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Abstract: The automatic analysis of medical data and images to help diagnosis has recently become a
major area in the application of deep learning. In general, deep learning techniques can be effective
when a large high-quality dataset is available for model training. Thus, there is a need for sample-
efficient learning techniques, particularly in the field of medical image analysis, as significant cost
and effort are required to obtain a sufficient number of well-annotated high-quality training samples.
In this paper, we address the problem of deep neural network training under sample deficiency by
investigating several sample-efficient deep learning techniques. We concentrate on applying these
techniques to skin burn image analysis and classification. We first build a large-scale, professionally
annotated dataset of skin burn images, which enables the establishment of convolutional neural
network (CNN) models for burn severity assessment with high accuracy. We then deliberately set
data limitation conditions and adapt several sample-efficient techniques, such as transferable learning
(TL), self-supervised learning (SSL), federated learning (FL), and generative adversarial network
(GAN)-based data augmentation, to those conditions. Through comprehensive experimentation, we
evaluate the sample-efficient deep learning techniques for burn severity assessment, and show, in
particular, that SSL models learned on a small task-specific dataset can achieve comparable accuracy
to a baseline model learned on a six-times larger dataset. We also demonstrate the applicability of FL
and GANs to model training under different data limitation conditions that commonly occur in the
area of healthcare and medicine where deep learning models are adopted .

Keywords: self-supervised learning; federated learning; data augmentation; medical image analysis;
burn severity

1. Introduction

Deep learning technology has been applied in various situations in the field of im-
age analysis and classification. Medical image analysis is recognized as an important
application of deep learning. However, due to the associated high costs (e.g., labeling by
domain experts) and complex security aspects of clinical data (e.g., privacy implications
and regulation), deep learning-based medical image analysis has not yet been fully adopted
in practice.

Recently, there have been increasing attempts to develop sample-efficient deep learn-
ing techniques and to apply them in the field of medical image analysis where it is difficult
to obtain a sufficiently large training dataset. For example, the the authors of [1] employed
self-supervised learning (SSL) to achieve high accuracy in skin lesion classification. In
general, SSL-based approaches establish pretrained models using unlabeled datasets, which
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can be transferred to a specific task using a small amount of labeled data. Unlike SSL,
federated learning (FL) focuses on leveraging labeled data from multiple clients to over-
come the data limitation conditions of a single client, while supporting privacy-preserving
distributed operations on model training. In [2], the Auto-FedAvg approach is described
which addresses strict regulation and privacy issues of clinical data by adopting model
federation among multiple medical institutions. In contrast to conventional deep learning,
for which locally owned data needs to be integrated into a single dataset for model training,
in FL, each institution individually conducts local model training on its own data and shares
only its local model with a central server or other institutions. That is, the union of locally
trained data corresponds to an entire training dataset; however, union operations are not
conducted on training data but, instead, on model parameters among multiple FL clients.
There have also been a number of studies utilizing synthetic data for deep-learning-based
medical image analysis [3–7].

In this paper, we apply these sample-efficient deep learning techniques to develop an
inference model for burn severity assessment, which achieves high diagnostic accuracy
for distinct degrees of severity under limited training dataset conditions. Burns affect
many people every year; for instance, it has been reported that about 1.1 million patients
suffered from burn injuries in the United States, and that thousands of deaths resulted
from burn injuries and burn-related infections [8]. According to Korean national health
insurance service records, each year in South Korea, about half a million people receive
burn treatment. A burn injury destroys human skin and adjacent tissues and requires
suitable clinical treatment depending on its intensity and severity. A timely and correct
diagnosis of burn injuries is recognized as an important factor for patient treatment and
recovery [9].

For burn severity assessment, we sought to develop an accurate classification system
that would enable assessment of burn-related skin images by learning to extract important
features from the images, thereby enabling highly accurate and timely diagnosis based
on a single image. To achieve such a high-accuracy model, we first built a dataset of
skin burn images, which was sufficiently large to produce convolutional neural network
(CNN)-based high-accuracy models through conventional supervised learning. From a
deep learning process perspective, it is crucial to establish a high-quality, large-scale dataset
in which diagnosis information provided by experienced medical practitioners is used as
ground-truth labels. We obtained such a dataset of burn images with diagnostic information
through research cooperation with one of the largest medical institutions dealing with
burns in South Korea.

We then trained our target models by adopting sample-efficient deep learning tech-
niques and evaluated the model performance. In the evaluation, we deliberately assumed
limited dataset conditions and utilized only a small number of training samples (i.e., no
more than tens or hundreds of burn images). Our experimental setting was intended to
assess the feasibility of sample-efficient deep learning techniques in the context of medical
image analysis with data limitations. For this purpose, we used the task of burn severity
assessment as the subject of our empirical study.

Specifically, we compared the performance of sample-efficient deep learning models
to that of a CNN model learned on the entire dataset (i.e., our sample-sufficient baseline
model), to determine whether or not sample-efficient models trained with a small part
of the dataset could achieve comparable performance to the sample-sufficient baseline.
For example, our SSL-based method utilized a pretrained SSL model (i.e., simCLR [10]),
obtaining high accuracy comparable to the sample-sufficient baseline, even when only
16% of the entire dataset was used; the method achieved high sample-efficiency, showing
comparable accuracy to a baseline model learned on a dataset six-times larger.

