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Abstract
Modern science emerged from reasoning over
repeatedly-observed planetary motions. We
present Gravity-Bench-v1, an environment-based
benchmark that challenges AI agents on tasks
that parallel this historical development. Gravity-
Bench-v1 evaluates agents on the discovery of
physics concealed within a dynamic environment,
using rigorous gravitational dynamics simulations.
Gravity-Bench includes out-of-distribution cases,
i.e. with physics that deviates from the real world,
to evaluate true scientific generalization capabil-
ities. Agents must plan to collect data within
an experimental budget and must perform a dy-
namic form of data analysis and reasoning to solve
tasks efficiently. Our benchmark admits an open-
ended space of solutions. Reference solutions
for each task are provided to calibrate AI perfor-
mance against human expertise. Technically at an
upper-undergraduate level, our benchmark proves
challenging to baseline AI agents. Gravity-Bench-
v1 and planned extensions should help map out AI
progress towards scientific discovery capabilities.

1. Introduction
The rapid evolution of artificial intelligence (AI) and ma-
chine learning has led to significant advancements in various
domains, particularly in natural language processing and
computer vision. However, the design of AI agents for sci-
entific research presents unique challenges, particularly in
the context of autonomously discovering new natural phe-
nomena. Traditional benchmarks, such as those focused on
knowledge evaluation (Rein et al., 2023; Hendrycks et al.,
2021a; Ting et al., 2024) or general problem-solving capa-
bilities (Clark et al., 2018; Zellers et al., 2019; Hendrycks
et al., 2021b; Tian et al., 2024), fall short of what is needed
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when it comes to evaluating an AI agent’s capacity for dis-
covery under normal scientific conditions of uncertainty and
novelty.

To address this gap, we introduce Gravity-Bench-v1, a new
benchmark specifically designed to evaluate the scientific
reasoning and discovery capabilities of AI agents within
a controlled, physics-based environment. This benchmark
is inspired by the historical development of science (the
two-body problem of gravitational dynamics) and leverages
high-fidelity machine-precision simulation tools to build an
environment where AI agents can interact with and explore
faithful physics experiments.

In Gravity-Bench-v1, an AI agent is not merely tasked with
analyzing pre-collected data but it must engage in a fuller
version of the scientific process. It must schedule observa-
tions intelligently, within a constrained budget, and make
inferences based on the limited and accumulating data it
collects. This setup allows for an assessment of the agent’s
ability to reason and make autonomous decisions under
dynamically-shrinking uncertainty, as observational data
accumulates.

Our benchmark admits an open space of solutions, in the
sense that the optimal planning for observations and algo-
rithmic approach for quantitative answers are not a priori
known. We leverage this property to offer expert solutions
with uniform sampling of observations (without planning)
that we consider as strong expert baselines. Our benchmark
opens the possibility for an AI agent to discover planning
and/or a reasoning approaches that best our expert solution,
as discussed further below.

Gravity-Bench-v1 has a narrow scientific focus on the two-
body gravitational dynamics problem. We are working on
future expansions, including visual observation, extending
to additional fields (e.g., electromagnetism), incorporating
observational effects such as measurement errors, and intro-
ducing three-dimensional orbital dynamics. While various
extensions in task complexity, environment realism and
across physics domains are possible, we believe that the
performance gap demonstrated by current AI models, even
within the current limited domain highlights the immediate
value of evaluation setups like Gravity-Bench-v1.

In short, Gravity-Bench-v1 challenges AI agents with
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Figure 1. Overview of Gravity-Bench-v1 architecture and workflow. The binary star simulation environment (left, green) generates
orbital trajectories based on input parameters, including out-of-distribution physics like modified gravity laws. An agent (right, purple)
must solve physics discovery tasks by strategically collecting observations through the observe tool (limited to a budget of 100
observations). We evaluate against expert solutions based on full simulation data access but using uniform sampling of 100 observations
as a baseline without planning. This design tests both scientific reasoning and intelligent observation planning capabilities.

tasks that mirror real-world scientific inquiry, pro-
vides a framework for evaluating their progress toward
potential contributions to science, as well as their
capabilities at autonomous decision-making under un-
certainty. Gravity-Bench-v1 is available at https://
github.com/NolanKoblischke/GravityBench
and https://huggingface.co/datasets/
GravityBench/GravityBench.

2. Related Work
Advances in leveraging AI foundation models for scien-
tific research and discovery encompass a wide spectrum of
methodologies, reflecting the diversity of tasks underpin-
ning the scientific method (Reddy & Shojaee, 2024; Luo
et al., 2025).

Specialized large language models (LLMs), such as Galac-
tica or OpenScholar (Taylor et al., 2022; Asai et al., 2024;
Sun et al., 2024), leverage domain-specific training to im-
prove literature analysis and information retrieval. Data-
driven discovery has AI systems uncover patterns in exten-
sive datasets, typically decoupling the data acquisition from
the analysis (Majumder et al., 2024; Chen et al., 2024). Au-
tomated statistical modeling focuses on deriving insights
directly from existing data (Li et al., 2024). Workflow au-
tomation frameworks have AI systems propose experiments
and emulate research processes (Lu et al., 2024; Siegel et al.,
2024; Ma et al., 2024a; Baek et al., 2024; Ma et al., 2024b;
Ghafarollahi & Buehler, 2024). Together, these methods

reflect the growing sophistication of AI foundation models
in supporting, or enabling, various stages of the scientific
cycle.

Many existing AI systems either treat scientific tasks in iso-
lation, focus on specific optimizations or emphasize pattern
recognition (e.g., Reddy & Shojaee, 2024; Luo et al., 2025;
Yuksekgonul et al., 2024; Ma et al., 2024a). Gravity-Bench
diverges somewhat by framing discovery as a dynamic, it-
erative process within a partially observable environment,
simulating the challenges of real-world scientific inquiry.
Agents in Gravity-Bench must actively explore to acquire
hidden information and exploit collected data through rea-
soning, embodying the interplay between observation and
inference that underpins natural sciences. The rigorously-
simulated nature of the Gravity-Bench environment also
enables evaluation in out-of-distribution scenarios, testing
generalization capabilities critical for robust scientific rea-
soning.

Existing benchmarks have explored virtual environments
for data-driven discovery or symbolic regression (e.g., Ma-
jumder et al., 2024; Jansen et al., 2024; Udrescu & Tegmark,
2020; Guimerà et al., 2020; Lemos et al., 2023; Shojaee
et al., 2025), though they often focus on rediscovery of
known phenomena, solving textbook-style problems or fit-
ting equations from pre-collected datasets. By contrast,
Gravity-Bench involves diverse dynamical scenarios requir-
ing active observation scheduling, adaptive planning, and
iterative scientific reasoning, mirroring the unpredictability
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of real-world discovery processes. Gravity-Bench thus goes
beyond curve-fitting or symbolic regression alone, as agents
must proactively identify and integrate multiple quantities
from strategically acquired data to solve tasks, emphasiz-
ing scientific reasoning over memorization and encouraging
hypothesis formulation that is novel yet rooted in the (simu-
lated) environment being actively explored.

