

000 001 002 003 004 005 006 007 008 009 010 ON THE BAYES INCONSISTENCY OF DISAGREEMENT DISCREPANCY SURROGATES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Deep neural networks often fail when deployed in real-world contexts due to
012 distribution shift, a critical barrier to building safe and reliable systems. An
013 emerging approach to address this problem relies on *disagreement discrepancy*—a
014 measure of how the disagreement between two models changes under a shifting
015 distribution. The process of maximizing this measure has seen applications in
016 bounding error under shifts, testing for harmful shifts, and training more robust
017 models. However, this optimization involves the non-differentiable zero-one loss,
018 necessitating the use of practical surrogate losses. We prove that existing surrogates
019 for disagreement discrepancy are not Bayes consistent, revealing a fundamental
020 flaw: maximizing these surrogates can fail to maximize the true disagreement
021 discrepancy. To address this, we introduce new theoretical results providing both
022 upper and lower bounds on the optimality gap for such surrogates. Guided by this
023 theory, we propose a novel disagreement loss that, when paired with cross-entropy,
024 yields a provably consistent surrogate for disagreement discrepancy. Empirical
025 evaluations across diverse benchmarks demonstrate that our method provides more
026 accurate and robust estimates of disagreement discrepancy than existing approaches,
027 particularly under challenging adversarial conditions.

028 1 INTRODUCTION

030 The reliability of deep neural networks is frequently undermined by distribution shift, where a model’s
031 performance degrades when encountering data different from its training distribution (Mansour et al.,
032 2009; Ganin et al., 2016; Long et al., 2018; Duchi & Namkoong, 2021). This challenge is a
033 critical barrier to deploying safe and robust machine learning systems in the real world. Research
034 to address this has yielded several distinct paradigms. An emerging line of work is based on the
035 concept of *disagreement discrepancy* (Rosenfeld & Garg, 2023). This refers to a measure of how
036 the disagreement between two models—a trainable model and a reference model—changes from a
037 source distribution to a target distribution. Maximizing disagreement discrepancy has proven to be a
038 versatile approach, with applications ranging from bounding model error on unlabeled target data
039 (Rosenfeld & Garg, 2023), to designing statistical tests for harmful shifts (Ginsberg et al., 2023), and
040 training models with improved robustness to distribution shifts (Pagliardini et al., 2023).

041 While promising, this line of work harbors a critical, unaddressed challenge. The true objective
042 for disagreement discrepancy involves the non-differentiable zero-one loss, making it incompatible
043 with standard gradient-based optimization. Consequently, all existing methods rely on continuous
044 surrogate losses. This raises a fundamental question that has been overlooked: does optimizing
045 the surrogate objective faithfully optimize the true disagreement discrepancy? This concern is not
046 merely theoretical; Mishra & Liu (2025) reported instabilities during training, suggesting that current
047 surrogates may be ill-suited for the task.

048 In this work, we provide the first rigorous analysis of surrogate losses for disagreement discrepancy.
049 We ground our analysis in the framework of *Bayes consistency* (Steinwart, 2007). While stronger
050 guarantees like \mathcal{H} -consistency bounds exist (Awasthi et al., 2022a,b), their application to the complex
051 models used in practice remains an open challenge. Bayes consistency is therefore the crucial first
052 step: a surrogate that is not sound in the asymptotic limit is fundamentally unreliable.

053 Our analysis requires extending the standard framework for surrogate loss consistency, originally
054 developed for classification (Zhang, 2004b), to the unique setting of an objective that is a difference

054 of risks. The core of our theoretical contribution is the development of lower and upper bounds on the
 055 objective’s optimality gap. These bounds are analogous to classic *excess error bounds* from statistical
 056 learning theory (Zhang, 2004a; Bartlett et al., 2006). Using this machinery, we prove that existing
 057 surrogates are not Bayes consistent, revealing a foundational flaw in current methods. We then design
 058 a novel surrogate objective that combines the standard cross-entropy loss for the source risk with a
 059 new disagreement loss that is specifically designed to pair with it. We prove that our surrogate is the
 060 first to achieve Bayes consistency for the task of maximizing disagreement discrepancy, establishing
 061 a principled foundation for reliably optimizing these objectives in practice.

062 We empirically validate our surrogate in the context of two important downstream applications. First,
 063 we consider bounding a model’s error under shift, following the framework of Rosenfeld & Garg
 064 (2023). The validity and tightness of this error bound depend directly on accurately estimating the
 065 disagreement discrepancy, maximized over a class of critic models. Our experiments, conducted
 066 across a wide array of vision benchmarks, e.g., WILDs (Koh et al., 2021), BREEDs (Santurkar
 067 et al., 2021), and DomainNet (Peng et al., 2019), and training methods, demonstrate that our
 068 surrogate provides a more accurate estimate of this value, achieving a larger maximized disagreement
 069 discrepancy than existing surrogates in almost 80% of the scenarios tested. Furthermore, we introduce
 070 a challenging new evaluation with adversarially chosen target data, where our surrogate exhibits
 071 significantly superior robustness. Second, we consider harmful covariate shift detection (Ginsberg
 072 et al., 2023), where we show that our consistent surrogate translates to higher statistical power.

073 By resolving this foundational inconsistency, our work establishes a more principled and reliable
 074 basis for the use of disagreement discrepancy in analyzing and improving model robustness under
 075 distribution shift.

077 2 RELATED WORK

079 Our work on the consistency of surrogates for disagreement discrepancy intersects with two main
 080 areas: the study of consistency in machine learning and the development of discrepancy-based
 081 methods for addressing distribution shift. Below we review key literature in these areas.

084 2.1 CONSISTENCY IN MACHINE LEARNING

086 The analysis of surrogate objectives in machine learning centers on ensuring that optimizing a
 087 tractable surrogate also optimizes the true, often intractable, target objective. This is formalized
 088 through a hierarchy of guarantees, each offering a different level of assurance. Our work extends this
 089 line of inquiry to the novel setting of disagreement discrepancy, which uniquely combines two risks
 090 with differing losses and distributions.

091 The foundational guarantee is *Bayes consistency* (Steinwart, 2007), an asymptotic property requiring
 092 that the minimizer of the surrogate objective over all measurable functions is also optimal for the
 093 target objective. It has been established for convex margin-based losses in binary classification
 094 (Zhang, 2004a; Bartlett et al., 2006) and extended to multi-class settings (Tewari & Bartlett, 2007).

095 A more refined asymptotic guarantee is \mathcal{H} -consistency (Awasthi et al., 2022a). Instead of considering
 096 all functions, it restricts the analysis to a specific hypothesis set \mathcal{H} . It requires that the learned
 097 model’s target risk converges to the risk of the best model within the set \mathcal{H} . Recent work has explored
 098 \mathcal{H} -consistency for binary and multi-class classification (Awasthi et al., 2022a;b; Mao et al., 2023a), as
 099 well as for tasks like pairwise ranking (Mao et al., 2023b), learning with abstention (Mao et al., 2024),
 100 and structured prediction (Mao et al., 2023c). However, these studies generally rely on hypothesis
 101 sets (e.g., linear models, one-layer networks) that are not representative of the complex, deep neural
 102 networks used in modern practice. This limited applicability to practical model classes motivates our
 103 focus on Bayes consistency as the crucial first step in our analysis.

104 To formally establish consistency, we use the powerful tool of the *excess error bound*. This provides a
 105 quantitative link between the surrogate and target suboptimality, stating that an ϵ -suboptimal surrogate
 106 solution is at most $f(\epsilon)$ -suboptimal for the target. As noted by Awasthi et al. (2022a), such a bound is
 107 a necessary precursor to any full finite-sample guarantee, as it provides the link between the statistical
 error (from finite data) and the true target error. Our work establishes this foundational link for

108 disagreement discrepancy: we prove an excess error bound to establish the Bayes consistency of our
 109 proposed surrogate, analogous to the classic result of [Zhang \(2004a\)](#).
 110

111 2.2 DISAGREEMENT DISCREPANCY AND RELATED CONCEPTS 112

113 The concept of disagreement discrepancy is closely related to $\mathcal{H}\Delta\mathcal{H}$ -divergence ([Ben-David et al., 2010](#)). This divergence measures the maximal disagreement between any two models from a class
 114 \mathcal{H} across two distributions. While foundational for error bounds under distribution shift, its direct
 115 computation is intractable due to the maximization over all model pairs.
 116

117 Recent work has operationalized this idea by maximizing disagreement discrepancy with respect to
 118 only one model (a critic) against a fixed reference model. [Rosenfeld & Garg \(2023\)](#) used this approach
 119 to bound test error under distribution shift using unlabeled data, proposing a smooth disagreement
 120 loss as a surrogate for maximizing disagreement. Building on this, [Mishra & Liu \(2025\)](#) introduced
 121 a discounted disagreement to address potential instabilities where the source and target domains
 122 overlap, resulting in less conservative error bounds. Our analysis shows that the surrogate objectives
 123 in both of these works are not Bayes consistent.
 124

125 The versatility of this [critic-based disagreement framework](#) has led to its adoption in other contexts.
 126 For detecting harmful distribution shifts, [Ginsberg et al. \(2023\)](#) developed a statistical test using
 127 an ensemble of classifiers that maximize out-of-domain disagreement while maintaining in-domain
 128 consistency. However, our analysis shows that their surrogate, incorporating a disagreement cross-
 129 entropy loss, is also inconsistent. Beyond shift detection, [Pagliardini et al. \(2023\)](#) propose D-BAT,
 130 which uses a disagreement discrepancy-based objective as a diversity-inducing regularizer for training
 131 ensembles. By encouraging agreement between models on training data but disagreement on out-of-
 132 distribution data, they empirically show that the induced diversity can help mitigate shortcut learning
 133 and transferability. [While empirically successful, the surrogate objective used in their work, like others in the literature, lacks a formal consistency guarantee. Our proposed surrogate provides a](#)
 134 [direct path to placing such powerful training methods on a more reliable theoretical foundation.](#)
 135

136 3 PROBLEM SETTING AND PRELIMINARIES

137 To formally analyze surrogates for disagreement discrepancy, we first establish our problem setting.
 138 We focus on the covariate shift setting in which the input distribution changes from source to target,
 139 while the conditional output distribution remains the same. Formally, we define an input space \mathcal{X}
 140 with source and target distributions S and T , respectively. The corresponding output space \mathcal{Y} is the
 141 set of K classes $\llbracket K \rrbracket = \{1, \dots, K\}$ unless otherwise specified. We consider the case where there is
 142 a single ground truth output for each input, represented by a labeling function $y^* : \mathcal{X} \rightarrow \mathcal{Y}$.
 143

144 For any subset $\mathcal{X}' \subseteq \mathcal{X}$, we use $S|_{\mathcal{X}'}$ to denote the distribution S restricted to the subset \mathcal{X}' .¹ We
 145 denote the softmax function as $\sigma(\mathbf{s})_c = e^{s_c} / \sum_{c'=1}^K e^{s_{c'}}$ for $\mathbf{s} \in \mathbb{R}^K$ and $c \in \llbracket K \rrbracket$. The indicator
 146 function $\mathbf{1}_A$ returns 1 if predicate A is true and 0 otherwise.
 147

148 3.1 MODELS

149 Central to the problem formulation is the concept of a critic model, used in recent work ([Rosenfeld &](#)
 150 [Garg, 2023; Ginsberg et al., 2023; Pagliardini et al., 2023](#)) to maximize disagreement discrepancy
 151 with respect to fixed reference models. We denote the critic as $f : \mathcal{X} \rightarrow \mathcal{Z}$, where typically \mathcal{Z}
 152 is the space of logits \mathbb{R}^K . Reference models, denoted as $h : \mathcal{X} \rightarrow \mathcal{Y}$, return raw outputs rather
 153 than logits. To accommodate scenarios involving multiple reference models, we use the notation
 154 $h = (h_1, h_2, \dots, h_n)$ when necessary. To convert logit outputs to raw outputs, we introduce a utility
 155 function $A : \mathcal{Z} \rightarrow \mathcal{Y}$, which, unless otherwise specified, is set to

$$A(\mathbf{s}) = \min \left(\arg \max_{i \in \llbracket K \rrbracket} s_i \right), \quad (1)$$

156 for $\mathbf{s} \in \mathbb{R}^K$ and we write $Af(x)$ as shorthand for $A \circ f(x)$.² Here the min operation is a tie-breaking
 157 mechanism, selecting the smallest index where multiple logits share the same maximum value.
 158

159 ¹Formally, for any event $A \subseteq \mathcal{X}$, we define $S|_{\mathcal{X}'}(A) = S(A \cap \mathcal{X}')/S(\mathcal{X}')$ assuming $S(\mathcal{X}') > 0$.
 160

²The symbol A is chosen to represent this function as it alludes to the argmax operation.

162 3.2 LOSS FUNCTIONS AND RISK
163

164 We consider loss functions of the form $\ell : \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow \mathbb{R}$, where $\ell(x, y, z)$ measures the loss for
165 input x with reference model output y and critic model output z . Note that while standard losses
166 typically do not depend on x , we maintain this general form to accommodate certain analytical loss
167 functions introduced later. Given a loss ℓ and reference model h , we define the risk of the critic model
168 f on distribution S as $R[\ell, h, f](S) = \mathbb{E}_{X \sim S}[\ell(X, h(X), f(X))]$.

169 3.3 GENERALIZED DISAGREEMENT DISCREPANCY AND SURROGATES
170

171 We now present a generalized formulation of disagreement discrepancy that captures the notions
172 considered in recent work (Rosenfeld & Garg, 2023; Ginsberg et al., 2023; Pagliardini et al., 2023).
173 Disagreement discrepancy quantifies the extent to which a critic model agrees with reference models
174 differently on source and target distributions. Maximizing this measure with respect to the critic has
175 diverse applications, including developing models with robust representations under distribution shift
176 and assessing a model’s generalization capability to target distributions.

177 **Definition 1** (Disagreement Discrepancy). Let S, T be the source and target distributions on input
178 space \mathcal{X} . For a pair of reference models $h = (h_1, h_2)$ and a critic model f , we define the generalized
179 disagreement discrepancy as

$$180 \quad d_\alpha[h, f](S, T) = \alpha R[\ell_{\text{zo}}, h_2, \text{Af}](T) - R[\ell_{\text{zo}}, h_1, \text{Af}](S),$$

182 where $\ell_{\text{zo}}(x, y, y') = \mathbf{1}_{y \neq y'}$ is the zero-one loss and $\alpha > 0$ allows a trade-off between the two terms.
183 For brevity, we omit the α subscript when $\alpha = 1$.

184 Previous work has used specific instances of this generalized formulation:

- 186 • Rosenfeld & Garg (2023) set $h_1 = h_2$ to the model under evaluation and $\alpha = 1$.
- 187 • Ginsberg et al. (2023) set h_1 to the ground truth labeling function, h_2 to the model under
188 evaluation, and $\alpha \approx 1/N$ where N is the size of the source dataset.
- 189 • Pagliardini et al. (2023) set h_1 to the ground truth labeling function, h_2 to a separate model
190 trained on source data, and treat α as a tunable hyperparameter.

191 While the disagreement discrepancy is the ideal quantity of interest in the above works, its use of
192 the zero-one loss makes it incompatible with gradient-based optimization methods. To address the
193 limitation of non-differentiability, prior work has introduced surrogate objectives. We present a
194 generalized formulation of these surrogates that aligns with Definition 1.

195 **Definition 2** (Surrogate Disagreement Discrepancy). Given loss functions $\ell_{\text{agr}} : \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow \mathbb{R}$
196 and $\ell_{\text{dis}} : \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow \mathbb{R}$ differentiable in their third argument, we define a surrogate for generalized
197 disagreement discrepancy as

$$199 \quad \hat{d}_\alpha[h, f](S, T) = R[\ell_{\text{agr}}, h_1, f](S) + \alpha R[\ell_{\text{dis}}, h_2, f](T)$$

200 where ℓ_{agr} encourages agreement and ℓ_{dis} encourages disagreement. We note that this surrogate is
201 designed to be *minimized*, in contrast to $d_\alpha[h, f](S, T)$, which is designed to be *maximized*.

202 Across the literature, the cross-entropy loss

$$204 \quad \ell_{\text{ce}}(x, y, \mathbf{s}) = -\log \sigma(\mathbf{s})_y \quad (2)$$

205 has consistently been employed as a surrogate for the agreement loss (Rosenfeld & Garg, 2023;
206 Ginsberg et al., 2023; Pagliardini et al., 2023). However, when it comes to the disagreement loss
207 there has been no such consensus (Chuang et al., 2020; Pagliardini et al., 2023; Ginsberg et al., 2023;
208 Rosenfeld & Garg, 2023). Within this work we focus upon the disagreement losses proposed by
209 Rosenfeld & Garg (2023) and Ginsberg et al. (2023):

$$210 \quad \ell_{\text{dis}}^{\text{RG}}(x, y, \mathbf{s}) = \log \left(1 + e^{(s_y - \frac{1}{K-1} \sum_{c \neq y} s_c)} \right), \quad (3)$$

$$212 \quad \ell_{\text{dis}}^{\text{GLK}}(x, y, \mathbf{s}) = -\frac{1}{K-1} \sum_{c \neq y} \log \sigma(\mathbf{s})_c. \quad (4)$$

215 While both of these losses are convex and differentiable in \mathbf{s} , it turns out they do not lead to a surrogate
216 for disagreement discrepancy that is consistent.

216 4 CONSISTENCY OF DISAGREEMENT DISCREPANCY SURROGATES
217

218 This section presents our theoretical analysis of surrogate losses for disagreement discrepancy.
219 Consistency is a crucial property for any surrogate objective, as it provides the guarantee that
220 minimizing the surrogate also leads to a solution for the true, non-differentiable objective. This
221 property forms a vital theoretical underpinning for applications that rely on these surrogates. We
222 structure our analysis as follows: first, we introduce the basic definition of Bayes consistency for
223 disagreement discrepancy; second, we reformulate the disagreement discrepancy to facilitate our
224 analysis; third, we prove that existing surrogates are not Bayes consistent; and finally, we introduce
225 our novel surrogate and prove its consistency.

226 4.1 BAYES CONSISTENCY FOR DISAGREEMENT DISCREPANCY
227

228 Our goal is to determine whether surrogate objectives faithfully optimize the true disagreement
229 discrepancy. To formalize this, we employ the concept of Bayes consistency, a fundamental notion
230 in learning theory that assesses whether optimizing a surrogate loss asymptotically leads to the
231 optimization of the true risk (Zhang, 2004b). We extend this concept to disagreement discrepancy as
232 follows:

233 **Definition 3** (Bayes consistency for disagreement discrepancy). A surrogate \hat{d}_α for disagreement
234 discrepancy d_α is Bayes consistent if, for any sequence of critic models $\{f_n\}$ and distributions S, T
235 on \mathcal{X} ,

236
$$\hat{d}_\alpha[h, f_n](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T) \xrightarrow{p} 0$$

237 implies

238
$$\sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f_n](S, T) \xrightarrow{p} 0.$$

239 This definition ensures that when a sequence of critic models optimizes the surrogate objective
240 arbitrarily well (in probability), it simultaneously optimizes the true disagreement discrepancy. Bayes
241 consistency provides a theoretical foundation for analyzing surrogate objectives, offering insights into
242 their asymptotic behavior and their relationship to the true disagreement discrepancy. This analysis
243 is particularly valuable given the non-differentiability of the true objective, which precludes direct
244 optimization in practice.

245 4.2 REFORMULATION OF DISAGREEMENT DISCREPANCY
246

247 Existing theory for proving consistency of surrogate losses has typically been constructed in terms
248 of objective functions expressible as a *single* risk (Zhang, 2004a; Bartlett et al., 2006; Tewari &
249 Bartlett, 2007). However, the disagreement discrepancy is a sum of *two* risks with respect to *different*
250 distributions, posing a significant challenge: we cannot simply apply existing theory to each risk
251 separately, as they are intrinsically coupled from an optimization perspective. To overcome this, we
252 present a decomposition that *rewrites* the objective as a sum of decoupled risks using pseudo-losses.

253 To begin, let p_S and p_T denote the density functions of the source and target distributions, respec-
254 tively.³ We define two loss functionals as follows:

255
$$\begin{aligned} L_1[\ell_1, \ell_2](x, y, z) &= \mathbf{1}_{p_S(x) \geq p_T(x)} \left(\ell_1(x, y_1, z) + \frac{p_T(x)}{p_S(x)} \ell_2(x, y_2, z) \right), \\ L_2[\ell_1, \ell_2](x, y, z) &= \mathbf{1}_{p_S(x) < p_T(x)} \left(\frac{p_S(x)}{p_T(x)} \ell_1(x, y_1, z) + \ell_2(x, y_2, z) \right), \end{aligned} \tag{5}$$

256 for $x \in \mathcal{X}$, $y = (y_1, y_2) \in \mathcal{Y}^2$, $z \in \mathcal{Z}$, and losses $\ell_1, \ell_2: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow \mathbb{R}$, where the dependence
257 on S and T is implicit.

258 Using these loss functional templates, we rewrite the disagreement discrepancy and its surrogate as

259
$$d_\alpha[h, f](S, T) = R[\ell_1, h, \mathbf{A}f](S) + R[\ell_2, h, \mathbf{A}f](T), \tag{6}$$

260
$$\hat{d}_\alpha[h, f](S, T) = R[\hat{\ell}_1, h, f](S) + R[\hat{\ell}_2, h, f](T), \tag{7}$$

261

262 ³We assume density functions exist with respect to a common dominating measure. The theory generalizes
263 to measure theory by replacing density ratios with Radon-Nikodym derivatives assuming absolute continuity.

