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ABSTRACT

Deep neural networks often fail when deployed in real-world contexts due to
distribution shift, a critical barrier to building safe and reliable systems. An
emerging approach to address this problem relies on disagreement discrepancy—a
measure of how the disagreement between two models changes under a shifting
distribution. The process of maximizing this measure has seen applications in
bounding error under shifts, testing for harmful shifts, and training more robust
models. However, this optimization involves the non-differentiable zero-one loss,
necessitating the use of practical surrogate losses. We prove that existing surrogates
for disagreement discrepancy are not Bayes consistent, revealing a fundamental
flaw: maximizing these surrogates can fail to maximize the true disagreement
discrepancy. To address this, we introduce new theoretical results providing both
upper and lower bounds on the optimality gap for such surrogates. Guided by this
theory, we propose a novel disagreement loss that, when paired with cross-entropy,
yields a provably consistent surrogate for disagreement discrepancy. Empirical
evaluations across diverse benchmarks demonstrate that our method provides more
accurate and robust estimates of disagreement discrepancy than existing approaches,
particularly under challenging adversarial conditions.

1 INTRODUCTION

The reliability of deep neural networks is frequently undermined by distribution shift, where a model’s
performance degrades when encountering data different from its training distribution (Mansour et al.,
2009; Ganin et al., 2016; Long et al., 2018; Duchi & Namkoong, 2021). This challenge is a
critical barrier to deploying safe and robust machine learning systems in the real world. Research
to address this has yielded several distinct paradigms. An emerging line of work is based on the
concept of disagreement discrepancy (Rosenfeld & Garg, 2023). This refers to a measure of how
the disagreement between two models—a trainable model and a reference model—changes from a
source distribution to a target distribution. Maximizing disagreement discrepancy has proven to be a
versatile approach, with applications ranging from bounding model error on unlabeled target data
(Rosenfeld & Garg, 2023), to designing statistical tests for harmful shifts (Ginsberg et al., 2023), and
training models with improved robustness to distribution shifts (Pagliardini et al., 2023).

While promising, this line of work harbors a critical, unaddressed challenge. The true objective
for disagreement discrepancy involves the non-differentiable zero-one loss, making it incompatible
with standard gradient-based optimization. Consequently, all existing methods rely on continuous
surrogate losses. This raises a fundamental question that has been overlooked: does optimizing
the surrogate objective faithfully optimize the true disagreement discrepancy? This concern is not
merely theoretical; Mishra & Liu (2025) reported instabilities during training, suggesting that current
surrogates may be ill-suited for the task.

In this work, we provide the first rigorous analysis of surrogate losses for disagreement discrepancy.
We ground our analysis in the framework of Bayes consistency (Steinwart, 2007). While stronger
guarantees like 7{-consistency bounds exist (Awasthi et al., 2022a;b), their application to the complex
models used in practice remains an open challenge. Bayes consistency is therefore the crucial first
step: a surrogate that is not sound in the asymptotic limit is fundamentally unreliable.

Our analysis requires extending the standard framework for surrogate loss consistency, originally
developed for classification (Zhang, 2004b), to the unique setting of an objective that is a difference
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of risks. The core of our theoretical contribution is the development of lower and upper bounds on the
objective’s optimality gap. These bounds are analogous to classic excess error bounds from statistical
learning theory (Zhang, 2004a; Bartlett et al., 2006). Using this machinery, we prove that existing
surrogates are not Bayes consistent, revealing a foundational flaw in current methods. We then design
a novel surrogate objective that combines the standard cross-entropy loss for the source risk with a
new disagreement loss that is specifically designed to pair with it. We prove that our surrogate is the
first to achieve Bayes consistency for the task of maximizing disagreement discrepancy, establishing
a principled foundation for reliably optimizing these objectives in practice.

We empirically validate our surrogate in the context of two important downstream applications. First,
we consider bounding a model’s error under shift, following the framework of Rosenfeld & Garg
(2023). The validity and tightness of this error bound depend directly on accurately estimating the
disagreement discrepancy, maximized over a class of critic models. Our experiments, conducted
across a wide array of vision benchmarks, e.g., WILDs (Koh et al., 2021), BREEDs (Santurkar
et al., 2021), and DomainNet (Peng et al., 2019), and training methods, demonstrate that our
surrogate provides a more accurate estimate of this value, achieving a larger maximized disagreement
discrepancy than existing surrogates in almost 80% of the scenarios tested. Furthermore, we introduce
a challenging new evaluation with adversarially chosen target data, where our surrogate exhibits
significantly superior robustness. Second, we consider harmful covariate shift detection (Ginsberg
et al., 2023), where we show that our consistent surrogate translates to higher statistical power.

By resolving this foundational inconsistency, our work establishes a more principled and reliable
basis for the use of disagreement discrepancy in analyzing and improving model robustness under
distribution shift.

2 RELATED WORK

Our work on the consistency of surrogates for disagreement discrepancy intersects with two main
areas: the study of consistency in machine learning and the development of discrepancy-based
methods for addressing distribution shift. Below we review key literature in these areas.

2.1 CONSISTENCY IN MACHINE LEARNING

The analysis of surrogate objectives in machine learning centers on ensuring that optimizing a
tractable surrogate also optimizes the true, often intractable, target objective. This is formalized
through a hierarchy of guarantees, each offering a different level of assurance. Our work extends this
line of inquiry to the novel setting of disagreement discrepancy, which uniquely combines two risks
with differing losses and distributions.

The foundational guarantee is Bayes consistency (Steinwart, 2007), an asymptotic property requiring
that the minimizer of the surrogate objective over all measurable functions is also optimal for the
target objective. It has been established for convex margin-based losses in binary classification
(Zhang, 2004a; Bartlett et al., 2006) and extended to multi-class settings (Tewari & Bartlett, 2007).

A more refined asymptotic guarantee is H-consistency (Awasthi et al., 2022a). Instead of considering
all functions, it restricts the analysis to a specific hypothesis set H. It requires that the learned
model’s target risk converges to the risk of the best model within the set . Recent work has explored
‘H-consistency for binary and multi-class classification (Awasthi et al., 2022a;b; Mao et al., 2023a), as
well as for tasks like pairwise ranking (Mao et al., 2023b), learning with abstention (Mao et al., 2024),
and structured prediction (Mao et al., 2023c). However, these studies generally rely on hypothesis
sets (e.g., linear models, one-layer networks) that are not representative of the complex, deep neural
networks used in modern practice. This limited applicability to practical model classes motivates our
focus on Bayes consistency as the crucial first step in our analysis.

To formally establish consistency, we use the powerful tool of the excess error bound. This provides a
quantitative link between the surrogate and target suboptimality, stating that an e-suboptimal surrogate
solution is at most f (€)-suboptimal for the target. As noted by Awasthi et al. (2022a), such a bound is
a necessary precursor to any full finite-sample guarantee, as it provides the link between the statistical
error (from finite data) and the true target error. Our work establishes this foundational link for
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disagreement discrepancy: we prove an excess error bound to establish the Bayes consistency of our
proposed surrogate, analogous to the classic result of Zhang (2004a).

2.2 DISAGREEMENT DISCREPANCY AND RELATED CONCEPTS

The concept of disagreement discrepancy is closely related to HA?H-divergence (Ben-David et al.,
2010). This divergence measures the maximal disagreement between any two models from a class
H across two distributions. While foundational for error bounds under distribution shift, its direct
computation is intractable due to the maximization over all model pairs.

Recent work has operationalized this idea by maximizing disagreement discrepancy with respect to
only one model (a critic) against a fixed reference model. Rosenfeld & Garg (2023) used this approach
to bound test error under distribution shift using unlabeled data, proposing a smooth disagreement
loss as a surrogate for maximizing disagreement. Building on this, Mishra & Liu (2025) introduced
a discounted disagreement to address potential instabilities where the source and target domains
overlap, resulting in less conservative error bounds. Our analysis shows that the surrogate objectives
in both of these works are not Bayes consistent.

The versatility of this critic-based disagreement framework has led to its adoption in other contexts.
For detecting harmful distribution shifts, Ginsberg et al. (2023) developed a statistical test using
an ensemble of classifiers that maximize out-of-domain disagreement while maintaining in-domain
consistency. However, our analysis shows that their surrogate, incorporating a disagreement cross-
entropy loss, is also inconsistent. Beyond shift detection, Pagliardini et al. (2023) propose D-BAT,
which uses a disagreement discrepancy-based objective as a diversity-inducing regularizer for training
ensembles. By encouraging agreement between models on training data but disagreement on out-of-
distribution data, they empirically show that the induced diversity can help mitigate shortcut learning
and transferability. While empirically successful, the surrogate objective used in their work, like
others in the literature, lacks a formal consistency guarantee. Our proposed surrogate provides a
direct path to placing such powerful training methods on a more reliable theoretical foundation.

3 PROBLEM SETTING AND PRELIMINARIES

To formally analyze surrogates for disagreement discrepancy, we first establish our problem setting.
We focus on the covariate shift setting in which the input distribution changes from source to target,
while the conditional output distribution remains the same. Formally, we define an input space X’
with source and target distributions S and 7', respectively. The corresponding output space ) is the
set of K classes [K] = {1,..., K} unless otherwise specified. We consider the case where there is
a single ground truth output for each input, represented by a labeling function y* : X — ).

For any subset X' C X, we use S|y to denote the distribution S restricted to the subset X JWe

denote the softmax function as o(s), = e®/ Zle e’ fors € RX and ¢ € [K]. The indicator
function 1 4 returns 1 if predicate A is true and 0 otherwise.

3.1 MODELS

Central to the problem formulation is the concept of a critic model, used in recent work (Rosenfeld &
Garg, 2023; Ginsberg et al., 2023; Pagliardini et al., 2023) to maximize disagreement discrepancy
with respect to fixed reference models. We denote the critic as f: X — Z, where typically Z
is the space of logits R”. Reference models, denoted as h: X — ), return raw outputs rather
than logits. To accommodate scenarios involving multiple reference models, we use the notation

h = (h1, ha, ..., hy,) when necessary. To convert logit outputs to raw outputs, we introduce a utility
function A : Z — ), which, unless otherwise specified, is set to

A(s) = min | arg max s; 1

() = min (arg s ) m

for s € RX and we write Af(z) as shorthand for A o f(z).> Here the min operation is a tie-breaking
mechanism, selecting the smallest index where multiple logits share the same maximum value.

'Formally, for any event A C X, we define S|/ (A) = S(ANA’)/S(X’) assuming S(X’) > 0.
The symbol A is chosen to represent this function as it alludes to the argmax operation.
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3.2 Loss FUNCTIONS AND RISK

We consider loss functions of the form £ : X x J x Z — R, where £(x, y, z) measures the loss for
input  with reference model output y and critic model output z. Note that while standard losses
typically do not depend on z, we maintain this general form to accommodate certain analytical loss
functions introduced later. Given a loss ¢ and reference model h, we define the risk of the critic model
f ondistribution S as R[{, h, f](S) = Exs[¢(X, h(X), f(X))].

3.3 GENERALIZED DISAGREEMENT DISCREPANCY AND SURROGATES

We now present a generalized formulation of disagreement discrepancy that captures the notions
considered in recent work (Rosenfeld & Garg, 2023; Ginsberg et al., 2023; Pagliardini et al., 2023).
Disagreement discrepancy quantifies the extent to which a critic model agrees with reference models
differently on source and target distributions. Maximizing this measure with respect to the critic has
diverse applications, including developing models with robust representations under distribution shift
and assessing a model’s generalization capability to target distributions.

Definition 1 (Disagreement Discrepancy). Let .S, T be the source and target distributions on input
space X. For a pair of reference models h = (hq, h2) and a critic model f, we define the generalized
disagreement discrepancy as

da[hv f](Sv T) = aR[KZOa h21 Af](T) - R[gzm hlvAf](S)’

where £, (,y,y") = 1y, is the zero-one loss and o > 0 allows a trade-off between the two terms.
For brevity, we omit the o subscript when o = 1.

Previous work has used specific instances of this generalized formulation:

* Rosenfeld & Garg (2023) set h; = hs to the model under evaluation and o = 1.

* Ginsberg et al. (2023) set h; to the ground truth labeling function, h, to the model under
evaluation, and o = 1/N where N is the size of the source dataset.

* Pagliardini et al. (2023) set h; to the ground truth labeling function, /5 to a separate model
trained on source data, and treat «v as a tunable hyperparameter.

While the disagreement discrepancy is the ideal quantity of interest in the above works, its use of
the zero-one loss makes it incompatible with gradient-based optimization methods. To address the
limitation of non-differentiability, prior work has introduced surrogate objectives. We present a
generalized formulation of these surrogates that aligns with Definition 1.

Definition 2 (Surrogate Disagreement Discrepancy). Given loss functions £ug,: X' X YV x Z =+ R
and lg;s: X x Y x Z — R differentiable in their third argument, we define a surrogate for generalized
disagreement discrepancy as

aa[ha f](Sv T) = R[eagr’hlvf](s) + O‘R[Edisth»f](T)

where /.., encourages agreement and £q;s encourages disagreement. We note that this surrogate is
designed to be minimized, in contrast to d,[h, f](S, T'), which is designed to be maximized.