Furthermore, the open-ended nature of Gravity-Bench tasks
allows for diverse solution strategies, distinguishing it from
tasks that emphasize solutions among preset answers. This
characteristic favours exploratory reasoning and hypothesis
generation in iterative cycles, rather than a more determinis-
tic approach to measuring performance.

3. Benchmark design
3.1. Environment Design

The core design principle behind our benchmark is the con-
cept of a rigorously-simulated, partially-observable environ-
ment.

Environments are preferred tools for evaluating agents, as
they provide a dynamic setting to test capabilities, adaptabil-
ity and generalization under controlled conditions. Many
benchmark environments already exist in the literature, ad-
dressing a variety of domains and tasks, such as SWE-
bench (Jimenez et al., 2024), RE-bench (Wijk et al., 2024),
BrowserGym (Chezelles et al., 2024) or Aviary (Narayanan
et al., 2024).

The engine driving our environment is a science-grade
physics simulation tool. Using scientific simulation tools
offers several advantages in the context of agentic bench-
marks:

• Focused subdomain expertise: The simulation targets
a specific subset of physics/domain knowledge on
which the agent is evaluated (here: 2-body gravita-
tional physics). Implicit knowledge (e.g. Kepler’s
3rd law) can be leveraged to solve some tasks more
efficiently.

• Ground truth embedding: the environment encodes
ground truth in the form of input simulation parame-
ters. They impact the environment’s dynamics, which
is what is observable by the agent. The agent can be
thus tasked to infer the hidden ground truth or to mea-
sure/discover additional properties in more open-ended
tasks, mimicking natural scientific inquiry.

• Limitless data generation: the simulation engine can
generate virtually unlimited data for arbitrarily com-
plex problems within the simulated scientific domain
of interest, facilitating diverse and comprehensive eval-
uations.

• Modular partial observability: various observation pro-
tocols can be adopted to sparsify in time the densely
simulated data, making it possible to create environ-
ments with varying levels of partial observability.

• Out-of-distribution generalization: by enabling sim-
ulation scenarios that do not occur in the real world,
the engine also enables the evaluation of an agent’s
ability to handle novel situations and generalize be-
yond its regular training data, a hallmark of scientific
exploration.

The observational protocol of the environment is an im-
portant design choice, effectively decoupling the densely
simulated data (in time) from the sparsely observable data.
Here, for simplicity, we adopt two simple observational pro-
tocols: full observability and partial observability with a
finite observational budget. Within our simulated partially-
observable environment,1 planning and decision-making
occurs through a dynamic form of data collection, by obser-
vational choices constrained by the environmental protocol
(see Figure 1 for an overview of the benchmark). In a
follow-up work, we also consider the addition of vision as
an observational modality of the environment, enabling the
evaluation of visual perception and reasoning as additional
agent capabilities.

All simulations are implemented using Rebound (Rein &
Liu, 2012; Tamayo et al., 2020), the current gold standard for
gravitational few-body dynamics. Our standard Rebound
simulation takes as input the stellar binary parameters (point
masses, 3D positions, and 3D momentums), and any ad-
ditional forces present. Rebound then solves Newton’s
gravity equations forward in time, for mostly 10 orbits. We
save only the stars’ Cartesian positions as a function of time
for the agent to access in solving the problem.

3.1.1. OBSERVATION PROTOCOL AND TOOL

In this version of Gravity-Bench, all orbits are in the (x,y)
Cartesian plane by construction (i.e. z=0 at all times). This
is closely related to the ideal ‘face-on’ geometry of real
observations, where a binary’s orbital plane coincides with
the plane of the sky. Geometric projection effects, which are
paramount in more realistic observations, will be addressed
in a subsequent benchmark version.

In Gravity-Bench-v1, we adopt two environment observa-

1Here, partial observability refers to the agent having only ac-
cess to time-selected snapshots from the densely simulated data
available in the environment. Even though our setup promotes
planning under uncertainty and active information acquisition, con-
cepts found in the POMDP literature (e.g., Kaelbling et al., 1998;
Bowyer, 2021), we note that our observation protocol assumes
error-free observations. This idealization can be relaxed in fu-
ture benchmark iterations to additionally make the environment
stochastic.
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tion protocols, which are mediated by an observation tool
made available to the agent. In the first ‘full-obs’ protocol,
the agent has access to the full dense set of simulation data.

In the second ‘budget-obs’, the agent is permitted a max-
imum pre-determined number of observations, Nobs, con-
strained to be within the time range covered by the dense
simulation data. The agent is free to choose which times to
observe,2 for up to 10 data points per observation-tool call,
subject to a maximum total of Nobs. In the ‘budget-obs’
protocol, the agent is therefore incentivized to be strate-
gic within the observational budget allocated and to reason
along as more observations are collected in several modular
steps.

In practice, the agent repeatedly queries the observation tool
with a series of observation times, and the tool returns the
corresponding data, appending them to previously-collected
observations.3

3.2. Scientific problems

Binary star systems modeled as point masses offer a rich
enough abstraction for our first benchmark to cover a wide
range of potential problems. In particular, this includes
tasks that involve inferring hidden physical properties from
limited observational data. For some tasks, the target val-
ues are direct parameter inputs into the simulation such as
component masses. Other tasks involve finding values that
are not direct inputs but can be derived from the simulation
data, such as a star’s average distance from the center of
mass, the fraction of time acceleration is below the mean,
or the time it takes a star to travel 20% of its orbital path.

We first design a diverse set of two-body gravitational simu-
lations, illustrated in Figure 2. We deliberately incorporate
symmetry-breaking strategies, such as displacing the cen-
ter of mass from the system origin or introducing uniform
center-of-mass drift (known as “proper motion”), to mirror
the messy realities encountered in genuine astronomical
observations.

We then design tasks to be solvable only through careful
derivation requiring success at multiple intermediate steps.
This aligns with the scientific process in reality. For exam-
ple, to determine the total energy of the system, one must
first find both stellar masses, which in turn require estimates
of accelerations and separations.

2Cubic interpolation between densely simulated timesteps pro-
vides near continuous-time coverage with minimal numerical er-
rors.

3The agent is allowed to observe at any point back in simulated
time. An observation protocol that would more closely match
observations in the real world would constrain any new observa-
tions to occur only forward in time relative to previously-collected
observations. We will explore additional observation protocols in
future work.

