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Abstract
Entity Set Expansion (ESE) aims to find all001
entities of one target semantic class with a002
few seed entities describing it. However, ex-003
isting ESE methods cannot express what en-004
tities we explicitly dislike, and thus hinder005
its application in real-world scenarios. In006
this paper, to endow models with the capabil-007
ity of understanding the “dislike” relationship008
among seed entities, we express the target se-009
mantic class with both positive and negative010
seed entities. To this end, we propose an ef-011
ficient and learnable negative-aware entity set012
expansion framework, which is essentially a013
retrieval model. To facilitate this study, a large-014
scale Negative-aware ESE Dataset (NED) with015
more than 1M entities is further collected and016
annotated. Extensive experiments1 on NED017
show that the proposed framework can ef-018
fectively understand the dislike relations ex-019
pressed by the negative seeds and expand020
fewer dislike entities than baseline methods.021

1 Introduction022

The Entity Set Expansion (ESE) task aims to find023

all entities of one semantic class with a few seed024

entities describing it. For example, given {“apple”,025

“banana”, “pear”}, ESE tries to find other entities026

in the target semantic class Fruit, such as “orange”027

and “grape”. ESE benefits a variety of downstream028

NLP and IR applications, such as web search(Chen029

et al., 2016), question answering (Wang et al.,030

2008), taxonomy construction(Velardi et al., 2013),031

and semantic search(Xiong et al., 2017).032

Though achieving reasonably good results on ex-033

isting ESE datasets, current ESE methods can only034

describe what entities we want, while failing to035

express what we explicitly don’t want, which hin-036

ders the application of ESE. For instance, when the037

user wishes to expand Snacks without Peanuts (to038

prevent food allergy), existing ESE methods can-039

not express it and tend to return all snack entities040

1Code and dataset will be available for reproducibility.

Figure 1: Negative-aware entity set expansion.

from the candidate entity set without filtering those 041

containing peanuts. Obviously, it is natural and 042

necessary to endow ESE models with the capabil- 043

ity to understand the “dislike” relationship among 044

seed entities. To achieve this, we express the target 045

semantic class with both positive seeds and nega- 046

tive seeds as shown in Figure 1. Specifically, for 047

semantic class Snacks without Peanuts, we may use 048

{“yogurt”, “popcorn”} as positive seeds to describe 049

what we want; and use {“chocolate”, “Szechuan 050

sauce”} as negative seeds to express what we dis- 051

like (foods containing peanuts). 052

Compared with ESE, negative-aware entity set 053

expansion can better benefit some downstream 054

tasks. For example, in personalized recommen- 055

dation systems, a user can mark the recommen- 056

dation results as liked (positive seed entities) or 057

disliked (negative seed entities). Utilizing these 058

liked and disliked results, the system will be able 059

to understand the preference (target negative-aware 060

semantic class) of the user more accurately and 061

consequently give better results. 062

In this paper, we propose the NegESE, a learn- 063

able Negative-aware Entity Set Expansion frame- 064
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work. Given the input of a few positive and nega-065