Across the literature, the cross-entropy loss

gce(xuyvs) = —IOgU(S)y (2)
has consistently been employed as a surrogate for the agreement loss (Rosenfeld & Garg, 2023;
Ginsberg et al., 2023; Pagliardini et al., 2023). However, when it comes to the disagreement loss
there has been no such consensus (Chuang et al., 2020; Pagliardini et al., 2023; Ginsberg et al., 2023;
Rosenfeld & Garg, 2023). Within this work we focus upon the disagreement losses proposed by
Rosenfeld & Garg (2023) and Ginsberg et al. (2023):

6(1}15 (x’ Y, s) = log(l + e(Syfﬁ Zc;éy Sc)) , (3)
1
GLK .
liis (w,y,8) = “K_1 §1og a(s)e. )
c#y

While both of these losses are convex and differentiable in s, it turns out they do not lead to a surrogate
for disagreement discrepancy that is consistent.
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4 CONSISTENCY OF DISAGREEMENT DISCREPANCY SURROGATES

This section presents our theoretical analysis of surrogate losses for disagreement discrepancy.
Consistency is a crucial property for any surrogate objective, as it provides the guarantee that
minimizing the surrogate also leads to a solution for the true, non-differentiable objective. This
property forms a vital theoretical underpinning for applications that rely on these surrogates. We
structure our analysis as follows: first, we introduce the basic definition of Bayes consistency for
disagreement discrepancy; second, we reformulate the disagreement discrepancy to facilitate our
analysis; third, we prove that existing surrogates are not Bayes consistent; and finally, we introduce
our novel surrogate and prove its consistency.

4.1 BAYES CONSISTENCY FOR DISAGREEMENT DISCREPANCY

Our goal is to determine whether surrogate objectives faithfully optimize the true disagreement
discrepancy. To formalize this, we employ the concept of Bayes consistency, a fundamental notion
in learning theory that assesses whether optimizing a surrogate loss asymptotically leads to the
optimization of the true risk (Zhang, 2004b). We extend this concept to disagreement discrepancy as
follows:

Definition 3 (Bayes consistency for disagreement discrepancy). A surrogate d,, for disagreement
discrepancy d,, is Bayes consistent if, for any sequence of critic models { f,,} and distributions S, T
on X,

dalh, fn T) — inf dalh, f’ 7) %
[ ) ](57 ) fl’E? [h7 ](57 ) 0
implies

sup da[h, /)(S,T) = dalh, £2)(S,T) £ 0.
fler

This definition ensures that when a sequence of critic models optimizes the surrogate objective
arbitrarily well (in probability), it simultaneously optimizes the true disagreement discrepancy. Bayes
consistency provides a theoretical foundation for analyzing surrogate objectives, offering insights into
their asymptotic behavior and their relationship to the true disagreement discrepancy. This analysis
is particularly valuable given the non-differentiability of the true objective, which precludes direct
optimization in practice.

4.2 REFORMULATION OF DISAGREEMENT DISCREPANCY

Existing theory for proving consistency of surrogate losses has typically been constructed in terms
of objective functions expressible as a single risk (Zhang, 2004a; Bartlett et al., 2006; Tewari &
Bartlett, 2007). However, the disagreement discrepancy is a sum of two risks with respect to different
distributions, posing a significant challenge: we cannot simply apply existing theory to each risk
separately, as they are intrinsically coupled from an optimization perspective. To overcome this, we
present a decomposition that rewrites the objective as a sum of decoupled risks using pseudo-losses.

To begin, let pg and pr denote the density functions of the source and target distributions, respec-
tively.> We define two loss functionals as follows:

pr()
ps(z)

l(x, 91, 2) +€2(:v7y272)) ,

L[l 62](2,y, 2) = 1pg(a)>pr(a) (&(33,:91,2) + 52(967?}2’2)) ,

ps(z) N
Loty bo)(z,y,2) = Lys@)<pr(z) (pT(x)

forz € X,y = (y1,92) € V%, 2 € Z,and losses {1,05: X x ) x Z — R, where the dependence
on S and T is implicit.

Using these loss functional templates, we rewrite the disagreement discrepancy and its surrogate as
dalh, (S, T) = Rlty, h, Af1(S) + Rltz, h, Af|(T), (©)
da[h, f1(S.T) = Rlty, h, f1(S) + Rll2, b, f1(T), @

3We assume density functions exist with respect to a common dominating measure. The theory generalizes
to measure theory by replacing density ratios with Radon-Nikodym derivatives assuming absolute continuity.
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with pseudo-losses {1 = Li[— {0, alyo], be = Lo[— lyo, aly0), 0 = L [lagr, o Lais] and Uy =
Lo[lagr, o Lais]. (See Appendix B for an analysis of the pointwise optimizers of these pseudo-losses.)
This reformulation has a crucial property: for any given input x € X, precisely one of ¢;(z,y, 2)
and ¢2(z,y, z) = 0 is non-zero. The same property holds for the surrogate losses ¢; and ¢5. This
allows pointwise optimization of f, effectively decoupling the two risks in our analysis.

In the following subsections, we leverage this reformulation to prove the inconsistency of existing
surrogates and introduce a new, consistent surrogate for disagreement discrepancy.

4.3 INCONSISTENCY OF PRIOR SURROGATE

Having reformulated the disagreement discrepancy and its surrogate in terms of pseudo-losses, we
now analyze the Bayes consistency of existing surrogates. Specifically, we focus on the surrogates
proposed by Rosenfeld & Garg (2023) and Ginsberg et al. (2023) and demonstrate they are not Bayes
consistent in general. Proofs for this section can be found in Appendices A and C.

Our proof strategy extends the framework of Zhang (2004b) by developing a lower bound on the
optimality gap of the true disagreement discrepancy. While Zhang (2004b) provide an upper bound
useful for proving Bayes consistency (which we will employ later), our complementary lower bound
is crucial for establishing inconsistency. We first develop this lower bound for a single risk in
Appendix A and then apply it to disagreement discrepancy in Appendix C.

The inconsistency stems from a fundamental mismatch in the optimal predictions over certain regions
of the input space. Specifically, there exist regions where the optimal critic for the surrogate disagrees
with the optimal critic for the true disagreement discrepancy. The following theorem formalizes this
insight by providing a lower bound on the optimality gap of the true disagreement discrepancy.

Theorem 4. Consider a classification task with K > 2 classes, where h: X — [K]? is a reference
model outputting a pair of class labels and f: X — RX is a critic model outputting logits. Let S, T
be distributions on X and o« > 0. For A\ € (0,1) and § € (0, %), define a restricted input space:

X’:{xeX:hl(Q:):hz(z),pT(m)>O,/\—|—§§ps(x)§1—5}, (8)
apr(z)

Let d,, be either Rosenfeld & Garg’s surrogate* with lqis = (55, X = K/(2K — 2), or Ginsberg
et al.’s surrogate with lq;s = Eg}é‘K, A = 1/(K — 1), and lngy = Lce in both cases. Then for

both surrogates, there exists a convex function ¢ : [0,00) — [0,00) that is continuous at 0 with
C(O) = 6/(1 — 6)1S(X’)>O + a(SlT(X’)>U: such that

sup dalh, £)(S.T) — dalh. fI(S.T) > C(aa[h,f](Slqulm) it 3a[h,f'](SIX/,TIX/)) .
fleHrH freH

The key insight of this theorem is that there are scenarios where the lower bound function ( is positive
at zero. This occurs when either the source or target distribution has positive measure on the restricted
input space X”. In such cases, a gap persists between the surrogate and true disagreement discrepancy,
even when the surrogate is optimized perfectly. This violates the conditions for Bayes consistency as
defined in Definition 3, leading to the following inconsistency result:

Corollary 5. In the setting of Theorem 4, the surrogates proposed by Rosenfeld & Garg (2023) and
Ginsberg et al. (2023) are not Bayes consistent for disagreement discrepancy when K > 2.

This result reveals a fundamental limitation of these existing surrogates. It implies that there exist
distributions for which optimizing these surrogates does not guarantee optimization of the true
disagreement discrepancy, even in the limit of infinite data and unrestricted model capacity. This
finding underscores the importance of carefully designing surrogate objectives for disagreement
discrepancy, as seemingly reasonable choices may lead to suboptimal solutions in certain scenarios.

4.4 A NEW CONSISTENT SURROGATE

We now propose a new disagreement loss that, when combined with cross-entropy agreement loss,
yields a consistent surrogate for disagreement discrepancy, with proofs contained in Appendix D.

*We consider a generalization of Rosenfeld & Garg’s surrogate with o > 0 and distinct reference models.
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Our analysis of existing surrogates revealed inconsistencies arising from mismatches between the
optimal solutions of the surrogate and true objectives. Addressing this issue, we propose the following
disagreement loss:

Q2 (z,y,8) = —log (1 — o(s),) - )
The design of this loss is motivated by its symmetry with the cross-entry agreement loss (2). While
minimizing cross-entropy agreement loss —log o (s), encourages agreement with y by setting
o(s), = 1, our disagreement loss —log(1 — o(s),) encourages disagreement with y by setting
o(s)y = 0. Importantly, our disagreement loss doesn’t specify how the remaining probabilities
should be configured, aligning with the true disagreement loss —1,_:a(s). This symmetry and
alignment with the true losses contribute to the consistency of our surrogate.

To formally establish consistency, we employ the framework of Zhang (2004b), which provides an
upper bound on the optimality gap for a true risk in terms of the optimality gap of a surrogate risk.
We extend this result to disagreement discrepancy, leveraging our reformulation of the objective as a
sum of two disjoint risks. The resulting upper bound is presented in the following theorem:

Theorem 6. Consider a classification task where h: X — [K]? is a reference model outputting a

pair of class labels and f: X — R is a critic model outputting logits. For any o > 0, let dg be
our surrogate with {gis = é((i)i‘slrs and lygy = Leo. Then, for any distributions S,T on X, there exists a
concave function € : [0,00) — [0, 00) that is continuous at 0 with £(0) = 0, such that

sup 1, £(5.7) ol 1), 7) < (Al 1. T) — juf duln £1(S.T)).
fer freHr

This result is analogous to the classic excess error bounds from statistical learning theory (Zhang,
2004a), adapted here for an objective that is not a traditional risk/error. As discussed in Section 2.1,
this type of bound is the crucial component for controlling the calibration error in a full finite-sample
analysis. The key property of the bounding function ¢ in our theorem is that it is continuous at 0 with
£(0) = 0. This property ensures that as the surrogate optimality gap vanishes, so too does the true
optimality gap, which directly leads to the following consistency result:

Corollary 7. Our surrogate for disagreement discrepancy with cross-entropy agreement loss and the
disagreement loss specified in (9) is Bayes consistent for all K > 2.

In guaranteeing that optimizing our surrogate will optimize the true disagreement discrepancy, in
the limit of infinite data and unrestricted model capacity, we are able to address the fundamental
limitations in prior works. This also provides the theoretical foundation for the use of our surrogate
in applications involving disagreement discrepancy.

Remark 8. Theorem 6 and Corollary 7 also hold for the surrogates of Rosenfeld & Garg (2023) and
Ginsberg et al. (2023) when K = 2, as they are equivalent to our surrogate in the binary setting.

5 EMPIRICAL EVALUATION OF SURROGATES

We evaluate our surrogate on two downstream applications where maximizing disagreement discrep-
ancy is central: bounding model error under covariate shift and detecting harmful distribution shifts.
In both cases, the validity of the downstream result depends on accurate optimization of the true
disagreement discrepancy.

5.1 APPLICATION: ERROR BOUNDS UNDER COVARIATE SHIFT

We first consider the framework of Rosenfeld & Garg (2023) for bounding model error under covariate
shift. Their key result is a probabilistic upper bound, composed of three terms: the empirical source
error, a sample correction term, and the empirical disagreement discrepancy (see Appendix E).

Crucially, the disagreement discrepancy term is estimated by optimizing a surrogate for disagreement
discrepancy, and the reliability of the entire bound depends on the quality of this optimization. As we
will show, underestimating the true disagreement discrepancy—a risk with inconsistent surrogates—
yields a deceptively tighter bound that may be invalid (i.e., the true error exceeds the bound). This
provides a rigorous testbed for our work, as a superior surrogate will find larger discrepancy values,
leading to more trustworthy error bounds.
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Our experiments evaluate how different surrogates for disagreement discrepancy affect the error
bound’s performance, replicating the setup of Rosenfeld & Garg (2023) under natural shifts (Sec-
tion 5.1.1) and extending it to scenarios with adversarially chosen target data (Section 5.1.2).

5.1.1 REPLICATION OF EXPERIMENTS WITH EXISTING AND NEW SURROGATES

To compare the effectiveness of our surrogate with that of Rosenfeld & Garg (2023), we focus on the
disagreement discrepancy term of the error bound mentioned above (see Theorem 21 in Appendix E
for details). A larger value of this term indicates a better estimate for a fixed critic hypothesis class H.

We replicated the experiments of Rosenfeld & Garg (2023) using their code, evaluating our proposed
surrogate alongside theirs across 11 vision benchmark datasets for distribution shift. Models under
evaluation (h) were trained on source data using either empirical risk minimization (ERM) or one of
four unsupervised domain adaptation methods: FixMatch (Sohn et al., 2020), BN-adapt (Li et al.,
2017), DANN (Ganin et al., 2016) or CDAN (Long et al., 2018). The critic model f was constructed
by appending a tunable linear layer to the frozen weights of h, transforming the original logits.

Figure 1 compares the disagreement discrepancies achieved by each surrogate against the maximum
achieved across 130 shift and model combinations. For each scenario, we identify the maximum value
achieved among competing surrogates; since the true maximum is intractable, this serves as a practical
metric for comparison. Across almost 80% of instances, our surrogate achieves this maximum value,
demonstrating its superior performance in estimating the true disagreement discrepancy. A one-sided
Wilcoxon signed-rank test confirms the superiority of our surrogate (p = 1.8 x 10711).