To the best of our knowledge, our work has been the first to implement and evaluate
sample-efficient deep learning techniques with real-world burn injury data. The main
contributions of this paper are as follows.
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• We present sample-efficient deep learning models for burn severity assessment using
various techniques. Through extensive experiments, we demonstrate the feasibility of
these sample-efficient models with limited training data.

• We build a large dataset containing 13,715 burn images with professionally annotated
information, on which not only the high-accuracy burn severity assessment model
is trained but also various limited data conditions can be emulated to evaluate the
sample-efficient models.

• We discuss the dataset conditions under which sample-efficient deep learning tech-
niques can be productively applied.

The remainder of this paper is organized as follows: The details of the burn severity
assessment task, including its datasets and baseline models, are described in Section 2.
Several deep learning techniques for limited training data conditions are explained in
Section 3. The experimental results for these sample-efficient techniques using burn injury
datasets are provided in Section 4. Finally, the study conclusions are presented in Section 5.

2. Burn Severity Assessment

In this section, we describe the problem of burn severity assessment by which a burn
image is analyzed and classified into different types.

2.1. Burn Image Dataset

Burn severity is categorized into different types according to the intensity and depth
of burn injury elements: superficial partial thickness, intermediate partial thickness, deep partial
thickness, full thickness, and normal. Each type of burn is defined as follows: (1) superficial
partial thickness involves the epidermis and superficial dermis; (2) deep partial thickness
involves the epidermis and deeper dermis; (3) full thickness burns destroy the epidermis
and dermis; and (4) intermediate partial thickness refers to when it is difficult to determine
whether a burn injury is superficial partial or deep partial. It is often non-trivial, even for
professionals, to distinguish between superficial partial and deep partial thickness, and, in
that case, some burn injuries need to be judged again after a certain period of time. Thus, it
is important to judge the burn severity as intermediate partial thickness first and to make a
more accurate diagnosis later. The samples of different burn types are presented in Figure 1,
where different characteristics for the burn types appear in their images.

As there is no publicly available large burn image dataset that can be used for training
burn-related prediction models, we processed numerous burn images and normal skin
images collocated from multi-year burn-related medical records. For these, we collaborated
with the Bestian Hospital (http://eng.bestianseoul.com/specialized-center/about-the-
burn-center/, accessed on 1 June 2022), one of the largest professional burn hospitals
in South Korea. Figure 2 illustrates how burn images are professionally annotated with
bounding boxes around injuries and their labels in burn types, for which a GUI-based data
annotation tool, the Jonathan Marker (https://jonathan.acryl.ai/marker, accessed on 1 June
2022) has been used. The tool supports data labeling of different media formats, such as text,
images, and video, and enables quality control over data creation pipelines. For each image,
a bounding box on the burned area was drawn and labeled by professionals using the tool.
For each annotated burn image, a team of three professionals verified its correctness.

In this way, we established a high-quality, large dataset of 13,715 annotated burn
image samples that were recorded from outpatients and inpatients during the period from
March 2013 to April 2019. We also collected normal skin images that had no annotation.
Table 1 illustrates the statistics of the dataset; we used 1700 images for each burn type (i.e.,
normal, superficial partial, intermediate partial, deep partial, and full thickness) in the
training dataset and the other images in the test dataset. We intentionally used a subset
of the training dataset (i.e., only using 20, 40, 60, . . . , 170 samples for each burn type) to
emulate limited data conditions, as we focus on those problems in practice.

http://eng.bestianseoul.com/specialized-center/about-the-burn-center/
http://eng.bestianseoul.com/specialized-center/about-the-burn-center/
https://jonathan.acryl.ai/marker
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(a) Normal (b) Superficial partial (c) Intermediate partial

(d) Deep partial (e) Full thickness

Figure 1. Burn samples with different levels of severity: compared to (a) Normal skin that has
no specific features, (b) Superficial partial thickness and (c) Intermediate partial thickness appear
pink and red, respectively, and furthermore (c) appears to have blisters; (d) Deep partial thickness
appears to involve the epidermis and deeper dermis, including some yellow areas related to the
deeper dermis damage; (e) Full thickness appears black and dark brown, involving subcutaneous
structure-relevant features.

x1 : 260 
Y1 : 354
x2 : 545
y2 : 660

+
class : 

deep partial

Figure 2. Burn data annotation: the burn injury area is bounding-boxed and annotated by profes-
sionals; it is classified as deep partial thickness, considering some white regions related to the deeper
dermis damage.

Table 1. Statistics of burn severity dataset: We set the training dataset to have 1700 images for each
burn type and deliberately used only a subset of the training dataset for emulating sample-limited
training conditions. We included other images than the training samples for the testing dataset. The
entire dataset consists of the training and test datasets, and its size (except for normal skin images in
the table) is 13,715.