270 with pseudo-losses $\ell_1 = L_1[-\ell_{\text{zo}}, \alpha \ell_{\text{zo}}]$, $\ell_2 = L_2[-\ell_{\text{zo}}, \alpha \ell_{\text{zo}}]$, $\hat{\ell}_1 = L_1[\ell_{\text{agr}}, \alpha \ell_{\text{dis}}]$ and $\hat{\ell}_2 = L_2[\ell_{\text{agr}}, \alpha \ell_{\text{dis}}]$. (See Appendix B for an analysis of the pointwise optimizers of these pseudo-losses.)
 271 This reformulation has a crucial property: for any given input $x \in \mathcal{X}$, precisely one of $\ell_1(x, \mathbf{y}, z)$
 272 and $\ell_2(x, \mathbf{y}, z) = 0$ is non-zero. The same property holds for the surrogate losses $\hat{\ell}_1$ and $\hat{\ell}_2$. This
 273 allows pointwise optimization of f , effectively decoupling the two risks in our analysis.
 274

275 In the following subsections, we leverage this reformulation to prove the inconsistency of existing
 276 surrogates and introduce a new, consistent surrogate for disagreement discrepancy.
 277

278 4.3 INCONSISTENCY OF PRIOR SURROGATE

280 Having reformulated the disagreement discrepancy and its surrogate in terms of pseudo-losses, we
 281 now analyze the Bayes consistency of existing surrogates. Specifically, we focus on the surrogates
 282 proposed by [Rosenfeld & Garg \(2023\)](#) and [Ginsberg et al. \(2023\)](#) and demonstrate they are not Bayes
 283 consistent in general. Proofs for this section can be found in Appendices A and C.

284 Our proof strategy extends the framework of [Zhang \(2004b\)](#) by developing a lower bound on the
 285 optimality gap of the true disagreement discrepancy. While [Zhang \(2004b\)](#) provide an upper bound
 286 useful for proving Bayes consistency (which we will employ later), our complementary lower bound
 287 is crucial for establishing inconsistency. We first develop this lower bound for a single risk in
 288 Appendix A and then apply it to disagreement discrepancy in Appendix C.

289 The inconsistency stems from a fundamental mismatch in the optimal predictions over certain regions
 290 of the input space. Specifically, there exist regions where the optimal critic for the surrogate disagrees
 291 with the optimal critic for the true disagreement discrepancy. The following theorem formalizes this
 292 insight by providing a lower bound on the optimality gap of the true disagreement discrepancy.

293 **Theorem 4.** *Consider a classification task with $K > 2$ classes, where $h: \mathcal{X} \rightarrow \llbracket K \rrbracket^2$ is a reference
 294 model outputting a pair of class labels and $f: \mathcal{X} \rightarrow \mathbb{R}^K$ is a critic model outputting logits. Let S, T
 295 be distributions on \mathcal{X} and $\alpha > 0$. For $\lambda \in (0, 1)$ and $\delta \in (0, \frac{1-\lambda}{2})$, define a restricted input space:*

$$297 \mathcal{X}' = \left\{ x \in \mathcal{X} : h_1(x) = h_2(x), p_T(x) > 0, \lambda + \delta \leq \frac{p_S(x)}{\alpha p_T(x)} \leq 1 - \delta \right\}, \quad (8)$$

298 Let \hat{d}_α be either [Rosenfeld & Garg](#)'s surrogate⁴ with $\ell_{\text{dis}} = \ell_{\text{dis}}^{\text{RG}}$, $\lambda = K/(2K - 2)$, or [Ginsberg
 299 et al.](#)'s surrogate with $\ell_{\text{dis}} = \ell_{\text{dis}}^{\text{GLK}}$, $\lambda = 1/(K - 1)$, and $\ell_{\text{agr}} = \ell_{\text{ce}}$ in both cases. Then for
 300 both surrogates, there exists a convex function $\zeta: [0, \infty) \rightarrow [0, \infty)$ that is continuous at 0 with
 301 $\zeta(0) = \delta/(1 - \delta) \mathbf{1}_{S(\mathcal{X}') > 0} + \alpha \delta \mathbf{1}_{T(\mathcal{X}') > 0}$, such that

$$304 \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \geq \zeta \left(\hat{d}_\alpha[h, f](S|_{\mathcal{X}'}, T|_{\mathcal{X}'}) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S|_{\mathcal{X}'}, T|_{\mathcal{X}'}) \right).$$

306 The key insight of this theorem is that there are scenarios where the lower bound function ζ is positive
 307 at zero. This occurs when either the source or target distribution has positive measure on the restricted
 308 input space \mathcal{X}' . In such cases, a gap persists between the surrogate and true disagreement discrepancy,
 309 even when the surrogate is optimized perfectly. This violates the conditions for Bayes consistency as
 310 defined in Definition 3, leading to the following inconsistency result:

311 **Corollary 5.** *In the setting of Theorem 4, the surrogates proposed by [Rosenfeld & Garg \(2023\)](#) and
 312 [Ginsberg et al. \(2023\)](#) are not Bayes consistent for disagreement discrepancy when $K > 2$.*

314 This result reveals a fundamental limitation of these existing surrogates. It implies that there exist
 315 distributions for which optimizing these surrogates does not guarantee optimization of the true
 316 disagreement discrepancy, even in the limit of infinite data and unrestricted model capacity. This
 317 finding underscores the importance of carefully designing surrogate objectives for disagreement
 318 discrepancy, as seemingly reasonable choices may lead to suboptimal solutions in certain scenarios.

319 4.4 A NEW CONSISTENT SURROGATE

321 We now propose a new disagreement loss that, when combined with cross-entropy agreement loss,
 322 yields a consistent surrogate for disagreement discrepancy, with proofs contained in Appendix D.

323 ⁴We consider a generalization of [Rosenfeld & Garg](#)'s surrogate with $\alpha > 0$ and distinct reference models.

Our analysis of existing surrogates revealed inconsistencies arising from mismatches between the optimal solutions of the surrogate and true objectives. Addressing this issue, we propose the following disagreement loss:

$$\ell_{\text{dis}}^{\text{Ours}}(x, y, \mathbf{s}) = -\log(1 - \sigma(\mathbf{s})_y). \quad (9)$$

The design of this loss is motivated by its symmetry with the cross-entropy agreement loss (2). While minimizing cross-entropy agreement loss $-\log \sigma(\mathbf{s})_y$ encourages agreement with y by setting $\sigma(\mathbf{s})_y = 1$, our disagreement loss $-\log(1 - \sigma(\mathbf{s})_y)$ encourages disagreement with y by setting $\sigma(\mathbf{s})_y = 0$. Importantly, our disagreement loss doesn't specify how the remaining probabilities should be configured, aligning with the true disagreement loss $-1_{y \neq A(\mathbf{s})}$. This symmetry and alignment with the true losses contribute to the consistency of our surrogate.

To formally establish consistency, we employ the framework of [Zhang \(2004b\)](#), which provides an upper bound on the optimality gap for a true risk in terms of the optimality gap of a surrogate risk. We extend this result to disagreement discrepancy, leveraging our reformulation of the objective as a sum of two disjoint risks. The resulting upper bound is presented in the following theorem:

Theorem 6. *Consider a classification task where $h: \mathcal{X} \rightarrow \llbracket K \rrbracket^2$ is a reference model outputting a pair of class labels and $f: \mathcal{X} \rightarrow \mathbb{R}^K$ is a critic model outputting logits. For any $\alpha > 0$, let \hat{d}_α be our surrogate with $\ell_{\text{dis}} = \ell_{\text{dis}}^{\text{Ours}}$ and $\ell_{\text{agr}} = \ell_{\text{ce}}$. Then, for any distributions S, T on \mathcal{X} , there exists a concave function $\xi: [0, \infty) \rightarrow [0, \infty)$ that is continuous at 0 with $\xi(0) = 0$, such that*

$$\sup_{f \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \leq \xi \left(\hat{d}_\alpha[h, f](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T) \right).$$

This result is analogous to the classic *excess error bounds* from statistical learning theory ([Zhang, 2004a](#)), adapted here for an objective that is not a traditional risk/error. As discussed in Section 2.1, this type of bound is the crucial component for controlling the *calibration error* in a full finite-sample analysis. The key property of the bounding function ξ in our theorem is that it is continuous at 0 with $\xi(0) = 0$. This property ensures that as the surrogate optimality gap vanishes, so too does the true optimality gap, which directly leads to the following consistency result:

Corollary 7. *Our surrogate for disagreement discrepancy with cross-entropy agreement loss and the disagreement loss specified in (9) is Bayes consistent for all $K \geq 2$.*

In guaranteeing that optimizing our surrogate will optimize the true disagreement discrepancy, in the limit of infinite data and unrestricted model capacity, we are able to address the fundamental limitations in prior works. This also provides the theoretical foundation for the use of our surrogate in applications involving disagreement discrepancy.

Remark 8. Theorem 6 and Corollary 7 also hold for the surrogates of [Rosenfeld & Garg \(2023\)](#) and [Ginsberg et al. \(2023\)](#) when $K = 2$, as they are equivalent to our surrogate in the binary setting.

5 EMPIRICAL EVALUATION OF SURROGATES

We evaluate our surrogate on two downstream applications where maximizing disagreement discrepancy is central: bounding model error under covariate shift and detecting harmful distribution shifts. In both cases, the validity of the downstream result depends on accurate optimization of the true disagreement discrepancy.

5.1 APPLICATION: ERROR BOUNDS UNDER COVARIATE SHIFT

We first consider the framework of [Rosenfeld & Garg \(2023\)](#) for bounding model error under covariate shift. Their key result is a probabilistic upper bound, composed of three terms: the empirical source error, a sample correction term, and the empirical disagreement discrepancy (see Appendix E).

Crucially, the disagreement discrepancy term is estimated by optimizing a surrogate for disagreement discrepancy, and the *reliability* of the entire bound depends on the quality of this optimization. As we will show, underestimating the true disagreement discrepancy—a risk with inconsistent surrogates—yields a deceptively tighter bound that may be *invalid* (i.e., the true error exceeds the bound). This provides a rigorous testbed for our work, as a superior surrogate will find larger discrepancy values, leading to more trustworthy error bounds.

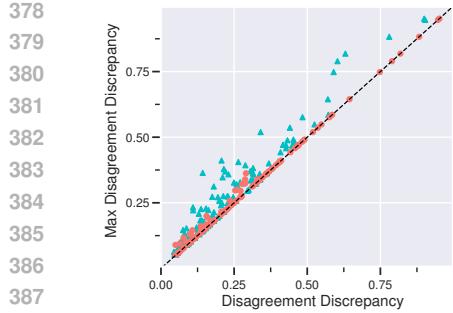


Figure 1: Comparison of disagreement discrepancy estimates for each surrogate. Left: Estimated vs. maximum achieved discrepancy across 130 shifts/models, where proximity to dashed line indicates better performance. Right: Frequency of achieving maximum discrepancy.

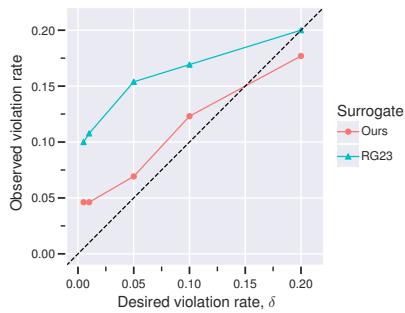


Figure 2: Calibration of error bounds: observed vs. desired violation rates (δ). The dashed $y = x$ line represents perfect calibration. Our surrogate demonstrates improved calibration.

Our experiments evaluate how different surrogates for disagreement discrepancy affect the error bound’s performance, replicating the setup of Rosenfeld & Garg (2023) under natural shifts (Section 5.1.1) and extending it to scenarios with adversarially chosen target data (Section 5.1.2).

5.1.1 REPLICATION OF EXPERIMENTS WITH EXISTING AND NEW SURROGATES

To compare the effectiveness of our surrogate with that of Rosenfeld & Garg (2023), we focus on the disagreement discrepancy term of the error bound mentioned above (see Theorem 21 in Appendix E for details). A larger value of this term indicates a better estimate for a fixed critic hypothesis class \mathcal{H} .

We replicated the experiments of Rosenfeld & Garg (2023) using their code, evaluating our proposed surrogate alongside theirs across 11 vision benchmark datasets for distribution shift. Models under evaluation (h) were trained on source data using either empirical risk minimization (ERM) or one of four unsupervised domain adaptation methods: FixMatch (Sohn et al., 2020), BN-adapt (Li et al., 2017), DANN (Ganin et al., 2016) or CDAN (Long et al., 2018). The critic model f was constructed by appending a tunable linear layer to the frozen weights of h , transforming the original logits.

Figure 1 compares the disagreement discrepancies achieved by each surrogate against the maximum achieved across 130 shift and model combinations. For each scenario, we identify the maximum value achieved among competing surrogates; since the true maximum is intractable, this serves as a practical metric for comparison. Across almost 80% of instances, our surrogate achieves this maximum value, demonstrating its superior performance in estimating the true disagreement discrepancy. A one-sided Wilcoxon signed-rank test confirms the superiority of our surrogate ($p = 1.8 \times 10^{-11}$).

These results are complimented by Figure 2, which reports the calibration of error bounds for each surrogate. Our surrogate demonstrates improved calibration compared to Rosenfeld & Garg’s across most values of δ , resulting in more reliable error bounds. However, both surrogates exhibit higher violation rates than specified for small δ values. Appendix G.1 provides additional comparisons of error bounds versus actual errors, disaggregated by training method and critic architecture.

5.1.2 ROBUSTNESS TO ADVERSARILY CHOSEN TARGET DATA

To further assess the reliability of error bounds, we extend our evaluation to scenarios with adversarially chosen target data—a setting not considered in prior work. This stress test provides crucial insights into how the bounds perform under more challenging conditions.

While adversarially chosen target data was not considered by Rosenfeld & Garg (2023), we still closely follow their experimental setup, using 8 of their datasets and focusing on models trained with ERM. We construct adversarial target data by iteratively maximizing the gap between the bound and true target error, subject to ℓ_∞ -norm constraints. Across our experiment set, we test different fractions of attacked data f , using values of 0%, 12.5%, 25% and 50%. Further details of our attack procedure and experimental setup can be found in Appendices F and G.2, respectively.

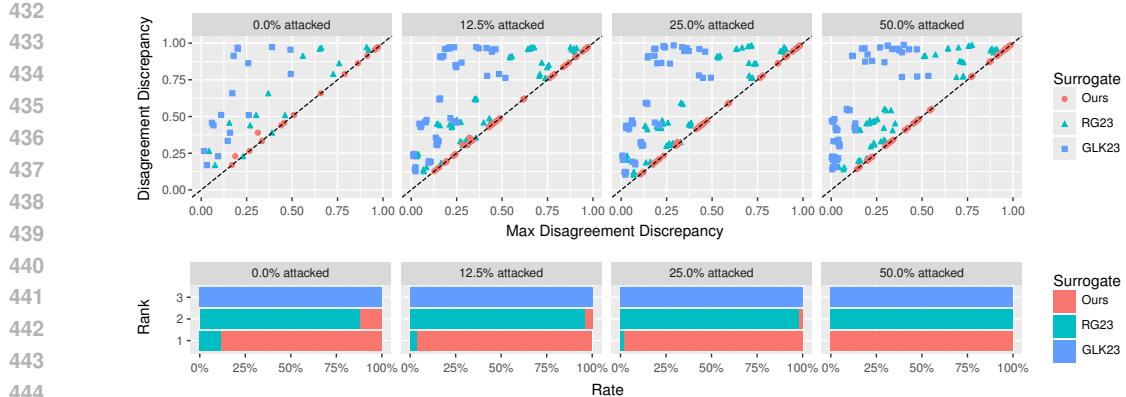


Figure 3: Comparison of disagreement discrepancy estimates for each surrogate under adversarial attacks on target data. Top: Estimated vs. maximum achieved disagreement discrepancy for each surrogate (GLK23, Ours, RG23), faceted by fraction of attacked instances. Points closer to the dashed line indicate better performance. Bottom: Corresponding bar plots displaying the rate at which each surrogate achieves rank 1 (highest), 2, or 3 (lowest) disagreement discrepancy.

Figure 3 compares the performance of our surrogate against those of Rosenfeld & Garg (2023) and Ginsberg et al. (2023) in estimating the maximum disagreement discrepancy. The results are presented as scatter plots of estimated **disagreement discrepancy** versus the **maximum achieved** across **all surrogates for that scenario**, faceted by the attack fraction f . Complementary rank plots show the frequency with which each surrogate achieves the highest estimate. Our surrogate demonstrates superior robustness, achieving the highest disagreement discrepancy estimate in 87.5% of instances for $f = 0\%$, increasing to 100% for $f = 50\%$. To assess statistical significance, we performed a one-sided Wilcoxon signed-rank test comparing our surrogate against a strong composite baseline, defined as the maximum value achieved by either the RG23 or GLK23 surrogate for each scenario. The results confirm our surrogate’s superiority across all attack fractions, with p-values of 3.3×10^{-4} for $f = 0\%$, dropping to less than 6.0×10^{-10} for $f > 0\%$. This performance suggests that our surrogate provides more reliable estimates of disagreement discrepancy under adversarial conditions, potentially leading to tighter and more robust error bounds.

For additional results, including comparisons of true error versus error bounds and detailed breakdowns by shift, we refer readers to Appendix G.2.

5.2 APPLICATION: DETECTING HARMFUL COVARIATE SHIFT

Maximizing disagreement discrepancy also serves as a powerful mechanism for detecting distribution shift. We explore this application using the *Detron* framework (Ginsberg et al., 2023), which detects harmful covariate shift for a deployed model h via a hypothesis test. Specifically, a critic model f is trained to maximize disagreement discrepancy with h on unlabeled target data; if the resulting disagreement rate significantly exceeds the rate expected under the source distribution, the shift is flagged as harmful.

To evaluate the impact of surrogate consistency in this setting, we adopt the experimental protocol of Ginsberg et al. (2023) using the UCI Heart Disease (HD) dataset (Andras Janosi, 1989). Crucially, we adopt the original 5-class labels (representing disease severity levels) rather than the binary target used in prior work. Since our surrogate and the baseline are mathematically equivalent for $K = 2$ classes, this multi-class setting is necessary to empirically distinguish their performance. We train XGBoost (Chen & Guestrin, 2016) models as critics, comparing our surrogate against the GLK23 baseline (see Appendix G.3 for details). We vary the number of available target samples $N \in \{10, 20, 50\}$, repeating each experiment 500 times to estimate ROC curves. Confidence intervals for the AUC and ROC curves are computed using stratified bootstrapping with 1000 samples.

Figure 4 and Table 1 present the results. Our surrogate consistently outperforms the baseline across all sample sizes. As shown in Table 1, the 95% confidence intervals for the AUC do not overlap between the two methods for any N , confirming that the improvement is statistically significant

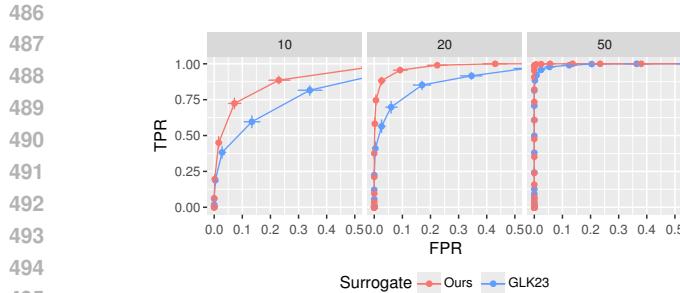


Figure 4: ROC curves for harmful shift detection on UCI-HD. Error bars indicate 95% bootstrapped confidence intervals.

N	Surrogate	AUC-ROC
10	GLK23	$0.821^{+0.025}_{-0.025}$
	Ours	$0.908^{+0.019}_{-0.017}$
20	GLK23	$0.913^{+0.016}_{-0.019}$
	Ours	$0.984^{+0.005}_{-0.006}$
50	GLK23	$0.995^{+0.003}_{-0.002}$
	Ours	$1.000^{+0.000}_{-0.000}$

Table 1: AUC-ROC for shift detection on UCI-HD.

in both low-data and higher-data regimes. These results suggest that for this task, the theoretical consistency of the loss function translates to improved statistical power.

6 CONCLUSION

Disagreement discrepancy has emerged as a powerful framework for addressing distribution shift, with applications spanning error bounding, shift detection, and robust model training. However, this work reveals a fundamental theoretical flaw: existing surrogate objectives for disagreement discrepancy are not Bayes consistent, meaning that optimizing these surrogates can fail to optimize the true disagreement discrepancy. This inconsistency undermines the theoretical foundations of methods that rely on these surrogates and may explain practical instabilities reported in prior work.

Our theoretical analysis provides both upper and lower bounds on the optimality gap between true and surrogate objectives, establishing a comprehensive framework for understanding surrogate quality in this setting. Guided by this theory, we propose a novel disagreement loss that, when paired with cross-entropy, yields the first provably Bayes consistent surrogate for disagreement discrepancy. Our empirical evaluation demonstrates that this theoretical improvement translates to practical benefits in downstream applications: our surrogate consistently yields more reliable error bounds under covariate shift, particularly under adversarial conditions, and achieves higher statistical power for detecting harmful covariate shifts.

While our focus on Bayes consistency considers optimization over the class of measurable functions, this choice is deliberate and necessary. \mathcal{H} -consistency (Zhang & Agarwal, 2020), while theoretically appealing for its consideration of restricted hypothesis classes, remains limited in practice—no successful \mathcal{H} -consistency analysis exists for the deep neural networks used in modern applications. Bayes consistency thus provides an appropriate theoretical foundation for establishing soundness of surrogate objectives, serving as a crucial first step before considering more restrictive analyses.

