be specific, we replace
the negative set vector in Figure 3 with a zero-filled
vector. The detailed experiment results are shown
in Table 4 and Table 5. We find that removing neg-
ative seeds from inputs leads to performance drops
in all metrics, showing the necessity of negative
seeds, and NegESE has the capability to utilize the
“dislike” requirement conveyed by negative seeds
to improve the expansion quality and mitigate neg-
ative entity intrusion problem.

Expansion Performance on Different-grained
Semantic Classes. We further analyze the perfor-
mance of our method on samples of different gran-
ularities, the full results are recorded in Table 7.
For samples with certain size of A,,.4, we can get
finer-grained samples by adding more attributes to
the A,,s, which consequently reduce the size of
P in Figure 2. For samples with certain size of
Apos, we can also get samples of different granu-
larities by changing the size of A,,.4, which conse-
quently changes the size of N. Note to mention, if



Seed Entity Set Semantic Class CGExpan NegESE
Positive: { “Enron” 1 IBM 1 “Halliburton Energy Services”
g » ’ 2 | “BAE Systems” | 2 “Texas Instruments”
Motown”,
“ Fr ance Telecom " , 18 “Microsoft” 18 “McDonald’s”
British Aerospace”, Companies T = s
“Northrop Grumman” } Not In Japan 19 Philips 19 Northrop Grumman Corporatoin
P P 20 “Sony” 20 “American Express”
e ’ 21 “Compaq” 21 “Freescale”
fﬁiggﬁ,’ ‘{‘I\;[T;)Zggg }’ 22 “SAP” 22 “General Dynamics Corp”
’ 23 “Fujitsu” 23 “Hasbro Inc.”

Table 6: Expanded entity set of a sample from NED , entities in the negative candidate set A/ are colored in red.

[pos] [ Ancgl MAP@K

k=10 k=20 k=50 k=100
0 0 59.24 59.40 55.11 4432
1 0 28.63 25.55 2420 19.67
2 0 16.83 11.95 12.79 17.03
0 1 38.17 40.38 29.68 21.84
0 2 49.32 47.06 40.38 29.68
0 +o0 59.24 59.40 55.11 4432

Table 7: Expansion performance of NegESEon sam-
ples of different granularities in NED-wiki

| Aneg| = 0, the samples express that no entities are
disliked, this can also be written as | Ajycq| = +00
which means the disliked entities satisfy infinite
requirements.

We conduct experiments on samples of different
granularities (i.e. different (| Apos], [ Aneg|)) from
NED-wiki. We spot that: (1) Given |Ayeq| = 0
(The first 3 rows in Table 7), the performance drops
consistently when adding more attributes to A,;.
This is reasonable since the size of P shrinks if we
select more positive attributes, which makes the
entities we like hard to be find from the candidate
entity set. (2) Given |A,os| = 0 (The last 3 rows
in Table 7), the performance improves when we
use more negative attributes, since more negative
attributes make N to be smaller. As a result, the
corresponding P becomes larger and makes the
expansion process to be easier.

Efficiency Analysis. We analyze the time and
space efficiency of our NegESE framework and
other ESE methods on NED-wiki test split, the re-
sult is shown in Figure 4. We can observe that
CGExpan costs much more time and running mem-
ory to achieve a MAP@10 of 37.58% which is still
lower than NegESE. NegESE take the shortest time
and not much running memory to get better expan-
sion performance compared to existing methods.
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Figure 4: Time the memory efficiency of NegESE and
state-of-the-art methods

5.6 Case Study

We show a real expansion result generated by
NegESE on NED-wiki in Table 6. Entities marked
in red color are entities in the negative candidate en-
tity set \V, other entities are correctly recalled and
belong to the P of the corresponding sample. This
result demonstrates that our method can effectively
prevent the disliked entities to be recalled.

6 Conclusion

To solve the entity set expansion involving both
“like” and “dislike” requirements, we propose to
express the target negative-aware semantic class
with both positive and negative seed entities and
design a learnable negative-aware entity set expan-
sion framework, NegESE to solve this problem.
Since existing ESE datasets only contain positive
seed entities, we also construct the NED dataset
to facilitate the study of the negative-aware entity
set expansion task. Experiments demonstrate that
the proposed method have the ability to utilize the
negative seed entities to improve the set expansion
performance and mitigate the negative candidate
entity intrusion problem.
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Semantic Class Size

Animal 155
Books 204
Buildings 217
Chemical Elements 118
Cities 379
Companies 341
Consumer Electronics 56

Countries and Dependencies 234
Diseases 111
Institutions 258
Locations 264
Language 190
Person 203
Provinces and States 179
Sports Leagues 141
TV Channels 144
Video Games 234
Universities 200
Harry Potter Characters 111

Table 8: Number of entities in each coarse-grained se-
mantic class

A Example Appendix
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Figure 5: Number of semantic classes in different gran-
ularities in NED-wiki. 7,5 and n,., represents the
number of positive attributes and negative attributes re-
spectively.
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Figure 6: Number of semantic classes in different gran-
ularities in NED-hp. np,s and n,.4 represents the num-
ber of positive attributes and negative attributes respec-
tively.



Semantic Class

Attributes

Animals

Books

Buildings

Chemical Elements
Cities

Companies

Consumer Electronics
Countries and Dependencies
Diseases

Institutions

Locations

Languages

Person

Provinces and States
Sports Leagues

TV Channels

Video Games
Universities

Harry Potter Characters

<Is_Vertebrate>, <Living_Environment>, <Diet>
<Time_Published>, <Language>, <Genre>
<Country>, <Function>, <Time_Built>, <In_Use>

<Element Group>, <Discovery_Country>, <Is_Radioactive>, <Symbol_Origin>

<Country>, <Is_Capital>, <Location>

<Business_Type>, <Country>, <Closed>, <(Once)_Listed>
<Company>, <Type>, <Release_Time>

<Region>, <Is_UN_Member>, <Economic_Outlook>

<Surgical>, <Chronic>, <Curable>, <Infectious>, <Part>

<Type>, <Religion>, <Level>

<Region>, <Type>, <Climate>

<Language_Family>, <Is_Official_Language>, <In_Use>, <Origin>
<Occupation>, <Born_Place>, <Gender>, <Birth_Time>
<Country>, <Location>, <Economic_Outlook>

<Country>, <Sport>, <Closed>, <Time_Found>

<Type>, <Country>, <Closed>, <Language>

<Publisher>, <Platforms>, <Time>, <Genre>

<Region>, <Public/Private>, <Comprehensive/Specialist>, <Time_Found>
<Gender>, <House>, <Occupation>, <Species>

Table 9: All coarse-grained semantic classes and corresponding attributes of each class in NED .

Parameter Value
BERT bert-base-cased
ks 50
ke 4000
non-linear activation ReLU
dropout 0.2
H 768

Table 10: Parameters setting
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