Dataset Normal Super. Inter. Deep Full

Training dataset 1700 1700 1700 1700 1700
Test dataset 2779 2033 1770 2386 726
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2.2. CNN Models

Deep learning techniques have made significant achievements in image classification
for diagnosing skin diseases, e.g., the CNN-based classifier for skin diseases [11], the
transfer learning-based skin cancer detector [12], and deep learning-based skin lesion clas-
sification [13]. In this research, given the dataset of skin burn images, we employed CNNs
for burn severity assessment, as they are known to be superior in image recognition tasks
and their pretrained knowledge on large image datasets can be transferred to other tasks,
including the analysis of various types of medical images [14,15]. We used ResNet-152 [16],
a 152-layer large network variant of ResNet models which have proven high performance
in several medical image analysis studies, e.g., burn classification and segmentation [17–19],
skin cancer classification [20], CT image improvement [21], and chest X-ray diagnosis [22].
We also note that a pretrained model of ResNet-152 is publicly available and easy to use.
Furthermore, as ResNet-152 is commonly used without significant modification for several
sample-efficient deep learning techniques which are described in the next section, we
evaluated the techniques in a consistent manner for the same deep learning structure.

We set the performance achieved by ResNet-152 as our comparison baseline. For the
baseline reference, a ResNet-152 model was trained from scratch on our entire dataset,
as shown in Table 1. We also utilized the pretrained ResNet-152 model for which the
knowledge was transferred to our burn severity assessment tasks through model fine-
tuning with a small number of burn images in the dataset. Unlike end-to-end training from
scratch, in transfer learning (TL), the parameters of a pretrained model, except for those in
the last layers, are usually retained and not updated. Fine-tuning was used with a small
number of samples to update the last layers only to achieve some degree of adaptation,
while exploiting the pretrained knowledge. This TL procedure enables rapid domain
adaptation between image recognition tasks [23,24].

A pretrained model of ResNet-152 can be established using the ImageNet dataset [25]
which contains over 14 million images and is applied as a well-initialized network for
task-specific learning, burn severity assessment in our case. In TL, we modified the head
(the upper fully connected layer) of a vanilla ResNet-152 structure according to the burn
classifications, initializing it using the Kaiming uniform initialization [26].

3. Methods

In this section, we describe several sample-efficient learning techniques, including
SSL, FL, and generative adversarial network (GAN)-based data augmentation, which can
be used to achieve a more accurate prediction model for burn severity assessment under
limited data conditions.

3.1. Self-Supervised Learning

Similar to TL as previously described, SSL is used to create a pretrained model which
can be used as a well-initialized model for further target task-specific learning. However,
unlike TL, where the pretraining requires a large number of labeled samples, which are not
sufficiently available most of the time in many fields, such as medicine, the pretraining in
SSL does not require labeled samples.

In principle, the SSL-based approach involves a two-stage learning process. In the
pretraining stage, a set of unlabeled images is used to build a pretrained model, and in
the training stage (i.e., downstream task learning), a set of labeled burn images, with
professionally annotated diagnosis information, is used to adapt the pretrained model.
Specifically, we tested two different methods that explore SSL: (1) using a publicly available
SSL-based pretrained CNN (SSL-imn) and (2) performing SSL from scratch with unlabeled
skin images (SSL-burn). Both methods rely on a contrastive visual learning framework
simCLR [10] in which a model is first trained through unsupervised contrastive learning
with data augmentation and transformation to learn general representations, and then it is
fine-tuned on a task-specific labeled dataset.
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In SSL-imn, we used the publicly available pretrained simCLR model based on the
ImageNet dataset, which was treated as the starting point for our downstream task learning,
burn severity assessment. In SSL-burn, we also created a pretrained simCLR model through
contrastive learning on our own unlabeled (unannotated) skin images. This method exploits
contrastive loss to learn general representations of skin images through the agreement
among differently augmented images from the same input image as well as the distinction
among those from different images. In both methods, we used only a small amount of
labeled (annotated) burn images to fine-tune the pretrained simCLR model for our task.

The two methods consider limited data conditions differently in terms of the availabil-
ity of labeled and unlabeled data. More specifically, SSL-burn is intended to incorporate
unlabeled images into the pretraining stage, focusing on commonly observed situations in
the field of medicine where many medical images are not annotated but stored as part of
medical records. SSL-burn can be seen as semi-supervised learning [27], as it makes use
of both a large amount of unlabeled images in representational pretraining and a small
amount of labeled burn images in task-specific learning to ensure accurate burn diagnosis
capability. As such, SSL-burn is considered suitable when a large quantity of unlabeled
images can be used.

Figure 3 shows the building blocks in simCLR for the case of SSL-burn where unlabeled
skin images are used and augmented for contrastive learning. The encoder learns a function
that encodes each image into an embedding vector. For an image x, its positive pairs xi
and xj have similar embeddings, obtaining hi ≈ hj. We generate these positive pairs by
applying transformation functions listed in Section 3.3 on x. (1) The encoder and project
head are learned to minimize their contrastive loss, i.e., the cosine similarity of latent
vectors zi and zj in our implementation. In this pretraining, negative pairs for x are also
used, which are generated by the same augmentation functions but on different images
other than x. The contrastive loss among those samples augmented from different images
is also used for learning. After the contrastive learning, (2) the encoder and linear head are
fine-tuned on a dataset of labeled burn images through supervised learning to conduct the
burn severity assessment task.