Our work lays the foundation for several important directions. A full finite-sample guarantee requires bounding two components: the *calibration error* (the gap between surrogate and target objectives) and the *estimation error* (the gap from using a finite sample). Our bound is precisely the tool that controls the calibration error. The natural next step is to develop bounds on the estimation error for disagreement discrepancy—a significant but important challenge. Additionally, while our surrogate resolves the consistency issue, the underlying assumptions in applications like error bounding may not always hold in practice, as demonstrated by our adversarial experiments. This highlights the need for careful consideration when deploying these methods in real-world scenarios.

By establishing the first consistent surrogate for disagreement discrepancy, our work provides a principled theoretical foundation for this important class of methods. This contribution not only resolves existing inconsistencies but also paves the way for more reliable and robust approaches to handling distribution shift in machine learning systems.

540 REPRODUCIBILITY STATEMENT
541

542 Complete proofs for all theoretical claims, including the inconsistency of existing surrogates (Theorem 4, Corollary 5) and the consistency of our proposed surrogate (Theorem 6, Corollary 7), are
543 provided in Appendices C and D respectively. The general framework for proving inconsistency is
544 detailed in Appendix A. All mathematical assumptions and conditions are explicitly stated within
545 these proofs.

546 Detailed experimental configurations are provided in Appendix G. For the replication experiments
547 in Section 5.1.1, we utilize the publicly available code and datasets released by Rosenfeld & Garg
548 (2023), with our modifications clearly documented. For the adversarial robustness experiments
549 in Section 5.1.2, we provide complete source code as supplementary material, including scripts
550 for dataset downloading and pre-processing, model training, attack implementation (detailed in
551 Appendix F), and generation of all figures and tables. For the harmful shift experiments in Section 5.2,
552 we use the public code released by Ginsberg et al. (2023), with modifications clearly documented in
553 Appendix G.3.

554 REFERENCES
555

556 William Steinbrunn Andras Janosi. Heart disease, 1989. URL <https://archive.ics.uci.edu/dataset/45>.

557 Pranjal Awasthi, Anqi Mao, Mehryar Mohri, and Yutao Zhong. H-consistency bounds for surrogate
558 loss minimizers. In *Proceedings of the 39th International Conference on Machine Learning*,
559 volume 162 of *Proceedings of Machine Learning Research*, pp. 1117–1174, 17–23 Jul 2022a. URL
560 <https://proceedings.mlr.press/v162/awasthi22c.html>.

561 Pranjal Awasthi, Anqi Mao, Mehryar Mohri, and Yutao Zhong. Multi-class H-consistency
562 bounds. In *Advances in Neural Information Processing Systems*, volume 35, pp. 782–795,
563 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/051f3997af1dd65da8e14397b6a72f8e-Paper-Conference.pdf.

564 Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk
565 bounds. *Journal of the American Statistical Association*, 101(473):138–156, 2006. doi: 10.1198/
566 016214505000000907. URL <https://doi.org/10.1198/016214505000000907>.

567 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
568 Vaughan. A theory of learning from different domains. *Machine Learning*, 79(1):151–175, 2010.
569 doi: 10.1007/s10994-009-5152-4.

570 Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In *Proceedings of
571 the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,
572 KDD ’16, pp. 785–794, 2016. doi: 10.1145/2939672.2939785. URL <https://doi.org/10.1145/2939672.2939785>.

573 Ching-Yao Chuang, Antonio Torralba, and Stefanie Jegelka. Estimating generalization under distributional
574 shifts via domain-invariant representations. In *Proceedings of the 37th International Conference on Machine Learning*,
575 volume 119 of *Proceedings of Machine Learning Research*, pp. 1984–1994, 13–18 Jul 2020. URL
576 <https://proceedings.mlr.press/v119/chuang20a.html>.

577 John C. Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally
578 robust optimization. *The Annals of Statistics*, 49(3):1378 – 1406, 2021. doi:
579 10.1214/20-AOS2004. URL <https://doi.org/10.1214/20-AOS2004>.

580 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
581 Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. *Journal
582 of Machine Learning Research*, 17(59):1–35, 2016. URL <http://jmlr.org/papers/v17/15-239.html>.

583 Tom Ginsberg, Zhongyuan Liang, and Rahul G Krishnan. A learning based hypothesis test for
584 harmful covariate shift. In *The Eleventh International Conference on Learning Representations*,
585 2023. URL <https://openreview.net/forum?id=rdfgqiwz71Z>.

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 595 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 596 (*CVPR*), June 2016.

597

598 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 599 corruptions and perturbations. In *International Conference on Learning Representations*, 2019.
 600 URL <https://openreview.net/forum?id=HJz6tiCqYm>.

601 Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
 602 convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 603 *Recognition (CVPR)*, July 2017.

604

605 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
 606 ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
 607 David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
 608 Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
 609 benchmark of in-the-wild distribution shifts. In *Proceedings of the 38th International Conference*
 610 *on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 5637–5664,
 611 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/koh21a.html>.

612

613 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 614 Technical report, University of Toronto, April 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

615

616 Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
 617 tion for practical domain adaptation, 2017. URL <https://openreview.net/forum?id=BJuys0Feg>.

618

619 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adver-
 620 sarial domain adaptation. In *Advances in Neural Information Processing Systems*, vol-
 621 ume 31, 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/ab88b15733f543179858600245108dd8-Paper.pdf.

622

623 Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
 624 and algorithms. In *Proceedings of The 22nd Annual Conference on Learning Theory (COLT*
 625 2009), Montréal, Canada, 2009. URL <http://www.cs.nyu.edu/~mohri/postscript/nadap.pdf>.

626

627 Anqi Mao, Mehryar Mohri, and Yutao Zhong. H-consistency bounds: Characterization and exten-
 628 sions. In *Advances in Neural Information Processing Systems*, volume 36, pp. 4470–4508,
 629 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/0e441913d4fa486c3eec967d79750b13-Paper-Conference.pdf.

630

631 Anqi Mao, Mehryar Mohri, and Yutao Zhong. h -consistency bounds for pairwise misranking loss
 632 surrogates. In *Proceedings of the 40th International Conference on Machine Learning*, volume
 633 202 of *Proceedings of Machine Learning Research*, pp. 23743–23802, 23–29 Jul 2023b. URL
 634 <https://proceedings.mlr.press/v202/mao23a.html>.

635

636 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Structured prediction with stronger consistency
 637 guarantees. In *Advances in Neural Information Processing Systems*, volume 36, pp. 46903–
 638 46937, 2023c. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/927962d8866377a07ee3150d2d691319-Paper-Conference.pdf.

639

640 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Theoretically grounded loss functions and algorithms
 641 for score-based multi-class abstention. In *Proceedings of The 27th International Conference*
 642 *on Artificial Intelligence and Statistics*, volume 238 of *Proceedings of Machine Learning Re-
 643 search*, pp. 4753–4761, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/mao24a.html>.

645

646 Aayush Mishra and Anqi Liu. ODD: Overlap-aware estimation of model performance under dis-
 647 tribution shift. In *The 41st Conference on Uncertainty in Artificial Intelligence*, 2025. URL
 648 <https://openreview.net/forum?id=ckPaJ15NRk>.

648 Matteo Pagliardini, Martin Jaggi, François Fleuret, and Sai Praneeth Karimireddy. Agree to disagree:
 649 Diversity through disagreement for better transferability. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=K7CbYQbyYhY>.

650

651

652 Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang, Judy Hoffman, and Kate Saenko.
 653 VisDA: A synthetic-to-real benchmark for visual domain adaptation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, June 2018.

654

655

656 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 657 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2019.

658

659 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10 classifiers
 660 generalize to CIFAR-10?, 2018. URL <https://arxiv.org/abs/1806.00451>. arXiv:1806.00451 [cs.LG].

661

662 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers
 663 generalize to ImageNet? In *Proceedings of the 36th International Conference on Machine Learning*,
 664 volume 97 of *Proceedings of Machine Learning Research*, pp. 5389–5400, 09–15 Jun 2019. URL
 665 <https://proceedings.mlr.press/v97/recht19a.html>.

666

667 Elan Rosenfeld and Saurabh Garg. (Almost) provable error bounds under dis-
 668 tribution shift via disagreement discrepancy. In *Advances in Neural In-*

669 *formation Processing Systems*, volume 36, pp. 28761–28784, 2023. URL
 670 https://proceedings.neurips.cc/paper_files/paper/2023/file/5bacb12bf81e98e2ee0eed953a23c656-Paper-Conference.pdf.

671

672 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 673 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
 674 Fei. ImageNet large scale visual recognition challenge. *International Journal of Computer Vision*, 115(3):211–252, Dec 2015. ISSN 1573-1405. doi: 10.1007/s11263-015-0816-y. URL
 675 <https://doi.org/10.1007/s11263-015-0816-y>.

676

677 Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. BREEDS: Benchmarks for sub-
 678 population shift. In *International Conference on Learning Representations*, 2021. URL
 679 <https://openreview.net/forum?id=mQPBMvnyAuk>.

680

681 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
 682 gus Cubuk, Alexey Kurakin, and Chun-Liang Li. FixMatch: Simplifying semi-supervised learn-
 683 ing with consistency and confidence. In *Advances in Neural Information Processing Systems*,
 684 volume 33, pp. 596–608, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf.

685

686 Ingo Steinwart. How to compare different loss functions and their risks. *Constructive Approximation*,
 687 26(2):225–287, 2007. doi: 10.1007/s00365-006-0662-3.

688

689 Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods. *Journal of Machine Learning Research*, 8(36):1007–1025, 2007. URL <http://jmlr.org/papers/v8/tewari07a.html>.

690

691 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 692 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, July 2017.

693

694

695 Mingyuan Zhang and Shivani Agarwal. Bayes consistency vs. H-consistency: The in-
 696 terplay between surrogate loss functions and the scoring function class. In *Ad-*

697 *vances in Neural Information Processing Systems*, volume 33, pp. 16927–16936,
 698 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/c4c28b367e14df88993ad475dedf6b77-Paper.pdf.

699

700 Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk
 701 minimization. *The Annals of Statistics*, 32(1):56–85, 2004a. ISSN 00905364. URL <http://www.jstor.org/stable/3448494>.

702 Tong Zhang. Statistical analysis of some multi-category large margin classification methods. *J. Mach.
703 Learn. Res.*, 5:1225–1251, December 2004b. ISSN 1532-4435. URL <https://jmlr.org/papers/volume5/zhang04b/zhang04b.pdf>.
704
705

706 A GENERAL FRAMEWORK FOR PROVING INCONSISTENCY

709 This appendix presents a general framework for proving the inconsistency of surrogate loss functions
710 in the context of a single risk objective. While the main focus of our paper is on objectives that are a
711 sum of two risks over different distributions with different losses (i.e., the disagreement discrepancy),
712 the results developed here for a single risk serve as a crucial building block for our later analysis.

713 We adapt and extend the *upper bound* of Zhang (2004b, Appendix A) to develop a *lower bound* on
714 the optimality gap of a target objective in terms of the optimality gap of a surrogate objective. This
715 lower bound is crucial for proving inconsistency, as it allows us to show cases where optimizing the
716 surrogate does not necessarily lead to optimizing the true objective.

717 Our framework considers a true loss function $\ell: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}_1 \rightarrow \mathbb{R}$ and a surrogate loss function
718 $\hat{\ell}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}_2 \rightarrow \mathbb{R}$. The true objective is to select a critic model $f: \mathcal{X} \rightarrow \mathcal{Z}_2$ that minimizes the risk
719 $R[\ell, h, \mathbf{A}f](D)$ and the surrogate objective is to minimize the risk $R[\hat{\ell}, h, f](D)$. Here $\mathbf{A}: \mathcal{Z}_2 \rightarrow \mathcal{Z}_1$
720 is a mapping between model output spaces—e.g., from logits to class labels. We assume the objective
721 is optimized over critic models in a pointwise optimizable hypothesis class $\mathcal{H} = \{f: \mathcal{X} \rightarrow \mathcal{Z}_2\}$,
722 which is relevant for Bayes consistency. Central to our analysis is the concept of excess loss, defined
723 for the true loss as $\Delta \ell(x, y, z) = \ell(x, y, z) - \inf_{z' \in \mathcal{Z}_1} \ell(x, y, z')$, and similarly for the surrogate loss
724 with $z, z' \in \mathcal{Z}_2$.

725 The key idea of our framework is to relate these excess losses through a carefully constructed
726 functional, which forms the basis for our analysis.

727 **Definition 9.** Define ΔG as a functional that takes true and surrogate losses $\ell, \hat{\ell}$ as inputs and returns
728 a mapping $\Delta G[\ell, \hat{\ell}]: [0, \infty) \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, \infty)$ such that for any $\epsilon \geq 0, x \in \mathcal{X}, y \in \mathcal{Y}$:

$$\Delta G[\ell, \hat{\ell}](\epsilon, x, y) = \inf_{z \in C[\hat{\ell}](\epsilon, x, y)} \Delta \ell(x, y, \mathbf{A}(z)),$$

732 where $C[\hat{\ell}](\epsilon, x, y) = \{z \in \mathcal{Z}_2 : \Delta \hat{\ell}(x, y, z) \leq \epsilon\}$. We also overload ΔG to define another
733 functional that returns a mapping $\Delta G[\ell, \hat{\ell}]: [0, \infty) \rightarrow [0, \infty)$ with only one argument such that

$$\Delta G[\ell, \hat{\ell}](\epsilon) = \inf_{(x, y) \in \mathcal{X} \times \mathcal{Y}} \Delta G[\ell, \hat{\ell}](\epsilon, x, y).$$

737 For brevity, we drop the functional arguments $\ell, \hat{\ell}$ when clear from context.

739 Intuitively, $\Delta G[\ell, \hat{\ell}](\epsilon, x, y)$ gives the smallest possible value of the true excess loss at a point
740 (x, y) , considering all outputs z where the surrogate excess loss is at most ϵ . The overloaded
741 version $\Delta G[\ell, \hat{\ell}](\epsilon)$ extends this idea to the entire input space, providing the smallest true excess loss
742 achievable when the surrogate excess loss is bounded by ϵ everywhere. This functional allows us to
743 analyze how well optimizing the surrogate loss translates to optimizing the true loss, which is crucial
744 for proving inconsistency.

745 Next, we establish some properties of $\Delta G[\ell, \hat{\ell}]$ that we will use in our analysis.

746 **Proposition 10.** $\Delta G[\ell, \hat{\ell}]$ satisfies the following properties:

- 748 1. $\Delta G[\ell, \hat{\ell}](\epsilon) \geq 0$,
- 749 2. $\Delta G[\ell, \hat{\ell}](\infty) = 0$,
- 750 3. $\Delta G[\ell, \hat{\ell}](\epsilon)$ is non-increasing over its domain, and
- 751 4. $\Delta G[\ell, \hat{\ell}](\Delta \hat{\ell}(x, y, z)) \leq \Delta \ell(x, y, \mathbf{A}(z))$ for any $x \in \mathcal{X}, y \in \mathcal{Y}$ and $z \in \mathcal{Z}_2$.

752 *Proof.* We prove each property below:

756 1. This follows since $\Delta \ell(x, y, A(z)) \geq 0$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$ and $z \in \mathcal{Z}_2$.
 757
 758 2. When $\epsilon = +\infty$, x, y and z are unconstrained, so the minimal excess loss is zero.
 759
 760 3. Increasing ϵ relaxes the constraint on x, y and z , thereby yielding an infimum that is non-
 761 increasing.
 762
 763 4. Replacing the constraint set $\{x' \in \mathcal{X}, y' \in \mathcal{Y}, z' \in \mathcal{Z}_2 : \Delta \hat{\ell}(x', y', z') \leq \Delta \hat{\ell}(x, y, z)\}$
 764 by the subset $\{x' \in \mathcal{X}, y' \in \mathcal{Y}, z' \in \mathcal{Z}_2 : \Delta \hat{\ell}(x', y', z') = \Delta \hat{\ell}(x, y, z)\}$ yields the upper
 765 bound.
 766

□

768 The following theorem is central to our framework. It provides a lower bound on the optimality gap
 769 of the true risk in terms of the optimality gap of the surrogate risk, mediated by a convex function.
 770

771 **Theorem 11.** *Let $\zeta(\epsilon)$ be a convex function on $[0, \infty)$ such that $\zeta(\epsilon) \leq \Delta G[\ell, \hat{\ell}](\epsilon)$. Then for
 772 any distribution D on \mathcal{X} , reference model $h: \mathcal{X} \rightarrow \mathcal{Y}$, critic model $f: \mathcal{X} \rightarrow \mathcal{Z}_2$ and mapping
 773 $A: \mathcal{Z}_2 \rightarrow \mathcal{Z}_1$ we have*

$$774 \zeta\left(\mathbb{E}_{X \sim D} \Delta \hat{\ell}(X, h(X), f(X))\right) \leq \mathbb{E}_{X \sim D} \Delta \ell(X, h(X), A f(X)).$$

776 *Proof.* We have

$$777 \zeta\left(\mathbb{E}_{X \sim D} \Delta \hat{\ell}(X, h(X), f(X))\right) \leq \mathbb{E}_{X \sim D} \zeta(\Delta \hat{\ell}(X, h(X), f(X))) \quad \text{by Jensen's inequality}$$

$$778 \leq \mathbb{E}_{X \sim D} \Delta G[\ell, \hat{\ell}](\Delta \hat{\ell}(X, h(X), f(X))) \quad \text{by assumption}$$

$$779 \leq \mathbb{E}_{X \sim D} \Delta \ell(X, h(X), A f(X)) \quad \text{by Proposition 10}$$

□

780 This theorem lays the groundwork for proving Bayes inconsistency. The next step in our analysis is
 781 to show the existence of a convex function $\zeta(\epsilon)$ that not only satisfies the conditions of the theorem,
 782 but also remains positive as the surrogate optimality gap ϵ approaches zero under some conditions.
 783 We construct such a function below and establish its properties.

784 **Proposition 12.** *Let $\Delta G: [0, \infty) \rightarrow [0, \infty)$. The function $\zeta_*(\epsilon) = \sup_{a \leq 0, b \in \mathbb{R}} \{a\epsilon + b \mid \forall \omega \geq 0, a\omega + b \leq \Delta G(\omega)\}$ satisfies the following properties:*

785 1. ζ_* is convex.
 786
 787 2. $\zeta_*(\epsilon) \leq \Delta G(\epsilon)$ for all $\epsilon \geq 0$.
 788
 789 3. ζ_* is non-increasing.
 790
 791 4. For any convex function ζ such that $\zeta(\epsilon) \leq \Delta G(\epsilon)$, $\zeta(\epsilon) \leq \zeta_*(\epsilon)$.
 792
 793 5. Assume there exists $a < 0$ such that $a\epsilon + \Delta G(0) \leq \Delta G(\epsilon)$. Then ζ_* is continuous at 0.

802 *Proof.* We prove each property below:

803
 804 1. The function ζ_* is defined as the pointwise supremum of convex functions, hence it is also
 805 convex.
 806
 807 2. This follows directly from the definition of ζ_* .
 808
 809 3. Consider $\epsilon' \geq \epsilon \geq 0$. For any $a \leq 0$ and $b \in \mathbb{R}$ such that $a\omega + b \leq \Delta G(\omega)$ for all $\omega \geq 0$, we
 810 have $a\epsilon' + b \leq a\epsilon + b$. Taking the supremum over all such a and b , we get $\zeta_*(\epsilon') \leq \zeta_*(\epsilon)$.