These results are complimented by Figure 2, which reports the calibration of error bounds for each
surrogate. Our surrogate demonstrates improved calibration compared to Rosenfeld & Garg’s across
most values of §, resulting in more reliable error bounds. However, both surrogates exhibit higher
violation rates than specified for small § values. Appendix G.1 provides additional comparisons of
error bounds versus actual errors, disaggregated by training method and critic architecture.

5.1.2 ROBUSTNESS TO ADVERSARIALLY CHOSEN TARGET DATA

To further assess the reliability of error bounds, we extend our evaluation to scenarios with adver-
sarially chosen target data—a setting not considered in prior work. This stress test provides crucial
insights into how the bounds perform under more challenging conditions.

While adversarially chosen target data was not considered by Rosenfeld & Garg (2023), we still
closely following their experimental setup, using 8 of their datasets and focusing on models trained
with ERM. We construct adversarial target data by iteratively maximizing the gap between the bound
and true target error, subject to £,-norm constraints. Across our experiment set, we test different
fractions of attacked data f, using values of 0%, 12.5%, 25% and 50%. Further details of our attack
procedure and experimental setup can be found in Appendices F and G.2, respectively.
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Figure 3: Comparison of disagreement discrepancy estimates for each surrogate under adversarial
attacks on target data. Top: Estimated vs. maximum achieved disagreement discrepancy for each
surrogate (GLK?23, Ours, RG23), faceted by fraction of attacked instances. Points closer to the dashed
line indicate better performance. Bottom: Corresponding bar plots displaying the rate at which each
surrogate achieves rank 1 (highest), 2, or 3 (lowest) disagreement discrepancy.

Figure 3 compares the performance of our surrogate against those of Rosenfeld & Garg (2023)
and Ginsberg et al. (2023) in estimating the maximum disagreement discrepancy. The results are
presented as scatter plots of estimated disagreement discrepancy versus the maximum achieved across
all surrogates for that scenario, faceted by the attack fraction f. Complementary rank plots show
the frequency with which each surrogate achieves the highest estimate. Our surrogate demonstrates
superior robustness, achieving the highest disagreement discrepancy estimate in 87.5% of instances
for f = 0%, increasing to 100% for f = 50%. To assess statistical significance, we performed a
one-sided Wilcoxon signed-rank test comparing our surrogate against a strong composite baseline,
defined as the maximum value achieved by either the RG23 or GLK23 surrogate for each scenario.
The results confirm our surrogate’s superiority across all attack fractions, with p-values of 3.3 x 10~4
for f = 0%, dropping to less than 6.0 x 1070 for f > 0%. This performance suggests that our
surrogate provides more reliable estimates of disagreement discrepancy under adversarial conditions,
potentially leading to tighter and more robust error bounds.

For additional results, including comparisons of true error versus error bounds and detailed break-
downs by shift, we refer readers to Appendix G.2.

5.2 APPLICATION: DETECTING HARMFUL COVARIATE SHIFT

Maximizing disagreement discrepancy also serves as a powerful mechanism for detecting distribution
shift. We explore this application using the Detectron framework (Ginsberg et al., 2023), which
detects harmful covariate shift for a deployed model h via a hypothesis test. Specifically, a critic
model f is trained to maximize disagreement discrepancy with & on unlabeled target data; if the
resulting disagreement rate significantly exceeds the rate expected under the source distribution, the
shift is flagged as harmful.

To evaluate the impact of surrogate consistency in this setting, we adopt the experimental protocol of
Ginsberg et al. (2023) using the UCI Heart Disease (HD) dataset (Andras Janosi, 1989). Crucially,
we adopt the original 5-class labels (representing disease severity levels) rather than the binary
target used in prior work. Since our surrogate and the baseline are mathematically equivalent for
K = 2 classes, this multi-class setting is necessary to empirically distinguish their performance.
We train XGBoost (Chen & Guestrin, 2016) models as critics, comparing our surrogate against the
GLK?23 baseline (see Appendix G.3 for details). We vary the number of available target samples
N € {10, 20, 50}, repeating each experiment 500 times to estimate ROC curves. Confidence intervals
for the AUC and ROC curves are computed using stratified bootstrapping with 1000 samples.

Figure 4 and Table 1 present the results. Our surrogate consistently outperforms the baseline across
all sample sizes. As shown in Table 1, the 95% confidence intervals for the AUC do not overlap
between the two methods for any N, confirming that the improvement is statistically significant
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Figure 4: ROC curves for harmful shift detection on UCI-HD. Table 1: AUC-ROC for shift detec-
Error bars indicate 95% bootstrapped confidence intervals. tion on UCI-HD.

in both low-data and higher-data regimes. These results suggest that for this task, the theoretical
consistency of the loss function translates to improved statistical power.

6 CONCLUSION

Disagreement discrepancy has emerged as a powerful framework for addressing distribution shift,
with applications spanning error bounding, shift detection, and robust model training. However,
this work reveals a fundamental theoretical flaw: existing surrogate objectives for disagreement
discrepancy are not Bayes consistent, meaning that optimizing these surrogates can fail to optimize
the true disagreement discrepancy. This inconsistency undermines the theoretical foundations of
methods that rely on these surrogates and may explain practical instabilities reported in prior work.

Our theoretical analysis provides both upper and lower bounds on the optimality gap between true and
surrogate objectives, establishing a comprehensive framework for understanding surrogate quality
in this setting. Guided by this theory, we propose a novel disagreement loss that, when paired with
cross-entropy, yields the first provably Bayes consistent surrogate for disagreement discrepancy. Our
empirical evaluation demonstrates that this theoretical improvement translates to practical benefits in
downstream applications: our surrogate consistently yields more reliable error bounds under covariate
shift, particularly under adversarial conditions, and achieves higher statistical power for detecting
harmful covariate shifts.

While our focus on Bayes consistency considers optimization over the class of measurable functions,
this choice is deliberate and necessary. H-consistency (Zhang & Agarwal, 2020), while theoretically
appealing for its consideration of restricted hypothesis classes, remains limited in practice—no
successful H-consistency analysis exists for the deep neural networks used in modern applications.
Bayes consistency thus provides an appropriate theoretical foundation for establishing soundness of
surrogate objectives, serving as a crucial first step before considering more restrictive analyses.

Our work lays the foundation for several important directions. A full finite-sample guarantee requires
bounding two components: the calibration error (the gap between surrogate and target objectives)
and the estimation error (the gap from using a finite sample). Our bound is precisely the tool that
controls the calibration error. The natural next step is to develop bounds on the estimation error for
disagreement discrepancy—a significant but important challenge. Additionally, while our surrogate
resolves the consistency issue, the underlying assumptions in applications like error bounding may
not always hold in practice, as demonstrated by our adversarial experiments. This highlights the need
for careful consideration when deploying these methods in real-world scenarios.

By establishing the first consistent surrogate for disagreement discrepancy, our work provides a
principled theoretical foundation for this important class of methods. This contribution not only
resolves existing inconsistencies but also paves the way for more reliable and robust approaches to
handling distribution shift in machine learning systems.

10
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REPRODUCIBILITY STATEMENT

Complete proofs for all theoretical claims, including the inconsistency of existing surrogates (The-
orem 4, Corollary 5) and the consistency of our proposed surrogate (Theorem 6, Corollary 7), are
provided in Appendices C and D respectively. The general framework for proving inconsistency is
detailed in Appendix A. All mathematical assumptions and conditions are explicitly stated within
these proofs.

Detailed experimental configurations are provided in Appendix G. For the replication experiments
in Section 5.1.1, we utilize the publicly available code and datasets released by Rosenfeld & Garg
(2023), with our modifications clearly documented. For the adversarial robustness experiments
in Section 5.1.2, we provide complete source code as supplementary material, including scripts
for dataset downloading and pre-processing, model training, attack implementation (detailed in
Appendix F), and generation of all figures and tables. For the harmful shift experiments in Section 5.2,
we use the public code released by Ginsberg et al. (2023), with modifications clearly documented in
Appendix G.3.
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A GENERAL FRAMEWORK FOR PROVING INCONSISTENCY

This appendix presents a general framework for proving the inconsistency of surrogate loss functions
in the context of a single risk objective. While the main focus of our paper is on objectives that are a
sum of two risks over different distributions with different losses (i.e., the disagreement discrepancy),
the results developed here for a single risk serve as a crucial building block for our later analysis.

We adapt and extend the upper bound of Zhang (2004b, Appendix A) to develop a lower bound on
the optimality gap of a target objective in terms of the optimality gap of a surrogate objective. This
lower bound is crucial for proving inconsistency, as it allows us to show cases where optimizing the
surrogate does not necessarily lead to optimizing the true objective.

Our framework considers a true loss function £ : X x ) x Z; — R and a surrogate loss function
0 : X xYxZy — R. The true objective is to select a critic model f: X — Z5 that minimizes the risk
R[¢, h, Af](D) and the surrogate objective is to minimize the risk R[/, h, f](D). Here A: Z5 — Z;
is a mapping between model output spaces—e.g., from logits to class labels. We assume the objective
is optimized over critic models in a pointwise optimizable hypothesis class H = {f: X — 25},
which is relevant for Bayes consistency. Central to our analysis is the concept of excess loss, defined
for the true loss as A £(z,y, z) = £(z,y,2) —inf ez, £(x,y, '), and similarly for the surrogate loss
with z, 2’ € Zs.

The key idea of our framework is to relate these excess losses through a carefully constructed
functional, which forms the basis for our analysis.

Definition 9. Define AG as a functional that takes true and surrogate losses ¢, ?as inputs and returns
amapping AG[(, £]: [0,00) x X x Y — [0,00) such that forany e > 0,z € X,y € ):

AGIL (e, z,y) = inf  Al(z,y,A(2)),
zeCl](e,x,y)
where C[l](e,z,y) = {z € Z5 : Al(x,y,z) < €}. We also overload AG to define another
functional that returns a mapping AG|¢, {] : [ 00) — [0, 00) with only one argument such that
AG[L,0)(e) = inf _AG[L, (e, z,y).
[ A(e) = inf | AGIL (e oY)

For brevity, we drop the functional arguments 7, ¢ when clear from context.

Intuitively, AG[/,¢](e, z,y) gives the smallest possible value of the true excess loss at a point
(z,y), considering all outputs z where the surrogate excess loss is at most €. The overloaded

version AGJ¢, @] (€) extends this idea to the entire input space, providing the smallest true excess loss
achievable when the surrogate excess loss is bounded by ¢ everywhere. This functional allows us to
analyze how well optimizing the surrogate loss translates to optimizing the true loss, which is crucial
for proving inconsistency.

Next, we establish some properties of AG[(, @] that we will use in our analysis.
Proposition 10. AG[(, ¢] satisfies the following properties:
1. AG[0, () >
2. AGL, )(c0) =
3. AGIC,)(€) is non-increasing over its domain, and
(

4. AGI (AU (z,y, 2)) < Al(z,y,A(2)) foranyz € X, y € Y and z € Z,.

Proof. We prove each property below:
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1. This follows since A £(z,y,A(z)) > 0forallxz € X,y € YV and z € Z,.
2. When ¢ = 400, x, y and z are unconstrained, so the minimal excess loss is zero.

3. Increasing e relaxes the constraint on z, y and z, thereby yielding an infimum that is non-
increasing.

4. Replacing the constraint set {z' € X,y € V,2 € Zo : Al(a',y/,2') < Al(x,y,2)}
by the subset {2’ € X,y € V,2’ € Z5: Ab(a',y,2") = Ad(x,y, z)} yields the upper
bound.

O

The following theorem is central to our framework. It provides a lower bound on the optimality gap
of the true risk in terms of the optimality gap of the surrogate risk, mediated by a convex function.

Theorem 11. Let ((¢) be a convex function on [0,00) such that ((€) < AGI(,](e). Then for
any distribution D on X, reference model h: X — ), critic model f: X — Z5 and mapping
A: Z9 — Z; we have

C((B, AUXR(X), (X)) < B ALX,A(X),Af(X)).

Proof. We have

g(XEDM(x; h(X), f(X))) < B C(AUX(X), f(X)) by Jensen’s inequality
< B_AGL, 0(A XX, h(X), f(X))) by assumption
< X};ZD AYX,h(X),Af(X)) by Proposition 10

O

This theorem lays the groundwork for proving Bayes inconsistency. The next step in our analysis is
to show the existence of a convex function ¢(e) that not only satisfies the conditions of the theorem,
but also remains positive as the surrogate optimality gap e approaches zero under some conditions.
We construct such a function below and establish its properties.

Proposition 12. Let AG: [0,00) — [0,00). The function (.(€) = sup,<qper{ac + b[Vw >
0,aw + b < AG(w)} satisfies the following properties:

1. (, is convex.

2. G(e) < AG(e) forall e > 0.

3. (s is non-increasing.

4. For any convex function ¢ such that ((€) < AG(e), ((€) < (i(e).

5. Assume there exists a < 0 such that ae + AG(0) < AG(e). Then (, is continuous at 0.

Proof. We prove each property below:

1. The function ¢, is defined as the pointwise supremum of convex functions, hence it is also
convex.

2. This follows directly from the definition of (.

3. Consider ¢’ > € > 0. Forany a < 0 and b € R such that aw+b < AG(w) forallw > 0, we
have ae’ + b < ae + b. Taking the supremum over all such a and b, we get , (') < (i (e).
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4. Atany € > 0, we can find a line that satisfies aw + b < ((w) forall w > 0 and {(¢) = ac+b.
Together with the assumption that {(e) < AG(e), this implies ((e) < (i (€).