Augmentation
xi

xj

Augmentation

hi

hj

zi

zj

① Update weights 

Linear

Head

①
Maximize 

Similarity

② Maximize 

Accuracy

Label

② Update 

weights 

Encoder
Projection 

Head

Figure 3. Burn severity assessment based on simCLR [10]: the upper procedure marked with 1©
denotes self-supervised pretraining on unlabeled images, and the lower procedure marked with 2©
denotes task-specific supervised fine-tuning on labeled images.

3.2. Federated Learning

While deep learning is promising for image recognition in many fields, existing deep
learning models have, to date, only had limited application to medical images. Each
medical institution (e.g., hospital) manages its own medical records and rarely shares the
datasets with other institutions due to strict regulatory and privacy requirements as well
as the expensive process of expert-involving annotation. This data-silo structure makes
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it difficult to establish a sufficiently large dataset of training samples that are needed to
leverage traditional deep learning model architectures [28,29].

FL is intended to leverage the benefits of deep learning based on large datasets,
whilst meeting privacy-preserving requirements, by locally training a model without
sharing data among multiple learning clients. For example, in mobile device computing,
numerous mobile clients participate in the FL process to establish a high-performance
global model without sharing the locally collected privacy-sensitive data at the client
side with others [30,31]. Recently, n the field of medical image analysis, several studies
have demonstrated the feasibility of use of FL in various contexts, e.g., medical image
segmentation [2], COVID-19 screening [32], skin lesion classification [33], and paediatric
chest X-ray classification [34].

We applied FL to burn severity assessment, assuming a clinical system environment
in which each burn medical institution has only a small number of fully annotated burn
images and is able to train a model locally with its burn images. Specifically, we used a well-
known FL algorithm, FedAvg [31] in which a locally trained model by each FL client (each
medical institution) is aggregated via a central server that conducts weighted averaging on
the parameters of the models of FL clients. In FL, model aggregation from multiple clients
is iteratively conducted for continual model updates, where each aggregation period is
called a round.

Consider an FL process with K clients. At round t, a server sends its global model
(parameters) wt to the FL clients, which is updated on local data by each client k where
k = 1, . . . , K. Then, locally updated models wt+1

k are sent back to the server so that an
averaging operation is performed as

wt+1 =
1
K ∑

k=1, ..., K
wt

k (1)

where we assume the same number of epochs and the same number of training samples
across FL clients for simplicity.

With this FL process, the data is not shared among multiple medical institutions
and remains distributed, but the locally trained models are shared. When exploiting
their own data for model training, this allows medical institutions not only to migrate
the risk of security breaches from a technical perspective but also to ensure data asset
protection from a management perspective. Moreover, it enables the generalization of
trained models alongside more data samples from multiple medical institutions and less
restrictive diversity from multiple regions and demographic groups.

In our experiments, we deliberately split our burn image dataset into multiple partial
datasets to emulate a clinical environment in which the FedAvg algorithm can be adopted
for medical institutions with local data. A model was individually learned on local data at
each institution; all the model parameters were locally updated at each round and were
then globally aggregated and averaged through a cloud-based federated service to obtain a
global model with high accuracy.

3.3. Learning with Data Augmentation

To address the limited availability of training datasets for medical images, several
image augmentation heuristics have been tested in deep learning frameworks [35]. For
our burn image dataset, we tested the following image transform and augmentation
operations that are widely used and implemented in [36]. RandomBrightnessContrast
(RBC) changes brightness and contrast randomly; RandomGamma (RG) changes the
gamma value randomly; ColorJitter (CJ) changes the brightness, contrast, and saturation
randomly; ISONoise (ISO) applies camera sensor noise; GridDropout (DROP) drops out
rectangular regions of an image and the corresponding mask in a grid fashion; RandomFog
(RF) simulates fog on an image; ElasticTransform (ET) applies elastic distortion; and
GridDistortion (GT) applies grid distortion.
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Recently, GAN-based data augmentation approaches have been explored to create
synthetic images in various domains. They aim to increase the size and diversity of training
datasets and to mitigate the problems of class imbalance and sample deficiency in training
datasets. A vanilla GAN architecture includes two neural networks that are trained through
performing a minimax game in an adversarial way. A generator network (G) produces
synthetic images (i.e., x̂ = G(z) for random noise z) and a discriminator network (D) takes
those images as input to determine whether they are real or synthetic (i.e., D(x) = 1 for
real samples and D(x̂) = 0 for synthetic samples). The G and D networks are adversaries
in that G tries to minimize the following minimax (adversarial) loss function while D tries
to maximize it with a maximum log likelihood objective.

min
G

max
D

Ex[log(D(x))] + Ez[1− log(D(G(z)))] (2)

By exploiting GAN techniques, very diverse automatic image synthesis is system-
atically enabled. These techniques are considered promising to reduce the expensive
workloads that are required to annotate images professionally, especially for medical image
analysis tasks [37–39].