810 4. At any $\epsilon \geq 0$, we can find a line that satisfies $a\omega + b \leq \zeta(\omega)$ for all $\omega \geq 0$ and $\zeta(\epsilon) = a\epsilon + b$.
 811 Together with the assumption that $\zeta(\epsilon) \leq \Delta G(\epsilon)$, this implies $\zeta(\epsilon) \leq \zeta_*(\epsilon)$.
 812

813 5. For any $\epsilon > 0$, let $\delta = -\frac{\epsilon}{2a}$. Then by definition, $\zeta_*(\delta) \geq a\delta + \Delta G(0)$ (the line $a\delta + \Delta G(0)$
 814 may not be maximal). So $\zeta_*(0) - \zeta_*(\delta) = \Delta G(0) - \zeta_*(\delta) \leq -a\delta = \epsilon/2 < \epsilon$. Thus
 815 $\lim_{\epsilon \rightarrow 0^+} \zeta_*(\epsilon) = \zeta_*(0)$.
 816 \square

818 Building on the properties of ζ_* from Proposition 12, we now identify conditions ensuring the convex
 819 function ζ_* remains positive as the surrogate optimality gap approaches zero.
 820

821 **Corollary 13.** *Suppose there exists $\epsilon > 0$ such that $\Delta G[\ell, \hat{\ell}](\epsilon) > 0$. Then there exists a convex
 822 function ζ on $[0, \infty)$ that depends only on the loss functions $\ell, \hat{\ell}$ such that ζ is continuous at zero and
 823 $\zeta(0) = \Delta G[\ell, \hat{\ell}](0) > 0$. Moreover*

$$824 \zeta\left(\mathbb{E}_{X \sim D} \Delta \hat{\ell}(X, h(X), f(X))\right) \leq \mathbb{E}_{X \sim D} \Delta \ell(X, h(X), \mathbf{A}f(X))$$

826 for any distribution D on \mathcal{X} , reference model $h: \mathcal{X} \rightarrow \mathcal{Y}$, critic model $f: \mathcal{X} \rightarrow \mathcal{Z}_2$ and mapping
 827 $\mathbf{A}: \mathcal{Z}_2 \rightarrow \mathcal{Z}_1$.
 828

829 *Proof.* Consider the convex function ζ_* defined in Proposition 12. It satisfies the condition $\zeta(\epsilon) \leq$
 830 $\Delta G[\ell, \hat{\ell}](\epsilon)$, hence the inequality follows from Theorem 11.
 831

832 We now only need to show that ζ_* is continuous at zero. Since $\Delta G(\epsilon)$ is positive in some neighbor-
 833 hood of $\epsilon = 0$, is non-increasing, and bounded below by zero, there exists a line $a\epsilon + b$ with $a < 0$
 834 and $b = \Delta G(0)$ such that $a\epsilon + b \leq \Delta G(\epsilon)$ for all $\epsilon \geq 0$. Hence by Property 5 of Proposition 10, ζ_*
 835 is continuous at zero. \square

836 B EXCESS PSEUDO-LOSSES

837 In this appendix, we evaluate the excess loss for various pseudo-losses introduced in Section 4.2.
 838 Recall from Appendix A, that for a given loss $\ell: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, we define the excess loss as $\Delta \ell(x, y, z) =$
 839 $\ell(x, y, z) - \inf_{z \in \mathcal{Z}} \ell(x, y, z)$. This analysis is crucial for understanding the behavior of these pseudo-
 840 losses and their impact on the consistency of surrogate objectives for disagreement discrepancy in
 841 Sections 4.3 and 4.4.
 842

843 B.1 TRUE LOSS

844 We evaluate the excess loss for the two pseudo-losses ℓ_1, ℓ_2 that appear in the true disagreement
 845 discrepancy, as formulated in (6). Specifically, for $i \in \{1, 2\}$ we consider the loss function $\ell_i =$
 846 $L_i[\ell_{zo}, -\alpha \ell_{zo}]$, where L_i is defined in (5), ℓ_{zo} is the zero-one loss and $\alpha > 0$. For an input $x \in \mathcal{X}$,
 847 reference model labels $\mathbf{y} \in \llbracket K \rrbracket^2$ and critic model label $y \in \llbracket K \rrbracket$, we have
 848

$$849 \inf_{y' \in \llbracket K \rrbracket} \ell_1(x, \mathbf{y}, y') = \inf_{y' \in \llbracket K \rrbracket} \mathbf{1}_{p_S(x) \geq p_T(x)} \left(\mathbf{1}_{y_1 \neq y'} - \frac{\alpha p_T(x)}{p_S(x)} \mathbf{1}_{y_2 \neq y'} \right)$$

$$850 = \mathbf{1}_{p_S(x) \geq p_T(x)} \times \begin{cases} 0, & y_1 = y_2 \wedge \frac{\alpha p_T(x)}{p_S(x)} \leq 1, \\ 1 - \frac{\alpha p_T(x)}{p_S(x)}, & y_1 = y_2 \wedge \frac{\alpha p_T(x)}{p_S(x)} > 1, \\ -\frac{\alpha p_T(x)}{p_S(x)}, & y_1 \neq y_2, \end{cases}$$

856 where the optimizer is $y' = y_1 = y_2$ for the first case, $y' \neq y_1 = y_2$ for the second case and
 857 $y' = y_1 \neq y_2$ for the third case. Similarly,

$$858 \inf_{y' \in \llbracket K \rrbracket} \ell_2(x, \mathbf{y}, y') = \inf_{y' \in \llbracket K \rrbracket} \mathbf{1}_{p_S(x) < p_T(x)} \left(\frac{p_S(x)}{p_T(x)} \mathbf{1}_{y_1 \neq y'} - \alpha \mathbf{1}_{y_2 \neq y'} \right)$$

$$859 = \mathbf{1}_{p_S(x) < p_T(x)} \times \begin{cases} 0, & y_1 = y_2 \wedge \frac{p_S(x)}{\alpha p_T(x)} \geq 1, \\ \frac{p_S(x)}{p_T(x)} - \alpha, & y_1 = y_2 \wedge \frac{p_S(x)}{\alpha p_T(x)} < 1, \\ -\alpha, & y_1 \neq y_2, \end{cases}$$

864 where the optimizer is $y' = y_1 = y_2$ for the first case, $y' \neq y_1 = y_2$ for the second case, and
 865 $y' = y_1 \neq y_2$ for the third case.
 866

867 Thus we have

$$\begin{aligned} \Delta \ell_1(x, \mathbf{y}, y') &= \mathbf{1}_{p_S(x) \geq p_T(x)} \left(\mathbf{1}_{y_1 \neq y'} - \frac{\alpha p_T(x)}{p_S(x)} \mathbf{1}_{y_2 \neq y'} \right. \\ &\quad \left. - \mathbf{1}_{\frac{\alpha p_T(x)}{p_S(x)} > 1} \mathbf{1}_{y_1 = y_2} \left(1 - \frac{\alpha p_T(x)}{p_S(x)} \right) + \frac{\alpha p_T(x)}{p_S(x)} \mathbf{1}_{y_1 \neq y_2} \right) \\ \Delta \ell_2(x, \mathbf{y}, y') &= \mathbf{1}_{p_S(x) < p_T(x)} \left(\frac{p_S(x)}{p_T(x)} \mathbf{1}_{y_1 \neq y'} - \alpha \mathbf{1}_{y_2 \neq y'} \right. \\ &\quad \left. - \mathbf{1}_{\frac{\alpha p_T(x)}{p_S(x)} > 1} \mathbf{1}_{y_1 = y_2} \left(\frac{p_S(x)}{p_T(x)} - \alpha \right) + \alpha \mathbf{1}_{y_1 \neq y_2} \right) \end{aligned}$$

879 B.2 OUR SURROGATE

880 We evaluate the excess loss for the two pseudo-losses that appear in the surrogate for disagreement
 881 discrepancy (7) when using our disagreement loss. Specifically, for $i \in \{1, 2\}$ we consider the loss
 882 $\hat{\ell}_i = L_i[\ell_{\text{ce}}, \alpha \ell_{\text{dis}}^{\text{Ours}}]$, where L_i is defined in (5), ℓ_{ce} is the cross-entropy loss defined in (2), $\ell_{\text{dis}}^{\text{Ours}}$ is
 883 our disagreement loss defined in (9) and $\alpha > 0$.
 884

885 Since $\hat{\ell}_1$ and $\hat{\ell}_2$ have a similar functional form, we analyze them together by writing for $i \in \{1, 2\}$,
 886 $x \in \mathcal{X}$, $\mathbf{y} \in \llbracket K \rrbracket^2$ and $\mathbf{s} \in \mathbb{R}^K$:

$$888 \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = \zeta_i(x) (\rho_{i,1}(x) \ell_{\text{ce}}(x, y_1, \mathbf{s}) + \alpha \rho_{i,2}(x) \ell_{\text{dis}}^{\text{Ours}}(x, y_2, \mathbf{s})),$$

890 where

$$892 \zeta_i(x) = \begin{cases} \mathbf{1}_{p_S(x) \geq p_T(x)}, & i = 1, \\ \mathbf{1}_{p_S(x) < p_T(x)}, & i = 2, \end{cases} \quad \text{and} \quad \rho_{i,j}(x) = \begin{cases} \frac{p_S(x)}{p_T(x)}, & i = 2 \wedge j = 1, \\ \frac{p_T(x)}{p_S(x)}, & i = 1 \wedge j = 2, \\ 1, & \text{otherwise.} \end{cases} \quad (10)$$

897 Observe that

$$\begin{aligned} 899 \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) &= \inf_{\mathbf{s} \in \mathbb{R}^K} \zeta_i(x) \left(-\rho_{i,1}(x) \log \left(\frac{e^{s_{y_1}}}{\sum_c e^{s_c}} \right) - \alpha \rho_{i,2}(x) \log \left(1 - \frac{e^{s_{y_2}}}{\sum_c e^{s_c}} \right) \right) \\ 900 &= \inf_{\mathbf{q} \in \Lambda_{K-1}} \zeta_i(x) (-\rho_{i,1}(x) \log(q_{y_1}) - \alpha \rho_{i,2}(x) \log(1 - q_{y_2})) \end{aligned}$$

903 where the second equality follows by letting $\mathbf{q} := (e^{s_1}, \dots, e^{s_K}) / \sum_c e^{s_c} \in \Lambda_{K-1}$. If $\rho_{i,1}(x) = 0$ or
 904 $\rho_{i,2}(x) = 0$ then $\inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = 0$. Otherwise, there are two cases to consider:
 905

- 907 • If $y_1 \neq y_2$: the minimum is achieved at \mathbf{q} such that $q_{y_1} = 1$ with all other components equal to
 908 zero. This implies $\mathbf{A}(\mathbf{s}) = y_1$ and $\inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = 0$.
- 910 • If $y_1 = y_2$: the minimum is achieved at \mathbf{q} such that $q_{y_1} = \frac{\rho_{i,1}(x)}{\rho_{i,1}(x) + \rho_{i,2}(x)} = \left(1 + \frac{\alpha p_T(x)}{p_S(x)}\right)^{-1}$ with
 911 the remaining mass distributed arbitrarily across the other components. This implies $\mathbf{A}(\mathbf{s}) = y_1$ if
 912 $\frac{\alpha p_T(x)}{p_S(x)} < 1$ or $\mathbf{A}(\mathbf{s}) \neq y_1$ if $\frac{\alpha p_T(x)}{p_S(x)} > 1$, and

$$915 \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = \zeta_i(x) \left(\rho_{i,1}(x) \log \left(1 + \frac{\alpha p_T(x)}{p_S(x)} \right) + \alpha \rho_{i,2}(x) \log \left(1 + \frac{p_S(x)}{\alpha p_T(x)} \right) \right).$$

917 We note that the optimizers in each case match the corresponding optimizers for the true loss.

918 Thus we have $\Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) = \alpha \log\left(\frac{\sum_c e^{s_c}}{\sum_{c \neq y_2} e^{s_c}}\right)$ if $p_S(x) = 0$ and $\Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) = \log\left(\frac{\sum_c e^{s_c}}{e^{s_{y_1}}}\right)$ if
919 $p_T(x) = 0$. Otherwise
920

$$\begin{aligned} 921 \Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) &= -\mathbf{1}_{p_S(x) \geq p_T(x)} \left(\log\left(\frac{e^{s_{y_1}}}{\sum_c e^{s_c}}\right) + \frac{\alpha p_T(x)}{p_S(x)} \log\left(1 - \frac{e^{s_{y_2}}}{\sum_c e^{s_c}}\right) \right. \\ 922 &\quad \left. + \mathbf{1}_{y_1=y_2} \left(\log\left(1 + \frac{\alpha p_T(x)}{p_S(x)}\right) + \frac{\alpha p_T(x)}{p_S(x)} \log\left(1 + \frac{p_S(x)}{\alpha p_T(x)}\right) \right) \right), \\ 923 \Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) &= -\mathbf{1}_{p_S(x) < p_T(x)} \left(\frac{p_S(x)}{p_T(x)} \log\left(\frac{e^{s_{y_1}}}{\sum_c e^{s_c}}\right) + \alpha \log\left(1 - \frac{e^{s_{y_2}}}{\sum_c e^{s_c}}\right) \right. \\ 924 &\quad \left. + \mathbf{1}_{y_1=y_2} \left(\frac{p_S(x)}{p_T(x)} \log\left(1 + \frac{\alpha p_T(x)}{p_S(x)}\right) + \alpha \log\left(1 + \frac{p_S(x)}{\alpha p_T(x)}\right) \right) \right). \\ 925 \\ 926 \end{aligned}$$

927 B.3 ROSENFELD AND GARG'S SURROGATE

928 We evaluate the excess loss for the two pseudo-losses that appear in the surrogate for disagreement
929 discrepancy (7) when using **Rosenfeld & Garg**'s disagreement loss. Specifically, for $i \in \{1, 2\}$ we
930 consider the loss $\hat{\ell}_i = L_i[\ell_{ce}, \alpha \ell_{dis}^{RG}]$, where L_i is defined in (5), ℓ_{ce} is the cross-entropy loss defined
931 in (2), ℓ_{dis}^{RG} is **Rosenfeld & Garg**'s disagreement loss defined in (3), $\alpha > 0$ and $K > 2$.
932

933 Since $\hat{\ell}_1$ and $\hat{\ell}_2$ have a similar functional form, we analyze them together by defining for $i \in \{1, 2\}$,
934 $x \in \mathcal{X}$, $\mathbf{y} \in \llbracket K \rrbracket^2$, $\mathbf{s} \in \mathbb{R}^K$:

$$935 \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = \zeta_i(x) (\rho_{i,1}(x) \ell_{ce}(x, y_1, \mathbf{s}) + \alpha \rho_{i,2}(x) \ell_{dis}^{RG}(x, y_2, \mathbf{s}))$$

936 where ζ_i and $\rho_{i,j}$ are defined in (10).

937 Substituting the expressions for ℓ_{ce} and ℓ_{dis}^{RG} we have

$$938 \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = \inf_{\mathbf{s} \in \mathbb{R}^K} \zeta_i(x) \left(\rho_{i,1}(x) \log\left(\frac{\sum_c e^{s_c}}{e^{s_{y_1}}}\right) + \alpha \rho_{i,2}(x) \log\left(1 + e^{s_{y_2} - \frac{1}{K-1} \sum_{c \neq y_2} s_c}\right) \right). \\ 939 \quad (11)$$

940 For the special cases where $\rho_{i,1}(x) = 0$ or $\rho_{i,2}(x) = 0$, we observe that the minimum loss is zero.
941 For the more general case where $\rho_{i,1}(x) > 0$ and $\rho_{i,2}(x) > 0$, we solve the problem by computing
942 the gradient with respect to \mathbf{s} , and solving for the stationary points.

943 Let $\mathbf{q} = (e^{s_1}, \dots, e^{s_K}) / \sum_c e^{s_c}$ denote the softmax probability vector corresponding to \mathbf{s} . There are
944 four distinct cases to consider for the gradient components:

945 1. For $k = y_1 \neq y_2$, we have

$$946 \frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) \left(\rho_{i,1}(x)(q_k - 1) - \frac{\alpha \rho_{i,2}(x)}{K-1} \frac{1}{1 + e^{-s_{y_2} + \frac{1}{K-1} \sum_{c \neq y_2} s_c}} \right)$$

947 2. For $k = y_1 = y_2$, we have

$$948 \frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) \left(\rho_{i,1}(x)(q_k - 1) + \alpha \rho_{i,2}(x) \frac{1}{1 + e^{-s_k + \frac{1}{K-1} \sum_{c \neq k} s_c}} \right)$$

949 3. For $k = y_2 \neq y_1$, we have

$$950 \frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) \left(\rho_{i,1}(x)q_k + \alpha \rho_{i,2}(x) \frac{1}{1 + e^{-s_k + \frac{1}{K-1} \sum_{c \neq k} s_c}} \right)$$

951 4. For $k \neq y_1, k \neq y_2$, we have

$$952 \frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) \left(\rho_{i,1}(x)q_k - \frac{\alpha \rho_{i,2}(x)}{K-1} \frac{1}{1 + e^{-s_{y_2} + \frac{1}{K-1} \sum_{c \neq y_2} s_c}} \right)$$

972 **Case 1:** $y = y_1 = y_2$: Assuming $\zeta_i(x) \neq 0$, there is a stationary point at \mathbf{s}^* for $i = 1$ and $i = 2$ such
973 that:

$$\begin{aligned} 975 \quad \rho_{i,1}(x) \left(\frac{e^{s_y^*}}{e^{s_y^*} + \sum_{c \neq y} e^{s_c^*}} - 1 \right) &= -\alpha \rho_{i,2}(x) \frac{1}{1 + e^{-s_y^* + \frac{1}{K-1} \sum_{c \neq y} s_c^*}}, \\ 976 \quad \rho_{i,1}(x) \frac{e^{s_k^*}}{e^{s_k^*} + \sum_{c \neq k} e^{s_c^*}} &= \frac{\alpha \rho_{i,2}(x)}{K-1} \frac{1}{1 + e^{-s_y^* + \frac{1}{K-1} \sum_{c \neq y} s_c^*}}, \quad \forall k \neq y. \\ 977 \end{aligned}$$

980 The equation for components $k \neq y$ implies $s_k^* = C$ for some constant $C \in \mathbb{R}$, i.e., all components
981 of \mathbf{s}^* excluding s_y are equal. Hence the system of equations K can be simplified to one equation in
982 $u^* := s_y^* - C$:

$$\rho_{i,1}(x) \frac{K-1}{e^{u^*} + K-1} = \alpha \rho_{i,2}(x) \frac{1}{1 + e^{-u^*}}.$$

986 The solution for both $i = 1$ and $i = 2$ is $u^* = \log b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right)$ where
987

$$988 \quad b_K(r) = \frac{1}{2}(r-1)(K-1) + \sqrt{(K-1)r + \frac{1}{4}(K-1)^2(r-1)^2}. \quad (12) \\ 989$$

990 This corresponds to a score vector \mathbf{s}^* such that $s_y^* = C + \log b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right)$ and $s_k^* = C$ for all $k \neq y$.
991

992 One can show that the behavior of the solution changes at the critical point $r = \frac{p_S(x)}{\alpha p_T(x)} = \frac{K}{2K-2}$.
993 Specifically,

- 995 • for $0 < \frac{p_S(x)}{\alpha p_T(x)} < \frac{K}{2K-2}$ we have $0 < b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right) < 1$ and the critic predicts $\mathbf{A}(\mathbf{s}^*) \neq y$,
- 996 • for $\frac{p_S(x)}{\alpha p_T(x)} = \frac{K}{2K-2}$ we have $b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right) = 1$ and the critic predicts $\mathbf{A}(\mathbf{s}^*) = 1$,
- 997 • for $\frac{p_S(x)}{\alpha p_T(x)} > \frac{K}{2K-2}$ we have $b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right) > 1$ and the critic predicts $\mathbf{A}(\mathbf{s}^*) = y$.

1001 We note that the optimizer for the surrogate losses does not match the optimizer for the true losses at
1002 inputs x such that $\frac{K}{2K-2} < \frac{p_S(x)}{\alpha p_T(x)} < 1$. The minimum surrogate loss for a given x, \mathbf{y} is
1003

$$\begin{aligned} 1004 \quad \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) &= \zeta_i(x) \rho_{i,1}(x) \log \left(1 + \frac{K-1}{b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right)} \right) \\ 1005 \quad &+ \alpha \zeta_i(x) \rho_{i,2}(x) \log \left(1 + b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right) \right). \quad (13) \\ 1006 \end{aligned}$$

1010 **Case 2:** $y_1 \neq y_2$: Let $\mathbf{q} = (e^{s_1}, \dots, e^{s_K}) / \sum_c e^c$ denote the softmax probability vector correspond-
1011 ing to \mathbf{s} . Assuming $\zeta_i(x) \neq 0$, there is a stationary point at \mathbf{s}^* for $i = 1$ and $i = 2$ such that:

$$\begin{aligned} 1013 \quad \rho_{i,1}(x)(q_{y_1}^* - 1) &= \frac{\alpha \rho_{i,2}(x)}{K-1} \frac{1}{1 + e^{-s_{y_2} + \frac{1}{K-1} \sum_{c \neq y_2} s_c^*}}, \\ 1014 \quad \rho_{i,1}(x)q_{y_2}^* &= -\alpha \rho_{i,2}(x) \frac{1}{1 + e^{-s_{y_2} + \frac{1}{K-1} \sum_{c \neq y_2} s_c^*}}, \\ 1015 \quad \rho_{i,1}(x)q_k^* &= \frac{\alpha \rho_{i,2}(x)}{K-1} \frac{1}{1 + e^{-s_{y_2} + \frac{1}{K-1} \sum_{c \neq y_2} s_c^*}}, \quad \forall k \neq y_1, k \neq y_2. \\ 1016 \end{aligned}$$

1019 The last equation for components $k \notin \{y_1, y_2\}$ implies $q_k = C$ for some $C \in (0, 1)$, i.e., all
1020 components of \mathbf{q} excluding $q_{y_1}^*$ and $q_{y_2}^*$ are equal. Using this result, the system of equations simplifies
1021 to $(K-1)(1 - q_{y_1}^*) = q_{y_2}^* = -(K-1)C$. The only valid solution is obtained in the limit
1022 $q_{y_2}^* = C \rightarrow 0$ and $q_{y_1} \rightarrow 1$. This implies $\mathbf{A}(\mathbf{s}^*) = y_1$, which matches the optimizer for the true loss.
1023 By appropriately taking the limit, we find the infimum for a given x, \mathbf{y} is therefore
1024

$$\inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = 0$$

1026 Thus we have $\Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) = \log\left(\frac{\sum_{c'} e^{s_{c'}}}{e^{s_{y_1}}}\right)$ if $p_T(x) = 0$ and $\Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) =$
 1027 $\alpha \log\left(1 + e^{s_{y_2} - \frac{1}{K-1} \sum_{c' \neq y_2} s_{c'}}\right)$ if $p_S(x) = 0$. Otherwise
 1028

1029
$$\Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) = \mathbf{1}_{p_S(x) \geq p_T(x)} \left(\log\left(\frac{\sum_{c'} e^{s_{c'}}}{e^{s_{y_1}}}\right) + \frac{\alpha p_T(x)}{p_S(x)} \log\left(1 + e^{s_{y_2} - \frac{1}{K-1} \sum_{c' \neq y_2} s_{c'}}\right) \right. \\ \left. - \mathbf{1}_{y_1=y_2} \log\left(b_K\left(\frac{p_S(x)}{\alpha p_T(x)}\right) + K - 1\right) - \mathbf{1}_{y_1=y_2} \log\left(b_K\left(\frac{p_S(x)}{\alpha p_T(x)}\right)\right) \right. \\ \left. - \mathbf{1}_{y_1=y_2} \frac{\alpha p_T(x)}{p_S(x)} \log\left(1 + b_K\left(\frac{p_S(x)}{\alpha p_T(x)}\right)\right) \right),$$

1030
$$\Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) = \mathbf{1}_{p_S(x) < p_T(x)} \alpha \left(\frac{p_S(x)}{\alpha p_T(x)} \log\left(\frac{\sum_{c'} e^{s_{c'}}}{e^{s_{y_1}}}\right) + \log\left(1 + e^{s_{y_2} - \frac{1}{K-1} \sum_{c' \neq y_2} s_{c'}}\right) \right. \\ \left. - \mathbf{1}_{y_1=y_2} \frac{p_S(x)}{\alpha p_T(x)} \log\left(b_K\left(\frac{p_S(x)}{\alpha p_T(x)}\right) + K - 1\right) \right. \\ \left. - \mathbf{1}_{y_1=y_2} \frac{p_S(x)}{\alpha p_T(x)} \log\left(b_K\left(\frac{p_S(x)}{\alpha p_T(x)}\right)\right) \right. \\ \left. - \mathbf{1}_{y_1=y_2} \log\left(1 + b_K\left(\frac{p_S(x)}{\alpha p_T(x)}\right)\right) \right).$$

B.4 GINSBERG ET AL.’S SURROGATE

We evaluate the excess loss for the two pseudo-losses that appear in the surrogate for disagreement discrepancy (7) when using [Ginsberg et al.](#)’s disagreement loss. Specifically, for $i \in \{1, 2\}$ we consider the loss $\hat{\ell}_i = L_i[\ell_{ce}, \alpha \ell_{dis}^{GLK}]$, where L_i is defined in (5), ℓ_{ce} is the cross-entropy loss defined in (2), ℓ_{dis}^{GLK} is [Ginsberg et al.](#)’s disagreement loss defined in (4), $\alpha > 0$, and $K > 2$.