5. Forany € > 0, let § = — . Then by definition, (,(0) > ad + AG(0) (the line ad + AG(0)
may not be maximal). So (,(0) — (. (d) = AG(0) — ¢4(d) < —ad = €¢/2 < e. Thus
lim,,0+ i (€) = ¢ (0).

O

Building on the properties of ¢, from Proposition 12, we now identify conditions ensuring the convex
function ¢, remains positive as the surrogate optimality gap approaches zero.

Corollary 13. Suppose there exists € > 0 such that AG[(,)(¢) > 0. Then there exists a convex

function ¢ on [0, 00) that depends only on the loss functions €, £ such that { is continuous at zero and
¢(0) = AG[L, £](0) > 0. Moreover

C((B, AUX(X), (X)) < B AUX,H(X),Af(X))

for any distribution D on X, reference model h: X — Y, critic model f: X — Z5 and mapping
A: Z9 — Z1.

Proof. Consider the convex function ¢, defined in Proposition 12. It satisfies the condition ((¢) <
AGI¢, £](¢€), hence the inequality follows from Theorem 11.

We now only need to show that (, is continuous at zero. Since AG(e) is positive in some neighbor-
hood of ¢ = 0, is non-increasing, and bounded below by zero, there exists a line ae 4+ b with a < 0
and b = AG(0) such that ae + b < AG(e) for all € > 0. Hence by Property 5 of Proposition 10,
is continuous at zero. O

B EXCESS PSEUDO-LOSSES

In this appendix, we evaluate the excess loss for various pseudo-losses introduced in Section 4.2.
Recall from Appendix A, that for a given loss £: X' x ) x Z, we define the excess loss as Al(x,y, z) =
l(x,y,2) —inf,cz l(x,y, z). This analysis is crucial for understanding the behavior of these pseudo-
losses and their impact on the consistency of surrogate objectives for disagreement discrepancy in
Sections 4.3 and 4.4.

B.1 TRUE LOSS

We evaluate the excess loss for the two pseudo-losses /1, {5 that appear in the true disagreement
discrepancy, as formulated in (6). Specifically, for ¢ € {1,2} we consider the loss function ¢; =
Li[l,0, —al,], where L; is defined in (5), £,, is the zero-one loss and « > 0. For an input x € X,
reference model labels y € [K]? and critic model label y € [K], we have

. . apr (T
inf ]]51(37,}’79/) = Inf 1, )>pr() (1y175y’ - al )1yz75y’>

yelK yelK] ps()
0, Y1 =y2 A %&? <1,
= Lps@)>pr(a) X § 1 — appST(g)’ Y1 ="y2/" (;psT(S;) > 1,
*C;f(g), Y1 # Y2,

where the optimizer is y' = y; = yo for the first case, y' # y; = y» for the second case and
y' = y1 # yo for the third case. Similarly,
(Ps(w)

inf 62(3’.7Y7y/): lnf 1Ps(z)<pT($) lyliy’_o‘lyﬁfy’)

v elK] v elK] pr(x)
0, yi =y A 22 > 1,
= Lps@<pri) X { B —a, m=yp A 2 <1,
—a, Y1 # Yo,
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where the optimizer is ' = y; = yo for the first case, 4’ # y1 = y» for the second case, and
y' = y1 # yo for the third case.

Thus we have

apr(x)
Aél(xayvy/) = 1ps(a:)2pT(w) (1211752!' - ps(ﬁC) Y2 £Y’
apr(x) apr(x) )
o Ly, (1 - ) + 1y 2y,
rsm 21T ps(z) ps(z) "7

Als(@,y,Y) = 1pu () <pr (e (ps(x)
2(2,¥,4') = Lpe(a)<pr(x) pr(@)

ps(z)
—Lorr@ Ly =y, —a | +aly 2y,
LS >1TY=Y (pT(m) ) y;éy)

Lyzy — aly,zy

B.2 OUR SURROGATE

We evaluate the excess loss for the two pseudo-losses that appear in the surrogate for disagreement
discrepancy (7) when using our disagreement loss. Specifically, for i € {1,2} we consider the loss
U, =L, [lee, Eg)i};rs], where L; is defined in (5), £ is the cross-entropy loss defined in (2), E(?i‘s”s is
our disagreement loss defined in (9) and o > 0.

Since /1 and /5 have a similar functional form, we analyze them together by writing for i € {1, 2},
r € X,y € [K]? and s € RE:

li(z,y,s) = (i(x) (i1 (%) Lee(@, y1,8) + ap; 2(2) LQ8™ (2, Y2, 8))

where
pslo) -y —9pnj=1
1,s()>pr(z), =1, br i 7 . . 7
gty = e =1 e = (BTN o
pelmIsprie 7 1, otherwise.
Observe that

e . e’n ey
SIEIIgK ti(z,y,s) = Slel]g;( Gi() (—Pm(l‘) log (Zces> —ap;2(z)log (1 - m))

qeigi_l Gi(@) (—pi,1(x) log(qy,) — api2(w)log(l — gy,))

where the second equality follows by letting q == (e®,...,e*<)/>" e € Ag_1. If p;1(x) =0or
pi2(x) = 0 then infsepr ¢;(x,y,s) = 0. Otherwise, there are two cases to consider:

* If y; # yo: the minimum is achieved at q such that ¢,, = 1 with all other components equal to
zero. This implies A(s) = y; and infgerx £;(x,y,s) = 0.

~1
e If y; = yo: the minimum is achieved at q such that ¢, = % = (1 + O;pf(g)) with

the remaining mass distributed arbitrarily across the other components. This implies A(s) = y; if

aprl) < Tor A(s) # yn if 2252 > 1, and

inf 4i(e,y,5) = G(x) <pl,1(x) log (1 + (ZT(S;)) + apiz(z)log (1 + 5;;8) )) .

We note that the optimizers in each case match the corresponding optimizers for the true loss.
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Thus we have A@g(ft,y,s) = alog(%) if ps(z) = 0 and Azl(:c,y,s) = log(w) if
cFyg

esv1

pr(x) = 0. Otherwise

- eSv o x eSv2
Aﬁl(a:,y,s) = 71pS(I)2pT(1) <10g<z est) + pT( ) 10g<1 - C)

e (on(1+ T5) + T e 555)))
Aly(2,y,8) = =1y (a)<pr(a) <§§Ei§ 10g<£j”;sc) + alog <1 _ 5?;80)
e (G e+ 5 ) s )

B.3 ROSENFELD AND GARG’S SURROGATE

We evaluate the excess loss for the two pseudo-losses that appear in the surrogate for disagreement
discrepancy (7) when using Rosenfeld & Garg’s disagreement loss. Specifically, for i € {1,2} we

consider the loss @i = Li[lce, é{fg], where L; is defined in (5), £, is the cross-entropy loss defined
in (2), Egi(s; is Rosenfeld & Garg’s disagreement loss defined in (3), « > 0 and K > 2.

Since /1 and /5 have a similar functional form, we analyze them together by defining for i € {1, 2},
r € X,y € [K]? s € RE:

@i(xu Yy, S) = Cl(.’f) (pl,l(x) gce(xv Y1, S) + aﬂi,2($) ngl(s}(xv Y2, S))
where (; and p; ; are defined in (10).

Substituting the expressions for /., and /5 we have

ZC Csc

eSv1

inf &(x,y, s) = inf (;(z) <pi11(9c) 10g< ) + ap;2(x) log(l J @2 T RT Lerug SC)
SERK SERK

(11)

For the special cases where p; 1(x) = 0 or p; 2(z) = 0, we observe that the minimum loss is zero.
For the more general case where p; 1(z) > 0 and p; o(x) > 0, we solve the problem by computing
the gradient with respect to s, and solving for the stationary points.

Letq = (e*,...,e"%)/ > e denote the softmax probability vector corresponding to s. There are
four distinct cases to consider for the gradient components:

1. For k = y; # yo, we have

dl;(x,y,s) ap;a(x) 1
—_— = i -1) - ’ T
Os) Gi(x) | pia(@)ar —1) = == e S
2. For k = y; = yo, we have
8@1(1’,}’,5) 1
— =G i -1 i T
D51 Gl@) { pin(@)an = 1) + apia(z) IS S
3. For k = y5 # y1, we have
8Zi(x7y7s) _ 1
ask - Cz(flz') pz,l(x)Qk +C¥p2,2(1')1 +e_sk+ﬁ Zc#k Se

4. For k # y1, k # y2, we have

321 (Iv Yy, S) _ Oépi,Q(SC) !
T - CZ(I) plvl('r)qk - K -1 1 + e_syz""ﬁ ZC#yz Se
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Case 1: y = y; = yo: Assuming (;(z) # 0, there is a stationary point at s* for i = 1 and ¢ = 2 such
that:

@) | = 1 (@) :
i.1\T Tor L~~~ o = —ap; 2\T 1 5
Pi1 &% + Zc;ﬁy o5t Pi,2 14 e SitmeT Tepy 5

e ap; 2(x) 1
i1(x)— — = : . , Vk .
phl( )esk +Zc¢k e5h K —1 1+e_s;+ﬁzc#y s 7& Yy
The equation for components k # y implies s;, = C for some constant C' € R, i.e., all components
of s* excluding s, are equal. Hence the system of equations K can be simplified to one equation in

* oo ok (.
u* = sy C:

K-1 1

PO g =1 — oW

The solution for bothi = 1 and i = 2 is u* = log by (of’;T(ZgZ)) where

br(r) = %(r -1)(K-1)+ \/(K —1r+ E(K —1)2(r —1)2. (12)

This corresponds to a score vector s* such that s; = C' + logb K( ps(2) ) and sy = Cforall k # y.

apr(x)
One can show that the behavior of the solution changes at the critical point » = (f sl@) K
pr(x) 2K—2°

Specifically,

o for0 < ps((i) <

* for pb(z) = 215_2 we have bK<;’;(2)) = 1 and the critic predicts A(s*) = 1,

5 we have 0 < bK( ps () ) < 1 and the critic predicts A(s*) # v,

2K apr(x)

« for pé(z) > 2 we have bK( psT(Z”))) > 1 and the critic predicts A(s*) = .

We note that the optimizer for the surrogate losses does not match the optimizer for the true losses at

2K 5 < ;;(8) < 1. The minimum surrogate loss for a given z, y is

inputs x such that

R K-1
nf Glw,y,s) = G@)pia@)log [ 14—
b (apT(I)>
+ aGi(z)pi2(x) 108(1 + 0k (5;;2») ' (13

Case 2: y; # yo: Letq = (e*',...,e°%)/ > e denote the softmax probability vector correspond-
ing to s. Assuming (;(x) # 0, there is a stationary point at s* for ¢ = 1 and ¢ = 2 such that:
ap;o(x) 1
K—-1 14+ e_syz""ﬁ Zc¢y2 sy’
1
14 e i TRT Ler, 5

pia(r)(qy, —1) =

)

pi,l(x)q;2 = —api2(z)

«_ opia(w) 1
pia(z)q; = K—1 110 nimmsoms VEk # y1, k # ya.

The last equation for components k& ¢ {y1,y2} implies g = C for some C € (0,1), i.e., all
components of q excluding ¢, and g;,, are equal. Using this result, the system of equations simplifies
to (K —1)(1 -gq;) = q;, = —(K — 1)C. The only valid solution is obtained in the limit

= (C — 0 and ¢,, — 1. This implies A(s*) = y;, which matches the optimizer for the true loss.
By appropriately taking the limit, we find the infimum for a given z,y is therefore

inf 4;(z,y,s) =0
sERK
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Thus we have A/ly(z,y,s) = log(z’ ) if pr(z) = 0 and Aly(z,y,s) =

Sy1

! log(l + @ T ET e S) if ps(x) = 0. Otherwise

7 , €% « xz Sy, — T St
Al (z,y,8) = 1pe(a)>pr(a) (log (Ze > + pT;)) log(l 4 e TR Ly 5 )
Y1 S

1o (e (Z20) 1) 1 o (22821
e T o (1 (22021,

b T e’ R )
Alsy(z,y,s) =1, s () <pr(z)& ( s ) (Zes )+log(1+e v T RET Dty “)

apT(x) v1

lwmng, 2 log( (Osz >+ )
Loy 8 (0 (ami))

@)

We evaluate the excess loss for the two pseudo-losses that appear in the surrogate for disagreement

discrepancy (7) when using Ginsberg et al.’s disagreement loss. Specifically, for i € {1,2} we

consider the loss E = L;i[leo, Z((;’II;K] where L; is defined in (5), (. is the cross-entropy loss

defined in (2), /L is Ginsberg et al.’s disagreement loss defined in (4), a > 0, and K > 2.

— 1y =y, log(l —|—bK(

B.4 GINSBERG ET AL.’S SURROGATE

Since /1 and /5 have a similar functional form, we analyze them together by defining for i € {1,2},
r € X,y € [K]? s € RE:

Zi (.’I}, Yy, S) = C’L (.’13) (pi,l(x) ZCe(x7 Y1, S) + api,Q(-T) gcci;;IsJK (.’17, Y2, S))

— ¢i() piyl(x)log(z(:;yels“> apia(@ Zl ( )

Y2

= @) | o (@)s, — 222D S ot (piate +amZ»b4§:@>

c#Y2

where (; and p; ; are defined in (10) and we have used the definitions of /.. and €§1ng in (2) and (4),

respectively.