tive seeds, NegESE learns to understand the target066

negative-aware semantic class and find all entities067

in this semantic class from the candidate entity068

set. NegESE consists of three modules: (1) The069

first, entity encoding module, maps each entity into070

its dense representation using BERT(Devlin et al.,071

2019) and the corpus. (2) The second, entity set072

comprehension module, learns what kind of entities073

are liked and disliked given positive and negative074

seeds respectively, and combines these two require-075

ments to model the target semantic class. (3) The076

third, entity retrieval module, retrieves entities from077

the candidate entity set with the semantic meaning078

learned by the previous module.079

To facilitate the study of negative-aware en-080

tity set expansion, we construct the Negative-081

aware ESE Dataset (NED) based on the En-082

glish Wikipedia dump2 and Harry Potter series.083

Specifically, we first extract the candidate entity084

set from the corpus and identify several coarse-085

grained semantic classes like Chemical Elements,086

Sport Leagues in it. We then annotate several087

attributes (e.g., <is_radioactive>) for each en-088

tity in these classes. Finally, we use these at-089

tributes to automatically generate negative-aware090

samples of different granularities such as Radioac-091

tive Chemical Elements with attribute value set {092

<is_radioactive>=True }. The full process is shown093

in Figure 2 and will be introduced in Section 3.094

In summary, our contributions are in three folds:095

1. We propose NegESE, a simple and effective096

learnable framework, to solve the negative-aware097

entity set expansion task efficiently.098

2. We construct NED, a large-scale negative099

entity set expansion dataset with a great amount100

of negative-aware semantic samples in different101

granularities, based on general domain corpus and102

domain-specific corpus.103

3. We conduct comprehensive experiments on104

NED, which demonstrate the effectiveness and effi-105

ciency of NegESE in solving negative-aware entity106

set expansion task.107

2 Related Work108

2.1 Methods of ESE109

ESE is a weakly supervised task, which is typi-110

cally given seed entities as supervised signals and111

2https://meta.wikimedia.org/wiki/Data_dump_torrents#English
_Wikipedia

expands with new entities from the candidate en- 112

tity set. Research of ESE in the last decade can 113

be divided into two main categories: (1) One-time 114

ranking methods (Yu et al., 2019a) compute simi- 115

larity on the basis of semantic features of the seed 116

entities and expand a ranked list of new entities that 117

belong to the same semantic class. (2) Bootstrap- 118

based methods (Huang et al., 2020; Zhang et al., 119

2020a; Shen et al., 2017a; Shi et al., 2014; He and 120

Xin, 2011; Mamou et al., 2018) iteratively select 121

context patterns around entities, and use extracted 122

patterns to find new entities. 123

It is worth mentioning that there has been some 124

work to incorporate negative entities (Jindal and 125

Roth, 2011; Gupta and Manning, 2014; Shi et al., 126

2014; Curran et al., 2007), though the usage of neg- 127

ative entities in these methods is relatively naive. 128

Taking (Shi et al., 2014) as an example, they ex- 129

pand negative entities along with positive entities 130

in a symmetrical manner to improve the expansion 131

performance of positive entities. 132

We point out that the role of the negative entities 133

used in previous work is fundamentally different 134

from ours. Negative entities in previous work are 135

purely used to help determine the boundary of the 136

target set described by positive seeds. In contrast, 137

negative entities in our model are used to describe 138

the target negative-aware semantic classes that can- 139

not be characterized by positive seeds alone. 140

2.2 Data Resources of ESE 141

Common datasets used in ESE including CoNLL 142

(Zupon et al., 2019), OntoNotes(Zupon et al., 143

2019), Wiki(Ling and Weld, 2012) and APR (Shen 144

et al., 2017a). There are three main limits with 145

these datasets: (1) Existing datasets use solely pos- 146

itive seed entities to describe the target semantic 147

class which is not sufficient if the user explicitly dis- 148

likes some entities (e.g. Snacks Without Peanuts). 149

(2) The semantic class granularity is coarse. Exist- 150

ing ESE datasets lack fine-grained semantic classes 151

like USA Software Companies while only contain- 152

ing coarse-grained semantic classes like Compa- 153

nies. (3) Few semantic classes. The most used two 154

datasets Wiki and APR contain only 3 and 8 classes 155

respectively, which is too small to be representative 156

for real scenarios. 157

3 NED Dataset 158

To facilitate the study of negative-aware entity set 159

expansion, we need a dataset that contains both 160
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Figure 2: Illustration of the NED dataset construction process. The whole process composes the Data Collection
and Annotation stage and the Negative-aware Samples Generation stage, and can be further divided into four steps.