For burn image augmentation, we tested two well-known advanced GAN techniques,
CycleGAN [40] and StyleGAN [41], whose ability to synthesize high resolution images is of
great interest in a broad spectrum of medical image augmentation and imaging modalities,
e.g., synthesizing cardiac MR images [42], high tissue contrast MR images [43], skin lesion
images [6,44], and brain CT images [45].

In the CycleGAN architecture, two GANs, where each GAN consists of a pair of
generator and discriminator GX , DX and GY, DY, are chained to support automatic image-
to-image translation (i.e., X to Y and Y to X) without paired image samples between two
different domains X and Y. Figure 4 shows the building blocks of CycleGAN used for
our burn image synthesis. Unlike conventional image-to-image translation models (e.g.,
pix2pix [46]) that require a dataset of paired samples, such as pairs of source images in X and
their corresponding target images in Y, the CycleGAN architecture additionally employs
a cycle consistency loss function [40] to support unpaired image-to-image translation.
Using the loss function defined below, the CycleGAN enforces the generators GX and GY
learned to minimize the discrepancy between the source image x ∈ X (and y ∈ Y) and
its reconstructed image by the two generators x′ = GY(GX(x)) (and y′ = GX

(
Gy(y)

)
),

providing the automatic translation of input images in the domain X to target images in
the domain Y, and vice versa.

min
GX ,GY

Ex[‖GY(GX(x))− x‖1] + Ey[‖GX(GY(y))− y‖1] (3)

In our burn image augmentation scenario, we used normal skin images for the source
domain X to generate synthetic burn images of four different burn types corresponding
to the target domains Y, assuming a quite small dataset for those burn types. That is, the
augmentation was applied to transform a normal skin image into burn injury images with
a certain severity level. Thus, we built four CycleGAN models for four different burn types.
With these CycleGAN models, we evaluated their augmentation capability and utility for
limited datasets. A small set of annotated burn images in the target domain with a large
set of unannotated, normal skin images in the source domain can be used as a bootstrap
to expand the limited datasets and improve the performance of burn severity classifiers
learned on the expanded datasets. This approach could be promising when it is difficult
to build a sufficiently large dataset of paired images (in our case, paired images of burn
injuries and respective normal skins for different burn types) for data augmentation and
subsequent model training.
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Discriminator

DY

Generator GX

Real from

Source (Normal)

Fake(e.g., Deep partial)

Real from

Target (e.g., Deep partial)
Fake (Normal)

Reconstructed (Normal)

Reconstructed

(e.g., Deep partial)
Real

Fake

Real

Fake

Generator GY

Discriminator

DX

𝐿𝐺𝐴𝑁 𝐺𝑋, 𝐷𝑌, 𝑋, 𝑌
𝐿𝐺𝐴𝑁 𝐺𝑌 , 𝐷𝑋, 𝑋, 𝑌

𝐿𝑐𝑦𝑐 𝐺𝑋, 𝐺𝑌, 𝑋, 𝑌

𝐿𝑐𝑦𝑐 𝐺𝑋, 𝐺𝑌, 𝑋, 𝑌

Figure 4. Burn image synthesis based on CycleGAN [40] with two GANs (Gx, Dx and Gy, Dy):
Lcyc denotes the cycle consistency loss in Equation (3) and LGAN denotes the adversarial loss in
Equation (2).

Among several style-based GANs, StyleGAN exploits the benefits of progressive
GANs [47] that involve initial learning on low resolution images via a simple neural
network and incrementally increase the number of layers in the network for better quality
and higher resolution. StyleGAN is now considered to represent a state-of-the-art GAN.

Figure 5 depicts the building blocks of StyleGAN used for our burn image synthe-
sis with different burn types. In the StyleGAN architecture, the generator network is
specifically extended to include a mapping function that maps a latent vector (z) to the
intermediate latent space (w), while the discriminator architecture is not modified. This
structural extension enables control of the style at every level in the generator (synthesis
network), combined with injected noise (N) at every level.

Discriminator

D
Real

Fake

AUG

AUG

Real (e.g., Deep partial) Augmented

Real

Augmented

Fake

Fake (e.g., Deep partial)

Mapping 

Network

Synthesis

Network G

Latent z

w

Noise N

𝐿𝐺𝐴𝑁(𝐺, 𝐷, 𝑋, ෩𝑊,𝑁)

const

block0

block1

block2

blockn

Figure 5. Burn image synthesis based on StyleGAN [41]: the generator structure is extended to
include a mapping network and synthesis network to control the image synthesis process, while the
discriminator is the same as a conventional GAN.

4. Results

In this section, we evaluate the performance of sample-efficient deep models for burn
severity assessment under various data limitation conditions. Our model implementation
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is based on Python v3.7, PyTorch v1.6.0 [48] and PyTorch-geometric [49], and several open-
source projects for ResNet (ResNet-152: https://github.com/pytorch/vision, accessed on
1 June 2022, simCLR (simCLR: https://github.com/sthalles/SimCLR, accessed on 1 June
2022, https://github.com/Separius/SimCLRv2-Pytorch, accessed on 1 June 2022), Cy-
cleGAN (CycleGAN: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix, ac-
cessed on 1 June 2022), and StyleGAN (StyleGAN: https://github.com/NVlabs/stylegan2
-ada-pytorch, accessed on 1 June 2022).