Since $\hat{\ell}_1$ and $\hat{\ell}_2$ have a similar functional form, we analyze them together by defining for $i \in \{1, 2\}$, $x \in \mathcal{X}$, $\mathbf{y} \in \llbracket K \rrbracket^2$, $\mathbf{s} \in \mathbb{R}^K$:

$$\begin{aligned} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) &= \zeta_i(x) (\rho_{i,1}(x) \ell_{ce}(x, y_1, \mathbf{s}) + \alpha \rho_{i,2}(x) \ell_{dis}^{GLK}(x, y_2, \mathbf{s})) \\ &= \zeta_i(x) \left(\rho_{i,1}(x) \log\left(\frac{\sum_c e^{s_c}}{e^{s_{y_1}}}\right) + \frac{\alpha \rho_{i,2}(x)}{K-1} \sum_{c \neq y_2} \log\left(\frac{\sum_{c'} e^{s_{c'}}}{e^{s_c}}\right) \right) \\ &= \zeta_i(x) \left(-\rho_{i,1}(x) s_{y_1} - \frac{\alpha \rho_{i,2}(x)}{K-1} \sum_{c \neq y_2} s_c + (\rho_{i,1}(x) + \alpha \rho_{i,2}(x)) \log\left(\sum_c e^{s_c}\right) \right). \end{aligned}$$

where ζ_i and $\rho_{i,j}$ are defined in (10) and we have used the definitions of ℓ_{ce} and ℓ_{dis}^{GLK} in (2) and (4), respectively.

We now consider the problem of minimizing $\hat{\ell}_i(x, \mathbf{y}, \mathbf{s})$ with respect to $\mathbf{s} \in \mathbb{R}^K$. For the special cases where $\rho_{i,1}(x) = 0$ or $\rho_{i,2}(x) = 0$, we observe that $\inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = 0$. For the more general case where $\rho_{i,1}(x) > 0$ and $\rho_{i,2}(x) > 0$, we solve the problem by computing the gradient with respect to \mathbf{s} , and solving for the stationary points.

Let $\mathbf{q} := (e^{s_1}, \dots, e^{s_K}) / \sum_c e^{s_c}$ denote the softmax probability vector corresponding to \mathbf{s} . There are four distinct cases to consider for the gradient components:

1. For $k = y_1 \neq y_2$, we have

$$\frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) \left(-\rho_{i,1}(x) - \frac{\alpha \rho_{i,2}(x)}{K-1} + (\rho_{i,1}(x) + \alpha \rho_{i,2}(x)) q_k \right)$$

2. For $k = y_1 = y_2$, we have

$$\frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) (-\rho_{i,1}(x) + (\rho_{i,1}(x) + \alpha \rho_{i,2}(x)) q_k)$$

1080 3. For $k = y_2 \neq y_1$, we have
 1081

$$1082 \frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) (\rho_{i,1}(x) + \alpha \rho_{i,2}(x)) q_k$$

1083
 1084
 1085
 1086 4. For $k \neq y_1, k \neq y_2$, we have
 1087

$$1088 \frac{\partial \hat{\ell}_i(x, \mathbf{y}, \mathbf{s})}{\partial s_k} = \zeta_i(x) \left(-\frac{\alpha \rho_{i,2}(x)}{K-1} + (\rho_{i,1}(x) + \alpha \rho_{i,2}(x)) q_k \right)$$

1089
 1090 To solve for the stationary points, we consider the cases $y_1 = y_2$ and $y_1 \neq y_2$ separately. Below we
 1091 define $r(x) := p_S(x) / (\alpha p_T(x))$.

1092 **Case 1:** $y = y_1 = y_2$: Assuming $\zeta_i(x) \neq 0$, there is a stationary point at \mathbf{q}^* for $i = 1$ and $i = 2$ such
 1093 that:
 1094

$$1095 q_y^* = \frac{\rho_{i,1}(x)}{\rho_{i,1}(x) + \alpha \rho_{i,2}(x)} = \frac{r(x)}{r(x) + 1},$$

$$1096 q_k^* = \frac{\frac{\alpha \rho_{i,2}(x)}{K-1}}{\rho_{i,1}(x) + \alpha \rho_{i,2}(x)} = \frac{1}{K-1} \frac{1}{r(x) + 1}, \quad \forall k \neq y.$$

1097
 1098 It is straightforward to verify that this point is a minimizer. This implies $\mathbf{A}(\mathbf{s}^*) = y$ if $r(x) > \frac{1}{K-1}$
 1099 and $\mathbf{A}(\mathbf{s}^*) \neq y$ if $r(x) < \frac{1}{K-1}$. We note that the optimizer for the surrogate losses does not match
 1100 the optimizer for the true losses at x such that $\frac{1}{K-1} < \frac{p_S(x)}{\alpha p_T(x)} < 1$. The minimum surrogate loss for
 1101 a given x, \mathbf{y} is therefore
 1102

$$1103 \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = \rho_{i,1}(x) \log \left(1 + \frac{\alpha p_T(x)}{p_S(x)} \right)$$

$$1104 + \alpha \rho_{i,2}(x) \log \left((K-1) \left(\frac{p_S(x)}{\alpha p_T(x)} + 1 \right) \right). \quad (14)$$

1105
 1106 **Case 2:** $y_1 \neq y_2$: Assuming $\zeta_i(x) \neq 0$, there is a stationary point at \mathbf{q}^* for $i = 1$ and $i = 2$ such that:
 1107

$$1108 q_{y_1}^* = \frac{\rho_{i,1}(x) + \frac{\alpha \rho_{i,2}(x)}{K-1}}{\rho_{i,1}(x) + \alpha \rho_{i,2}(x)} = \frac{1}{K-1} \frac{r(x)(K-1) + 1}{r(x) + 1},$$

$$1109 q_{y_2}^* = 0,$$

$$1110 q_k^* = \frac{\frac{\alpha \rho_{i,2}(x)}{K-1}}{\rho_{i,1}(x) + \alpha \rho_{i,2}(x)} = \frac{1}{K-1} \frac{1}{r(x) + 1}, \quad \forall k \neq y_1, k \neq y_2.$$

1111
 1112 It is straightforward to verify that this point is a minimizer. This implies $\mathbf{A}(\mathbf{s}^*) = y_1$, which matches
 1113 the optimizer for the true loss. The minimum surrogate loss for a given x, \mathbf{y} is therefore
 1114

$$1115 \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = (\rho_{i,1}(x) + \alpha \rho_{i,2}(x)) \log \left((K-1) \left(\frac{p_S(x)}{\alpha p_T(x)} + 1 \right) \right)$$

$$1116 - \left(\rho_{i,1}(x) + \frac{\alpha \rho_{i,2}(x)}{K-1} \right) \log \left((K-1) \frac{p_S(x)}{\alpha p_T(x)} + 1 \right).$$

1134 Thus we have $\Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) = \frac{\alpha}{K-1} \sum_{c \neq y_2} \log \left(\frac{\sum_{c'} e^{s_{c'}}}{e^{s_c}} \right)$ if $p_S(x) = 0$ and $\Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) =$
 1135 $\log \left(\frac{\sum_c e^{s_c}}{e^{s_{y_1}}} \right)$ if $p_T(x) = 0$. Otherwise
 1136
 1137

$$\begin{aligned} 1138 \Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) &= -\mathbf{1}_{p_S(x) \geq p_T(x)} \left(\left(1 + \frac{\mathbf{1}_{y_1 \neq y_2} \alpha p_T(x)}{(K-1)p_S(x)} \right) \log \left(\frac{e^{s_{y_1}}}{\sum_c e^{s_c}} \frac{(K-1) \left(\frac{p_S(x)}{\alpha p_T(x)} + 1 \right)}{(K-1) \frac{p_S(x)}{\alpha p_T(x)} + 1} \right) \right. \\ 1139 &\quad \left. + \frac{\alpha p_T(x)}{(K-1)p_S(x)} \sum_{c \notin \{y_1, y_2\}} \log \left(\frac{e^{s_c}}{\sum_{c'} e^{s_{c'}}} (K-1) \left(\frac{p_S(x)}{\alpha p_T(x)} + 1 \right) \right) \right), \\ 1140 \Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) &= -\mathbf{1}_{p_S(x) < p_T(x)} \left(\left(\frac{p_S(x)}{p_T(x)} + \frac{\mathbf{1}_{y_1 \neq y_2} \alpha}{K-1} \right) \log \left(\frac{e^{s_{y_1}}}{\sum_c e^{s_c}} \frac{(K-1) \left(\frac{p_S(x)}{\alpha p_T(x)} + 1 \right)}{(K-1) \frac{p_S(x)}{\alpha p_T(x)} + 1} \right) \right. \\ 1141 &\quad \left. + \frac{\alpha}{K-1} \sum_{c \notin \{y_1, y_2\}} \log \left(\frac{e^{s_c}}{\sum_{c'} e^{s_{c'}}} (K-1) \left(\frac{p_S(x)}{\alpha p_T(x)} + 1 \right) \right) \right). \\ 1142 & \\ 1143 & \\ 1144 & \\ 1145 & \\ 1146 & \\ 1147 & \\ 1148 & \\ 1149 & \\ 1150 & \\ 1151 & \end{aligned}$$

C PROOFS FOR SECTION 4.3

1154 This appendix contains proofs for the results presented in Section 4.3. The key result of this section
 1155 is Theorem 4, which we prove using Corollary 13 developed in Appendix A.
 1156

1157 As a first step, we must prove that the condition for Corollary 13 holds: namely that the relevant ΔG
 1158 functional is positive within a neighborhood of zero. This is done for the pseudo-losses associated
 1159 with the surrogate of Rosenfeld & Garg (2023) below.

1160 **Lemma 14.** *Consider the framework of Appendix A for a classification task with $K > 2$ classes,
 1161 where $\mathcal{Y} = \llbracket K \rrbracket^2$ is the reference output space, $\mathcal{Z}_1 = \llbracket K \rrbracket$ is the model output space, and $\mathcal{Z}_2 = \mathbb{R}^K$
 1162 is the raw (logit) model output space. Assume the mapping $\mathbf{A}: \mathbb{R}^K \rightarrow \llbracket K \rrbracket$ from logits to predictions
 1163 is as defined in (1). For fixed $\delta \in (0, \frac{K-2}{2K-2})$, set the input space to the restricted input space \mathcal{X}' for
 1164 Rosenfeld & Garg's surrogate as defined in (8). Then for true loss $\ell_i = L_i[\ell_{\text{zo}}, -\alpha \ell_{\text{zo}}]$ and surrogate
 1165 loss $\hat{\ell}_i = L_i[\ell_{\text{ce}}, \alpha \ell_{\text{dis}}^{\text{GLK}}]$ we have*

$$1167 \Delta G[\ell_i, \hat{\ell}_i](\epsilon) = \inf_{(x, y) \in \mathcal{X}' \times \llbracket K \rrbracket} \Delta G[\ell_i, \hat{\ell}_i](\epsilon, x, y) = \begin{cases} \frac{\delta}{1-\delta}, & i = 1, \\ \alpha \delta, & i = 2, \end{cases}$$

1166 for all $\epsilon < \epsilon_i^*(\delta)$ where

$$1167 \epsilon_i^*(\delta) = \begin{cases} \log \left(\frac{K b_K \left(\frac{K}{2K-2} + \delta \right)}{b_K \left(\frac{K}{2K-2} + \delta \right) + K-1} \right) + \frac{2K-2}{K+2\delta(K-1)} \log \left(\frac{2}{1+b_K \left(\frac{K}{2K-2} + \delta \right)} \right), & i = 1, \\ \alpha \frac{K+2\delta(K-1)}{2K-2} \log \left(\frac{K b_K \left(\frac{K}{2K-2} + \delta \right)}{b_K \left(\frac{K}{2K-2} + \delta \right) + K-1} \right) + \alpha \log \left(\frac{2}{1+b_K \left(\frac{K}{2K-2} + \delta \right)} \right), & i = 2, \end{cases}$$

1168 and $b_K: [0, \infty) \rightarrow [0, \infty)$ is defined in (12).

1169 *Proof.* Let $r(x) = \frac{p_S(x)}{\alpha p_T(x)}$ and let $\zeta_i(x)$ and $\rho_{i,j}(x)$ be as defined in (10). Fix $x \in \mathcal{X}'$ such that
 1170 $\zeta_i(x) \neq 0$ and $\mathbf{y} = (y, y)$ for $y \in \llbracket K \rrbracket$ (i.e., the reference outputs are identical). We begin by proving
 1171 the following:

1172 Claim: We have

$$1173 \Delta G[\ell_i, \hat{\ell}_i](\epsilon, x, \mathbf{y}) = \begin{cases} r(x)^{-1} - 1, & i = 1, \\ \alpha(1 - r(x)), & i = 2. \end{cases} \quad (15)$$

1174 for all $\epsilon < \epsilon_i^*(x)$ where

$$1175 \epsilon^*(x) = \rho_{i,1}(x) \log \left(\frac{K b_K(r(x))}{b_K(r(x)) + K-1} \right) + \alpha \rho_{i,2}(x) \log \left(\frac{2}{1+b_K(r(x))} \right).$$

1188 To prove the claim, we first recall from Definition 9 that:
 1189

$$1190 \Delta G[\ell_i, \hat{\ell}_i](\epsilon, x, \mathbf{y}) = \inf_{\mathbf{s} \in C[\hat{\ell}_i](\epsilon, x, \mathbf{y})} \Delta \ell_i(x, \mathbf{y}, \mathbf{A}(\mathbf{s})),$$

1192 with

$$1193 C[\hat{\ell}_i](\epsilon, x, \mathbf{y}) = \{\mathbf{s} \in \mathbb{R}^K : \Delta \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) \leq \epsilon\}.$$

1194 When $\epsilon = 0$, we know from the analysis in Appendix B.3 that $C[\hat{\ell}_i](0, x, \mathbf{y}) = \{\mathbf{s} \in \mathbb{R}^K : [\forall k \neq y, s_k = C] \wedge [s_y = C + \log b_K(r(x))] \wedge [C \in \mathbb{R}]\}$. For any \mathbf{s} in this set, we have $\mathbf{A}(\mathbf{s}) = \mathbf{y}$.
 1195 It is then straightforward to show, using the expressions for $\Delta \ell_i$ derived in Appendix B.1, that
 1196 $\Delta G[\ell_i, \hat{\ell}_i](0, x, \mathbf{y})$ is equal to the RHS of (15).
 1197

1198 The claim follows if we can prove that $\mathbf{A}(\mathbf{s}) = \mathbf{y}$ for all $\mathbf{s} \in C[\hat{\ell}_i](\epsilon, x, \mathbf{y})$ such that $\epsilon < \epsilon^*(x)$, since
 1199 the value of $\Delta \ell_i(\epsilon, x, \mathbf{A}(\mathbf{s}))$ and hence $\Delta G[\ell_i, \hat{\ell}_i](\epsilon, x, \mathbf{y})$ are the same as at $\epsilon = 0$. To demonstrate
 1200 this, we find the minimum surrogate loss $\Delta \hat{\ell}_i(x, y, \mathbf{s})$ with respect to $\mathbf{s} \in \mathbb{R}^K$ such that $\mathbf{A}(\mathbf{s}) \neq \mathbf{y}$,
 1201 and show that it is equal to $\epsilon^*(x)$. The loss minimization problem is
 1202

$$1204 \inf_{\mathbf{s} \in \mathbb{R}^K : \mathbf{A}(\mathbf{s}) \neq \mathbf{y}} \Delta \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) = \inf_{\mathbf{s} \in \mathbb{R}^K : \mathbf{A}(\mathbf{s}) \neq \mathbf{y}} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}) - \inf_{\mathbf{s} \in \mathbb{R}^K} \hat{\ell}_i(x, \mathbf{y}, \mathbf{s}).$$

1205 The unconstrained problem (second term) is solved in Appendix B.3, where minimizers \mathbf{s}^* are found
 1206 to satisfy $s_y^* > \max_{c \neq y} s_c^*$. Such minimizers are outside the feasible region for the constrained
 1207 problem (first term), where we need $s_y^* < \max_{c \neq y} s_c^*$. Since the objective is convex in \mathbf{s} , solutions to
 1208 the constrained problem must lie on the boundary where $s_y = \max_{c \neq y} s_c$. This, together with the
 1209 symmetry of the objective with respect to components s_k for $k \neq y$, means the minimizers \mathbf{s}^* for the
 1210 unconstrained problem are vectors where all components are equal.
 1211

1212 Substituting the optimizer into the first term above, and using the previously evaluated result (13) for
 1213 the second term, we have

$$1215 \inf_{\mathbf{s} \in \mathbb{R}^K : \mathbf{A}(\mathbf{s}) \neq \mathbf{y}} \Delta \hat{\ell}_2(x, y, \mathbf{s}) = \rho_{i,1}(x) \log K + \alpha \rho_{i,2}(x) \log 2 - \rho_{i,1}(x) \log \left(1 + \frac{K-1}{b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right)} \right) \\ 1216 - \alpha \rho_{i,2}(x) \log \left(1 + b_K \left(\frac{p_S(x)}{\alpha p_T(x)} \right) \right) \\ 1217 = \epsilon^*(x),$$

1221 which completes the proof of the claim.

1223 Next, we find a threshold $\epsilon^*(\delta)$ that is valid for all $x \in \mathcal{X}'$ by minimizing $\epsilon^*(x)$ over $x \in \mathcal{X}'$.
 1224 Since $\epsilon^*(x)$ only depends on x via $r(x)$, and is a monotonically increasing function of $r(x)$ for
 1225 $\frac{K}{2K-2} + \delta \leq r(x) \leq 1 - \delta$, we have that the minimum is achieved at $r(x) = \frac{K}{2K-2} + \delta$.
 1226

1227 Now by Definition 9 we have for $\epsilon < \epsilon^*(\delta)$ that

$$1228 \Delta G[\ell_2, \hat{\ell}_2](\epsilon) = \inf_{(x, y) \in \mathcal{X}' \times \llbracket K \rrbracket} \Delta G[\ell_2, \hat{\ell}_2](\epsilon, x, y) \\ 1229 = \inf_{x \in \mathcal{X}'} \alpha(1 - r(x)) \\ 1230 = \alpha\delta.$$

1233 The second inequality follows from the claim proved above and the third inequality follows by setting
 1234 $r(x) = 1 - \delta$. \square
 1235

1236 We obtain a similar result for the surrogate of Ginsberg et al. (2023) below. The proof follows the
 1237 same structure as the proof of Lemma 14.

1238 **Lemma 15.** *Consider the framework of Appendix A for a classification task with $K > 2$ classes,
 1239 where $\mathcal{Y} = \llbracket K \rrbracket^2$ is the reference output space, $\mathcal{Z}_1 = \llbracket K \rrbracket$ is the model output space, and $\mathcal{Z}_2 = \mathbb{R}^K$
 1240 is the raw (logit) model output space. Assume the mapping $\mathbf{A} : \mathbb{R}^K \rightarrow \llbracket K \rrbracket$ from logits to predictions
 1241 is as defined in (1). For fixed $\delta \in \left(0, \frac{K-2}{2K-2}\right)$, set the input space to the restricted input space \mathcal{X}' for*

1242 *Ginsberg et al.’s surrogate as defined in (8). Then for true loss $\ell_i = L_i[\ell_{\text{zo}}, -\alpha \ell_{\text{zo}}]$ and surrogate*
 1243 *loss $\hat{\ell}_i = L_i[\ell_{\text{ce}}, \alpha \ell_{\text{dis}}^{\text{GLK}}]$ we have*

$$1245 \quad \Delta G[\ell_i, \hat{\ell}_i](\epsilon) = \inf_{(x,y) \in \mathcal{X}' \times \llbracket K \rrbracket} \Delta G[\ell_i, \hat{\ell}_i](\epsilon, x, y) = \begin{cases} \frac{\delta}{1-\delta}, & i = 1, \\ \alpha\delta, & i = 2, \end{cases}$$

1247 *for all $\epsilon < \epsilon_i^*(\delta)$ where*

$$1249 \quad \epsilon_i^*(\delta) = \begin{cases} \frac{K-1}{\delta(K-1)+1} \log\left(\frac{K}{\delta(K-1)+K}\right) + \log\left(\frac{\delta K(K-1)+K}{\delta(K-1)+K}\right), & i = 1, \\ \alpha \log\left(\frac{K}{\delta(K-1)+K}\right) + \alpha \frac{\delta(K-1)+1}{K-1} \log\left(\frac{\delta K(K-1)+K}{\delta(K-1)+K}\right), & i = 2. \end{cases}$$

1252 Next we present a result that allows us to compose the convex envelope functions that appear in
 1253 Appendix A. This is needed, as we will apply the bound of Appendix A to each risk term in the
 1254 reformulated disagreement discrepancy.