positive and negative seed entities. However, to161

the best of our knowledge, there is no such pub-162

lic benchmark dataset. Therefore, we build the163

NED, a large ESE dataset containing both positive164

and negative seed entities involving negative-aware165

semantic classes of different granularities.166

To examine the universality of NegESE in differ-167

ent scenarios, NED contains two sub-datasets with168

entities from two different sources: Wikipedia and169

Harry Potter series. We name the former one as170

NED-wiki, and the latter one as NED-hp.171

3.1 Dataset Construction172

We first select corpora of NED and extract the can-173

didate entities. Then we identify several coarse-174

grained semantic classes based on existing ESE175

datasets and Wikipedia Lists3. Finally, we anno-176

tate a few attributes for each entity in these classes177

and use the attribute values to generate fine-grained178

negative-aware samples. We will introduce the de-179

tail of the construction process in this section, and180

Figure 2 is an illustration of it.181

Step 1. Corpora Selection and Entity Set Ex-182

traction. For NED-wiki, we use the corpus of SE2183

(Shen et al., 2020) which is an English Wikipedia184

dump as it provides enough general domain context185

information for algorithms to explore. For NED-hp,186

we use the popular Harry Potter series text as our187

raw corpus, which further improves the domain di-188

versity of our dataset. We extract all noun phrases189

with frequency above 10 as the candidate entity set190

3https://en.wikipedia.org/wiki/List_of_lists_of_lists

for both NED-wiki and NED-hp. 191

Step 2. Coarse-grained Semantic Class Selec- 192

tion. For NED-wiki, we identify 18 coarse-grained 193

semantic classes based on the APR (Shen et al., 194

2017a) dataset, Wiki (Ling and Weld, 2012) dataset, 195

and Wikipedia Lists. For classes in existing 196

datasets, we just adopt the origin entity list. For 197

classes we newly introduced, such as Chemical El- 198

ements, we adopt the corresponding Wikipedia List 199

as its entity list. We filtered entities that cannot 200

be found in the candidate entity set (extracted in 201

Step 1) from these lists. For NED-hp, we select 202

Characters as the coarse-grained semantic class 203

and collected character names in the candidate en- 204

tity set as the entity list. These semantic classes on 205

average contains 198 entities, and the full list of 206

class sizes can be found in Table 8 in appendix. 207

Step 3. Entity Attribute Annotation. For 208

each coarse-grained semantic class C, we man- 209

ually select k independent attributes A = 210

{a1, a2, · · · , ak} , which will be used to generate 211

negative-aware samples (introduced in next step). 212

Attributes of each coarse-grained class are shown 213

in Table 9 in appendix. To annotate the attributes 214

for each entity in C, we visit the corresponding 215

Wikipedia page4 and manually extract the attribute 216

values from the page. Example of entity and at- 217

tribute values in class Company are shown in the 218

top-right of Figure 2. 219

Step 4. Generation of Negative-aware Samples. 220

4For the harry potter sub-dataset, we use http://magical-
menagerie.com/ as data source.
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Figure 3: The architecture of the processed NegESE framework, which consists an Entity Encoding Module (EEM),
an Entity Set Comprehension Module (ESCM) and an Entity Retrieval Module (ERM). EEM takes the context
sentences of candidate entities and seed entities to generate features for them separately. ESCM takes the seed
features generated by EEM to learn a query vector representing the semantic meaning of input seed entities (i.e.
the query). ERM computes a score for each candidate entity given the candidate features and query vector to
generate a ranked list of candidate entities.