In addition to standard Newtonian gravity, we introduce
six scenarios that deviate from real-world physics. Three
incorporate a drag force, requiring agents to infer the
drag timescale from shrinking orbits, and three adopt a
modified gravitational exponent with a force of gravity
FG ∝ r−(2+α), where r is the separation between stars,
and the task is to determine α (which is 0 in Newtonian
gravity). We emphasize that our drag and modified gravity
laws represent scenarios rarely, if ever, considered in stan-
dard textbooks or physics literature on two-body dynamics,
hence they are out-of-distribution within the context of our
benchmark and likely require compositional generalization
from physics learned in other contexts.

From our 16 two-body simulations, we design 50 tasks,
47 with numeric answers and 3 true/false. We match each
task with multiple simulation variations for a total of 206
task-simulation pairs.

4. Experiments
4.1. Evaluation details

For each task, we implement an expert solution based on
only the data available to the AI agent and confirm the solu-
tions agree with the simulation inputs if directly available
for that task or a superior solution based on additional in-
formation from the Rebound simulation (such as a built-in
evaluator for orbital parameters).

These expert-reference solutions were produced by one
PhD student and one research scientist with domain ex-
pertise. Each of the two independently double-checked ev-
ery answer, and the final values were cross-verified against
Rebound’s built-in orbital diagnostics whenever available.

Under the constraint of an observation budget, the perfor-
mance of our expert algorithmic solutions depends on the
observation strategy. Therefore, we use the performance of
a baseline strategy to set task-specific error thresholds that
an AI answer must beat to be marked correct. Specifically,
we define our baseline expert reference (expert-ref-Nobs) as
the performance obtained using Nobs observations equally
spaced in time (without planning), since optimal observation
strategies for all simulation-task pairs are costly to develop.
When evaluating AI agents with an observation budget of
Nobs = 100 (budget-obs-100), we evaluate the AI agent
performance against this ’expert-ref-100’ baseline.

An answer is marked correct if its percentage error relative
to our ground truth answers falls at or below the task-specific
maximum permissible threshold. These thresholds account
for the inherent difficulty of solving each task with lim-
ited observations. They are set based on the performance
gap between our expert solution using full simulation data
(expert-ref) versus 100 uniform observations (expert-ref-
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Example Tasks

What is the total energy?

What is the orbital period?

What is the mass of star2?

What is the max velocity of star1?

What is the distance at closest approach?

What is the specific angular momentum?

A drag force exists, what is its timescale?

Figure 2. Overview of the gravitational simulations used in the benchmark. Each panel shows the orbital trajectories of a binary star
system in the x-y plane, with masses indicated in solar masses (M⊙). The color gradient indicates simulation progress from start (dark)
to end (light). Simulations include standard orbits, systems that are unbound, systems with modified gravity, systems with drag forces,
systems with proper motion, etc. The benchmark also includes versions of the same system represented in different units, to evaluate unit
handling. Sample questions that could be asked about these systems are shown.
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Figure 3. Agent performance in finding the maximum velocity of a star under various observational budgets. (a) Percent error for
each agent as a function of the total number of observations used, where each point represents an individual run. Uniformly sampling in
time with a expert solution (red line) serves as a planning-free baseline. Claude 3.5 Sonnet (blue) sometimes refines its observations
enough to achieve under 1% error, while GPT-4o (orange) shows less consistent improvement. (b) Observations attempted by each agent
as a function of the max allocated observation budget. Points show individual runs, while lines with error bars show the mean and standard
error across runs for that budget. While an ideal approach would exploit all available observations (dashed line), both GPT-4o and Claude
3.5 Sonnet stop early, often using fewer than half of the available observations for budgets above 30. This underutilization highlights a
lack of robust planning and answer verification. (c), (d) Percent error in finding the periastron distance in a single, highly elliptical orbit
where the stars spend only 0.2% of the time within 5% of the closest approach. As discussed in Appendix D, an expertly planned solution
can achieve 2% error with 50 observations, but our uniform-sampling baseline with 100 observations (without planning) performs poorly
(70% error), as do both AI agents. The horizontal dashed lines indicate the threshold by which the agents are marked in budget-obs-100.
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observe(1.3e+10, 1.32e+10, 1.34e+10, ..., 1.46e+10, 1.48e+10)

Determine the max velocity of star1

I'll help you calculate the maximum velocity for star1 over its 
orbit. To do this, we'll need to: 
1. Gather position data over time 
2. Calculate velocities from position differences 
3. Find the maximum velocity magnitude  

Let's start by gathering some observations spread across the 
time window to get a general view of the orbit:

Run 1: Claude 3.5 Sonnet Run 2: Claude 3.5 Sonnet 

df['vx'] = np.gradient(df['star1_x'], df['time']) ...

df['v_magnitude'] = np.sqrt(df['vx']**2 + df['vy']**2 + 
df['vz']**2) 
Maximum velocity found so far: 15.266 m/s 
Time points where velocity is highest: 
           time  v_magnitude 
        1.395e+10    15.266

I'll help you calculate the maximum velocity for star1 over its 
orbit. To do this, we'll need to: 
1. Gather position data over time 
2. Calculate velocities from position differences 
3. Find the maximum velocity magnitude  

Let's start by gathering some observations spread across the 
time window to get a general view of the orbit:

dt = np.diff(df['time']) 
dx = np.diff(df['star1_x']) ...

vx = dx/dt ...

v_total = np.sqrt(vx**2 + vy**2 + vz**2) ...

Maximum velocity found so far: 15.266 m/s

(Corresponding time of max velocity not printed)

observe(0.0, 1.55e+9, 3.1e+9, ..., 1.24e+10, 1.395e+10)

Let's get more detailed observations around the time where we 
found the highest velocity to make sure we don't miss the true 
maximum

(Same code as above)

Time points where velocity is highest: 
           time  v_magnitude 
        1.395e+10  5437.134

(progressively finer observations around max velocity)

observe(0.0, 1.55e+9, 3.1e+9, ..., 1.24e+10, 1.395e+10)

Let's get more detailed observations around the times where we 
see higher velocities to make sure we don't miss the true 
maximum.

(Same code as above)

Maximum velocity found so far: 2745.01 m/s

(progressively finer observations around wrong time)

I'll help you calculate the maximum velocity for star1 over its 
orbit. To do this, we'll need to: 
1. Gather position data over the orbit 
2. Calculate velocities between consecutive positions 
3. Find the maximum velocity



Let's start by getting some observations spread across the time 
window to capture the orbital motion:

observe(7.75e+8, 2.325e+9, ..., 1.3175e+10, 1.4725e+10)

We have found that the maximum velocity for star1 over its orbit 
is approximately 5135.48 m/s.

5135.48 m/s: Incorrect, 45% off from true value

We have found that the maximum velocity of star1 is 
approximately 9080.41 m/s. 