4.1. Baseline and TL

To set the baseline performance by a model learned on our training dataset, we tested
a vanilla ResNet-152 network trained from scratch. For performance evaluation, we used
model accuracy (i.e., correct predictions

all predictions ) for the test dataset.
Figure 6 shows the accuracy of the vanilla ResNet-152 and TL models with respect

to various sizes of labeled datasets used in training. We used the performance of vanilla
ResNet-152 as a baseline for comparison with other sample efficient models. As expected,
the larger the dataset, the better the model accuracy. For example, the baseline model
learned on a small dataset of 20 samples per class (for short, dataset20) yielded 44.5%, and
the model learned on a large dataset of 1700 samples per class (dataset1700) yielded 73.3%.
In the following, we use term datasetK where K denotes the number of samples per class.

20 40 60 80 100 120 140 170 340 510 1700
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Figure 6. Baseline and TL performance: the graph shows the model accuracy (on the Y-axis) of the
vanilla ResNet-152 (baseline) and TL models learned on labeled datasets in various sizes, where the
number of training samples per class (burn type) is denoted on the X-axis. For example, 20 and 40
on the X-axis represent models learned on the datasets with 20 and 40 samples per burn type (e.g.,
superficial partial, intermediate partial, deep partial, full thickness, and normal), respectively.

As there is no publicly available burn image dataset, it is rarely possible to directly com-
pare model accuracy with that of other research studies on burn severity assessment. While
the intermediate partial thickness type is difficult for clinicians to correctly evaluate [50]
and affects the performance of burn severity assessment models, several studies [9,18,51]
have presented such models learned on datasets without much consideration of the in-
termediate partial thickness type. When we built and tested a model after removing the
samples of the intermediate partial thickness type from our dataset, we observed that our
baseline accuracy (i.e., 4-class classification) was no lower than 88%, which was much
higher than the baseline with the intermediate partial thickness type (i.e., 5-class classifica-
tion). There have been only a small number of studies processing burn image datasets with
the intermediate partial thickness type and training models on those datasets. In [17], a
dataset with different burn types, including the intermediate partial thickness type, was
used to train deep CNN models for time-independent burn type inference. The models
achieved quite high accuracy (e.g., average 73.8∼81.7% in Table 3 in [17]), which can be
considered slightly higher than our baseline performance. It should be noted that, as we

https://github.com/pytorch/vision
https://github.com/sthalles/SimCLR
https://github.com/Separius/SimCLRv2-Pytorch
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
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used our own burn image dataset and sought to adopt sample-efficient learning techniques
under data-limited conditions with the dataset, in our experiments, we did not consider it
important to compare model performance across different datasets.

We also evaluated TL models that exploited a pretrained ResNet-152 network built on
an ImageNet dataset. The TL models showed better accuracy than the respective baseline
models in most cases, e.g., 13.1% higher in dataset20 and 9.2% higher in dataset40. However,
this gap decreased for larger datasets. It is hypothesized that features relevant to burn
types were not fully extracted and represented by the pretrained model due to domain
differences between the burn images and diverse images in the ImageNet dataset. The
last layer parameter updates in TL might be sufficient to improve the accuracy of low-
performance models learned on small datasets. However, the margin of improvement
can be less significant for relatively large datasets. In dataset510, the gain of TL from the
baseline was small, increasing from 67.1% to 69.5%, and in dataset1700, it barely increased
and remained around 73%.

Overall, these results indicate the benefits of TL, particularly for small datasets; they
also clarify the limited capability of TL across different domains. The limited performance of
several TL models was attributed to the fact that fine-grained, skin-related features required
for burn classifications are rarely contained in publicly available pretrained models.

In the following, we concentrate on the data-limited environments in which models
are learned on small datasets, such as dataset20∼dataset170, and evaluate SSL, FL, and
GAN-based data augmentation techniques on these datasets.

4.2. SSL for Limited Labeled Data

Figure 7 shows the performance of SSL models, where (a) SSL-imn denotes the models
utilizing the pretrained simCLR on the ImageNet dataset, and (b) SSL-burn denotes the
models pretrained on unlabeled skin images. While these two simCLR models, SSL-imn
and SSL-burn, were pretrained on different unlabeled datasets, they were further trained
to be fine-tuned on the same datasets of labeled datasets of burn images via supervised
learning for various dataset sizes (i.e., dataset20, dataset40, and more, as shown on the
X-axis in Figure 7). We also tested two different model updating approaches, including
FT-all that updates the model parameters of all layers, and FT-last that updates only the
last layer model parameters.

As shown in Figure 7a, FT-all achieved better accuracy than FT-last for all the cases
in SSL-imn. The pretrained simCLR in SSL-imn was based on a large-scale, general image
dataset, ImageNet, and thus it incurred domain differences when training burn severity
assessment models. We also represent the baseline in Figure 6 in the dotted red line for
comparison. FT-all showed better accuracy than the baseline, while FT-last showed worse
accuracy than the baseline.