We designed an algorithm to automatically gener-221

ate negative-aware samples of different granulari-222

ties based on the selected coarse-grained semantic223

classes,where each sample describes a certain se-224

mantic class. The overview of this algorithm is225

shown in Figure 2.226

For each coarse-grained semantic class C and its227

attributes A, we sample npos attributes as positive228

(denoted as Apos) and nneg attributes as negative229

(denoted as Aneg). We then select one value for230

each attribute from the attribute annotations of en-231

tities in C. In this way, we can get a list of posi-232

tive values Vpos and a list of negative values Vneg233

describing the “like” and “dislike” requirement re-234

spectively. We use P to represent the entities in235

the candidate set that satisfy both the “like” and236

“dislike” requirements, and use N to represent the237

explicitly disliked (negative) entities in the set. We238

then randomly pick five positive seed entities and239

three negative seed entities from P and N respec-240

tively to form a query. For instance (shown in Fig-241

ure 2), using Company as the base coarse-grained242

semantic class, we can generate a negative-aware243

sample describing Not Closed Chinese Company244

with Vpos = (<Country> = “China”) and Vneg =245

(<Closed> = Yes).246

A large number of samples can be automatically247

generated by changing the attributes or the val-248

ues of attributes. We can also produce samples249

of different granularities by changing the size of250

Apos and Aneg. Note to mention that Aneg can be251

empty to represent the case in which no “dislike” re-252

Dataset #Classes #Samples

APR (Shen et al., 2017a). 3 15

Wiki (Ling and Weld, 2012) 8 40

SE2 (Zhang et al., 2020b) 60 1,200

NED-wiki 1,473 34,721

NED-hp 35 890

Table 1: Number of semantic classes and samples in
NED and other ESE datasets

quirement is needed. By changing the seed entities 253

picked from P and N , we can also generate mul- 254

tiple queries describing the same negative-aware 255

semantic class, which consequently forms multiple 256

samples describing the same semantic class. 257

3.2 Dataset Analysis 258

We analyze some properties of the NED dataset 259

from the following aspects. 260

Dataset Scale. NED-wiki corpus provides 149 mil- 261

lion sentences and 1.57 million candidate entities. 262

NED-hp provides 66,518 sentences and 1,967 can- 263

didate entities. We annotate 3,628 entities with 264

12,894 attribute values for 18 coarse-grained se- 265

mantic classes in NED-wiki and 122 entities with 266

488 attribute values for the coarse-grained semantic 267

class in NED-hp. 268

Number of Samples and Semantic Classes. For 269

NED-wiki, we generated 34,721 negative-aware 270

samples describing 1,473 distinct semantic classes. 271

These semantic classes consist on average 76 enti- 272
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ties inP and 41 entities inN . For NED-hp, we gen-273