We now consider the problem of minimizing @i(x, y,s) with respect to s € R¥. For the special cases

where p; 1(z) = 0 or p; 2(x) = 0, we observe that infscpx @i(az, y,s) = 0. For the more general
case where p; 1(x) > 0 and p; 2(z) > 0, we solve the problem by computing the gradient with
respect to s, and solving for the stationary points.

Let q := (e*',...,e°%)/ > _e® denote the softmax probability vector corresponding to s. There are
four distinct cases to consider for the gradient components:

1. For k = y1 # yo, we have

a@l » Y i
# = Gi(2) (pu(z) - O}?ii(? + (pin(x) + apia(@)) qk>
2. For k = y; = ys, we have
82i($ay7s)
on = 6@ (=pia(@) + (pia (@) + apia(@)) ar)
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3. For k = yo # y1, we have

QLS9 _ (ia) (pia @) + apiata)) an
Sk

4. For k # y1,k # y2, we have

%37378) = Gi(z) (_0}/?,2_(31?) +(pin@) + apia(@)) qk)

To solve for the stationary points, we consider the cases y; = yo and y; # ys separately. Below we
define r(z) == ps(x)/(apr(x)).

Case 1: y = y; = yo: Assuming (;(z) # 0, there is a stationary point at g* for i = 1 and ¢ = 2 such
that:

g = pi1 () _ @
Yoopiale) Fapip(z)  r(z)+ 1
apia(x)
e 1 1
a = b = vk # y.

pir(z) +api2(x) K-—1r(z)+1’

It is straightforward to verify that this point is a minimizer. This implies A(s*) = y if r(z) > ﬁ
and A(s*) # y if r(z) < 25. We note that the optimizer for the surrogate losses does not match

the optimizer for the true losses at = such that ﬁ < 25@ 1 The minimum surrogate loss for
- apr(x)
a given x,y is therefore

inf Li(z,.5) = pia(a) log(l + m)
+ ap; 2 () log((K— 1) (Osz((x:Z) + 1)) (14)

Case 2: y; # yo: Assuming (;(z) # 0, there is a stationary point at g* for ¢ = 1 and ¢ = 2 such that:

L pa@) =l (K —1) 41
T i@ tapale)  K-1  r@+1
q,, =0,
apis(x) 1 1
g = T, = Vk # y1,k # ya.

pir(x) +api2(x) K-—-1r(z)+1’

It is straightforward to verify that this point is a minimizer. This implies A(s*) = y1, which matches
the optimizer for the true loss. The minimum surrogate loss for a given x,y is therefore

inf ¥;(x,y,s) = (pir(a) + api,g(x))log(([( —1) ( ps(@) 1)>

sCR¥ apr(z)
- <pi71(x) + O‘Ip(i(f)) log ((K - 1)02)3;2) + 1) .
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Thus we have Aly(z,y,s) = BT Dty 10g<22/:‘“c’) if ps(z) = 0 and Aly(z,y,s) =
log<zf e) if pr(z) = 0. Otherwise

esv1

(K —1) ( ps(x) _|_1)

. 1y, 2y, apr(2) e apr (@)
Ab(2,y,8) = ~Lpy@)>pr(a) (1 t K = Dpa(a) ) 18
'Y s(z)=2pr K -1 Sc _ ;Ds(f)
( )pS(x) Ece (K 1)o¢pT(w) +1
st S (- (201 0))
(K —1)ps(z) Do €5 apr(z) ’

cZ{yi,y2}

s (K =1) (24 41)
. ps(x 1,2y, esn (apT(r)
AeQ(x’y’s) = _lps($)<I)T(ﬂf) < ( ) + = = > log Z ese (K - 1) ps(x) +1

pr(z) K-—1 apr(z)
o1 2 10g<238;sc’ (H-1) (0% ’ 1>>

c#{y1,y2}

C PROOFS FOR SECTION 4.3

This appendix contains proofs for the results presented in Section 4.3. The key result of this section
is Theorem 4, which we prove using Corollary 13 developed in Appendix A.

As a first step, we must prove that the condition for Corollary 13 holds: namely that the relevant AG
functional is positive within a neighborhood of zero. This is done for the pseudo-losses associated
with the surrogate of Rosenfeld & Garg (2023) below.

Lemma 14. Consider the framework of Appendix A for a classification task with K > 2 classes,
where ) = [K]? is the reference output space, Z, = [K] is the model output space, and Z5 = R¥
is the raw (logit) model output space. Assume the mapping A: R¥ — [ K] from logits to predictions

is as defined in (1). For fixed 6 € (0, 2}}((—:22), set the input space to the restricted input space X’ for
Rosenfeld & Garg’s surrogate as defined in (8). Then for true loss {; = L;[{,o, —a {,,] and surrogate

loss U; = L; [lee, a LGER] we have

5 .
~ 7 1-5 - 1
AGIL L)) = inf  AGl, b =1oi i
CRAICEIN - SR CRAICERY {a& i—2,
forall e < €(5) where
Kb (5755 +9) 2K —2 2 =
7(0) log<b;<(z;§‘_2+6)+f<_l) RFED log<1+bh’(z¥(—2+5)) ’ h
61' -

K4+25(K—1) Kb (57855 +9) 2 -
T log<b}((2;<24_6>+K_1 + alog T (5 49) ) 7 =2,

and by : [0,00) — [0, 00) is defined in (12).

Proof. Let r(z) = 25 and et Ci(x) and p; j(x) be as defined in (10). Fix € X’ such that

~ apr(z)
¢i(x) #0andy = (y,y) fory € [K] (i.e., the reference outputs are identical). We begin by proving
the following:

Claim: We have

-1 _ .
AG[;, 1) (e, ,y) = {T(x) Loi= ; (15)

for all € < € (z) where

. Kb (r(z) 2
() = pi,l(x)log(bK(T(;){) TR 1) + apiz2(v) 10g(1+b;<(r(x))> .
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To prove the claim, we first recall from Definition 9 that:

AG[£17£2](€7an) = }nf Agl(m7Y7A(S))7
seC[l;](e,x,y)

with . A
Cll;l(e,z,y) ={s € R¥ . Ali(z,y,s) < e}

When ¢ = 0, we know from the analysis in Appendix B.3 that C[(;](0,z,y) = {s € RX : [Vk #
y, s = C] A [sy = C +logbg(r(z))] A [C € R]}. For any s in this set, we have A(s) = y.
It is then straightforward to show, using the expressions for A ¢; derived in Appendix B.1, that
AGl;,,)(0,2,y) is equal to the RHS of (15).

The claim follows if we can prove that A(s) = y for all s € C[¢;](e, 2, y) such that e < *(z), since
the value of A 4;(¢e, z, A(s)) and hence AG[{;, ¢;](e, x,y) are the same as at ¢ = 0. To demonstrate

this, we find the minimum surrogate loss A #;(z, y,s) with respect to s € R¥ such that A(s) # ¥,
and show that it is equal to €*(«). The loss minimization problem is

sERKi:IEés);&y A &(ZL', Y S) seRKi:Iz\Es)iy b (35, Y S) B siEI]gK b (l’, Y S)'
The unconstrained problem (second term) is solved in Appendix B.3, where minimizers s* are found
to satisfy satisfy sy > max., s7. Such minimizers are outside the feasible region for the constrained
problem (first term), where we need s}, < max., s;. Since the objective is convex in s, solutions to
the constrained problem must lie on the boundary where s, = max.., s.. This, together with the
symmetry of the objective with respect to components sy, for k # y, means the minimizers s* for the
unconstrained problem are vectors where all components are equal.

Substituting the optimizer into the first term above, and using the previously evaluated result (13) for
the second term, we have

- K-1
inf Aly(z,y,s) = pii(x)log K + ap; 2(x)log2 — p;1(x)log| 1 + ————
SERK:A(s) 2y b (f;(@))

— apia(z)log (1 +bi (%))

=€ (),
which completes the proof of the claim.

Next, we find a threshold €*(d) that is valid for all x € X’ by minimizing €*(z) over x € A”.
Since €*(x) only depends on x via r(z), and is a monotonically increasing function of r(z) for
s 40 < r(z) <1 -6, we have that the minimum is achieved at r(z) = 52— + .

Now by Definition 9 we have for ¢ < €*(0) that
AGlls, bo)(e) = inf  AG[lo,l
Gw??gﬂ(e) (x,y)elr?i"X[IK]] G[€2362](6ax5y)

= wlen)f( a(l —r(x))

= af.

The second inequality follows from the claim proved above and the third inequality follows by setting
r(z)=1-4. O

We obtain a similar result for the surrogate of Ginsberg et al. (2023) below. The proof follows the
same structure as the proof of Lemma 14.

Lemma 15. Consider the framework of Appendix A for a classification task with K > 2 classes,
where ) = [K|? is the reference output space, Z, = [K] is the model output space, and Z = R¥
is the raw (logit) model output space. Assume the mapping A: RE — [K] from logits to predictions

is as defined in (1). For fixed 6 € (0, %), set the input space to the restricted input space X' for
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Ginsberg et al.’s surrogate as defined in (8). Then for true loss {; = L;[{,, —a £, and surrogate
loss £; = Li[lee, EdGigK] we have

~ A~ L ) =
AG[ZMEZ](E) = inf AG[€i7£i](€7xay) = {167 ' 1’

(z,y) €X' X[K] ad, i =2,

forall e < € (J) where

K-1 K SK(K—1)4+K .

s o8 (st ) +loe (i), =1
K S(K—1)+1 SK(K-1)+K )

alog 5(K—1)+K) +at K—i 10g< 5(%—1).)~_K ) , 1=2.

M
So%
—~

(=%

Next we present a result that allows us to compose the convex envelope functions that appear in
Appendix A. This is needed, as we will apply the bound of Appendix A to each risk term in the
reformulated disagreement discrepancy.

Lemma 16. Ler (1,(z: [0,00) — [0,00) be convex functions that are continuous at zero and
non-increasing. Then the function (: [0, 00) — [0, 00) such that

C(e) = inf 0(1(€1> + Ca(e2)

€1+er=¢€,6,>0,62>

has the following properties:

~

it satisfies ((e1 + €2) < C1(€1) + Ga(e2) for any €1, €3 € [0, 00),

. it is convex,
. it is non-increasing,

2
3
4.
5

it satisfies C(0) = ¢1(0) + ¢2(0), and

. it is continuous at zero.

Proof. We prove each property below:

1.
2.

This holds trivially by definition.

Let e,/ > 0 and (e1,€2) and (€], €,) be pairs that are arbitrarily close to achieving the
infimum for {(e) and ((¢’), respectively. For A € [0, 1], the convex combination of these
pairs A(e1, €2) + (1 — A) (€], €5) has components that sum to Ae+ (1 — A)€e’. By the definition
of ¢, we have {(Ae + (1 — A)€') < G (Aer + (1 — N)e)) + Ca(Ae2 + (1 — N)ey). Applying
the convexity of (; and (s to the right-hand side yields

CAe+ (1= X)) < AGiler) + Gale2)) + (1= A)(Gi(€) + Ga(€r)).

Since this inequality holds for values that can be made arbitrarily close to A{(€)+(1—X){(€),
the result follows.

. Lete > 0 and (€1, €2) be a pair such that €; + €2 = € and (; (€1) + (2(e2) is arbitrarily close

to ((€). Now for €’ > ¢, consider the pair (€1, €2 + (¢/ — €)). The sum of its components is
€1 + €2 + € — e = €. By the definition of ¢, we have {(¢') < (1(€e1) + (a(e2 + (¢/ — €)).
Since (> is non-increasing, it follows that (s(ea + (¢/ — €)) < (2(e2). This leads to the
inequality C(¢') < (1(e1) + Ca(e2). As this holds for a value arbitrarily close to ((€), we
conclude that {(¢") < ((¢) as required.

. This holds by definition. For € = 0, the only pair (€1, €2) satisfying the constraints is (0, 0)

so the infimum is taken over a single point.

. We need to show that lim._,g+ {(¢) = ((0). From the fact that ¢ is non-increasing, we

already have ((¢) < ((0) for any € > 0. For the reverse inequality, consider an arbitrary
0 > 0. By the continuity of ¢; and (> at zero, there exists an > 0 such that for any
x € [0,n), both (1(x) > (1(0) — 6/2 and (2(z) > (2(0) — §/2. Now, if we choose
€ € (0,n), then for any decomposition € = €1 + €a, both €; and e must be less than 7). This
implies that any term in the infimum, ¢; (1) +(2(€2), is strictly greater than ¢; (0)+(2(0) —4.
Therefore, the infimum itself must satisfy ((¢) > ¢((0) — d, which completes the proof.
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O

We now use Lemmas 14, 15 and 16 and Corollary 13 to lower bound the optimality gap of disagree-
ment discrepancy in terms of the optimality gap of the surrogates, evaluated on a subset of the input
space.

Theorem 4. Consider a classification task with K > 2 classes, where h: X — [K]? is a reference
model outputting a pair of class labels and f: X — R¥ is a critic model outputting logits. Let S, T

be distributions on X and o > 0. For A € (0,1) and § € (0,152 ), define a restricted input space:
X’:{xeX:hl(m)th(x),pT(x)>O,/\—|—5§ps(x)§1—6}, (8)
apr(x)

Let d,, be either Rosenfeld & Garg’s surrogate® with lais = (RS X\ = K/(2K — 2), or Ginsberg
et al.’s surrogate with lg;s = E(%IS“K, A= 1/(K — 1), and lngy = lce in both cases. Then for
both surrogates, there exists a convex function ¢ : [0,00) — [0, 00) that is continuous at 0 with

¢(0)=4¢6/(1- 5)1S(X’)>0 + a§1T(X/)>0, such that

X’7T

sup dalh, £)(S,T) — dalh, F1(S,T) > c(aa h £1(S

) = inf dulh, f11(S
sup ) = dnf dalh, f)(

X’aT|X’)> .