9080.41 m/s: Correct, 2% off from true value

Figure 4. Two observation-planning runs by Claude 3.5 Sonnet on the same task using 40 observations. The figure highlights
how minor differences in planning lead to drastically different outcomes. In each run, the agent collects position data in multiple steps,
computes velocity from finite differences, and refines its search for the peak velocity. Top panels: Excerpts of the agent’s traces including
the planning, observations, and code use. On the left, the agent systematically tracks the highest velocity times, and progressively refines
its estimate, achieving a final error of only 2%. On the right, however, the agent never accurately records peak-velocity times, and
proceeds to query intervals around low velocity times, resulting in a 45% error. It seems to misinterpret increasing velocity estimates from
finer time resolution as evidence of higher true velocities, rather than as improved measurement accuracy. Bottom: True velocity curves
(gray) overlaid with the agent’s observations (colored dots). Later queries appear in brighter hues, showing how an intelligently planned
approach can converge near to correct velocity, while a misplanned approach (right) fails to capture the velocity peak.
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Table 1. Model performance. The Performance column shows the percentage of tasks each model solves within a question-specific error
threshold. Under budget-obs-100, a maximum of 100 observations can be requested, testing the ability to plan. The model is marked
correct if it is within the threshold determined for each task (between 5% and 70%, see Section 4.1). Under full-obs, each model can
access all observations and is marked correct if within 5% of the correct answer. We also report total cost, total run time, and average
observations used. Results averaged over three runs with standard errors shown.

Score Total Cost ($) Total Time (min) Mean Observations Used
Sequential Observations - 100 Observation Budget
o4-mini-high-2025-04-16 49.4% ± 2.6% 81.23 ± 1.68 2854.5 ± 151.7 33.2 ± 1.5
claude-3-5-sonnet-20241022 21.5% ± 2.5% 15.88 ± 0.64 128.3 ± 2.5 24.3 ± 0.5
claude-3-5-haiku-20241022 16.1% ± 2.3% 3.33 ± 0.10 94.4 ± 0.7 12.6 ± 0.4
gpt-4o-2024-11-20 15.5% ± 2.1% 9.60 ± 0.12 63.5 ± 1.6 12.2 ± 0.7
gpt-4o-mini-2024-07-18 8.3% ± 1.5% 0.60 ± 0.03 83.3 ± 4.2 13.4 ± 1.0

Full Table Access
o4-mini-high-2025-04-16 73.9% ± 2.4% 15.59 ± 0.24 522.6 ± 14.2 -
claude-3-5-sonnet-20241022 39.5% ± 3.2% 5.58 ± 0.06 69.9 ± 0.3 -
gpt-4o-2024-11-20 36.1% ± 3.2% 3.41 ± 0.17 45.6 ± 3.2 -
claude-3-5-haiku-20241022 34.1% ± 3.1% 1.46 ± 0.03 63.3 ± 1.3 -
gpt-4o-mini-2024-07-18 26.7% ± 2.8% 0.16 ± 0.00 40.4 ± 0.7 -

100): |expert ref(100)−expert ref(full-obs)|
expert ref(full obs) . Tasks where uni-

form sampling achieves near-full-data performance (e.g.,
orbital period estimation) receive strict thresholds (5%),
while those where 100 uniform observations are insuffi-
cient (e.g., maximum velocity measurement) allow larger
margins (20%). For extreme cases like measuring the expo-
nent of a modified gravitational force, where expert-ref-100
shows >1000% error, we set lenient but achievable thresh-
olds (70%). To show this is achievable for this task, we
find that an expert solution can reach within 1.7% error of
the ground truth gravitational exponent with 70 elaborately
planned observations (see Appendix C). For most problems,
only the combination of a strong algorithmic solution and
observational strategy leads to a high quality answer.

We also design our tasks to resist random guesswork. In
the modified gravity case, the model must find the deviation
from Newtonian gravity (r2+α) rather than the full exponent
(rα), as 0.03 is much harder to estimate within 70% (correct
range: α ∈ [0.009, 0.051]) than 2.03 for example.

4.2. Baseline agent

Our observation protocol (Section 3.1.1) requires planning
future observations based on existing observations, making
single-step solutions unlikely to succeed. Therefore, our
benchmark is designed to evaluate AI systems that operate
as agents that probe the environment and perform actions
over multiple steps. We design a baseline agent around
a ReAct-style scaffold (Yao et al., 2023). The agent can
use our observe tool and a Python interpreter adapted
from Langchain (Chase, 2022) with access to packages like
numpy (Harris et al., 2020), scipy (Virtanen et al., 2020)
and pandas (pandas development team, 2020) and receive
outputs and exception tracebacks. While we evaluate this
specific configuration, our benchmark supports arbitrary

agent architectures. The baseline agent prompts are shown
in Appendix F.

4.3. Performance of baseline agent

We test OpenAI (OpenAI, 2024; 2025) and Anthropic
(Anthropic, 2024) models in Table 14. o4-mini-high
achieves the highest performance among tested models with
Claude 3.5 Sonnet in second. When constrained by a 100-
observation budget, each model shows a significant per-
formance drop, suggesting observational planning remains
challenging. The full-obs evaluation configuration requires
less computation time than budget-obs-100 because all ob-
servations are immediately available to the agent.

Impressively, o4-mini-high consistently solves multiple runs
across all modified gravity tasks in full-obs, accurately esti-
mating the exponent in scenarios with gravitational forces
following FG ∝ r2+α. This specific modification of gravity
is rarely discussed in textbooks or literature in the two-body
dynamics context. This suggests generalization to novel
physical scenarios, although more evaluations in this regime
are warranted. In budget-obs, it fails to consistently solve
the out-of-distribution problems.

The only other models to solve some OOD tasks were
Claude 3.5 Sonnet, which consistently solves one modified
gravity task and GPT-4o mini, which unexpectedly solves
a single modified gravity task only once out of three runs.
This might demonstrate the power of repeated sampling
even of less capable models, as discussed in Brown et al.
(2024).

4We note that the Claude 4 models were released during the
final stages of this work and thus was not included in our analy-
sis (Anthropic, 2025).
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4.4. Planning

An elaborately planned observational strategy is required to
solve problems efficiently under the restriction of a budget.
This is most evident in problems such as finding the max-
imum velocity of a star since velocity is highest only over
the small fraction of an elliptical orbit when the two stars
are closest to eachother. Uniformly sampling observations
in time is not sufficient to determine this max velocity, as
evidenced by the performance of our expert-ref-100 solution
(∼20% off).

To investigate planning ability, we provide the AI agents
tasks, including finding the maximum velocity of a star and
finding the minimum separation of the two stars (the peri-
astron), but vary the allowable max budget from 10 to 100
observations. Figure 3 summarizes these runs by plotting the
agent’s error against the number of observations the agent
decided to conduct. Elaborate planning is required to signifi-
cantly outperform the expert-ref-100 baseline. This baseline
achieves very high error (> 90%) with 10 observations to
moderate error (20%) with 100 observations, reflecting the
difficulty of pinpointing the specific max-velocity region
with uniform temporal sampling (the minimum separation
task shows similar results as discussed in Appendix D).