erated 890 negative-aware samples describing 35274

distinct semantic classes, which consist on average275

55 entities in P and 28.6 entities in N . We com-276

pare the number of samples and semantic classes277

of NED and existing ESE datasets in Table 1. For278

NED-wiki, we split 34,429, 128, 164 samples into279

the train, val and test split respectively (represent-280

ing 1,294, 101, 78 distinct semantic classes without281

overlap). For NED-hp, we split 726, 80, 84 sam-282

ples into the train, val and test split respectively283

(representing 20, 5, 10 distinct semantic classes284

without overlap).285

Semantic Class Granularity. By changing the286

size of Aneg and Apos, we can get samples of differ-287

ent granularities. The detail distribution of numbers288

of distinct semantic classes in different granularity289

is shown in Figure 5 and Figure 6 in appendix.290

4 NegESE291

In this section, we introduce the proposed292

NegESE framework in detail. First, we present the293

entity encoding module in Section 4.1. Then, we294

discuss our entity set comprehension module and295

entity retrieval module in Section 4.2 and Section296

4.3 respectively. Finally, we introduce the training297

and inference process in Section 4.4.298

4.1 Entity Encoding Module299

We apply a BERT model (Devlin et al., 2019) with300

the pre-trained weight in (Wolf et al., 2020) to ex-301

tract entity features from the corpus. Specifically,302

for each entity ei, we first sample at most ks sen-303

tences containing ei from the corpus as its context304

features. For each sentence sj , j ∈ [1, ks], we pass305

the text into the BERT model to get one feature306

vector vj using the outputs of ei. We then take the307

normalized average of all vectors of ei as the fea-308

ture xi ∈ Rd, where d is the output size of BERT.309

4.2 Entity Set Comprehension Module310

The seed comprehension module inputs a small311

collection of positive (negative) seed entities Spos312

(Sneg) and output the vector representation for the313

positive (negative) seed set.314

We first define a basic encoding operation f as:315

fθ(v) = MLPθ(v) + v (1)316

where MLPθ is a two layer perception with dropout317

and non-linear activation. For seed set S, we gen-318

erate its set representation using a Deep Set model319

(Zaheer et al., 2018):320

S = fset(
∑
ei∈S

fele(W1xi + b1)) (2) 321

where W1 ∈ RH×d is a learnable matrix, b1 ∈ RH 322

is a bias vector, H is the hidden size. fset and 323

fele are two different trainable module using the 324

structure defined in Equation (1). We then further 325

normalize Spos and Sneg using a layer normaliza- 326

tion module (Ba et al., 2016) to help the model 327

coverage faster. 328

As mentioned before, the input positive and neg- 329

ative seed entities describe a negative-aware seman- 330

tic class. Next, we explore the semantic meaning of 331

this class. We first concatenate the positive set rep- 332

resentation Spos and the negative set representation 333

Sneg, and then embed the result into q ∈ RH use a 334

simple two-layer MLP introduced in Equation (1): 335

q = MLP([Spos;Sneg]) (3) 336

4.3 Entity Retrieval 337

For each entity ej in the candidate entity set E , we 338

encode it using the module defined in Equation(1): 339

ej = fcandidate(xj) (4) 340

With ej and query representation q, we can cal- 341

culate score for each entity ej using the cosine 342

similarity between ej and q: 343

sj =< q, ej > (5) 344

4.4 Training and Inference 345

In general, the performance of a model will benefit 346

from enough negative entities during the training 347

stage. Therefore, besides the negative candidate 348

entities in N , we also further sample ke entities 349

from the candidate set for each sample to provide 350

additional supervision. We use N ′ to represent the 351

union of sampled entities and entities in N . Given 352

the positive entity set P , the negative entity set N ′ 353

and score for each entity in these sets, we adopt a 354

binary cross-entropy loss to formulate our training 355

objective L as: 356

L = −
∑
ej∈P

log sj −
∑
ej∈N ′

log (1− sj) (6) 357

During the inference stage, we compute sj for 358

all entities in the candidate entity set E , and sort 359

them in descending manner to get the ranked list 360

Lq of all candidate entities. 361
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Method NED-wiki MAP@k↑ NED-hp MAP@k↑
k=10 k20 k=50 k=100 k=10 k20 k=50 k=100

SetExpan (Shen et al., 2017b) 12.53 10.04 5.93 4.19 19.97 11.34 7.04 6.97

CaSE (Yu et al., 2019b) 26.29 18.45 12.30 8.30 26.71 18.26 13.02 9.84

CGExpan (Zhang et al., 2020b) 37.58 31.68 23.14 - 15.31 14.61 13.15 12.84

NegESE 40.67 38.54 33.79 26.41 67.88 68.60 70.35 67.85

Table 2: Overall performance comparison with state-of-the-arts on NED

Method NED-wiki NED-hp

MeanNeg@100↓ MeanNeg@200↓ MeanNeg@20↓ MeanNeg@50↓

SetExpan (Shen et al., 2017b) 24.53 34.91 42.50 57.50

CaSE (Yu et al., 2019b) 22.43 25.23 32.50 67.50

CGExpan (Zhang et al., 2020b) 42.05* - 27.50 100.0

NegESE 8.33 11.11 20.00 40.00

Table 3: Negative candidate entity intrusion result comparison with state-of-the-arts on NED. Since CGExpan only
expand 50 entities in our experiments, we use the MeanNeg@50 score which is strictly smaller than or equals to
the expected MeanNeg@100 score in this table.