In Figure 7b, the SSL-burn models can be seen to show relatively robust accuracy
even for small datasets. Both FT-all and FT-last achieved close to 62.6∼68.1% accuracy
on dataset60 and dataset80. This was different from SSL-imn (in Figure 7a) where FT-last
showed relatively lower performance of about 48.2∼49.6% for the same datasets. This
highlights the benefits of SSL-burn which exploits burn image features in pretraining,
leading to fast adaptation with a small amount of labeled samples through fine-tuning on
entire model parameters.

Interestingly, as shown in Figure 7b, the accuracy of FT-all of SSL-burn started low
but increased rapidly alongside more samples, showing that the accuracy achieved by
FT-all and FT-last was reversed on dataset80. More importantly, FT-all on dataset80 yielded
comparable performance (i.e., 68.1% in accuracy) to the baseline on dataset510, indicating
the sample-efficiency of SSL-burn, such that the same level of accuracy to the baseline was
able to be achieved by only 16% of the samples, compared to what the baseline uses. In
other words, the SSL-burn model learned on a small dataset in data limitation conditions
achieved a comparable level of accuracy to the baseline learned on a six-times larger dataset
in our experimental settings. SSL-burn was pretrained on unlabeled skin images, and
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thus its transfer to burn severity assessment models remained in similar domains. Direct
comparison between SSL-burn and the baseline on the same dataset also highlighted the
sample-efficiency of SSL-burn, showing up to 16.3% and 14% accuracy improvement by
FT-last of SSL-burn on dataset20 and dataset40, respectively.
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(a) Pretrained SSL (SSL-imn)
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(b) SSL with burn samples (SSL-burn)

Figure 7. SSL performance: the graphs show the model accuracy (on the Y-axis) of the task-agnostic
pretrained simCLR (SSL-imn) in (a) and the task-specific simCLR pretrained on unlabeled skin images
(SSL-burn) in (b), respectively, with respect to the number of labeled burn samples per class (on
the X-axis) used for task-specific model training on the pretrained simCLR. FT-all denotes models
with updating of all model parameters of the pretrained simCLR, and FT-last denotes models with
updating of only the last layer model parameters of the pretrained simCLR. The dotted red line
corresponds to the baseline in Figure 6.

4.3. FL for Multiple Institutions

Here, we consider a common situation in the field of medicine where medical insti-
tutions individually manage their own medical records and do not share these records
with each other. To evaluate FL techniques in this situation, we built an FL simulation
environment in which a dataset was spitted to a group of FL clients. Specifically, we used
dataset1700 so that each FL client took a partial dataset of the same size as its training
dataset. For example, the FL group size was set to 20 by default, and in this default setting,
each FL client continuously processed a partial dataset of 85 samples per burn type, i.e.,
dataset85, for local model training.

Figure 8 shows the accuracy of the FL simulation over federation rounds with respect
to various group sizes in (a), and with respect to various numbers of epochs per round
in (b), where the performance of FL with the baseline model (without pretrained models)
is represented in solid lines, and that of FL with the pretrained model is represented in
dotted lines.

As shown in Figure 8a, when converged after certain rounds, FL with the base-
line model achieved about 67.7∼68.8% accuracy, slightly better than the baseline on
dataset60∼dataset170, showing 55∼61.6% in Figure 6. Note that we compared those on
dataset60∼dataset170 with FL models, since different group sizes in FL make each client
learn on a local dataset of about 57, 85, or 170 samples per burn type.

Similarly, FL with the pretrained model (denoted as (TL) in Figure 8a,b) with group
size 20 and number of rounds 14, achieved 68.8% accuracy, slightly better than the TL
model on dataset60∼dataset170 showing 60.8∼66.7% in Figure 6. It was observed that FL
with the pretrained model achieved relatively high performance even after the first round.
This was also consistent with the superiority of TL over the baseline, particularly for small
datasets, which exploits prior knowledge. Overall, these results verify the benefits of FL—
the performance of aggregate global models obtained through locally trained models can
achieve higher performance than individual local models on datasets of similar sizes.

In FL, the group size and the number of epochs per round are considered important hyper-
parameters affecting the performance achieved by global models [31]. As shown in Figure 8a,
the FL group of 10 clients, where each client has 170 samples per burn type, converged faster
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and culminated in better performance, compared to the others. We speculate that local training
on overly small datasets might negatively affect FL performance. In Figure 8b, it can be seen
that the number of epochs per round rarely affected the convergence of the FL models, but
an epoch number of 30 was associated with lower performance than the others.
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(a) Group size

2 4 6 8 10 12 14
Rounds

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Ac
cu

ra
cy

10 20 30 20 (TL)

(b) Epochs per round

Figure 8. FL performance: the graphs show the model accuracy (on the Y-axis) achieved according to
different group sizes in (a) and different epochs per round in (b), as federation proceeds in rounds
(on the X-axis). In (a), we tested different FL group sizes from 10 to 30, and in (b), we tested different
numbers of epochs per round from 10 to 30, where both default values were set to 20. We used the
same model as the baseline (the vanilla ResNet-152) for most cases, except for the case of 20(TL)
in dotted red lines that used the pretrained ResNet-152 with a group of 20 clients with 20 epochs
per round.