1255 **Lemma 16.** *Let $\zeta_1, \zeta_2: [0, \infty) \rightarrow [0, \infty)$ be convex functions that are continuous at zero and
 1256 non-increasing. Then the function $\zeta: [0, \infty) \rightarrow [0, \infty)$ such that*

$$1258 \quad \zeta(\epsilon) = \inf_{\epsilon_1 + \epsilon_2 = \epsilon, \epsilon_1 \geq 0, \epsilon_2 \geq 0} \zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)$$

1259 *has the following properties:*

- 1261 1. *it satisfies $\zeta(\epsilon_1 + \epsilon_2) \leq \zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)$ for any $\epsilon_1, \epsilon_2 \in [0, \infty)$,*
- 1262 2. *it is convex,*
- 1263 3. *it is non-increasing,*
- 1264 4. *it satisfies $\zeta(0) = \zeta_1(0) + \zeta_2(0)$, and*
- 1265 5. *it is continuous at zero.*

1269 *Proof.* We prove each property below:

- 1271 1. This holds trivially by definition.
- 1273 2. Let $\epsilon, \epsilon' \geq 0$ and (ϵ_1, ϵ_2) and $(\epsilon'_1, \epsilon'_2)$ be pairs that are arbitrarily close to achieving the
 1274 infimum for $\zeta(\epsilon)$ and $\zeta(\epsilon')$, respectively. For $\lambda \in [0, 1]$, the convex combination of these
 1275 pairs $\lambda(\epsilon_1, \epsilon_2) + (1 - \lambda)(\epsilon'_1, \epsilon'_2)$ has components that sum to $\lambda\epsilon + (1 - \lambda)\epsilon'$. By the definition
 1276 of ζ , we have $\zeta(\lambda\epsilon + (1 - \lambda)\epsilon') \leq \zeta_1(\lambda\epsilon_1 + (1 - \lambda)\epsilon'_1) + \zeta_2(\lambda\epsilon_2 + (1 - \lambda)\epsilon'_2)$. Applying
 1277 the convexity of ζ_1 and ζ_2 to the right-hand side yields

$$1278 \quad \zeta(\lambda\epsilon + (1 - \lambda)\epsilon') \leq \lambda(\zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)) + (1 - \lambda)(\zeta_1(\epsilon'_1) + \zeta_2(\epsilon'_2)).$$

1279 Since this inequality holds for values that can be made arbitrarily close to $\lambda\zeta(\epsilon) + (1 - \lambda)\zeta(\epsilon')$,
 1280 the result follows.

- 1281 3. Let $\epsilon \geq 0$ and (ϵ_1, ϵ_2) be a pair such that $\epsilon_1 + \epsilon_2 = \epsilon$ and $\zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)$ is arbitrarily close
 1282 to $\zeta(\epsilon)$. Now for $\epsilon' \geq \epsilon$, consider the pair $(\epsilon_1, \epsilon_2 + (\epsilon' - \epsilon))$. The sum of its components is
 1283 $\epsilon_1 + \epsilon_2 + \epsilon' - \epsilon = \epsilon'$. By the definition of ζ , we have $\zeta(\epsilon') \leq \zeta_1(\epsilon_1) + \zeta_2(\epsilon_2 + (\epsilon' - \epsilon))$.
 1284 Since ζ_2 is non-increasing, it follows that $\zeta_2(\epsilon_2 + (\epsilon' - \epsilon)) \leq \zeta_2(\epsilon_2)$. This leads to the
 1285 inequality $\zeta(\epsilon') \leq \zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)$. As this holds for a value arbitrarily close to $\zeta(\epsilon)$, we
 1286 conclude that $\zeta(\epsilon') \leq \zeta(\epsilon)$ as required.
- 1287 4. This holds by definition. For $\epsilon = 0$, the only pair (ϵ_1, ϵ_2) satisfying the constraints is $(0, 0)$
 1288 so the infimum is taken over a single point.
- 1289 5. We need to show that $\lim_{\epsilon \rightarrow 0^+} \zeta(\epsilon) = \zeta(0)$. From the fact that ζ is non-increasing, we
 1290 already have $\zeta(\epsilon) \leq \zeta(0)$ for any $\epsilon \geq 0$. For the reverse inequality, consider an arbitrary
 1291 $\delta > 0$. By the continuity of ζ_1 and ζ_2 at zero, there exists an $\eta > 0$ such that for any
 1292 $x \in [0, \eta]$, both $\zeta_1(x) > \zeta_1(0) - \delta/2$ and $\zeta_2(x) > \zeta_2(0) - \delta/2$. Now, if we choose
 1293 $\epsilon \in (0, \eta)$, then for any decomposition $\epsilon = \epsilon_1 + \epsilon_2$, both ϵ_1 and ϵ_2 must be less than η . This
 1294 implies that any term in the infimum, $\zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)$, is strictly greater than $\zeta_1(0) + \zeta_2(0) - \delta$.
 1295 Therefore, the infimum itself must satisfy $\zeta(\epsilon) \geq \zeta(0) - \delta$, which completes the proof.

1296

1297

1298

We now use Lemmas 14, 15 and 16 and Corollary 13 to lower bound the optimality gap of disagreement discrepancy in terms of the optimality gap of the surrogates, evaluated on a subset of the input space.

1301

1302

1303

1304

Theorem 4. Consider a classification task with $K > 2$ classes, where $h: \mathcal{X} \rightarrow \llbracket K \rrbracket^2$ is a reference model outputting a pair of class labels and $f: \mathcal{X} \rightarrow \mathbb{R}^K$ is a critic model outputting logits. Let S, T be distributions on \mathcal{X} and $\alpha > 0$. For $\lambda \in (0, 1)$ and $\delta \in (0, \frac{1-\lambda}{2})$, define a restricted input space:

1305

1306

1307

$$\mathcal{X}' = \left\{ x \in \mathcal{X} : h_1(x) = h_2(x), p_T(x) > 0, \lambda + \delta \leq \frac{p_S(x)}{\alpha p_T(x)} \leq 1 - \delta \right\}, \quad (8)$$

1308

1309

1310

1311

Let \hat{d}_α be either Rosenfeld & Garg's surrogate⁵ with $\ell_{\text{dis}} = \ell_{\text{dis}}^{\text{RG}}$, $\lambda = K/(2K-2)$, or Ginsberg et al.'s surrogate with $\ell_{\text{dis}} = \ell_{\text{dis}}^{\text{GLK}}$, $\lambda = 1/(K-1)$, and $\ell_{\text{agr}} = \ell_{\text{ce}}$ in both cases. Then for both surrogates, there exists a convex function $\zeta: [0, \infty) \rightarrow [0, \infty)$ that is continuous at 0 with $\zeta(0) = \delta/(1-\delta) \mathbf{1}_{S(\mathcal{X}') > 0} + \alpha \delta \mathbf{1}_{T(\mathcal{X}') > 0}$, such that

1312

1313

1314

$$\sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \geq \zeta \left(\hat{d}_\alpha[h, f](S|_{\mathcal{X}'}, T|_{\mathcal{X}'}) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S|_{\mathcal{X}'}, T|_{\mathcal{X}'}) \right).$$

1315

1316

1317

Proof. For $i \in \{1, 2\}$, let $\ell_i = L_i[-\ell_{\text{zo}}, \alpha \ell_{\text{zo}}]$ and $\hat{\ell}_i = L_i[\ell_{\text{ce}}, \alpha \ell_{\text{dis}}]$. Using the fact that $d_\alpha[h, f](S, T) = -\alpha d_{\alpha^{-1}}[h, f](T, S)$ and expanding out the definitions, we have

1318

1319

1320

1321

1322

1323

1324

1325

1326

$$\begin{aligned} & \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \\ &= \alpha d_{\alpha^{-1}}[h, f](T, S) - \inf_{f' \in \mathcal{H}} \alpha d_{\alpha^{-1}}[h, f'](T, S) \\ &= R[\ell_1, h, \mathbf{A}f](S) - \inf_{f' \in \mathcal{H}} R[\ell_1, h, \mathbf{A}f'](S) + R[\ell_2, h, \mathbf{A}f](T) - \inf_{f' \in \mathcal{H}} R[\ell_2, h_2, \mathbf{A}f'](T) \\ &= R[\Delta \ell_1, h, \mathbf{A}f](S) + R[\Delta \ell_2, h, \mathbf{A}f](T) \quad (16) \\ &\geq R[\Delta \ell_1, h, \mathbf{A}f](S|_{\mathcal{X}'}) + R[\Delta \ell_2, h, \mathbf{A}f](T|_{\mathcal{X}'}) \quad (17) \end{aligned}$$

1327

1328

Note that (16) follows since f' can be optimized pointwise and (17) follows by replacing $R[\Delta \ell_1, h, \mathbf{A}f](S|_{\mathcal{X}'})$ and $R[\Delta \ell_2, h, \mathbf{A}f](T|_{\mathcal{X}'})$ by a lower bound of zero.

1329

1330

1331

1332

Next, we apply Corollary 13 to (17) on the restricted input space \mathcal{X}' using $\ell_i(x, y, y')$ as the true loss and $\hat{\ell}_i(x, y, \mathbf{s})$ as the surrogate loss. Lemmas 14 and 15 ensure that $\Delta G[\ell_i, \hat{\ell}_i](\epsilon) = \delta/(1-\delta) \mathbf{1}_{i=1} + \alpha \delta \mathbf{1}_{i=2} > 0$ within a neighborhood of $\epsilon = 0$ for Rosenfeld & Garg and Ginsberg et al.'s surrogates respectively. This is needed to apply Corollary 13.

1333

1334

1335

As a result, there exists a convex function $\zeta_1: [0, \infty) \rightarrow [0, \infty)$ that is continuous at zero, with $\zeta_1(0) = \delta/(1-\delta) \mathbf{1}_{S(\mathcal{X}') > 0}$ such that

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

$$\begin{aligned} R[\Delta \ell_1, h, \mathbf{A}f](S|_{\mathcal{X}'}) &\geq \zeta_1 \left(R[\Delta \hat{\ell}_1, h, f](S|_{\mathcal{X}'}) \right) \\ &= \zeta_1 \left(R[\hat{\ell}_1, h, f](S|_{\mathcal{X}'}) - \inf_{f' \in \mathcal{H}} R[\hat{\ell}_1, h, f'](S|_{\mathcal{X}'}) \right). \quad (18) \end{aligned}$$

The last line follows since f' can be optimized pointwise. By the same argument, there exists a convex function $\zeta_2: [0, \infty) \rightarrow [0, \infty)$ that is continuous at zero with $\zeta_2(0) = \alpha \delta \mathbf{1}_{T(\mathcal{X}') > 0}$ such that

1343

1344

1345

$$R[\Delta \ell_2, h, \mathbf{A}f](T|_{\mathcal{X}'}) \geq \zeta_2 \left(R[\hat{\ell}_2, h, f](T|_{\mathcal{X}'}) - \inf_{f' \in \mathcal{H}} R[\hat{\ell}_2, h, f'](T|_{\mathcal{X}'}) \right). \quad (19)$$

Now let

$$\zeta(\epsilon) = \inf_{\epsilon_1 + \epsilon_2 = \epsilon, \epsilon_1 \geq 0, \epsilon_2 \geq 0} \zeta_1(\epsilon_1) + \zeta_2(\epsilon_2). \quad (20)$$

⁵We consider a generalization of Rosenfeld & Garg's surrogate with $\alpha > 0$ and distinct reference models.

1350 By Lemma 16, ζ is convex and continuous at zero, with $\zeta(0) = \zeta_1(0) + \zeta_2(0) = \delta/(1-\delta)\mathbf{1}_{S(\mathcal{X}')>0} + \alpha\delta\mathbf{1}_{T(\mathcal{X}')>0}$. Using the property that $\zeta(\epsilon_1 + \epsilon_2) \leq \zeta_1(\epsilon_1) + \zeta_2(\epsilon_2)$ from Lemma 16, along with (18), (19) and (17) yields

$$\begin{aligned} 1354 \quad & \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \\ 1355 \quad & \geq \zeta \left(R[\hat{\ell}_1, h, f](S|\mathcal{X}') - \inf_{f' \in \mathcal{H}} R[\hat{\ell}_1, h, f'](S|\mathcal{X}') + R[\hat{\ell}_2, h, f](T|\mathcal{X}') - \inf_{f' \in \mathcal{H}} R[\hat{\ell}_2, h, f'](T|\mathcal{X}') \right) \\ 1356 \quad & = \zeta \left(\hat{d}_\alpha[h, f](S|\mathcal{X}', T|\mathcal{X}') - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S|\mathcal{X}', T|\mathcal{X}') \right) \end{aligned}$$

1360 as required. \square

1362 **Corollary 5.** *In the setting of Theorem 4, the surrogates proposed by Rosenfeld & Garg (2023) and*
 1363 *Ginsberg et al. (2023) are not Bayes consistent for disagreement discrepancy when $K > 2$.*

1366 *Proof.* We reuse definitions from the statement of Theorem 4. Using (7) and the fact that the critic f'
 1367 can be optimized pointwise, we can rewrite the surrogate optimality gap as

$$\begin{aligned} 1369 \quad & \hat{d}_\alpha[h, f_n](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T) = R[\Delta \hat{\ell}_1, h, f_n](S) + R[\Delta \hat{\ell}_2, h, f_n](T) \\ 1370 \quad & \geq R[\Delta \hat{\ell}_1, h, f_n](S|\mathcal{X}') + R[\Delta \hat{\ell}_2, h, f_n](T|\mathcal{X}') \\ 1372 \quad & = \hat{d}_\alpha[h, f_n](S|\mathcal{X}', T|\mathcal{X}') - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S|\mathcal{X}', T|\mathcal{X}') \end{aligned}$$

1374 where the inequality follows by replacing $R[\Delta \hat{\ell}_1, h, \mathbf{A}f](S|\mathcal{X} \setminus \mathcal{X}')$ and $R[\Delta \hat{\ell}_2, h, \mathbf{A}f](T|\mathcal{X} \setminus \mathcal{X}')$ by a
 1375 lower bound of zero. By the sandwich theorem, we have

$$\begin{aligned} 1377 \quad & \hat{d}_\alpha[h, f_n](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T) \xrightarrow{p} 0 \\ 1379 \quad & \implies \hat{d}_\alpha[h, f_n](S|\mathcal{X}', T|\mathcal{X}') - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S|\mathcal{X}', T|\mathcal{X}') \xrightarrow{p} 0. \end{aligned}$$

1381 Consider ζ as defined in (20) and let

$$1383 \quad X_n = \zeta \left(\hat{d}_\alpha[h, f_n](S|\mathcal{X}', T|\mathcal{X}') - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S|\mathcal{X}', T|\mathcal{X}') \right).$$

1386 Since ζ is continuous at zero, the continuous mapping theorem implies $X_n \xrightarrow{p} \zeta(0)$. Let S, T be
 1387 such that $S(\mathcal{X}') > 0$ or $T(\mathcal{X}') > 0$ where \mathcal{X}' is defined in (8). Then $\zeta(0) = \delta/(1-\delta)\mathbf{1}_{S(\mathcal{X}')>0} + \alpha\delta\mathbf{1}_{T(\mathcal{X}')>0}$ is strictly positive.

1389 We prove that

$$1391 \quad Y_n = \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f_n](S, T)$$

1393 does not converge in probability to zero by contradiction. Suppose $Y_n \xrightarrow{p} 0$. Then by Slutsky's
 1394 theorem, $X_n - Y_n \xrightarrow{p} \zeta(0)$. Now by preservation of inequality in the limit, if $Z_n \xrightarrow{p} Z$ and $Z_n \leq 0$ for
 1395 all n , then $Z \leq 0$. Applying this to $Z_n = X_n - Y_n$ implies $\zeta(0) \leq 0$, which is a contradiction. \square

1397 D PROOFS FOR SECTION 4.4

1399 This appendix contains proofs for the results presented in Section 4.3. The key result of this section
 1400 is Theorem 4, which we will prove using an upper bound of Zhang (2004b) that is analogous to our
 1401 lower bound, presented in Corollary 13.

1403 We begin by introducing a functional ΔH that relates the the true and surrogate excess losses. This
 functional plays a similar role as ΔG in Definition 9.

1404 **Definition 17.** Let $\Delta H[\ell, \hat{\ell}]: [0, \infty) \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, \infty)$ be a function such that for any $x \in \mathcal{X}$,
 1405 $y \in \mathcal{Y}$,

$$1406 \quad \Delta H[\ell, \hat{\ell}](\epsilon, x, y) = \begin{cases} +\infty, & C[\ell](\epsilon, x, y) = \emptyset, \\ 1407 \quad \inf_{z \in C[\ell](\epsilon, x, y)} \Delta \hat{\ell}(x, y, z), & \text{otherwise,} \end{cases}$$

1409 where $C[\ell](\epsilon, x, y) = \{z \in \mathcal{Z} : \Delta \ell(x, y, Az) \geq \epsilon\}$. We also define $\Delta H[\ell, \hat{\ell}]: [0, \infty) \rightarrow [0, \infty)$
 1410 such that

$$1411 \quad \Delta H[\ell, \hat{\ell}](\epsilon) = \inf_{(x, y) \in \mathcal{X} \times \mathcal{Y}} \Delta H[\ell, \hat{\ell}](\epsilon, x, y).$$

1413 Having defined ΔH , we are ready to restate the upper bound of [Zhang \(2004b\)](#) (labeled Corollary 26
 1414 in their paper). It provides an upper bound on the optimality gap of the true risk in terms of the
 1415 optimality gap of the surrogate risk.

1417 **Theorem 18** ([Zhang, 2004b](#)). *If the loss function ℓ is bounded, and the function in Definition 17
 1418 satisfies $\forall \epsilon > 0$, $\Delta H[\ell, \hat{\ell}](\epsilon) > 0$, then there exists a concave function $\xi: [0, \infty) \rightarrow [0, \infty)$ that
 1419 depends only on $\ell, \hat{\ell}$, such that $\xi(0) = 0$ and $\lim_{\delta \rightarrow 0^+} \xi(\delta) = 0$. Moreover, given $h: \mathcal{X} \rightarrow \mathcal{Y}$,
 1420 $f: \mathcal{X} \rightarrow \mathcal{Z}$ we have*

$$1421 \quad \mathbb{E}_{X \sim D} \Delta \ell(X, h(X), f(X)) \leq \xi \left(\mathbb{E}_{X \sim D} \Delta \hat{\ell}(X, h(X), f(X)) \right)$$

1424 for all distributions D on \mathcal{X} .

1425 Before we can apply this result to prove Theorem 6, we must prove that the positivity condition on
 1426 ΔH holds for the true/surrogate losses of interest. We do this in the lemma below.

1427 **Lemma 19.** *Consider a classification setting where the reference model output space consists of
 1428 pairs of labels $\mathcal{Y} = \llbracket K \rrbracket^2$, and the evaluation model output space consists of logits $\mathcal{Z} = \mathbb{R}^K$. Let
 1429 $A: \mathcal{X} \rightarrow \llbracket K \rrbracket$ be as defined in (1). Consider the true loss $\ell_i = L_i[\ell_{zo}, -\ell_{zo}]$ and corresponding
 1430 surrogate loss $\hat{\ell}_i = L_i[\ell_{ce}, \ell_{dis}^{\text{Ours}}]$, where L_i is defined in (5), ℓ_{ce} is defined in (2), and ℓ_{dis}^{Ours} is defined
 1431 in (9). Then for $i \in \{1, 2\}$ and all $\epsilon > 0$ we have $\Delta H[\ell_i, \hat{\ell}_i](\epsilon) > 0$.*

1433 *Proof.* We prove the result by evaluating $\Delta H[\ell_i, \hat{\ell}_i](\epsilon, x, y)$ directly for four cases: $i = 1$ and
 1434 $y_1 = y_2$, $i = 2$ and $y_1 \neq y_2$, $i = 2$ and $y_1 = y_2$, and $i = 2$ and $y_1 \neq y_2$. For brevity, we define
 1435 $\mathbf{q} := [e^{s_1}, \dots, e^{s_K}] / \sum_c e^{s_c}$ and $r(x) := \alpha p_T(x) / p_S(x)$.