A highly effective strategy would use a substantial frac-
tion of the budget to iteratively refine estimates around the
time ranges suspected of containing the maximum velocity.
However, we observe that all models tested request very
few observations relative to their budgets. For budget-obs-
100, GPT-4o only uses 12 observations on average (Table 1)
while Claude 3.5 Sonnet uses twice as many. This might
explain Claude’s higher performance but is still a vast un-
derutilization of the budget. Nonetheless, the experiment
in Figure 3 shows that Claude 3.5 Sonnet solves this max
velocity task to within 1% due to elaborately observation
planning.

We find that the agents stop further observation once a plau-
sible solution is found rather than observing further to con-
firm their answer (e.g. via denser sampling or re-checking
of other orbital regions). These experiments indicate that
the tested models tend to prematurely rush to solutions and
systematically underutilize their observational budget when
working in the baseline agent framework, an issue we have
not yet fully explained and explicitly identify as an impor-
tant direction for future automated analysis of agent traces,
given the extensive length and complexity of these traces.

4.5. A case study on planning

Figure 4 presents two runs by Claude 3.5 Sonnet, finding
the maximum velocity of a star with 40 observations. The
left run demonstrates a more effective strategy. It begins
with a broad temporal sampling to identify regions with

higher velocity, though these initial velocity estimates are
imprecise due to the coarse time resolution. Upon detecting
a high-velocity region at a specific time, the agent imple-
ments progressively finer temporal resolution around this
interval. This iterative refinement approach achieves a fi-
nal velocity measurement within 2% of the ground truth.
Notably, the agent maintains a record of the highest veloc-
ity magnitudes and corresponding times, enabling targeted
subsequent observations in regions of interest.

In contrast, the run in the right panel fails to converge on
the correct velocity. While attempting a similar strategy, the
agent neglects to track the times of peak velocities. When
the time resolution is refined, the velocity estimates ap-
pear to increase, but this reflects improved measurement
accuracy rather than finding a truly higher-velocity region.
Consequently, subsequent observations are mistakenly con-
centrated in regions of lower velocity, and the agent reports
a velocity that deviates from the true maximum by approxi-
mately 45%.

4.6. Failure modes

We observe that the models incorrectly assume symmetry
in the system. For example, we observe that they often
wrongly assume the center of mass is at the origin (0, 0,
0), or they neglect that the system can have drift (see simu-
lations labeled “proper motion” in Figure 2) when finding
orbital properties that are critical to solving the problems,
leading to incorrect answers.

Our findings reveal a tendency for AI models to take short-
cuts rather than systematically derive intermediate quanti-
ties. For example, they frequently bypass calculating the
mass of the stars directly and instead assume a value, such
as 1 gram, to continue with the problem. As detailed in
Appendix E, we find that solutions containing such mass as-
sumptions correlate strongly with incorrect answers across
all models tested. Notably, GPT-4o makes a mass assump-
tion in 33% of incorrect solutions compared to 5% of correct
solutions. Even Claude 3.5 Sonnet, which performs better
overall, shows more than double the rate of mass assump-
tions in incorrect responses versus correct ones.

5. Conclusion and Discussion
We introduced Gravity-Bench-v1, a novel benchmark de-
signed to evaluate AI agents in tasks that emulate the sci-
entific discovery process, requiring iterative reasoning, dy-
namic planning, and robust generalization. By challenging
agents with both standard and out-of-distribution physics
scenarios, the benchmark aims to assess scientific reason-
ing capabilities beyond memorized solutions. Our results
demonstrate that while baseline AI models perform moder-
ately well with the full table of observations, they struggle
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under constrained observational budgets, often failing to
plan or exploit available data effectively. These findings
highlight current limitations in long-horizon reasoning and
adaptive decision-making, which are important components
for autonomous scientific discovery.

Looking ahead, Gravity-Bench-like approaches have signifi-
cant potential for growth as tools for advancing AI research
in scientific reasoning. By expanding the benchmark to
include incrementally more complex physics, one can aim
to map out progress toward AI systems capable of gen-
uine contributions to science. Additionally, this type of
benchmarks with controlled environment and open-ended
solution space may provide opportunities to characterize the
robustness of autonomous AI agents in handling novel and
uncertain scenarios, an issue connected to safety. Finally,
adapting environments like Gravity-Bench-v1 for reinforce-
ment learning has the potential to serve as a stepping stone
towards building AI agentic systems that not only analyze
but also explore and innovate in the domain of scientific
discovery.
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A. Rebound simulations details
All simulations are implemented using Rebound, a popular gravitational N-body integrator. The core of this framework is
the ordinary differential equation formulation and the numerical time-integrator, to achieve machine precision and minimize
error build-up over time. For most problems we use WHFast (Rein & Tamayo, 2015), an unbiased, machine precision,
energy conserving integrator. The integration timestep is conservatively chosen to be one-five-thousandth of the system’s
orbital period. For problems where forces other than gravity are present, or the gravitational law has been modified, WHFast
is not adequate. We then use IAS15, an adaptive time-step 15th-order integrator where errors are kept to below machine
precision.

Our standard Rebound simulation takes as input the stellar binary parameters (point masses, 3D positions, and 3D
momentums), in addition to the integrator choice discussed above, and any additional forces present. Rebound then solves
Newton’s gravity equations forward in time, for 10 orbits5. At densely-sampled timesteps, it outputs the complete Cartesian
and orbital elements for both stars. This detailed information is saved for reference as part of the environment but is not
provided to the agent. Instead, we separately save only the stars’ Cartesian positions as a function of time for the agent to
access in solving the problem, modulo the observation protocol.

B. Description of the benchmark problems

Question Solution Comments
mass largest star
Determine the mass of the
largest star.

Calculate the separation magnitude of the
two stars using their 3D positions. Compute
the acceleration of star2 by taking the sec-
ond derivative of its position with respect to
time. Using the acceleration and separation
magnitudes a and d, calculate the mass of
star1: M1 = astar2·d2

G Repeat the process for
star1 to calculate the mass of star2. Finally,
return the maximum of the two masses:
largest mass = max(M1,M2).

The separation magnitude
array is given by d =√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

The gravitational acceleration is
given by a = GM

d2 as the force is
F1 = GM1M2

d2 =M1a. This illustrates how
stellar masses are determined whenever
needed, for all the rest of the problems.

max velocity star1
Calculate the maximum
value of velocity for star1
over the orbit.

Calculate the velocity magnitude array of
star1 by computing the first order time
derivative of its 3D position. Return the
maximum of the array.

The velocity magnitude array is given by
V1 =

√
(vx1)2 + (vy1)2 + (vz1)2 where

vx1 = dx1/dt. Final Answer = MAX(V1).
This illustrates how stellar velocities are de-
termined whenever needed, for all the rest
of the problems.

max acceleration star1
Calculate the maximum
value of acceleration for
star1.