Proof. For i € {1,2}, let ¥; = L;|— {0, {,,] and v = L;[lce, aqis]. Using the fact that
du[h, f1(S,T) = —ads-1[h, f](T,S) and expanding out the definitions, we have

= ada-[h, fI(T,S) — flllég{ adg-1[h, f/}(Tv S)
= Rlt1, b, AfI(S) ~ nf Bl b ATI(S) + Rlta, b, ASIT) — inf, Bt o, AT(T)

= R[A £y, h, Af)(S) + RIA o, b, Af)(T) (16)
= R[A Ly, b Af](S|x) + R[A L2, b, Af)(T|x) (17)

Note that (16) follows since f’ can be optimized pointwise and (17) follows by replacing
R[A Ly, by Af](S|a\xv) and R[A Lo, h, Af)(T|x\ x+) by a lower bound of zero.

Next, we apply Corollary 13 to (17) on the restricted input space X” using ¢;(z, y,y’) as the true loss

and Z;(x, 1, s) as the surrogate loss. Lemmas 14 and 15 ensure that AG[¢;, £;](¢) = 6 /(1 — ) 1=y +
adl;—o > 0 within a neighborhood of ¢ = 0 for Rosenfeld & Garg and Ginsberg et al.’s surrogates
respectively. This is needed to apply Corollary 13.

As a result, there exists a convex function ¢;: [0,00) — [0, 00) that is continuous at zero, with
€1(0) = /(1 = 6)1g(x+)>0 such that

R[A gla h7Af](S

)2 G (R B £(S]2))
= (Rt (5L = juf, R FYS1)) . a8)

The last line follows since f’ can be optimized pointwise. By the same argument, there exists a
convex function (z: [0,00) — [0, 00) that is continuous at zero with (»(0) = ad1p (x> such that

RIA b, 1, Af)(T|x) > Go (R[m, A(Tl) ~ inf, R[@z,w’](ﬂx«)) a9
Now let
C(€) - el+62:ei,r511f20,6220 Cl (61) + 42(62). (20)

>We consider a generalization of Rosenfeld & Garg’s surrogate with o > 0 and distinct reference models.
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By Lemma 16, ¢ is convex and continuous at zero, with {(0) =
ad1p(xy>0. Using the property that ((e1 + €2) < Ci(e1) + (2
(19) and (17) yields

sup doz[ha f/](sv T) - da[h’ f](57 T)
JreM

> c(R[él, h 7S

C(0)+¢(0) =6/(1=0)1say>0+
(e2) from Lemma 16, along with (18),

xr) + Rlls, b, f)(T

v)
©)

as required. O

x) = inf Rl b f)(S xr) = inf Rlto,h, (T

X’)T

X’aT

= (ol (ST Tloe) = jut daln 1S

Corollary 5. In the setting of Theorem 4, the surrogates proposed by Rosenfeld & Garg (2023) and
Ginsberg et al. (2023) are not Bayes consistent for disagreement discrepancy when K > 2.

Proof. We reuse definitions from the statement of Theorem 4. Using (7) and the fact that the critic f”
can be optimized pointwise, we can rewrite the surrogate optimality gap as
dalh. fal(S,T) = inf dalh, f1(S,T) = RIA L, by fu](S) + RIA L, by f2)(T)
> R[A LD, f)(S
dalh, £2)(S

x) + RIA Lo, hy fu] (T x00)
X’aT X’) - fl/relf;{aa[h,f/](s X’aT

x)

where the inequality follows by replacing R[A ¢4, h, Af] (S|a\av) and R[A U, h, Af] (T'|x\x) by a
lower bound of zero. By the sandwich theorem, we have

da R, £)(S,T) — Jnf dalh, £11(S,T) & 0

— da[h, £2)(S|x, T

x) = jnf dalh, f)(S]x. Tla) 2 0.

Consider ( as defined in (20) and let
X, = C(aa[h7fn](S|X’7T|X’) - figi&a[h, f/](5|X/>TX')) :

Since ( is continuous at zero, the continuous mapping theorem implies X, 5¢ (0). Let S, T be
such that S(X”) > 0 or T'(X’) > 0 where &” is defined in (8). Then ((0) = §/(1 — 6)1g(x)>0 +
adlp x> is strictly positive.
We prove that
Y, = sup da[h7 fl](57 T) - da[ha fn](Sa T)
frexn
does not converge in probability to zero by contradiction. Suppose Y,, 2, 0. Then by Slutsky’s

theorem, X,, —Y,, N ¢(0). Now by preservation of inequality in the limit, if Z,, Ly Zand Zn < 0for
all n, then Z < 0. Applying this to Z,, = X,, — Y,, implies ¢(0) < 0, which is a contradiction. [J

D PROOFS FOR SECTION 4.4

This appendix contains proofs for the results presented in Section 4.3. The key result of this section
is Theorem 4, which we will prove using an upper bound of Zhang (2004b) that is analogous to our
lower bound, presented in Corollary 13.

We begin by introducing a functional A H that relates the the true and surrogate excess losses. This
functional plays a similar role as AG in Definition 9.
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Definition 17. Let AH[(,7]: [0,00) X X x } — [0,00) be a function such that for any = € X,
yed,
+o0, Cll(e,z,y) =0,

AH[(,¢ = j
[ ) ](67 €, y) {infzeC[E](e,z,y) A E(x7 Y, z)7 otherwise,

where C[l](e,z,y) = {z € Z : Al(x,y,Az) > €}. We also define AH[(,7]: [0,00) — [0,00)
such that R X
AH[L ()=  inf  AH[L (e, z,y).
LiO= il AH[LDE.)

Having defined A H, we are ready to restate the upper bound of Zhang (2004b) (labeled Corollary 26
in their paper). It provides an upper bound on the optimality gap of the true risk in terms of the
optimality gap of the surrogate risk.

Theorem 18 (Zhang, 2004b). If the loss function ¢ is bounded, and the function in Definition 17
satisfies Ve > 0, AH[¢,l])(e) > 0, then there exists a concave function &: [0,00) — [0,00) that

depends only on /, 0, such that £(0) = 0 and limgs_,o+ £(5) = 0. Moreover, given h: X — ),
f: X = Z we have

B AUX R(X), £(0) < (B ANX,B(X), (X))
for all distributions D on X.

Before we can apply this result to prove Theorem 6, we must prove that the positivity condition on
A H holds for the true/surrogate losses of interest. We do this in the lemma below.

Lemma 19. Consider a classification setting where the reference model output space consists of
pairs of labels Y = [K|?, and the evaluation model output space consists of logits Z = R¥. Let
A: X — [K] be as defined in (1). Consider the true loss {; = L;[l,0, — {s0] and corresponding

surrogate loss @Z = L;[lee, K(?i‘;“], where L; is defined in (5), {c. is defined in (2), and E(?ils“s is defined
in (9). Then fori € {1,2} and all € > 0 we have AH[(;, 0] () > 0.

Proof. We prove the result by evaluating AH [¢;, @i](e, x,y) directly for four cases: ¢ = 1 and
Y1 = Y2,% = 2and y; # ya,% = 2 and y; = yz, and i = 2 and y; # y2. For brevity, we define
q=[e",...,e°s]/ > e* and r(x) = apr(x)/ps(x).

Case 1: i = 1 and y; = y». Using the expression for A ¢; derived in Appendix B.1 we have

C[Zﬂ(e,a&y) = {S S RK : 1r(m)§a(1sy1<maxc#yl Se 1r(z)>1)(1 — 7“(.’17)) Z 6} .

For r(x) < 1, this set is non-empty when s,, < maXcy, e, 7(x) <1 —eand r(x) < a. Using the
expression for A ¢; derived in Appendix B.2, we have

AHly, 1 = inf AY
[ 15 1}(671'73’) Secfg](e’m) 1(3773’75)
:qngl—kg@mtt+r@»)—r@ﬂbg(l—qMXI+r@Y4»

—tog( 2 ) oo )

Similarly, when r(x) > 1 the set C[¢1](e, z, y) is non-empty when ¢, = max, g, r(z) > e+ 1 and
r(x) < «, where we have

AHl, 7 = inf AV
(1, 1] (e, z,y) et 1z, y,s)
zgglfbﬂ%J1+M@D*T@ﬂ%«lf%Jﬂ+r@YU)

S Y .
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Thus we have

. 2 2
AH[l,0 > i 1 —_— 1 _— 0.
b G(e,zy) = r(z)e{mif{lf?e,a},we} 0g<1 +r($)> +r@) og<1 —l—r(x)_l) ”

Case 2: 1 = 1 with y; # yo. Using the expression for A ¢; we have

C[gl](eaan) = {S € RK : 1r(a:)§a (18“ <MaXexy; Sc + r(x)]-syz:maxc sc) > 6} .
This set can be partitioned into subsets:

Cit](e,x,y) = {s e RE . Sy, < H;Z’ixsc,sy2 # maxsc} , forr(z) <a,e<1,
cEY, c
Caolti)(e,x,y) = {s eR¥ s, < MAX 5o, Sy, = maxsc} , for max{0,e — 1} <r(z) < a,
c#£Y1 c
where C1[ls] (€, z,y) = Ca[l2](€, z,y) = 0 outside the specified domains.

For r(z) < a,e < 1 we have

inf  Al(x,y,s) = inf —1 - log(1 —
ottty A0a@ys) = if - —log(gy,) - r(z)log(l - gy,)
= log 2,
and for max{0,e — 1} < r(x) < a we have
inf Aly(z,y,s) = inf —log(gqy,) — r(x)log(1 — gy,
ottt Ay = il —log(g,) —r(x)log(l - gy,)

= lim log(K +n) 4 r(x)log(K —n),
n—0+
> log K.
Thus we have
AH[ly, 4] (e, z,y) > min{log 2,log K} > 0.
Case 3: i = 2 with y; = y». Using the expression for A ¢, derived in Appendix B.1, we have
C[@g](e, (E,y) = {S e RK : Oé]-r(a:)*1<0ﬁ1(13y1<maxa¢y1 Se 1r(w)*1<1)(r(1’)71 — ].) Z 6} .

For r(z)~! > 1 this setis non-empty when s,;, < maxc.y, e, ()~ > 1+€/aandr(z)~! < 1/a.

Using the expression for A 75 derived in Appendix B.2, we have

AH[£2a 22](€a x, Y) = SGC[EiI]l(fe . y) Azg(,ﬂ?, Y, S)

=« inf, —r(x) " log(gy, (1 +7(2))) — log((1 — qy,) (1 +7(2) 7))

=ar(z)! 1og<1+2r(z)> + alog(mz(x)1>

On the other hand, when r(z)~! < 1 the set C[(2](e, x,y) is non-empty when s,, = max, S,
r(z)™1 <1—¢€/aand r(x)~! < 1/a, where we have

AHV% Z2](67 z, y) = sEC[Zir]l(fe 2y) A@Q(xa Yy, S)

=a inf —r(z) " log(gy, (1 +r(z))) —log((1 — gy, ) (L +r(2)~"))

Ay, >3

=ar(z) 1o 2 +alo 2
N & 1+ r(x) & 1+r(@)-1)"
Thus we have

. 2 2
AH[ly, lo](e,x,y) > min ar(z) tlog| ——— | + alo (>
b2, bole, 2, y) = r(m)’le{min{é,lfi},bki} (z) g<1 + r(m)) &\1 +r(z)~!

> 0.
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Case 4: i = 2 and y; # yo. Using the expression for A /5 we have

Clls)(e,z,y) = {s e REX . aly(z)-1cqt (T($)7115“<maxc¢yl se T 1s, =max, sc) > e} )

This set can be partitioned into subsets:

Cils)(e,x,y) = {s cR¥:5, < H;léaxsc,sy2 + maxsc} , for £ <r(z)7! <a,
CFY1 c «

Calla)(e,x,y) = {s eERX .5, < MAX 5o, Sy, = maxsc} , for max{O, ‘e 1} <r(z) ! <a,
CFY1 c (0]
where C1[ls] (€, z,y) = Calls](€, x,y) = 0 outside the specified domains.

For £ < r(x)~! < a, we have

inf  Aly(z,y,s) = inf -1 +alog(l—g,
seCl[Zl](e,m,y) Z(I Y S) 5601[21](67!1?’)’) O”(I) o8 (le) “ Og( QJQ)

= ar(x) ' log?2
> elog?2,

and for max{0, £ — 1} < r(z)~' < o we have

inf Aly(z,y,s) = inf -1 +alog (1 —
L 2(7,y,8) 5602[;5(67x7y)ar(x) 0g (qy,) + alog (1 — gy,)

= lim ar(z) 'log(K +n) + alog(K —n)
n—0+t
> alog K.
Thus we have

AHlly, l5)(e,z,y) > min{elog2, alog K} > 0.

Hence we have shown that AH[(;, ;](e, z,y) > 0 forany z € X,y € [K]? and ¢ > 0, which
implies AH[¢;, ¢;](e) > 0 as required. O

We also need the following result which allows us to compose the convex functions that appear in the
framework of Zhang (2004b, Appendix A).