1437 **Case 1:** $i = 1$ and $y_1 = y_2$. Using the expression for $\Delta \ell_1$ derived in Appendix B.1 we have

$$1439 \quad C[\ell_1](\epsilon, x, y) = \{s \in \mathbb{R}^K : \mathbf{1}_{r(x) \leq \alpha} (\mathbf{1}_{s_{y_1} < \max_{c \neq y_1} s_c} - \mathbf{1}_{r(x) > 1}) (1 - r(x)) \geq \epsilon\}.$$

1440 For $r(x) \leq 1$, this set is non-empty when $s_{y_1} < \max_{c \neq y_1} s_c$, $r(x) \leq 1 - \epsilon$ and $r(x) \leq \alpha$. Using the
 1441 expression for $\Delta \hat{\ell}_1$ derived in Appendix B.2, we have

$$\begin{aligned} 1443 \quad \Delta H[\ell_1, \hat{\ell}_1](\epsilon, x, y) &= \inf_{s \in C[\ell_1](\epsilon, x)} \Delta \hat{\ell}_1(x, y, s) \\ 1444 &= \inf_{q_{y_1} < \frac{1}{2}} -\log(q_{y_1}(1 + r(x))) - r(x) \log((1 - q_{y_1})(1 + r(x)^{-1})) \\ 1445 &= \log\left(\frac{2}{1 + r(x)}\right) + r(x) \log\left(\frac{2}{1 + r(x)^{-1}}\right) \end{aligned}$$

1450 Similarly, when $r(x) > 1$ the set $C[\ell_1](\epsilon, x, y)$ is non-empty when $q_{y_1} = \max_c q_c$, $r(x) \geq \epsilon + 1$ and
 1451 $r(x) \leq \alpha$, where we have

$$\begin{aligned} 1453 \quad \Delta H[\ell_1, \hat{\ell}_1](\epsilon, x, y) &= \inf_{s \in C[\ell_1](\epsilon, x)} \Delta \hat{\ell}_1(x, y, s) \\ 1454 &= \inf_{q_{y_1} > \frac{1}{2}} -\log(q_{y_1}(1 + r(x))) - r(x) \log((1 - q_{y_1})(1 + r(x)^{-1})) \\ 1455 &= \log\left(\frac{2}{1 + r(x)}\right) + r(x) \log\left(\frac{2}{1 + r(x)^{-1}}\right). \end{aligned}$$

1458 Thus we have

1459

$$1460 \Delta H[\ell_1, \hat{\ell}_1](\epsilon, x, \mathbf{y}) \geq \min_{r(x) \in \{\min\{1-\epsilon, \alpha\}, 1+\epsilon\}} \log\left(\frac{2}{1+r(x)}\right) + r(x) \log\left(\frac{2}{1+r(x)^{-1}}\right) > 0.$$

1461

1462 **Case 2:** $i = 1$ with $y_1 \neq y_2$. Using the expression for $\Delta \ell_1$ we have

1463

$$C[\ell_1](\epsilon, x, \mathbf{y}) = \{\mathbf{s} \in \mathbb{R}^K : \mathbf{1}_{r(x) \leq \alpha} (\mathbf{1}_{s_{y_1} < \max_{c \neq y_1} s_c} + r(x) \mathbf{1}_{s_{y_2} = \max_c s_c}) \geq \epsilon\}.$$

1464 This set can be partitioned into subsets:

1465

$$C_1[\ell_1](\epsilon, x, \mathbf{y}) = \left\{ \mathbf{s} \in \mathbb{R}^K : s_{y_1} < \max_{c \neq y_1} s_c, s_{y_2} \neq \max_c s_c \right\}, \quad \text{for } r(x) \leq \alpha, \epsilon \leq 1,$$

$$C_2[\ell_1](\epsilon, x, \mathbf{y}) = \left\{ \mathbf{s} \in \mathbb{R}^K : s_{y_1} < \max_{c \neq y_1} s_c, s_{y_2} = \max_c s_c \right\}, \quad \text{for } \max\{0, \epsilon - 1\} \leq r(x) \leq \alpha,$$

1471 where $C_1[\ell_2](\epsilon, x, \mathbf{y}) = C_2[\ell_2](\epsilon, x, \mathbf{y}) = \emptyset$ outside the specified domains.

1472

1473 For $r(x) \leq \alpha, \epsilon \leq 1$ we have

1474

$$\begin{aligned} \inf_{\mathbf{s} \in C_1[\ell_1](\epsilon, x, \mathbf{y})} \Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) &= \inf_{\mathbf{s} \in C_1[\ell_1](\epsilon, x, \mathbf{y})} -\log(q_{y_1}) - r(x) \log(1 - q_{y_2}) \\ &= \log 2, \end{aligned}$$

1478 and for $\max\{0, \epsilon - 1\} \leq r(x) \leq \alpha$ we have

$$\begin{aligned} \inf_{\mathbf{s} \in C_1[\ell_1](\epsilon, x, \mathbf{y})} \Delta \hat{\ell}_1(x, \mathbf{y}, \mathbf{s}) &= \inf_{\mathbf{s} \in C_1[\ell_1](\epsilon, x, \mathbf{y})} -\log(q_{y_1}) - r(x) \log(1 - q_{y_2}) \\ &= \lim_{\eta \rightarrow 0^+} \log(K + \eta) + r(x) \log(K - \eta), \\ &\geq \log K. \end{aligned}$$

1484 Thus we have

$$\Delta H[\ell_1, \hat{\ell}_1](\epsilon, x, \mathbf{y}) \geq \min\{\log 2, \log K\} > 0.$$

1485 **Case 3:** $i = 2$ with $y_1 = y_2$. Using the expression for $\Delta \ell_2$ derived in Appendix B.1, we have

1486

$$C[\ell_2](\epsilon, x, \mathbf{y}) = \{\mathbf{s} \in \mathbb{R}^K : \alpha \mathbf{1}_{r(x)^{-1} < \alpha^{-1}} (\mathbf{1}_{s_{y_1} < \max_{c \neq y_1} s_c} - \mathbf{1}_{r(x)^{-1} < 1}) (r(x)^{-1} - 1) \geq \epsilon\}.$$

1490 For $r(x)^{-1} \geq 1$ this set is non-empty when $s_{y_1} < \max_{c \neq y_1} s_c$, $r(x)^{-1} \geq 1 + \epsilon/\alpha$ and $r(x)^{-1} < 1/\alpha$.

1491 Using the expression for $\Delta \hat{\ell}_2$ derived in Appendix B.2, we have

1492

$$\begin{aligned} \Delta H[\ell_2, \hat{\ell}_2](\epsilon, x, \mathbf{y}) &= \inf_{\mathbf{s} \in C[\ell_2](\epsilon, x, \mathbf{y})} \Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) \\ &= \alpha \inf_{q_{y_1} < \frac{1}{2}} -r(x)^{-1} \log(q_{y_1}(1 + r(x))) - \log((1 - q_{y_1})(1 + r(x)^{-1})) \\ &= \alpha r(x)^{-1} \log\left(\frac{2}{1 + r(x)}\right) + \alpha \log\left(\frac{2}{1 + r(x)^{-1}}\right) \end{aligned}$$

1499 On the other hand, when $r(x)^{-1} < 1$ the set $C[\ell_2](\epsilon, x, \mathbf{y})$ is non-empty when $s_{y_1} = \max_c s_c$,
1500 $r(x)^{-1} \leq 1 - \epsilon/\alpha$ and $r(x)^{-1} < 1/\alpha$, where we have

1501

$$\begin{aligned} \Delta H[\ell_2, \hat{\ell}_2](\epsilon, x, \mathbf{y}) &= \inf_{\mathbf{s} \in C[\ell_2](\epsilon, x, \mathbf{y})} \Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) \\ &= \alpha \inf_{q_{y_1} > \frac{1}{2}} -r(x)^{-1} \log(q_{y_1}(1 + r(x))) - \log((1 - q_{y_1})(1 + r(x)^{-1})) \\ &= \alpha r(x)^{-1} \log\left(\frac{2}{1 + r(x)}\right) + \alpha \log\left(\frac{2}{1 + r(x)^{-1}}\right). \end{aligned}$$

1508 Thus we have

$$\begin{aligned} \Delta H[\ell_2, \hat{\ell}_2](\epsilon, x, \mathbf{y}) &\geq \min_{r(x)^{-1} \in \{\min\{\frac{1}{\alpha}, 1 - \frac{\epsilon}{\alpha}\}, 1 + \frac{\epsilon}{\alpha}\}} \alpha r(x)^{-1} \log\left(\frac{2}{1 + r(x)}\right) + \alpha \log\left(\frac{2}{1 + r(x)^{-1}}\right) \\ &> 0. \end{aligned}$$

1512 **Case 4:** $i = 2$ and $y_1 \neq y_2$. Using the expression for $\Delta \ell_2$ we have
 1513

$$1514 C[\ell_2](\epsilon, x, \mathbf{y}) = \left\{ \mathbf{s} \in \mathbb{R}^K : \alpha \mathbf{1}_{r(x)^{-1} < \alpha^{-1}} (r(x)^{-1} \mathbf{1}_{s_{y_1} < \max_{c \neq y_1} s_c} + \mathbf{1}_{s_{y_2} = \max_c s_c}) \geq \epsilon \right\}.
 1515$$

1516 This set can be partitioned into subsets:
 1517

$$1518 C_1[\ell_2](\epsilon, x, \mathbf{y}) = \left\{ \mathbf{s} \in \mathbb{R}^K : s_{y_1} < \max_{c \neq y_1} s_c, s_{y_2} \neq \max_c s_c \right\}, \quad \text{for } \frac{\epsilon}{\alpha} \leq r(x)^{-1} < \alpha,
 1519$$

$$1520 C_2[\ell_2](\epsilon, x, \mathbf{y}) = \left\{ \mathbf{s} \in \mathbb{R}^K : s_{y_1} < \max_{c \neq y_1} s_c, s_{y_2} = \max_c s_c \right\}, \quad \text{for } \max \left\{ 0, \frac{\epsilon}{\alpha} - 1 \right\} \leq r(x)^{-1} < \alpha,
 1521$$

1522 where $C_1[\ell_2](\epsilon, x, \mathbf{y}) = C_2[\ell_2](\epsilon, x, \mathbf{y}) = \emptyset$ outside the specified domains.
 1523

1524 For $\frac{\epsilon}{\alpha} \leq r(x)^{-1} < \alpha$, we have
 1525

$$1526 \inf_{\mathbf{s} \in C_1[\ell_2](\epsilon, x, \mathbf{y})} \Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) = \inf_{\mathbf{s} \in C_1[\ell_2](\epsilon, x, \mathbf{y})} \alpha r(x)^{-1} \log(q_{y_1}) + \alpha \log(1 - q_{y_2})
 1527 = \alpha r(x)^{-1} \log 2
 1528 \geq \epsilon \log 2,
 1529$$

1530 and for $\max\{0, \frac{\epsilon}{\alpha} - 1\} \leq r(x)^{-1} < \alpha$ we have
 1531

$$1532 \inf_{\mathbf{s} \in C_2[\ell_2](\epsilon, x, \mathbf{y})} \Delta \hat{\ell}_2(x, \mathbf{y}, \mathbf{s}) = \inf_{\mathbf{s} \in C_2[\ell_2](\epsilon, x, \mathbf{y})} \alpha r(x)^{-1} \log(q_{y_1}) + \alpha \log(1 - q_{y_2})
 1533 = \lim_{\eta \rightarrow 0^+} \alpha r(x)^{-1} \log(K + \eta) + \alpha \log(K - \eta)
 1534 \geq \alpha \log K.
 1535$$

1536 Thus we have
 1537

$$1538 \Delta H[\ell_2, \hat{\ell}_2](\epsilon, x, \mathbf{y}) \geq \min\{\epsilon \log 2, \alpha \log K\} > 0.$$

1541 Hence we have shown that $\Delta H[\ell_i, \hat{\ell}_i](\epsilon, x, \mathbf{y}) > 0$ for any $x \in \mathcal{X}$, $\mathbf{y} \in \llbracket K \rrbracket^2$ and $\epsilon > 0$, which
 1542 implies $\Delta H[\ell_i, \hat{\ell}_i](\epsilon) > 0$ as required. \square
 1543

1544 We also need the following result which allows us to compose the convex functions that appear in the
 1545 framework of [Zhang \(2004b, Appendix A\)](#).

1546 **Lemma 20.** *Let $\xi_1, \xi_2: [0, \infty) \rightarrow [0, \infty)$ be convex functions that are continuous at zero and
 1547 non-increasing. Then the function $\xi: [0, \infty) \rightarrow [0, \infty)$ such that*

$$1548 \xi(\epsilon) = \sup_{\epsilon_1 + \epsilon_2 = \epsilon, \epsilon_1 \geq 0, \epsilon_2 \geq 0} \xi_1(\epsilon_1) + \xi_2(\epsilon_2)$$

1549 has the following properties:
 1550

- 1551 1. it satisfies $\xi_1(\epsilon_1) + \xi_2(\epsilon_2) \leq \xi(\epsilon_1 + \epsilon_2)$ for any $\epsilon_1, \epsilon_2 \in [0, \infty)$,
- 1552 2. it is concave,
- 1553 3. it is non-decreasing,
- 1554 4. it satisfies $\xi(0) = \xi_1(0) + \xi_2(0)$, and
- 1555 5. it is continuous at zero.

1556 *Proof.* The proof follows a similar structure as the proof of Lemma 16. \square
 1557

1558 We now use Lemma 19 and Theorem 18 to upper bound the optimality gap of disagreement discrepancy
 1559 in terms of the optimality gap of our surrogate.
 1560

Theorem 6. Consider a classification task where $h: \mathcal{X} \rightarrow \llbracket K \rrbracket^2$ is a reference model outputting a pair of class labels and $f: \mathcal{X} \rightarrow \mathbb{R}^K$ is a critic model outputting logits. For any $\alpha > 0$, let \hat{d}_α be our surrogate with $\ell_{\text{dis}} = \ell_{\text{dis}}^{\text{Ours}}$ and $\ell_{\text{agr}} = \ell_{\text{ce}}$. Then, for any distributions S, T on \mathcal{X} , there exists a concave function $\xi: [0, \infty) \rightarrow [0, \infty)$ that is continuous at 0 with $\xi(0) = 0$, such that

$$\sup_{f \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \leq \xi \left(\hat{d}_\alpha[h, f](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T) \right).$$

Proof. Using the fact that $d_\alpha[h, f](S, T) = -\alpha d_{\alpha^{-1}}[(h_2, h_1), f](T, S)$ and expanding out the definitions, we have

$$\begin{aligned} \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) &= \alpha d_{\alpha^{-1}}[(h_2, h_1), f](T, S) \\ &\quad - \alpha \inf_{f' \in \mathcal{H}} d_{\alpha^{-1}}[(h_2, h_1), f'](T, S) \\ &= R[\ell_1, h, \mathbf{A}f](S) - \inf_{f' \in \mathcal{H}} R[\ell_1, h, \mathbf{A}f'](S) \\ &\quad + R[\ell_2, h, \mathbf{A}f](T) - \inf_{f' \in \mathcal{H}} R[\ell_2, h, \mathbf{A}f'](T) \\ &= R[\Delta \ell_1, h, \mathbf{A}f](S) + R[\Delta \ell_2, h, \mathbf{A}f](T), \end{aligned}$$

where the last equality follows since f' can be optimized pointwise. Applying Theorem 18 to each of these terms gives

$$\sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) \leq \xi_1 \left(R[\Delta \hat{\ell}_1, h, f](S) \right) + \xi_2 \left(R[\Delta \hat{\ell}_2, h, f](T) \right), \quad (21)$$

where ξ_1 and ξ_2 are concave non-decreasing functions that are continuous at zero and satisfy $\xi_1(0) = \xi_2(0) = 0$. Note that in order to invoke Theorem 18, we have used Lemma 19 which guarantees positivity of $\Delta H[\ell_i, \hat{\ell}_i](\epsilon)$ for any $\epsilon > 0$. We have also used the fact that ℓ_1 and ℓ_2 are bounded.

Next, we define the function $\xi: [0, \infty) \rightarrow [0, \infty)$

$$\xi(\delta) = \sup_{\delta_1 + \delta_2 = \delta, \delta_1 \geq 0, \delta_2 \geq 0} \xi_1(\delta_1) + \xi_2(\delta_2),$$

which is concave, continuous at zero and satisfies $\xi(0) = \xi_1(0) + \xi_2(0) = 0$ by Lemma 20. Combining the first property of Lemma 20 with (21) yields

$$\begin{aligned} \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f](S, T) &\leq \xi \left(R[\Delta \hat{\ell}_1, h, f](S) + R[\Delta \hat{\ell}_2, h, f](T) \right) \\ &= \xi \left(\hat{d}_\alpha[h, f](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T) \right), \end{aligned}$$

where we have again used the fact that f' can be optimized pointwise in the last equality. \square

Corollary 7. Our surrogate for disagreement discrepancy with cross-entropy agreement loss and the disagreement loss specified in (9) is Bayes consistent for all $K \geq 2$.

Proof. The result follows from Theorem 6. Let $\hat{G}_n = \hat{d}_\alpha[h, f_n](S, T) - \inf_{f' \in \mathcal{H}} \hat{d}_\alpha[h, f'](S, T)$ and $G_n = \sup_{f' \in \mathcal{H}} d_\alpha[h, f'](S, T) - d_\alpha[h, f_n](S, T)$. By the continuous mapping theorem and continuity of ξ at zero, we have $\xi(\hat{G}_n) \xrightarrow{p} 0$. Also, by Theorem 6, we have $0 \leq G_n \leq \xi(\hat{G}_n)$ for all n . Applying the sandwich theorem yields the desired result: $G_n \xrightarrow{p} 0$. \square

E ROSENFIELD AND GARG'S ERROR BOUND UNDER COVARIATE SHIFT

This appendix presents the error bound for models under covariate shift, as proposed by Rosenfeld & Garg (2023). While this content is not novel, we include it here to make our paper self-contained and to provide necessary context for our experiments in Section 5 and the attack described in Appendix F.

Rosenfeld & Garg (2023) developed a method to bound the error of a model under distribution shift using disagreement discrepancy, requiring only labeled source data and unlabeled target data. Their

1620 approach involves training a critic model, chosen from a specified hypothesis class, to maximize
 1621 the disagreement discrepancy between itself and the model under evaluation. This maximized
 1622 disagreement discrepancy is then used to construct a probabilistic upper bound on the target error.
 1623 The bound is formally stated in the following theorem:

1624 **Theorem 21** (Error bound). *Let $S_{\text{tr}}, S_{\text{te}}$ and $T_{\text{tr}}, T_{\text{te}}$ be train and test datasets drawn i.i.d. from the
 1625 source distribution S and target distribution T , respectively. Let $y^* : \mathcal{X} \rightarrow \llbracket K \rrbracket$ be the ground truth la-
 1626 beling function, $h : \mathcal{X} \rightarrow \llbracket K \rrbracket$ be the model under evaluation and $f^* \in \arg \min_{f \in \mathcal{H}} \hat{d}[h, f](S_{\text{tr}}, T_{\text{tr}})$
 1627 be the optimal critic within hypothesis class $\mathcal{H} \subseteq \{f : \mathcal{X} \rightarrow \mathbb{R}^K\}$. Assume $d[h, y^*](S, T) \leq$
 1628 $d[h, f^*](S, T)$. Then with probability $1 - \delta$ we have*

$$1630 \underbrace{R[\ell_{\text{zo}}, y^*, h](T)}_{\text{pop. error on target}} \leq \underbrace{R[\ell_{\text{zo}}, y^*, h](S_{\text{te}})}_{\text{emp. error on source}} + \underbrace{d[h, f^*](S_{\text{te}}, T_{\text{te}})}_{\text{emp. disagreement discrepancy}} + \underbrace{\sqrt{\frac{(|S_{\text{te}}| + 4|T_{\text{te}}|) \log 1/\delta}{2|S_{\text{te}}||T_{\text{te}}|}}}_{\text{sample correction}}.$$

1633 The accuracy of this bound critically depends on estimating the disagreement discrepancy term.
 1634 Here, the consistency of the surrogate plays a crucial role. A consistent surrogate ensures that,
 1635 asymptotically, optimizing it leads to the same result as optimizing the true disagreement discrepancy.
 1636 This provides theoretical justification for using the surrogate in training the critic f^* and, consequently,
 1637 in estimating the upper bound.

1638 The bound's validity also relies on a key assumption: $d[h, y^*](S, T) \leq d[h, f^*](S, T)$. This assumption
 1639 states that the disagreement discrepancy achieved by the optimal critic f^* should be at least as
 1640 large as that achieved by the ground truth labeling function y^* . The extent to which this assumption
 1641 holds depends on several factors:

- 1643 • The expressiveness of the critic's hypothesis class \mathcal{H}
- 1644 • The quality of the surrogate disagreement discrepancy
- 1645 • The effectiveness of the optimization procedure

1646 When these factors align favorably, the trained critic f^* should achieve a disagreement discrepancy
 1647 that meets or exceeds what would be obtained using the ground truth labeling function y^* . However,
 1648 as we observe in our experiments (Section 5), this assumption does not always hold in practice,
 1649 leading to potential violations of the bound.

1650 The analysis of surrogate consistency and its impact on the reliability of this bound forms the core of
 1651 our work, as detailed in the main text.

1655 F ATTACKING ROSENFELD & GARG'S ERROR BOUND

1656 This appendix describes an attack on the error bound of [Rosenfeld & Garg \(2023\)](#), aiming to
 1657 underestimate the error by perturbing the target data. We perturb a fraction of the inputs, constraining
 1658 the perturbation for each input in ℓ_∞ -norm to ϵ . The attack can be viewed as an application of
 1659 projected gradient descent.

1660 Let

$$1663 \text{ub}(T_{\text{tr}}, T_{\text{te}}) = R[\ell_{\text{zo}}, y^*, h](S_{\text{te}}) + d[h, f^*(T_{\text{tr}})](S_{\text{te}}, T_{\text{te}}) + \sqrt{\frac{(|S_{\text{te}}| + 4|T_{\text{te}}|) \log 1/\delta}{2|S_{\text{te}}||T_{\text{te}}|}}$$

1664 denote the upper bound on the target error from Theorem 21. Note that we've dropped the
 1665 dependence on the source train/test datasets S_{tr} , S_{te} , and made explicit that the critic model
 1666 $f^*(T_{\text{tr}}) \in \arg \max_{f \in \mathcal{H}} \hat{d}[h, f](S_{\text{tr}}, T_{\text{tr}})$ depends on the target training dataset T_{tr} .

1667 Our objective as the attacker is to minimize the difference between the upper bound and the actual
 1668 target error $\text{ub}(T_{\text{tr}}, T_{\text{te}}) - R[\ell_{\text{zo}}, y^*, h](T_{\text{te}})$, subject to the ℓ_∞ constraint on the perturbation to the
 1669 target [train and test](#) instances. If this difference becomes negative, we have triggered a violation of the
 1670 bound. By dropping terms that are constant with respect to the target datasets, we can equivalently
 1671 minimize:

$$1672 R[\ell_{\text{zo}}, h, \mathbf{A}f^*(T_{\text{tr}})](T_{\text{te}}) - R[\ell_{\text{zo}}, y^*, h](T_{\text{te}}).$$

1674 This problem cannot be solved using gradient-based optimization, as the zero-one loss ℓ_{zo} is not
 1675 differentiable. Additionally, $f^*(T_{\text{tr}})$, which is the solution to an optimization problem, is difficult to
 1676 differentiate through.