Take the second order derivative of position
with respect to time to get the acceleration
array then calculate its magnitude. Return
the maximum of the acceleration magnitude
array.

a1 =
√

(ax1)2 + (ay1)2 + (az1)2 where
ax1 = d2x1/dt

2. This illustrates how stel-
lar accelerations are determined whenever
needed, for all the rest of the problems.

5Except for Linear drag and Modified gravity

12
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semi major axis
Determine the semi-major
axis of the system’s orbit.

Calculate the total semi-major axis by find-
ing the magnitude of the 3D stellar sepa-
rations and averaging their extremes (min/-
max).
For verification, set up a Rebound Simula-
tion. Add the two stars to the simulation,
specifying their masses, positions, and ve-
locities. Compute the orbital elements for
star2, with star1 as the primary. Extract and
return the semi-major axis from the orbital
parameters.

The total semimajor axis a is given by a =
max(d)+min(d)

2 where d is the separation ar-
ray. For other questions, you can calculate
individual semi-major axes by weighting
the total axis by each star’s mass ratio to
the total system mass. This illustrates how
stellar semimajor axis are determined when-
ever needed, for all the rest of the problems.

eccentricity
Determine the eccentricity of
the system’s orbit.

Calculate an array of stellar separation mag-
nitudes along with its maximum and min-
imum values (rmax and rmin). The eccen-
tricity is given by (rmax - rmin) / (rmax +
rmin). For verification, initialize a Rebound
simulation, add the stars, and obtain the
eccentricity from the simulation.

Orbital eccentricity is a dimensionless pa-
rameter that measures the deviation of an
orbit from being perfectly circular. This
illustrates how stellar eccentricities are de-
termined whenever needed, for all the rest
of the problems.

semi minor axis
Determine the total semi-
minor axis of the system’s or-
bit.

Calculate the total semimajor axis a and
the eccentricity e. The semiminor axis b
is given as b = a ·

√
1− e2. For verifica-

tion, set up a Rebound Simulation. Add the
two stars to the simulation, specifying their
masses, positions, and velocities. Compute
the orbital elements for star2, with star1
as the primary. Extract semi-major axis
and eccentricity from the orbital parame-
ters. Calculate and return the semi-minor
axis.

This illustrates how stellar semiminor axis
are determined whenever needed, for all the
rest of the problems.

period
Determine the orbital period
of the system.

Calculate the magnitude of stellar sepa-
rations using their 3D positions. Use
scipy.signal.find peaks to identify the peaks
(maximums) in the separation array, which
correspond to the apoastron points. From
these peaks, calculate the average period by
taking the mean difference between consec-
utive peak times. Return this value.

Apoastron is the point in the orbit of a star
or other object in a binary system where
it is farthest from its companion. This il-
lustrates how stellar periods are determined
whenever needed, for all the rest of the prob-
lems.

13
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time fraction acceleration
below mean

Calculate the fraction of time
in a single orbit where the ac-
celeration of star1 is below
the mean acceleration.

Calculate the orbital period. Find the in-
dex corresponding to a time just after one
full period and use this to locate the time
of the next pericenter passage. Isolate the
data for a single orbit by selecting the rows
where the time is between the pericenter
passage and one full period later. Calculate
the mean acceleration of star1 for this or-
bit. Identify the time intervals where the
acceleration of star1 is below the mean. To
account for potential irregularities in time
steps, sum the time differences where the
acceleration is below the mean. Finally,
compute the fraction of the total orbital pe-
riod during which the acceleration is below
the mean and return this value.

-

2K+U
Determine the quantitative
value of 2K + U for the sys-
tem in joules.

Calculate the stars’ masses, velocities and
separation magnitudes to compute the sys-
tem’s instantaneous kinetic (K) and poten-
tial (U) energies. Average the kinetic and
potential energies arrays, then return 2K+U.

From the Virial theorem we have 2K + U =
0, where K is the total kinetic energy and
U the gravitational potential energy. This
should be satisfied close the machine preci-
sion in the simulated environment.

apoastron
Determine the apoastron of
the system’s orbit.

Calculate the stellar semimajor axis and ec-
centricities. The apoastron is defined as
a(1 + e). For verification, initialize a Re-
bound simulation and set its units. Add both
stars to the simulation with their masses,
positions, and velocities. Compute the or-
bital parameters of one star relative to the
other using Rebound. Finally, return the
apoastron, the maximum separation along
the orbit.

-

area swept over time apo
Calculate, at apoastron, the
rate of area swept per unit
time by the imaginary line
joining star1 to star2.

Calculate relative positions and velocities
between the two stars using finite differ-
ences then compute the specific angular mo-
mentum vector and half its magnitude. For
verification, initialize a Rebound simula-
tion, add the stars, and obtain the specific
angular momentum from the simulation.

Kepler’s 2nd law: the rate of area swept is
half the specific angular momentum of the
system given by h =

√
h2
x + h2

y + h2
z with

hx = y ·vz−z ·vy , where (x,y) is the orbital
plane.

avg distance COM star1
Calculate the time-averaged
distance between star1 and
the COM over a single orbit.

Calculate the stellar masses along with the
orbital period and the time of pericenter
passage. Isolate a single orbit by filtering
the data between the pericenter passage and
one period later. Calculate the distance be-
tween star1 and the COM during this orbit.
Finally, integrate the distance over time and
divide by total time to get the time-averaged
distance. Return this value.

COM: center of mass. The dis-
tance between star1 and the
COM is given by dstar1 =√
(xstar1 − xCOM)2 + (ystar1 − yCOM)2 + ...,

with xCOM = m1·xstar1+m2·xstar2
m1+m2

. Analogous
equations can be written for yCOM and
zCOM.

14



Gravity-Bench-v1: A Benchmark on Gravitational Physics Discovery for Agents

is bound
Determine whether the sys-
tem is gravitationally bound
(True) or unbound (False).

Compute the velocity magnitudes for both
stars. Calculate the gravitational potential
energy (U) using the separation between
the stars and their masses. Calculate the
kinetic energy (K) using the squared veloc-
ities and masses. Compute the mean ki-
netic and potential energies over the dataset.
Check whether the total energy (K + U) in-
dicates a bound system. Return True if the
system is bound.

Unbound system: K + U > 0, adopting the
usual notation of zero potential energy at
infinite separation.

kepler third law
Determine if Kepler’s third
law is satisfied. Answer:
True if Kepler’s third law is
satisfied, and Answer: False
if it is not.

Calculate the stellar masses, periods, and
semimajor axis. Compute the ratio P 2/a3

from the data and compare it to the theo-
retical value: 4π2

G(m1+m2)
. If the percentage

difference is less than 0.1%, return True.