5 Experiments362

In this section, we first compare the performance363

of NegESE with existing state-of-the-art models on364

NED. We then analyze the effectiveness of negative365

seed entities, expansion performance on different-366

grained semantic classes, and the efficiency of367

NegESE. Finally, we present a real case produced368

by NegESE on NED-wiki. All results shown in369

this section is conducted on NED-wiki test split370

and NED-hp test split.371

5.1 Compared Methods372

We compare NegESE with the following methods:373

(1) SetExpan (Shen et al., 2017b) is a bootstrap-374

based method that utilize a rank ensemble mecha-375

nism to select entities in each bootstrap iteration.376

(2) CaSE (Yu et al., 2019b) is an efficient one-377

time ranking method based on SetExpan utilizing378

lexical features as well as pretrained distributed379

representations of entities.380

(3) CGExpan (Zhang et al., 2020b) is one of the381

state-of-the-art models for ESE. It queries BERT382

(Devlin et al., 2019) to generate the name of the383

target semantic class and iteratively extends the set384

of entities employing class names. Note to mention385

that CGExpan is too slow and costs tremendous386

running memory, so we only expand 50 and 100387

entities for samples in NED-wiki and NED-hp re-388

spectively to make the running time affordable. We389

also reduce the size of candidate entity set E to390

be one-third for NED-wiki to save running mem- 391

ory and make it runnable on a machine with 256G 392

RAM. When reducing the candidate entity set E , 393

we keep all entities in any P , and consequently 394

only make the expansion easier for CGExpan. 395

5.2 Evaluation Metrics 396

Following previous work, we use MAP@k (Mean 397

Average Precision) to measure the performance of 398

the retrieved top-k entities: 399

MAP@k = 100× 1

|Q|
∑
q∈Q

APk (Lq,P) (7) 400

where Q stands for the set of all queries. For each 401

query q, we use APk (Lq,P) to denote the tradi- 402

tional average precision at position k given the 403

ranked list of candidate entities and a ground-truth 404

set of target semantic class P . Methods that recall 405

candidate entities in P more accurately will get 406

higher MAP@k scores. 407

In addition, to measure the intrusion of nega- 408

tive candidate entities in N which are obviously 409

disliked by the user, we design the MeanNeg@k 410

metric based on the implementation of Top-k met- 411

ric in (Karpukhin et al., 2020): 412

MeanNeg@k = 100× 1

|Q|
∑
q∈Q

Negk(Lq,N ) (8) 413
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Method NED-wiki MAP@k↑ NED-hp MAP@k↑
k=10 k20 k=50 k=100 k=10 k20 k=50 k=100

NegESE(w.o. neg) 33.28 29.02 25.26 20.16 65.14 67.05 67.50 65.47

NegESE 40.67 38.54 33.79 26.41 67.88 68.60 70.35 67.85

Table 4: Comparing entity set expansion performance of NegESE(w.o. neg) and NegESE on NED

Method NED-wiki NED-hp

k=100 k=200 k=20 k=50

NegESE(w.o. neg) 13.89 18.52 25.00 50.00

NegESE 8.33 11.11 20.00 40.00

Table 5: Comparing negative candidate entity intrusion
result of NegESE(w.o. neg) and NegESE on NED. The
metric used in this table is MeanNeg@k.