4.4. GAN-Based Data Augmentation

We tested several data augmentation techniques including GAN-based ones. Figure 9
shows the performance of baseline models on augmented datasets. For example, 80 on the
X-axis corresponds to the models for which the dataset (originally, dataset80) was doubled
in size by the conventional transformation methods described in Section 3.3. The models
learned on augmented datasets rarely showed better accuracy, compared to their respective
baseline models, except for RBC (RandomBrightnessContrast). While it might be difficult
for these conventional transformation methods to generate new images which contain
adequate relevant features about different burn types, RBC tends to enhance the color
characteristics of burn injury parts.
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Figure 9. Performance of data augmentation: the graphs show the model accuracy (on the Y-axis)
achieved through data augmentation by conventional techniques listed in Section 3.3 with respect to
the sizes of training datasets (on the X-axis). Each dataset is augmented to double the size.

In Figure 10, we represent the model accuracy acquired by GAN-based data augmen-
tation methods, where two GAN models are tested to augment datasets such as CycleGAN
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and StyleGAN. In this experiment, when training the GAN models, labeled burn images
were used restrictively. For example, with 80 on the X-axis (dataset80), the respective Cycle-
GAN and StyleGAN were learned on dataset80, as we focused on data-limited conditions.
In this way, we ensured our experimental conditions of limited training data such that each
GAN model was not exposed to more labeled burn images (the images of different burn
types except for normal skin images) than the corresponding burn severity models. We
observed performance gains by both GAN-based methods, compared to the baseline, with
a larger performance gain observed for CycleGAN than for StyleGAN. We also observed
that the gain increased for dataset120 and dataset170 more than for dataset80. This was
because the quality of synthetic images generated by the GAN models was dependent on
the quantity of samples.

80 120 170
The number of samples per class
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0.60
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0.70
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cu

ra
cy

baseline
StyleGAN
CycleGAN

Figure 10. Performance of GAN-based data augmentation models: the graphs show the model
accuracy (on the Y-axis) achieved through data augmentation by GAN models with respect to the
sizes of training datasets (on the X-axis). Each dataset is augmented to double the size.

In Figure 11, we represent the overall performance comparison among several sample-
efficient deep learning techniques. While they can be adopted and optimized differently ac-
cording to various conditions of limited datasets, we compared their accuracy on dataset170
as a representative case. Overall, the SSL models with pretraining on unlabeled images
and full layer fine-tuning (SSL-burn-all) showed better accuracy than the other models.
For example, SSL-burn-all on dataset170 achieved 70% while the baseline and TL models
achieved 61.6% and 66.7% on the same dataset, respectively. We also applied the CycleGAN-
based data augmentation on SSL-burn models (SSL-burn-all+CycleGAN), combining two
sample-efficient methods; each demonstrated advantages for improve model accuracy in
Figures 7 and 10, respectively. However, despite our expectation, we observed that this
rarely improved the model accuracy compared to the respective SSL-burn model. Synthetic
images by GAN can improve the model accuracy of low-performance models (e.g., the
baseline model), but they rarely do much for non-low-performance models. To generate
high-quality synthetic images by GAN techniques, which can improve the model perfor-
mance for burn image datasets, more research on GAN model optimization is required.
More investigation is needed especially for cases when the number of labeled images
available for GAN training is quite small.
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Figure 11. Performance comparison of TL, SSL, and GAN-based data augmentation models: the
model accuracy on dataset170 by the baseline and the TL models in Figure 6, the SSL-burn models in
Figure 7, and the GAN-based data augmentation models in Figure 10 is compared. SSL-burn-all and
SSL-burn-last denote FT-all and FT-last of SSL-burn, respectively. In addition, SSL-burn-all+CycleGAN
denotes a combined method of SSL-burn and CycleGAN-based data augmentation.

5. Conclusions

In this study, we developed machine learning models for burn severity assessment.
Considering common situations where well-annotated medical images are often not suffi-
cient for model training, we employed and evaluated several sample-efficient deep learning
techniques, including TL, SSL, FL, and GAN-based data augmentation for burn severity
assessment models. Through extensive experiments with burn images under different
dataset conditions, we showed the benefits and limitations of these sample-efficient deep
learning techniques to establish the design principles related to specific data conditions
in which some techniques can be more effective than others. Specifically, our SSL-based
models, which were pretrained on unlabeled images with self-supervised learning schemes
and learned on a small labeled dataset task-specifically, achieved comparable performance
in burn severity assessment accuracy to a baseline model learned on a six-times larger
dataset. This achieved sample-efficiency in model training is an important factor in han-
dling medical image analysis tasks successfully, where only a limited quantity of labeled
data is available. To the best of our knowledge, our work is the first to evaluate various
deep learning techniques using real-world burn injury images from the perspective of
sample-efficiency in model training.

We intend to develop a generalized framework containing sample-efficient deep
learning techniques and reference model structures, which can be used to automate the
building of deep learning models in the field of medicine. We are also implementing deep
learning models for some medical image analysis tasks other than burn severity assessment,
in the same vein as this study, focusing on sample-efficiency in model training.
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