Kepler’s Third Law: the squares of the or-
bital periods of the planets are directly pro-
portional to the cubes of the semi-major
axes of their orbits.

linear drag
This system experiences a
drag given by acci =
−vi/τ ı̂ for the i-direction,
where acc is the accelera-
tion, v is the velocity, and
τ a timescale. Calculate the
value of the coefficient of lin-
ear drag, τ , for the system.

Calculate the separation between the stars
using their 3D coordinates. Identify the
peaks (apoastron) and troughs (perias-
tron) in the stellar separation data using
scipy.signal.find peaks. Ensure both arrays
(peaks and troughs) have the same length
by truncating the longer one if necessary.
Compute the semi-major axis for each orbit
by averaging the apoastron and periastron
distances. Find the average time for each or-
bit by averaging the times corresponding to
the peaks and troughs. Define an exponen-
tial decay function to model the semi-major
axis as a function of time: a(t) = a0 ×
exp(−2t/τ). Use scipy.optimize.curve fit
to fit this model to the semi-major axis data
and extract τ .

-

max angular velocity star1
Calculate the maximum
value of angular velocity for
star1 over the orbit.

Calculate the velocity vector v of star1 and
the magnitude of the 3D stellar separation
r . The angular velocity vector of star1 is
then given by ω = r1×v1

r2 . Finally, return
the maximum of the resulting array.

This can be retrieved for verification from
Rebound using the specific angular momen-
tum h: ω = h

r2

max momentum star1
Calculate the maximum lin-
ear momentum for star1 over
the orbit.

Calculate the mass and the velocity magni-
tude of star1. Calculate the linear momen-
tum array as the mass × velocity. Return
the maximum of the array.

-

modified gravity power law
This system is governed by
an alternative law of gravita-
tion where the r dependence
is r−(2+α) where alpha rep-
resents the deviation from
Newton’s inverse square law.
Calculate α.

Calculate the stellar separation magnitudes
and the total acceleration of one of the stars.
Take the logarithm of both separation (r)
and acceleration (a). Fit a linear function to
log(a) vs log(r), but only for: Separations
above the median separation and data points
without outliers (using MAD-based outlier
removal). The slope of this fit gives us -(2 +
α), so α = |slope| − 2

Out-of-distribution example where the or-
bits are effectively precessing. In reality
FG ∝ r−2, and thus other exponent values
are unlikely to be present in pre-training
data.
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multiply mass period
Determine the factor X
by which the central mass
should be multipled for the
orbital period of the system
to be 21 days. You can
assume the central mass is
star1 which is much more
massive than star2.

Compute the average period P of the sys-
tem. Calculate and return the factor X us-
ing Kepler’s Third Law: X =

(
P
21

)2 -

orbital area
Determine the total area en-
compassed by the orbit of the
system.

Calculate the stellar semimajor axis a and
eccentricities. Then calculate the semimi-
nor axis and finally the area. For verifica-
tion, set up a Rebound simulation object.
Add the two stars to the simulation, specify-
ing their masses, positions, and velocities.
Retrieve the orbital elements of one star
(with the other star as the primary). Ex-
tract the semi-major axis a and eccentricity
e from the orbit. Calculate the semi-minor
axis b as b = a ×

√
1− e2. Compute and

return the total area of the orbit.

The formula for the total area of an ellipse:
A = π × a× b.

orbital area star2
Determine the total area en-
compassed by the orbit of
star2.

Same as above, but with A = π × a2 × b2. -

roche lobe radius
Determine the Roche lobe ra-
dius of star1.

Start by calculating the stellar masses and
total semimajor axis. The Roche lobe radius
RL of star1 can be calculated as: RL1 =

0.49·q2/3
0.6·q2/3+ln(1+q1/3)

·atot where q is the mass
ratio of the stars.

Approximate formula from Eggleton
(1983).

specific angular momentum
Determine the specific angu-
lar momentum of the system.

Find relative positions and velocities be-
tween the two stars. Calculate the specific
angular momentum by computing the cross
product of relative position and velocity
vectors, then find its average magnitude.
For verification, set up a Rebound simu-
lation. Add both stars to the simulation
with their masses, positions, and velocities.
Retrieve the orbital parameters of star2 rela-
tive to star1 and extract the specific angular
momentum.

The specific angular momentum is h⃗ = r⃗×
v⃗
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travel time orbital 20per path
Calculate the time needed
for star1 to travel 20% of
the distance along its orbital
path.

Calculate the orbital period and time of peri-
center passage. Isolate the data correspond-
ing to one complete orbit by selecting the
rows between the pericenter passage and
one full period later. Next, calculate the
changes in the true anomaly and the radial
distances and their differences. Use the for-
mula for arc length in polar coordinates to
compute the arc length for each time step:

ds =

√
r2 +

(
dr
dν

)2 · dν. Sum these arc
lengths to get the cumulative path distance
along the orbit. The total perimeter of the
orbital path is the last value of this cumula-
tive sum. Set a target distance correspond-
ing to 20% of the total perimeter, and find
the index where the cumulative path dis-
tance is closest to this target. Finally, return
the time difference between this point and
the time of pericenter passage.

-

virial theorem
Determine if the Virial The-
orem is satisfied in this sys-
tem. Answer True if the
Virial Theorem is satisfied or
False if it is not.

Calculate the distance between the two stars
using their 3D positions, and compute the
gravitational potential energy for each time
step.
Compute the velocities of both stars by tak-
ing the gradient of their positions with re-
spect to time, and then calculate the kinetic
energy for each star.
Compute the mean kinetic (K) and potential
(U) energies over the entire orbit. Accord-
ing to the Virial Theorem, for a system in
equilibrium, 2K + U = 0. Check if the
absolute value of 2K+U is within 0.1% of
the absolute value of U. Return True if it is.

-

C. Choosing task-specific thresholds for budget-obs
We define task-specific thresholds to evaluate agent solutions derived from a 100 observation budget. These thresholds are
based on the performance gap between our expert reference solution (using full simulation data) and the same solution but
using a non-strategic observation approach with 100 uniformly sampled time points.

To establish these thresholds, we first calculate the percent difference between expert-ref-100 and expert-ref(full-obs) for
each simulation-task pair. As shown in Figure 5, each black dot represents this difference for a specific pair, grouped by task.
Red horizontal lines indicate our final thresholds, set to reflect typical performance for each task category.

Tasks that rely on global trends, such as determining the orbital period, are easily solved by uniform sampling and therefore
receive strict thresholds. In contrast, tasks that are harder to solve with only 100 observations receive more lenient thresholds.
These might require, for example, precise knowledge of local features, such as finding the maximum velocity of a star.