where Negk returns 1 if top-k entities in Lq con-414

tains at least one entity in N , otherwise 0. Higher415

NegMean@k scores mean the method tends to re-416

call “disliked” entities for more queries (samples).417

5.3 Implementation Details418

To ensure fairness of comparison, we report exper-419

iment results of k = 10, 20, 50, 100 for MAP@k420

as previous works and use k = 20, 50, 100, 200 for421

NegMean@k. More details are shown in Table 10.422

5.4 Main Results423

We evaluate our proposed NegESE framework and424

existing state-of-the-art methods on NED and the425

overall results are recorded in Table 2.426

Overall Analysis: Surprisingly, we observe that427

on both datasets, NegESE outperforms the state-of-428

the-art ESE method with a large margin across all429

metrics. We attribute this improvement to the uti-430

lization of negative seeds and the learnable frame-431

work of NegESE since it performs much better than432

another BERT-based method CGExpan.433

Domain Adaptability: When coming to the434

domain-specific scenario (i.e. on NED-hp), the ad-435

vantages of the learnable framework become more436

prominent. Since the pre-trained BERT contains437

less knowledge about the Harry Potter series, the438

performance of CGExpan drops significantly from439

NED-wiki to NED-hp, and even worse than CaSE.440

On the contrary, NegESE performs very well in441

this domain-specific scenario, demonstrating that a442

learnable framework is more preferable when ESE443

needs to be applied to a specific domain.444

Negative Entity Intrusion: We also investigate 445

the intrusion of negative entities, which is the main 446

problem in this paper. The results are recorded 447

in Table 3, higher NegMean@k scores means the 448

method tends to recall disliked entities described 449

the negative seed entities for more samples. We 450

find that NegESE gives the lowest scores com- 451

pared to other ESE methods on both datasets. We 452

attribute this to the utilization of negative seed 453

entities, as existing methods lack the capability 454

to utilize the negative seed entities conveying 455

the “dislike” requirement and consequently give 456

higher NegMean@k scores. For example, though 457

achieves decent MAP@k performance, CGExpan 458

gets poor MeanNeg@k scores, because it ignores 459

the negative seed entities. 460

5.5 Further Analysis 461

Effectiveness of Negative Seed Entities. We de- 462

velop a baseline model NegESE(w.o. neg) to 463

find out the importance of negative seeds in ex- 464

pansion, which has the same architecture with 465

NegESE while do not use the negative seed en- 466

tities during expansion. To be specific, we replace 467

the negative set vector in Figure 3 with a zero-filled 468

vector. The detailed experiment results are shown 469

in Table 4 and Table 5. We find that removing neg- 470

ative seeds from inputs leads to performance drops 471

in all metrics, showing the necessity of negative 472

seeds, and NegESE has the capability to utilize the 473

“dislike” requirement conveyed by negative seeds 474

to improve the expansion quality and mitigate neg- 475

ative entity intrusion problem. 476

Expansion Performance on Different-grained 477

Semantic Classes. We further analyze the perfor- 478

mance of our method on samples of different gran- 479

ularities, the full results are recorded in Table 7. 480

For samples with certain size of Aneg, we can get 481

finer-grained samples by adding more attributes to 482

the Apos, which consequently reduce the size of 483

P in Figure 2. For samples with certain size of 484

Apos, we can also get samples of different granu- 485

larities by changing the size of Aneg, which conse- 486

quently changes the size of N . Note to mention, if 487
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Seed Entity Set Semantic Class CGExpan NegESE

Positive: { “Enron”,
“Motown”,

“France Telecom”
“British Aerospace”,

“Northrop Grumman” }

Negative: {“Toyota”,
“Namco”, “Mazda” }

Companies
Not In Japan

1 IBM 1 “Halliburton Energy Services”
2 “BAE Systems” 2 “Texas Instruments”

... ...
18 “Microsoft” 18 “McDonald’s”
19 “Philips” 19 “Northrop Grumman Corporatoin”
20 “Sony” 20 “American Express”
21 “Compaq” 21 “Freescale”
22 “SAP” 22 “General Dynamics Corp”
23 “Fujitsu” 23 “Hasbro Inc.”

Table 6: Expanded entity set of a sample from NED , entities in the negative candidate set N are colored in red.

|Apos| |Aneg| MAP@k

k=10 k=20 k=50 k=100

0 0 59.24 59.40 55.11 44.32

1 0 28.63 25.55 24.20 19.67

2 0 16.83 11.95 12.79 17.03

0 1 38.17 40.38 29.68 21.84

0 2 49.32 47.06 40.38 29.68

0 +∞ 59.24 59.40 55.11 44.32

Table 7: Expansion performance of NegESEon sam-
ples of different granularities in NED-wiki