Lemma 20. Let &1,&5: [0,00) — [0,00) be convex functions that are continuous at zero and
non-increasing. Then the function & : [0, 00) — [0, 00) such that

(e) = sup §1(e1) + &2(e2)

€1t+€2=¢€,61>0,62>0

has the following properties:

~

it satisfies &1 (€1) + &2(€2) < €(e1 + e2) for any ey, €2 € [0, 00),
it is concave,
it is non-decreasing,

it satisfies £(0) = £1(0) + £2(0), and

M

it is continuous at zero.
Proof. The proof follows a similar structure as the proof of Lemma 16. O

We now use Lemma 19 and Theorem 18 to upper bound the optimality gap of disagreement discrep-
ancy in terms of the optimality gap of our surrogate.
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Theorem 6. Consider a classification task where h: X — [K]? is a reference model outputting a

pair of class labels and f: X — R¥ is a critic model outputting logits. For any o > 0, let El(, be
our surrogate with lgis = f(?i‘s”s and lagr = Lee. Then, for any distributions S,T on X, there exists a
concave function  : [0,00) — [0, 00) that is continuous at 0 with £(0) = 0, such that

sup da[h, f'1(S, T) — dah, fI(S,T) < g(aa [h, £1(S,T) — inf dal[h, f(S, T)) :
feH freH

Proof. Using the fact that d,[h, f](S,T) = —ade-1[(h2,h1), f](T,S) and expanding out the
definitions, we have

fb/lé%da[hvf/](‘& T) - da[h” f](S7 T) = adoﬁl[(h%hl)vf](Tv S)

-« fl,gg_[ da-2 [(th hl)a f/](T7 S)
+ Rlta, b, Af)(T) = inf Rlta. b, Af(T)
= R[A L1, h, Af](S) + R[A ls, b, Af](T),

where the last equality follows since f’ can be optimized pointwise. Applying Theorem 18 to each of
these terms gives

sup dalh, f)(S,7) = dalh, £1(S.7) < & (RIA L, b fI(S) ) + & (RIA L b A1), @1
frer

where &; and &, are concave non-decreasing functions that are continuous at zero and satisfy &;(0) =
&2(0) = 0. Note that in order to invoke Theorem 18, we have used Lemma 19 which guarantees

positivity of AH[¢;, 2;](¢) for any € > 0. We have also used the fact that £, and /5 are bounded.
Next, we define the function £: [0, 00) — [0, 00)

£(6) = sup §1(61) + &2(d2),

01+62=0,612>0,6.>0

which is concave, continuous at zero and satisfies £(0) = &1 (0)+&2(0) = 0 by Lemma 20. Combining
the first property of Lemma 20 with (21) yields

sup dah, £)(5,T) — dalh, £1(5,T) < &(RIALL, b, £)(S) + RIA L, b, £)(T))
frer

=¢(dalh, f1(S,T) — inf dalh, f1(S,T) ),
¢(duln A1)~ jut duln £1(5.7) )
where we have again used the fact that f’ can be optimized pointwise in the last equality. O
Corollary 7. Our surrogate for disagreement discrepancy with cross-entropy agreement loss and the

disagreement loss specified in (9) is Bayes consistent for all K > 2.

Proof. The result follows from Theorem 6. Let G,, = du/[h, fn](S,T) — inf prey dalh, f1)(S,T)
and G, = sup ey dalh, f'](S,T) — dalh, fu](S,T). By the continuous mapping theorem and

continuity of ¢ at zero, we have E(G‘n) 25 0. Also, by Theorem 6, we have 0 < G,, < f(én) for all
n. Applying the sandwich theorem yields the desired result: G, 0. O

E ROSENFELD AND GARG’S ERROR BOUND UNDER COVARIATE SHIFT

This appendix presents the error bound for models under covariate shift, as proposed by Rosenfeld &
Garg (2023). While this content is not novel, we include it here to make our paper self-contained and
to provide necessary context for our experiments in Section 5 and the attack described in Appendix F.

Rosenfeld & Garg (2023) developed a method to bound the error of a model under distribution shift
using disagreement discrepancy, requiring only labeled source data and unlabeled target data. Their

30



Under review as a conference paper at ICLR 2026

approach involves training a critic model, chosen from a specified hypothesis class, to maximize
the disagreement discrepancy between itself and the model under evaluation. This maximized
disagreement discrepancy is then used to construct a probabilistic upper bound on the target error.
The bound is formally stated in the following theorem:

Theorem 21 (Error bound). Let Sy, Sie and T, Tie be train and test datasets drawn i.i.d. from the
source distribution S and target distribution T, respectively. Let y* : X — [ K] be the ground truth la-
beling function, h: X — [K] be the model under evaluation and f* € arg minsey a[h, f1(Ser, Tir)
be the optimal critic within hypothesis class H C {f: X — RX}. Assume d[h,y*](S,T) <
d[h, f*](S,T). Then with probability 1 — § we have

(ISse| + 4[Tte|) log 1/6
2|Ste||Tte| -

R[gzm y*, h](T) < R[gzm ?J*a h](Ste) + d[h> f*](Stev Tte) + \/

pop. error on target emp. error on source emp. disagreement discrepancy

sample correction

The accuracy of this bound critically depends on estimating the disagreement discrepancy term.
Here, the consistency of the surrogate plays a crucial role. A consistent surrogate ensures that,
asymptotically, optimizing it leads to the same result as optimizing the true disagreement discrepancy.
This provides theoretical justification for using the surrogate in training the critic f* and, consequently,
in estimating the upper bound.

The bound’s validity also relies on a key assumption: d[h, y*]|(S,T) < d[h, f*](S,T). This assump-
tion states that the disagreement discrepancy achieved by the optimal critic f* should be at least as
large as that achieved by the ground truth labeling function y*. The extent to which this assumption
holds depends on several factors:

* The expressiveness of the critic’s hypothesis class H

* The quality of the surrogate disagreement discrepancy

* The effectiveness of the optimization procedure

When these factors align favorably, the trained critic f* should achieve a disagreement discrepancy
that meets or exceeds what would be obtained using the ground truth labeling function y*. However,
as we observe in our experiments (Section 5), this assumption does not always hold in practice,
leading to potential violations of the bound.

The analysis of surrogate consistency and its impact on the reliability of this bound forms the core of
our work, as detailed in the main text.

F ATTACKING ROSENFELD & GARG’S ERROR BOUND

This appendix describes an attack on the error bound of Rosenfeld & Garg (2023), aiming to
underestimate the error by perturbing the target data. We perturb a fraction of the inputs, constraining
the perturbation for each input in /,-norm to €. The attack can be viewed as an application of
projected gradient descent.

Let

(|Ste| + 4[Tie|) log 1/5
2|Stc”th|

denote the upper bound on the target error from Theorem 21. Note that we’ve dropped the

dependence on the source train/test datasets Si., Ste, and made explicit that the critic model

f*(Ty) € argmaxyey d[h, f](Sir, Tix) depends on the target training dataset T,

Ub(Ttra Tte) = R[gzoa ZU*> h](Ste) + d[h7 f*(ﬂr)}(stea Tte) + \/

Our objective as the attacker is to minimize the difference between the upper bound and the actual
target error ub(Tiy, Tte) — R[ls0, y*, h](Tte), subject to the £, constraint on the perturbation to the
target train and test instances. If this difference becomes negative, we have triggered a violation of the
bound. By dropping terms that are constant with respect to the target datasets, we can equivalently
minimize:

R[ezoa ha Af*(Ttr)](Tte> - R[Ezm y*a h](Tte)~
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This problem cannot be solved using gradient-based optimization, as the zero-one loss /,, is not
differentiable. Additionally, f*(7,), which is the solution to an optimization problem, is difficult to
differentiate through.

To address these challenges, we employ a two-step optimization procedure that uses differentiable
surrogate losses. For this attack scenario, we make an exception to our usual treatment of the reference
model h. While throughout the paper we’ve assumed h returns raw outputs (class labels), here we
need access to its logits or class probabilities to compute gradients with respect to the target data.
This is necessary for the attack but does not change our general framework.

Our two-step procedure is as follows:

1. Optimize the target test data Tt,:

* Replace R[l,0, hy Af*(Tir)](Tie) with —R[lais, b, f*(Tir)](Tte ), where Lais(z, P, S)
takes as input a probability vector p € Ax_1 over K classes instead of a class label.
This encourages agreement between the reference model i and critic model f* (due to
the minus sign). We use the Gumbel softmax trick to make this loss differentiable in
the class probabilities output by h.

* Replace R[l,0,y*, h](Tie) With —R[lce, y*, h](Tie), encouraging disagreement be-
tween the reference model h and ground truth labeling function y* (due to the minus
sign).

» Compute the gradient of the surrogate with respect to the selected target test inputs,
take a gradient descent step, and project the perturbation onto the ¢,,-norm ball of
radius € centered on the original target input.

2. Update the target training data 7%, using the same surrogate objective and algorithm as for
the test data, followed by updating the model f*(T%,).

Importantly, since the objective consists of sums over target data, we can optimize the target inputs
in batches. This allows us to attack large datasets without needing to load all inputs into memory
simultaneously, which would be infeasible for datasets with tens of thousands of images.

G FURTHER EXPERIMENTAL DETAILS AND RESULTS

G.1 REPLICATION OF EXPERIMENTS WITH EXISTING AND NEW SURROGATES

This appendix provides additional details and results for the replication of experiments from Rosenfeld
& Garg (2023), complementing the results and discussion in Section 5.1.1.

Experimental Setup We briefly describe key elements of the experimental setup in an effort to
make our paper self-contained. For comprehensive details, readers are referred to Appendix A of
Rosenfeld & Garg (2023) and their publicly released code®. The experiments utilize 11 publicly
available vision datasets commonly used in distribution shift contexts:

* CIFARI10 (Krizhevsky & Hinton, 2009): Original as source; CIFAR10v2 (Recht et al., 2018)
and CIFAR10-C (Hendrycks & Dietterich, 2019) as targets.

» CIFAR100 (Krizhevsky & Hinton, 2009): Original as source; CIFAR100-C (Hendrycks &
Dietterich, 2019) as target.

* FMoW from WILDS (Koh et al., 2021): Train split as source; other splits (collected at later
times) as targets.

* Camelyonl7 from WILDS (Koh et al., 2021): Train split as source; other splits (from
different hospitals) as targets.

* BREEDS (Santurkar et al., 2021): Datasets derived from ImageNet (Russakovsky et al.,
2015), including entity13, entity30, living17, and nonliving26. Original ImageNet subpopu-
lation 1 as source; subpopulation 2 and ImageNetv2 (Recht et al., 2019) subpopulations 1
and 2 as targets.

*https://github.com/erosenfeld/disagree_discrep
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Figure 5: Comparison of error bounds versus actual error on target data for our surrogate and that of
Rosenfeld & Garg (2023). Each point represents a shift/model, with points above the dashed line
indicating bound violations. Results are disaggregated by training method: non-domain adversarial
training (left) versus domain-adversarial training (right).

¢ OfficeHome (Venkateswara et al., 2017): Product domain as source, other domains as
targets.

* DomainNet (Peng et al., 2019): Real domain as source, other domains as targets.

» Syn2Real (Peng et al., 2018): Train split (synthetic object renders) as source, other splits
(real object images) as targets.

Models used include ResNet-18, ResNet-50 (He et al., 2016), and DenseNet-121 (Huang et al.,
2017), depending on the dataset. Generally, models are pretrained on ImageNet and then fine-tuned
on the source dataset. Training/fine-tuning on source data employs five methods: empirical risk
minimization (ERM), FixMatch (Sohn et al., 2020), BN-adapt (Li et al., 2017), CDAN (Long et al.,
2018), or DANN (Ganin et al., 2016), with data augmentation applied during training.

Critics are implemented as linear models that consume either logits or features from the model under
evaluation. Specifically, the weights of the evaluated model are frozen, and only an appended linear
layer is tunable. Unless otherwise specified, logit-based critics are used. All loss functions involving
softmax operations, including the standard cross-entropy loss and our proposed disagreement loss,
are implemented in log-space to ensure numerical stability.

Additional Results In Section 5.1.1, we compared surrogates based on their resulting estimates for
the disagreement discrepancy, where larger estimates are superior. This is the only term in Rosenfeld
& Garg’s error bound (Theorem 21) that depends on the surrogate. Here, we provide additional results
comparing the complete error bound (including all terms) with the actual error on labeled target data.

Figure 5 compares the error bound and actual error for numerous shift/model pairs. We disaggregate
by model training method: domain adversarial training (DANN, CDAN) on the right and non-domain
adversarial training methods (ERM, FixMatch, BN-adapt) on the left. We observe more violations
of the bound (points above the dashed line) for models trained using domain adversarial methods.
Specifically, there are 13 violations when using Rosenfeld & Garg’s surrogate versus 6 violations for
our surrogate. Rosenfeld & Garg (2023) attribute this to DANN and CDAN penalizing the ability
to discriminate between source and target distributions in feature space, effectively minimizing
the disagreement discrepancy term in the error bound. They argue that this scenario violates the
assumption of their bound, as DANN and CDAN can produce models that are, in some sense,
worst-case (adversarial) for the bound.

We also consider a different critic architecture. Figure 6 compares logit-based and feature-based
critic architectures. Rosenfeld & Garg (2023) suggest that feature-based critics tend to have greater
capacity than logit-based critics, resulting in more conservative error bounds. Our results confirm
this behavior for critics trained with our surrogate. Note that this figure only includes models trained
using ERM, FixMatch, and BN-adapt, excluding domain adversarial trained models.