For particularly challenging tasks where uniform sampling fails dramatically (e.g., modified gravity exponent estimation
showing >1000% error), we set a reasonable threshold (e.g. 70%) and validate that it is achievable through expert observation
strategies. For instance, we validate that modified gravity exponents can be determined to within 2% accuracy through
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Figure 5. Finding task-specific thresholds based on expert solutions performance without planning (expert-ref-100) Each black dot
represents the absolute percent difference (relative to a solution with access to the full simulated data) for simulation-task pairs grouped
by task, using 100 uniformly spaced observations. Scenarios yielding large differences (e.g., 30-100% or more) show that naive uniform
sampling is inadequate as a planning strategy. Red horizontal lines mark the final success threshold we choose for each task, that we use
for all the simulations that task is based on.

strategic physics-informed sampling.

D. Another case study on planning
One task in Gravity-Bench involves finding the periastron distance, the closest approach between two stars in their orbit.
This becomes especially difficult for one of our simulation with a single highly elliptical orbit, where the stars spend less
than 2% of their orbital period near this closest point (Figure 2). Our uniform sampling baseline (expert-ref-100) misses this
narrow window completely, resulting in a 72% error. As shown in Figure 6, AI agents typically fixate on an early orbital
phase containing a close (but non-minimal) separation, missing the true periastron that occurs later in the orbit.

Expert-level solutions with strategic planning can solve this task through initial broad sampling to identify potential regions
that contain the minimum separation of stars, further analysis of the two closest regions: the start and end of the orbit,
focused refinement on the late-orbit phase which shows tighter separations, and iterative sampling around the minimum.
This approach achieves 2% accuracy using just 50 observations, compared to the 93% error from uniform sampling. We set
a 5% success threshold for this task, reflecting both the expert solution’s performance and the easier variants present in other
simulations.

E. Mass assumptions
Table 3 highlights a consistent pattern across evaluated models: solutions that shortcut the derivation and incorrectly assume
stellar masses (e.g. setting both masses to 1.0) correlate strongly with incorrect answers. In every model we test, a larger
fraction of incorrect responses rely on these arbitrary mass assumptions than correct ones. GPT-4o shows the largest gap,
indicating it is particularly prone to incorrectly assuming the stars have equal mass or a mass equal to 1 gram or kg (what
one might call a science hallucination). A small fraction of correct responses also contain mass assumptions, suggesting that
occasionally these shortcuts coincidentally lead to the right solution, but this behavior avoids a principled approach to solve
these problems.
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Figure 6. Comparison of uniform and expert observation strategies for finding the closest approach of the stars in a highly elliptical
single-orbit system. The plots show the separation of the stars over simulation time. The left panel (Claude 3.5 Sonnet) samples at a
sparse, uniform grid of times, missing the narrow periastron window near the end and yielding a distance over 93% larger than the true
minimum. By contrast, the expert solution (right) first samples broadly, then zooms into the first and last parts of the orbit, then decides to
continue refining observations in the last part of the orbit. This adaptive strategy locates the periastron to within 2% accuracy using the
same observation budget. Circles mark observations, with brighter hues indicating later observations.

Table 3. Prevalence of unjustified mass assumptions in model solutions Analysis of 122 mass-dependent solutions shows AI models
frequently assume stellar masses rather than calculating them. Percentages show how often these shortcuts appear in incorrect vs. correct
solutions when using full observational data. Mass assumptions were identified by the following patterns: center-of-mass calculation
“(df[’star1 x’] + df[’star2 x’])/2” and explicit mass assignments: (“star1 mass = 1.0”, “star2 mass = 1.0”,
“m1 = m2”, “m1 = 1.0”, “m2 = 1.0”, etc.). Results for other models are averages of three runs.

% of incorrect solutions % of correct solutions
that include a mass assumption that include a mass assumption

claude-3-5-sonnet-20241022 24.6 ± 2.6 (23/94) 9.8 ± 2.5 (2/27)
claude-3-5-haiku-20241022 25.9 ± 3.6 (26/100) 18.5 ± 2.7 (4/21)
gpt-4o-2024-11-20 33.0 ± 4.8 (32/97) 9.3 ± 2.7 (2/25)
gpt-4o-mini-2024-07-18 22.1 ± 0.6 (22/99) 9.0 ± 2.6 (2/22)
o4-mini-high-2025-04-16 28.6 ± 6.5 (11/39) 12.1 ± 0.5 (10/82)

19



Gravity-Bench-v1: A Benchmark on Gravitational Physics Discovery for Agents

F. Prompt Templates
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Prompt for budget-obs-100

You are tasked with solving the following physics problem related to a binary star
system. You are provided observations of each star’s position over time,
(t,x,y,z), in units of seconds and meters.

### Problem Description
Determine the total energy (K + U) for the system in joules.
You must provide your answer in units of J.

### Additional Instructions
To complete this task, you have access to the following tools and data:
1. An observational tool called ‘Observe‘ that allows you observe the system at
specific times of your choosing.
2. A code interpreter that can execute Python code.

When using ‘Observe‘:
1. The ‘times_requested‘ parameter should be a list that can contain any values in

the time window [0.0, 7.21e+09] seconds. You cannot request negative times. The
upper limit for the time window was chosen to guarantee that the problem is
solvable with an appropriate sampling of observations using the total
observational budget.

2. You can observe the system at any time within the time window, even if it is in
the past compared to the last observation.

3. You can observe the system up to a total of 100 times and you can observe up to
10 times per observational request which is the maximum length of the
‘times_requested‘ list.

4. After each observation, the dataframe ‘row_wise_results.df‘ will be updated. It
contains columns: time, star1_x, star1_y, star1_z, star2_x, star2_y, star2_z.
You can access it using the code interpreter tool. For example, to access the
first five rows, print(row_wise_results.df.head(n=5))

When using the code interpreter:
1. Always use print() to display results.
2. Do not use read_csv or attempt to load the DataFrame, as it is already pre-loaded
Important reminder: Repeated tool access is enabled until you have found the answer

and have submitted it with the ‘submit_answer‘ tool.

Prompt for full-obs

You are tasked with solving the following physics problem related to a binary star
system. You are provided observations of each star’s position over time,
(t,x,y,z), in units of seconds and meters.

### Problem Description
Determine the apoastron of the system’s orbit.
You must provide your answer in units of m.

### Additional Instructions
To complete this task, you have access to the following tools and data:
1. A DataFrame ‘df‘ containing columns: time, star1_x, star1_y, star1_z, star2_x,

star2_y, star2_z.
2. A code interpreter with ‘df‘ pre-loaded that can execute Python code.

When using the code interpreter:
1. Always use print() to display results.
2. Do not use read_csv or attempt to load the DataFrame, as it is already pre-loaded
Important reminder: Repeated tool access is enabled until you have found the answer

and have submitted it with the ‘submit_answer‘ tool.

Figure 7. Exact agent prompts used in the two evaluation regimes. The first box applies when the agent is limited to a budget of 100
observations (budget-obs-100), the second when the agent receives the complete table of observations (full-obs). Two example
problem descriptions are shown.
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