1677 To address these challenges, we employ a two-step optimization procedure that uses differentiable
 1678 surrogate losses. For this attack scenario, we make an exception to our usual treatment of the reference
 1679 model h . While throughout the paper we've assumed h returns raw outputs (class labels), here we
 1680 need access to its logits or class probabilities to compute gradients with respect to the target data.
 1681 This is necessary for the attack but does not change our general framework.

1682 Our two-step procedure is as follows:

- 1684 1. Optimize the target test data T_{te} :
 - 1685 • Replace $R[\ell_{\text{zo}}, h, \mathbf{A}f^*(T_{\text{tr}})](T_{\text{te}})$ with $-R[\ell_{\text{dis}}, h, f^*(T_{\text{tr}})](T_{\text{te}})$, where $\ell_{\text{dis}}(x, \mathbf{p}, \mathbf{s})$
 1686 takes as input a probability vector $\mathbf{p} \in \Lambda_{K-1}$ over K classes instead of a class label.
 1687 This encourages agreement between the reference model h and critic model f^* (due to
 1688 the minus sign). We use the Gumbel softmax trick to make this loss differentiable in
 1689 the class probabilities output by h .
 - 1690 • Replace $R[\ell_{\text{zo}}, y^*, h](T_{\text{te}})$ with $-R[\ell_{\text{ce}}, y^*, h](T_{\text{te}})$, encouraging disagreement be-
 1691 tween the reference model h and ground truth labeling function y^* (due to the minus
 1692 sign).
 - 1693 • Compute the gradient of the surrogate with respect to the selected target test inputs,
 1694 take a gradient descent step, and project the perturbation onto the ℓ_∞ -norm ball of
 1695 radius ϵ centered on the original target input.
- 1696 2. Update the target training data T_{tr} using the same surrogate objective and algorithm as for
 1697 the test data, followed by updating the model $f^*(T_{\text{tr}})$.

1699 Importantly, since the objective consists of sums over target data, we can optimize the target inputs
 1700 in batches. This allows us to attack large datasets without needing to load all inputs into memory
 1701 simultaneously, which would be infeasible for datasets with tens of thousands of images.

1703 G FURTHER EXPERIMENTAL DETAILS AND RESULTS

1705 G.1 REPLICATION OF EXPERIMENTS WITH EXISTING AND NEW SURROGATES

1707 This appendix provides additional details and results for the replication of experiments from [Rosenfeld & Garg \(2023\)](#), complementing the results and discussion in Section 5.1.1.

1710 **Experimental Setup** We briefly describe key elements of the experimental setup in an effort to
 1711 make our paper self-contained. For comprehensive details, readers are referred to Appendix A of
 1712 [Rosenfeld & Garg \(2023\)](#) and their publicly released code⁶. The experiments utilize 11 publicly
 1713 available vision datasets commonly used in distribution shift contexts:

- 1714 • CIFAR10 ([Krizhevsky & Hinton, 2009](#)): Original as source; CIFAR10v2 ([Recht et al., 2018](#))
 1715 and CIFAR10-C ([Hendrycks & Dietterich, 2019](#)) as targets.
- 1717 • CIFAR100 ([Krizhevsky & Hinton, 2009](#)): Original as source; CIFAR100-C ([Hendrycks &
 1718 Dietterich, 2019](#)) as target.
- 1719 • FMoW from WILDS ([Koh et al., 2021](#)): Train split as source; other splits (collected at later
 1720 times) as targets.
- 1721 • Camelyon17 from WILDS ([Koh et al., 2021](#)): Train split as source; other splits (from
 1722 different hospitals) as targets.
- 1723 • BREEDS ([Santurkar et al., 2021](#)): Datasets derived from ImageNet ([Russakovsky et al.,
 1724 2015](#)), including entity13, entity30, living17, and nonliving26. Original ImageNet subpopu-
 1725 lation 1 as source; subpopulation 2 and ImageNetv2 ([Recht et al., 2019](#)) subpopulations 1
 1726 and 2 as targets.

1727 ⁶https://github.com/erosenfeld/disagree_discrep

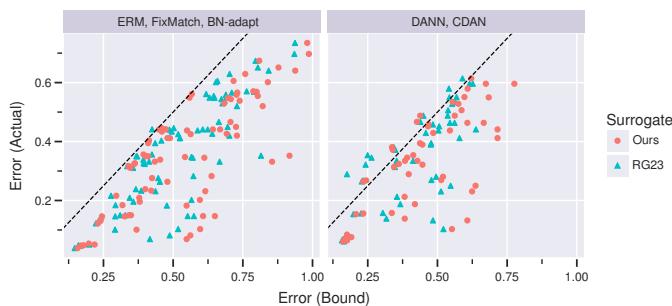


Figure 5: Comparison of error bounds versus actual error on target data for our surrogate and that of [Rosenfeld & Garg \(2023\)](#). Each point represents a shift/model, with points above the dashed line indicating bound violations. Results are disaggregated by training method: non-domain adversarial training (left) versus domain-adversarial training (right).

- OfficeHome ([Venkateswara et al., 2017](#)): Product domain as source, other domains as targets.
- DomainNet ([Peng et al., 2019](#)): Real domain as source, other domains as targets.
- Syn2Real ([Peng et al., 2018](#)): Train split (synthetic object renders) as source, other splits (real object images) as targets.

Models used include ResNet-18, ResNet-50 ([He et al., 2016](#)), and DenseNet-121 ([Huang et al., 2017](#)), depending on the dataset. Generally, models are pretrained on ImageNet and then fine-tuned on the source dataset. Training/fine-tuning on source data employs five methods: empirical risk minimization (ERM), FixMatch ([Sohn et al., 2020](#)), BN-adapt ([Li et al., 2017](#)), CDAN ([Long et al., 2018](#)), or DANN ([Ganin et al., 2016](#)), with data augmentation applied during training.

Critics are implemented as linear models that consume either logits or features from the model under evaluation. Specifically, the weights of the evaluated model are frozen, and only an appended linear layer is tunable. Unless otherwise specified, logit-based critics are used. [All loss functions involving softmax operations, including the standard cross-entropy loss and our proposed disagreement loss, are implemented in log-space to ensure numerical stability.](#)

Additional Results In Section 5.1.1, we compared surrogates based on their resulting estimates for the disagreement discrepancy, where larger estimates are superior. This is the only term in [Rosenfeld & Garg](#)'s error bound (Theorem 21) that depends on the surrogate. Here, we provide additional results comparing the complete error bound (including all terms) with the actual error on labeled target data.

Figure 5 compares the error bound and actual error for numerous shift/model pairs. We disaggregate by model training method: domain adversarial training (DANN, CDAN) on the right and non-domain adversarial training methods (ERM, FixMatch, BN-adapt) on the left. We observe more violations of the bound (points above the dashed line) for models trained using domain adversarial methods. Specifically, there are 13 violations when using [Rosenfeld & Garg](#)'s surrogate versus 6 violations for our surrogate. [Rosenfeld & Garg \(2023\)](#) attribute this to DANN and CDAN penalizing the ability to discriminate between source and target distributions in feature space, effectively minimizing the disagreement discrepancy term in the error bound. They argue that this scenario violates the assumption of their bound, as DANN and CDAN can produce models that are, in some sense, worst-case (adversarial) for the bound.

We also consider a different critic architecture. Figure 6 compares logit-based and feature-based critic architectures. [Rosenfeld & Garg \(2023\)](#) suggest that feature-based critics tend to have greater capacity than logit-based critics, resulting in more conservative error bounds. Our results confirm this behavior for critics trained with our surrogate. Note that this figure only includes models trained using ERM, FixMatch, and BN-adapt, excluding domain adversarial trained models.

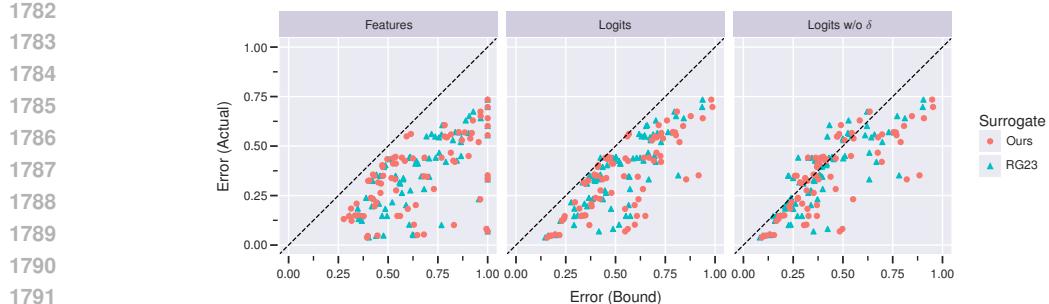


Figure 6: Comparison of error bounds versus actual error on target data for our surrogate and that of [Rosenfeld & Garg \(2023\)](#). Each point represents a shift/model, with points above the dashed line indicating bound violations. Only models trained using ERM, FixMatch, and BN-adapt are included. Results are disaggregated by critic architecture: feature-based (left), logit-based (middle), and logit-based without δ term (right).

G.2 ROBUSTNESS TO ADVERSARILY CHOSEN DATA

This appendix provides additional results and details about the experiments assessing the robustness of [Rosenfeld & Garg](#)'s error bounds to adversarially chosen target data, complementing the results presented in Section 5.1.2.

Experimental Setup Due to the unavailability of the exact models and train/test splits used in the replication experiments, we attempted to recreate the setup as described in Appendix A of [Rosenfeld & Garg \(2023\)](#) and partially outlined in our Appendix G.1. We used 8 of the 11 datasets listed in Appendix G.1: CIFAR10, CIFAR100, FMoW, BREEDS (entity13, entity30, living17, nonliving26), and OfficeHome. DomainNet and Syn2Real were excluded due to their qualitative similarity to OfficeHome (shifts based on image style). Camelyon17 was omitted as it is a binary classification dataset where the surrogates for disagreement discrepancy are equivalent. We added iWildCam2020 from WILDS ([Koh et al., 2021](#)) in place of Camelyon17, using the predefined splits (covering distinct camera deployments).

For each dataset, we used the same model architecture as [Rosenfeld & Garg \(2023\)](#): ResNet or DenseNet, with a ResNet-50 pretrained on ImageNet for iWildCam. In most cases, models were pretrained on ImageNet. We trained or fine-tuned on source data using empirical risk minimization with data augmentation, excluding other training algorithms like FixMatch, BN-adapt, CDAN, and DANN for these experiments.

Critics were implemented as linear models consuming logits from the model under evaluation. We trained 30 randomly initialized critics in parallel and selected the best one. Following [Rosenfeld & Garg \(2023\)](#), the critics were trained for 100 epochs using the AdamW optimizer, with a learning rate of 3×10^{-3} and weight decay of 5×10^{-4} . All loss functions involving softmax operations, including the standard cross-entropy loss and our proposed disagreement loss, are implemented in log-space to ensure numerical stability.

We attacked the target datasets using the approach detailed in Appendix F. We varied the fraction of attacked images f in the target dataset over values $f \in \{0, 12.5, 25, 50\}\%$. In all cases, we ran the attack for 20 steps with a step size of 8/255, constraining the magnitude of the perturbation for each image in ℓ_∞ -norm to 4/255. When updating the critic in each step, we used only 5 epochs, resulting in a total of 100 epochs of critic training over the course of the attack.

Additional Results In Section 5.1.2, we compared surrogates based on their resulting estimates for the disagreement discrepancy, where larger estimates are superior. Figure 7 supplements these results with scatter plots comparing the complete error bound with the actual error on the attacked target data. Results are faceted by attack fraction f . We observe that the bound increasingly underestimates the actual error as f increases, suggesting decreased robustness of the bound. Consistent with earlier results for disagreement discrepancy, our surrogate is least likely to underestimate the error, achieving the fewest violations for all values of f .

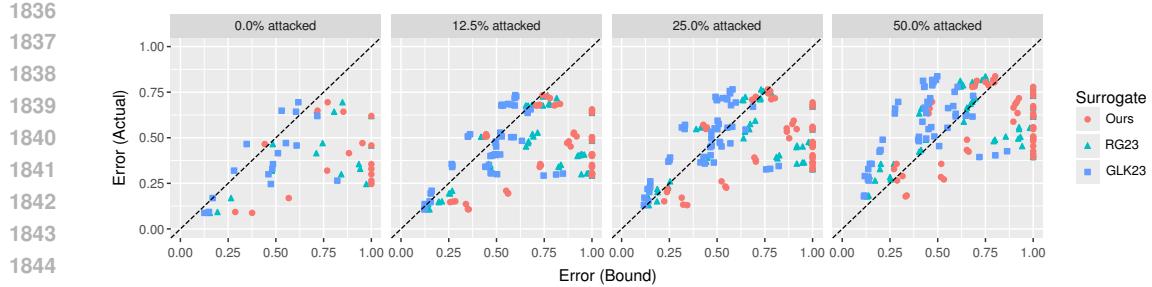


Figure 7: Comparison of error bounds versus actual error on attacked target data for our surrogate and that of Rosenfeld & Garg (2023). Each point represents a shift/model, with points above the dashed line indicating bound violations. Results are faceted by the fraction of attacked instances in the target data.

For completeness, we provide the results plotted in Figures 3 and 7 in tabular form in Table 2. Note that the attacks reported in the table are computed using our surrogate. We caution against comparing results at the level of source/target pairs, as we only run the attack and compute the bound once per pair, and there are several sources of randomness; instead, our analysis aggregates results across all pairs, providing a more robust statistical basis for our conclusions about the surrogates’ performance.

G.3 APPLICATION TO HARMFUL SHIFT DETECTION

To train the critic model using XGBoost, we implemented a custom objective function that defines the first-order gradient and second-order Hessian (H) of the loss with respect to the raw model logits. The total objective is a weighted sum over source samples \mathcal{S} (where we minimize agreement loss) and target samples \mathcal{T} (where we minimize disagreement loss). For a given input x , let $s \in \mathbb{R}^K$ be the vector of logits output by the critic model, and let y be the class predicted by the reference model. Let $p = \sigma(s)$ be the predicted probabilities. We utilize a diagonal upper bound on the Hessian to ensure numerical stability and efficient tree splitting, as is standard in XGBoost implementations.

Agreement Objective For source samples, the critic minimizes the agreement loss ℓ_{ce} defined in (2). The gradient is the standard cross-entropy gradient. For the second-order term, we use the standard diagonal upper bound for all classes k :

$$\tilde{H}_k = 2p_k(1 - p_k).$$

Disagreement Objective For target samples, the critic minimizes a disagreement loss. The specific Hessian bound depends on the surrogate employed.

Our Surrogate. We minimize $\ell_{\text{dis}}^{\text{Ours}}$ defined in (9). We derived diagonal bounds on the Hessian to ensure convexity in the local neighborhood of the prediction:

$$\tilde{H}_k = \begin{cases} 2p_y(1 - p_y), & \text{if } k = y, \\ 2p_kp_y, & \text{if } k \neq y. \end{cases}$$

GLK23 Surrogate. The baseline minimizes $\ell_{\text{dis}}^{\text{GLK}}$ defined in (4). As this is functionally equivalent to a cross-entropy loss against a soft target distribution, we use the standard diagonal bound for all classes k :

$$\tilde{H}_k = 2p_k(1 - p_k).$$

H USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as writing assistance tools to help synthesize and polish text based on author-provided content, including drafts, bullet points, and technical explanations. LLMs were also employed to review mathematical proofs for potential errors. All substantive content,

Source	Target	Attack (%)	Error (Actual)	Error (Bound)			Disagreement Discrepancy		
				GLK23	Ours	RG23	GLK23	Ours	RG23
cifar10	cifar10_1v6	0	0.093	0.149	0.287	0.194	0.031	0.169	0.076
		12.5	0.151	0.154	0.285	0.214	0.024	0.154	0.084
		25	0.219	0.136	0.241	0.187	0.018	0.123	0.069
		50	0.357	0.154	0.285	0.202	0.024	0.154	0.072
	cifar10c_frost_level4	0	0.169	0.169	0.567	0.265	0.059	0.457	0.155
		12.5	0.209	0.160	0.551	0.268	0.050	0.441	0.158
		25	0.261	0.150	0.523	0.254	0.040	0.413	0.144
		50	0.357	0.145	0.519	0.270	0.035	0.409	0.160
	cifar10c_pixelate_level5	0	0.320	0.281	0.769	0.479	0.171	0.659	0.369
		12.5	0.356	0.265	0.729	0.459	0.155	0.619	0.349
		25	0.391	0.254	0.695	0.449	0.144	0.585	0.339
		50	0.489	0.212	0.653	0.439	0.102	0.543	0.329
cifar100	cifar100c_contrast_level4	0	0.088	0.126	0.376	0.154	0.016	0.266	0.044
		12.5	0.136	0.124	0.340	0.142	0.014	0.230	0.032
		25	0.171	0.119	0.315	0.140	0.009	0.205	0.030
		50	0.290	0.118	0.316	0.143	0.008	0.206	0.033
	cifar100c_motion_blur_level2	0	0.330	0.481	1.000	0.942	0.200	0.969	0.661
		12.5	0.408	0.519	1.000	0.959	0.236	0.971	0.677
		25	0.469	0.570	1.000	0.998	0.289	0.984	0.717
		50	0.616	0.682	1.000	1.000	0.399	0.987	0.775
	cifar100c_spatter_level2	0	0.355	0.485	1.000	0.935	0.202	0.962	0.652
		12.5	0.405	0.497	1.000	0.940	0.214	0.964	0.657
		25	0.452	0.523	1.000	0.948	0.240	0.970	0.665
		50	0.555	0.551	1.000	0.983	0.268	0.971	0.700
entity13	entity13_sub1	0	0.300	0.461	1.000	0.842	0.178	0.913	0.560
		12.5	0.352	0.460	1.000	0.837	0.177	0.911	0.554
		25	0.404	0.466	1.000	0.826	0.183	0.914	0.543
		50	0.507	0.483	1.000	0.856	0.200	0.922	0.573
	entity30_sub1	0	0.465	0.347	0.442	0.484	0.093	0.187	0.230
		12.5	0.519	0.362	0.446	0.441	0.108	0.192	0.187
		25	0.571	0.332	0.428	0.424	0.078	0.174	0.169
		50	0.697	0.293	0.470	0.449	0.039	0.216	0.195
	fmow_0212	0	0.648	0.530	0.718	0.715	0.146	0.334	0.330
		12.5	0.681	0.528	0.726	0.687	0.144	0.342	0.302
		25	0.724	0.492	0.702	0.648	0.108	0.318	0.264
		50	0.812	0.423	0.705	0.619	0.039	0.321	0.235
fmow_1618	fmow_1315	0	0.415	0.511	0.883	0.712	0.068	0.440	0.269
		12.5	0.480	0.497	0.878	0.668	0.054	0.436	0.225
		25	0.552	0.487	0.864	0.664	0.044	0.422	0.221
		50	0.686	0.454	0.907	0.672	0.011	0.464	0.230
	iwildcam2020	0	0.471	0.553	0.953	0.745	0.110	0.511	0.302
		12.5	0.528	0.520	0.906	0.715	0.077	0.463	0.273
		25	0.594	0.502	0.901	0.700	0.060	0.459	0.257
		50	0.717	0.461	0.925	0.697	0.018	0.483	0.254
	living17_sub1	0	0.265	0.822	1.000	1.000	0.493	0.790	0.726
		12.5	0.304	0.848	1.000	1.000	0.518	0.763	0.738
		25	0.345	0.823	1.000	1.000	0.493	0.765	0.723
		50	0.426	0.863	1.000	1.000	0.534	0.777	0.727
nonliving26_sub1	living17_sub2	0	0.695	0.618	0.771	0.849	0.159	0.312	0.390
		12.5	0.734	0.598	0.741	0.768	0.139	0.282	0.309
		25	0.756	0.567	0.778	0.743	0.108	0.319	0.284
		50	0.837	0.498	0.801	0.750	0.039	0.342	0.291
	nonliving26_sub1	0	0.643	0.606	0.854	0.805	0.262	0.510	0.461
		12.5	0.685	0.559	0.833	0.774	0.216	0.489	0.430
		25	0.717	0.529	0.803	0.728	0.186	0.459	0.384
		50	0.804	0.476	0.797	0.696	0.133	0.453	0.352
officework_real	officework_product	0	0.457	0.609	1.000	1.000	0.390	0.973	0.910
		12.5	0.483	0.633	1.000	1.000	0.414	0.966	0.910
		25	0.545	0.649	1.000	1.000	0.430	0.959	0.905
		50	0.621	0.647	1.000	1.000	0.428	0.957	0.912
	officework_clipart	0	0.619	0.717	1.000	1.000	0.491	0.955	0.921
		12.5	0.636	0.663	1.000	1.000	0.448	0.957	0.896
		25	0.670	0.688	1.000	1.000	0.462	0.941	0.892
		50	0.730	0.685	1.000	1.000	0.471	0.957	0.903
	officework_real	0	0.246	0.474	1.000	0.974	0.259	0.863	0.759
		12.5	0.300	0.503	1.000	0.944	0.277	0.867	0.718
		25	0.364	0.483	1.000	0.947	0.268	0.860	0.732
		50	0.454	0.508	1.000	0.942	0.293	0.869	0.727

Table 2: Comparison of target error bounds and estimated disagreement discrepancies across different surrogates for various source/target data pairs. For attack rates greater than 0%, the target datasets are adversarially perturbed using our proposed disagreement loss and surrogate for disagreement discrepancy.

1944 theoretical contributions, experimental design, and scientific conclusions are the original work of the
1945 authors. The LLMs did not contribute to the conceptual development of the research or the generation
1946 of novel ideas, and their usage does not constitute authorship-level contribution.
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997