|Aneg| = 0, the samples express that no entities are488

disliked, this can also be written as |Aneg| = +∞489

which means the disliked entities satisfy infinite490

requirements.491

We conduct experiments on samples of different492

granularities (i.e. different (|Apos|, |Aneg|)) from493

NED-wiki. We spot that: (1) Given |Aneg| = 0494

(The first 3 rows in Table 7), the performance drops495

consistently when adding more attributes to Apos.496

This is reasonable since the size of P shrinks if we497

select more positive attributes, which makes the498

entities we like hard to be find from the candidate499

entity set. (2) Given |Apos| = 0 (The last 3 rows500

in Table 7), the performance improves when we501

use more negative attributes, since more negative502

attributes make N to be smaller. As a result, the503

corresponding P becomes larger and makes the504

expansion process to be easier.505

Efficiency Analysis. We analyze the time and506

space efficiency of our NegESE framework and507

other ESE methods on NED-wiki test split, the re-508

sult is shown in Figure 4. We can observe that509

CGExpan costs much more time and running mem-510

ory to achieve a MAP@10 of 37.58% which is still511

lower than NegESE. NegESE take the shortest time512

and not much running memory to get better expan-513

sion performance compared to existing methods.514

Figure 4: Time the memory efficiency of NegESE and
state-of-the-art methods

5.6 Case Study 515

We show a real expansion result generated by 516

NegESE on NED-wiki in Table 6. Entities marked 517

in red color are entities in the negative candidate en- 518

tity set N , other entities are correctly recalled and 519

belong to the P of the corresponding sample. This 520

result demonstrates that our method can effectively 521

prevent the disliked entities to be recalled. 522

6 Conclusion 523

To solve the entity set expansion involving both 524

“like” and “dislike” requirements, we propose to 525

express the target negative-aware semantic class 526

with both positive and negative seed entities and 527

design a learnable negative-aware entity set expan- 528

sion framework, NegESE to solve this problem. 529

Since existing ESE datasets only contain positive 530

seed entities, we also construct the NED dataset 531

to facilitate the study of the negative-aware entity 532

set expansion task. Experiments demonstrate that 533

the proposed method have the ability to utilize the 534

negative seed entities to improve the set expansion 535

performance and mitigate the negative candidate 536

entity intrusion problem. 537
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Semantic Class Size

Animal 155

Books 204

Buildings 217

Chemical Elements 118

Cities 379

Companies 341

Consumer Electronics 56

Countries and Dependencies 234

Diseases 111

Institutions 258

Locations 264

Language 190

Person 203

Provinces and States 179

Sports Leagues 141

TV Channels 144

Video Games 234

Universities 200

Harry Potter Characters 111

Table 8: Number of entities in each coarse-grained se-
mantic class

A Example Appendix670

Figure 5: Number of semantic classes in different gran-
ularities in NED-wiki. npos and nneg represents the
number of positive attributes and negative attributes re-
spectively.

Figure 6: Number of semantic classes in different gran-
ularities in NED-hp. npos and nneg represents the num-
ber of positive attributes and negative attributes respec-
tively.
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Semantic Class Attributes

Animals <Is_Vertebrate>, <Living_Environment>, <Diet>
Books <Time_Published>, <Language>, <Genre>
Buildings <Country>, <Function>, <Time_Built>, <In_Use>
Chemical Elements <Element Group>, <Discovery_Country>, <Is_Radioactive>, <Symbol_Origin>
Cities <Country>, <Is_Capital>, <Location>
Companies <Business_Type>, <Country>, <Closed>, <(Once)_Listed>
Consumer Electronics <Company>, <Type>, <Release_Time>
Countries and Dependencies <Region>, <Is_UN_Member>, <Economic_Outlook>
Diseases <Surgical>, <Chronic>, <Curable>, <Infectious>, <Part>
Institutions <Type>, <Religion>, <Level>
Locations <Region>, <Type>, <Climate>
Languages <Language_Family>, <Is_Official_Language>, <In_Use>, <Origin>
Person <Occupation>, <Born_Place>, <Gender>, <Birth_Time>
Provinces and States <Country>, <Location>, <Economic_Outlook>
Sports Leagues <Country>, <Sport>, <Closed>, <Time_Found>
TV Channels <Type>, <Country>, <Closed>, <Language>
Video Games <Publisher>, <Platforms>, <Time>, <Genre>
Universities <Region>, <Public/Private>, <Comprehensive/Specialist>, <Time_Found>
Harry Potter Characters <Gender>, <House>, <Occupation>, <Species>

Table 9: All coarse-grained semantic classes and corresponding attributes of each class in NED .

Parameter Value

BERT bert-base-cased

ks 50

ke 4000

non-linear activation ReLU

dropout 0.2

H 768

Table 10: Parameters setting
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