33



Under review as a conference paper at ICLR 2026

Features Logits Logits w/o &
1.00=

0.75=

>

3 L agf L 2
3 -, A: 2 _ah A“A a :,{ A“ Surrogate
o bt & g A A\
< 050- ¢ A ‘: S b e Ours
= SR . p
S a0 Sl /‘u" Sl N 4,‘“ - A RG23
= L%y m i e, 4 LYY A 4
W os— i ah A PANCTI e

R <2, o Mgt

® M - A AP a
a 2, uh atedlS
on

e A
0.00- g e
L T T T O O S O O T I S E N R |
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Error (Bound)

Figure 6: Comparison of error bounds versus actual error on target data for our surrogate and that
of Rosenfeld & Garg (2023). Each point represents a shift/model, with points above the dashed
line indicating bound violations. Only models trained using ERM, FixMatch, and BN-adapt are
included. Results are disaggregated by critic architecture: feature-based (left), logit-based (middle),
and logit-based without § term (right).

G.2 ROBUSTNESS TO ADVERSARIALLY CHOSEN DATA

This appendix provides additional results and details about the experiments assessing the robustness
of Rosenfeld & Garg’s error bounds to adversarially chosen target data, complementing the results
presented in Section 5.1.2.

Experimental Setup Due to the unavailability of the exact models and train/test splits used in the
replication experiments, we attempted to recreate the setup as described in Appendix A of Rosenfeld
& Garg (2023) and partially outlined in our Appendix G.1. We used 8 of the 11 datasets listed in
Appendix G.1: CIFAR10, CIFAR100, FMoW, BREEDS (entity13, entity30, living17, nonliving26),
and OfficeHome. DomainNet and Syn2Real were excluded due to their qualitative similarity to
OfficeHome (shifts based on image style). Camelyon17 was omitted as it is a binary classification
dataset where the surrogates for disagreement discrepancy are equivalent. We added iWildCam2020
from WILDS (Koh et al., 2021) in place of Camelyon17, using the predefined splits (covering distinct
camera deployments).

For each dataset, we used the same model architecture as Rosenfeld & Garg (2023): ResNet or
DenseNet, with a ResNet-50 pretrained on ImageNet for iWildCam. In most cases, models were
pretrained on ImageNet. We trained or fine-tuned on source data using empirical risk minimization
with data augmentation, excluding other training algorithms like FixMatch, BN-adapt, CDAN, and
DANN for these experiments.

Critics were implemented as linear models consuming logits from the model under evaluation. We
trained 30 randomly initialized critics in parallel and selected the best one. Following Rosenfeld &
Garg (2023), the critics were trained for 100 epochs using the AdamW optimizer, with a learning
rate of 3 x 1073 and weight decay of 5 x 10~%. All loss functions involving softmax operations,
including the standard cross-entropy loss and our proposed disagreement loss, are implemented in
log-space to ensure numerical stability.

We attacked the target datasets using the approach detailed in Appendix F. We varied the fraction of
attacked images f in the target dataset over values f € {0,12.5,25,50%}. In all cases, we ran the
attack for 20 steps with a step size of 8/255, constraining the magnitude of the perturbation for each
image in £.,-norm to 4/255. When updating the critic in each step, we used only 5 epochs, resulting
in a total of 100 epochs of critic training over the course of the attack.

Additional Results In Section 5.1.2, we compared surrogates based on their resulting estimates for
the disagreement discrepancy, where larger estimates are superior. Figure 7 supplements these results
with scatter plots comparing the complete error bound with the actual error on the attacked target
data. Results are faceted by attack fraction f. We observe that the bound increasingly underestimates
the actual error as f increases, suggesting decreased robustness of the bound. Consistent with earlier
results for disagreement discrepancy, our surrogate is least likely to underestimate the error, achieving
the fewest violations for all values of f.
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Figure 7: Comparison of error bounds versus actual error on attacked target data for our surrogate
and that of Rosenfeld & Garg (2023). Each point represents a shift/model, with points above the
dashed line indicating bound violations. Results are faceted by the fraction of attacked instances in
the target data.

For completeness, we provide the results plotted in Figures 3 and 7 in tabular form in Table 2. Note
that the attacks reported in the table are computed using our surrogate. We caution against comparing
results at the level of source/target pairs, as we only run the attack and compute the bound once per
pair, and there are several sources of randomness; instead, our analysis aggregates results across all
pairs, providing a more robust statistical basis for our conclusions about the surrogates’ performance.

G.3 APPLICATION TO HARMFUL SHIFT DETECTION

To train the critic model using XGBoost, we implemented a custom objective function that defines
the first-order gradient and second-order Hessian (/) of the loss with respect to the raw model logits.
The total objective is a weighted sum over source samples S (where we minimize agreement loss)
and target samples 7~ (where we minimize disagreement loss). For a given input z, let s € R¥ be the
vector of logits output by the critic model, and let y be the class predicted by the reference model.
Let p = o(s) be the predicted probabilities. We utilize a diagonal upper bound on the Hessian to
ensure numerical stability and efficient tree splitting, as is standard in XGBoost implementations.

Agreement Objective For source samples, the critic minimizes the agreement loss £, defined
in (2). The gradient is the standard cross-entropy gradient. For the second-order term, we use the
standard diagonal upper bound for all classes k:

Hy, = 2pi(1 — pg).

Disagreement Objective For target samples, the critic minimizes a disagreement loss. The specific
Hessian bound depends on the surrogate employed.

Our Surrogate. We minimize ({1 defined in (9). We derived diagonal bounds on the Hessian to
ensure convexity in the local neighborhood of the prediction:

f{k _ {pr(l _py)7 %fk =Y,
2pkPy; ifk #y.

GLK23 Surrogate. The baseline minimizes ¢GL¥ defined in (4). As this is functionally equivalent

to a cross-entropy loss against a soft target distribution, we use the standard diagonal bound for all
classes k:

Hy, = 2pi(1 — pr).

H USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as writing assistance tools to help synthesize and polish
text based on author-provided content, including drafts, bullet points, and technical explanations.
LLMs were also employed to review mathematical proofs for potential errors. All substantive content,
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Error (Bound) Disagreement Discrepancy

Source Target Attack (%) Error (Actual) GLK23 Ours RG23 GLK23 Ours RG23
cifar10 cifar10_1v6 0 0.093 0.149 0.287 0.194 0.031 0.169 0.076
125 0.151 0.154 0.285 0.214 0.024 0.154 0.084

25 0.219 0.136 0.241 0.187 0.018 0.123 0.069

50 0.357 0.154 0.285 0.202 0.024 0.154 0.072

cifar10c_frost_level4 0 0.169 0.169 0.567 0.265 0.059 0.457 0.155

12.5 0.209 0.160 0.551 0.268 0.050 0.441 0.158

25 0.261 0.150 0.523 0.254 0.040 0.413 0.144

50 0.357 0.145 0.519 0.270 0.035 0.409 0.160

cifar10c_pixelate_level5 0 0.320 0.281 0.769 0.479 0.171 0.659 0.369

12.5 0.356 0.265 0.729 0.459 0.155 0.619 0.349

25 0.391 0.254 0.695 0.449 0.144 0.585 0.339

50 0.489 0.212 0.653 0.439 0.102 0.543 0.329

cifar]0c_saturate_level5 0 0.088 0.126 0.376 0.154 0.016 0.266 0.044

125 0.136 0.124 0.340 0.142 0.014 0.230 0.032

25 0.171 0.119 0.315 0.140 0.009 0.205 0.030

50 0.290 0.118 0.316 0.143 0.008 0.206 0.033

cifar100 cifar100c_contrast_level4 0 0.330 0.481 1.000 0.942 0.200 0.969 0.661
125 0.408 0.519 1.000 0.959 0.236 0.971 0.677

25 0.469 0.570 1.000 0.998 0.289 0.984 0.717

50 0.616 0.682 1.000 1.000 0.399 0.987 0.775

cifar100c_motion_blur_level2 0 0.355 0.485 1.000 0.935 0.202 0.962 0.652

12,5 0.405 0.497 1.000 0.940 0.214 0.964 0.657

25 0.452 0.523 1.000 0.948 0.240 0.970 0.665

50 0.555 0.551 1.000 0.983 0.268 0.971 0.700

cifar100c_spatter_level2 0 0.300 0.461 1.000 0.842 0.178 0.913 0.560

12,5 0.352 0.460 1.000 0.837 0.177 0.911 0.554

25 0.404 0.466 1.000 0.826 0.183 0.914 0.543

50 0.507 0.483 1.000 0.856 0.200 0.922 0.573

entity13_subl entity13_sub2 0 0.465 0.347 0.442 0.484 0.093 0.187 0.230
12.5 0.519 0.362 0.446 0.441 0.108 0.192 0.187

25 0.571 0.332 0.428 0.424 0.078 0.174 0.169

50 0.697 0.293 0.470 0.449 0.039 0.216 0.195

entity30_subl entity30_sub2 0 0.648 0.530 0.718 0.715 0.146 0.334 0.330
125 0.681 0.528 0.726 0.687 0.144 0.342 0.302

25 0.724 0.492 0.702 0.648 0.108 0.318 0.264

50 0.812 0.423 0.705 0.619 0.039 0.321 0.235

fmow_0212 fmow_1315 0 0.415 0.511 0.883 0.712 0.068 0.440 0.269
12,5 0.480 0.497 0.878 0.668 0.054 0.436 0.225

25 0.552 0.487 0.864 0.664 0.044 0.422 0.221

50 0.686 0.454 0.907 0.672 0.011 0.464 0.230

fmow_1618 0 0.471 0.553 0.953 0.745 0.110 0.511 0.302

12.5 0.528 0.520 0.906 0.715 0.077 0.463 0.273

25 0.594 0.502 0.901 0.700 0.060 0.459 0.257

50 0.717 0.461 0.925 0.697 0.018 0.483 0.254

iwildcam2020 iwildcam2020 0 0.265 0.822 1.000 1.000 0.493 0.790 0.726
12.5 0.304 0.848 1.000 1.000 0.518 0.763 0.738

25 0.345 0.823 1.000 1.000 0.493 0.765 0.723

50 0.426 0.863 1.000 1.000 0.534 0.777 0.727

living17_sub1 living17_sub2 0 0.695 0.618 0.771 0.849 0.159 0.312 0.390
125 0.734 0.598 0.741 0.768 0.139 0.282 0.309

25 0.756 0.567 0.778 0.743 0.108 0.319 0.284

50 0.837 0.498 0.801 0.750 0.039 0.342 0.291

nonliving26_subl nonliving26_sub2 0 0.643 0.606 0.854 0.805 0.262 0.510 0.461
12,5 0.685 0.559 0.833 0.774 0.216 0.489 0.430

25 0.717 0.529 0.803 0.728 0.186 0.459 0.384

50 0.804 0.476 0.797 0.696 0.133 0.453 0.352

officehome._product officehome._art 0 0.457 0.609 1.000 1.000 0.390 0.973 0.910
12,5 0.483 0.633 1.000 1.000 0.414 0.966 0.910

25 0.545 0.649 1.000 1.000 0.430 0.959 0.905

50 0.621 0.647 1.000 1.000 0.428 0.957 0.912

officehome_clipart 0 0.619 0.717 1.000 1.000 0.491 0.955 0.921

12,5 0.636 0.663 1.000 1.000 0.448 0.957 0.896

25 0.670 0.688 1.000 1.000 0.462 0.941 0.892

50 0.730 0.685 1.000 1.000 0.471 0.957 0.903

officehome_real 0 0.246 0.474 1.000 0.974 0.259 0.863 0.759

12,5 0.300 0.503 1.000 0.944 0.277 0.867 0.718

25 0.364 0.483 1.000 0.947 0.268 0.860 0.732

50 0.454 0.508 1.000 0.942 0.293 0.869 0.727

Table 2: Comparison of target error bounds and estimated disagreement discrepancies across different
surrogates for various source/target data pairs. For attack rates greater than 0%, the target datasets
are adversarially perturbed using our proposed disagreement loss and surrogate for disagreement
discrepancy.
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theoretical contributions, experimental design, and scientific conclusions are the original work of the
authors. The LLMs did not contribute to the conceptual development of the research or the generation
of novel ideas, and their usage does not constitute authorship-level contribution.

37



	Introduction
	Related Work
	Consistency in Machine Learning
	Disagreement Discrepancy and Related Concepts

	Problem Setting and Preliminaries
	Models
	Loss Functions and Risk
	Generalized Disagreement Discrepancy and Surrogates

	Consistency of Disagreement Discrepancy Surrogates
	Bayes Consistency for Disagreement Discrepancy
	Reformulation of Disagreement Discrepancy
	Inconsistency of Prior Surrogate
	A New Consistent Surrogate

	Empirical Evaluation of Surrogates
	Application: Error Bounds under Covariate Shift
	Replication of Experiments with Existing and New Surrogates
	Robustness to Adversarially Chosen Target Data

	Application: Detecting Harmful Covariate Shift

	Conclusion
	General framework for proving inconsistency
	Excess Pseudo-Losses
	True loss
	Our surrogate
	Rosenfeld and Garg's surrogate
	Ginsberg et al.'s surrogate

	Proofs for Section 4.3
	Proofs for Section 4.4
	Rosenfeld and Garg's Error Bound under Covariate Shift
	Attacking Rosenfeld & Garg's Error Bound
	Further Experimental Details and Results
	Replication of Experiments with Existing and New Surrogates
	Robustness to Adversarially Chosen Data
	Application to Harmful Shift Detection

	Use of Large Language Models

