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ABSTRACT

Event cameras generate sparse, polarity-signed streams that align with how spik-
ing neural networks compute in time, yet image-centric dataset distillation trans-
fers poorly to this regime. We present PACE (Phase-Aligned Condensation for
Events), the first event-native dataset distillation framework for SNNs, which com-
prises two core modules: ST-DSM and PEQ-N. ST-DSM densifies spikes with
residual membrane potential and aligns real and synthetic streams by matching
amplitude and phase using a characteristic-function projection in feature space
and a discrete Fourier transform along time. PEQ-N is a probabilistic quantizer
whose forward pass emits hard integer frames while a straight-through estimator
preserves gradients and keeps compatibility with standard event-frame pipelines.
We optimize only the synthetic data with a time-expanded condensation objec-
tive on frozen teacher features, which encourages causal spatiotemporal structure
and shortens convergence time. On DVS-Gestures with IPC=10 at 9.29% of the
data, PACE reaches 76.5%, about 89% of full-data performance and +20.4 points
over a strong baseline. Similar gains appear on CIFAR10-DVS and N-MNIST and
transfer across SNN backbones. PACE delivers compact, accurate surrogates that
reduce storage and wall-clock time and make minutes-to-converge training practi-
cal on neuromorphic streams while opening a path to efficient on-device learning
and reproducible distilled benchmarks.

1 INTRODUCTION

Event cameras such as the Dynamic Vision Sensor (DVS) report asynchronous brightness changes
instead of conventional intensity frames, delivering microsecond level latency, extreme dynamic
range, and inherently sparse spatiotemporal streams (Lichtsteiner et al., 2008; Gallego et al., 2020).
In tandem with the third generation of neural computing, spiking neural networks (SNNs) provide
energy proportional, event driven perception and decision making: spikes encode when information
arrives, computation is naturally asynchronous, and activity is sparse by design. The pairing of
DVS and SNNs has therefore become a compelling blueprint for neuromorphic vision pipelines that
complement frame based systems and, in latency or power critical niches, can potentially supplant
them (Rueckauer et al., 2017a; Wu et al., 2018; Ye et al., 2025).

Despite this promise, many “DVS image” datasets are created by inducing saccade-like camera
motions while replaying static images or videos on a monitor (e.g., the saccade-converted N-MNIST
and N-Caltech101) (Orchard et al., 2015). This protocol sharpens edge contours but underrepresents
native event phenomena such as fine timing structure and high-dynamic-range dynamics, reducing
motion diversity and biasing the learning signal. In practice, SNNs often discretize streams into a
small number of time bins to stabilize training, which increases storage, lengthens sequences, and
raises optimization cost. Together, these factors hinder scalable learning on DVS data.

Dataset distillation (DD) offers a principled path: synthesize compact, information-dense surrogates
that train models to near parity with the full corpus while sharply reducing storage and compute.
Early work posed DD as gradient matching between models trained on real and synthetic data (Zhao
et al., 2021). Subsequent methods matched training trajectories to better mimic optimization dy-
namics (Cazenavette et al., 2022). Recent lines pursue distribution matching and kernel-based sur-
rogates to scale or obtain partial guarantees in simplified settings (Zhao et al., 2023; Nguyen et al.,
2021). Yet DD for event streams remains largely unexplored: neuromorphic signals are sparse,
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polarity-signed, and strictly time-causal, and SNN learning introduces non-differentiable spikes
with cross-scale temporal dependencies, which together blunt direct transfers of image-domain DD
recipes (Gallego et al., 2020).

In this paper, we propose PACE (Phase-Aligned Condensation for Events), an event-native dataset
distillation framework aligned with what SNNs compute over time. It comprises two core mod-
ules, ST-DSM and PEQ-N. ST-DSM densifies spikes with residual membrane potential and then
matches real and synthetic streams by projecting features with random characteristic-function direc-
tions and applying a temporal FFT so amplitude and phase statistics align. PEQ-N is a probabilistic
event quantizer whose forward pass emits hard integer frames and whose backward pass uses a
straight-through estimator to keep gradients while remaining compatible with standard event-frame
pipelines. We couple these pieces with a time-expanded condensation loss on frozen teacher features
and optimize only the synthetic data, which encourages causal spatiotemporal structure and shortens
convergence time. Extensive experiments demonstrate the effectiveness of our PACE across both bi-
nary and integer grids on several widely used event datasets. On DVS-Gesture with IPC=10 at a
ratio of 9.29%, PACE reaches 76.5%, about 89% of full-data performance and +20.4 points over
NCFM under the same setting.

Contributions. (1) We present the first dataset distillation framework for SNNs on event streams
and establish a standardized benchmark, introducing the event-native method PACE. (2) We make
temporal phase observable by densifying spikes with residual membrane potential, and we align real
and synthetic streams via CF in feature space and FFT along time within ST-DSM. (3) We maintain
pipeline compatibility while preserving gradients by introducing PEQ-N, a straight-through proba-
bilistic event quantizer that outputs hard integer frames, and a time-expanded condensation objective
on frozen teacher features that updates only the synthetic data. (4) We demonstrate large reductions
in storage and training time while maintaining high accuracy across SNN backbones and datasets,
enabling minutes-to-converge training under tight memory and latency budgets.

2 RELATED WORK

Dataset Distillation aims to compress a large training set into a compact synthetic set that pre-
serves downstream accuracy (Wang et al., 2018). Early approaches align point-wise representations
from a feature extractor via simple Euclidean losses, minimizing ‖f(x)− f(x̃)‖22 between real and
synthetic features (Wang et al., 2022; Zhou et al., 2022). A second line matches distributional statis-
tics using Maximum Mean Discrepancy (MMD), which aligns higher-order moments in an RKHS
and has been instantiated for dataset condensation (Zhang et al., 2024; Zhao & Bilen, 2022; Zhao
et al., 2023). Parallel to these, gradient-matching methods seek to align the gradients induced by
real and synthetic batches on the same network (Zhao et al., 2021); while effective, they are slow
and memory-intensive, and backpropagation-through-time further exacerbates the cost in SNNs. To
balance accuracy with wall-clock/compute in standard ANNs, distribution-matching (DM) variants
replace gradient alignment with feature-distribution alignment, often yielding faster and more stable
optimization (Zhao & Bilen, 2022). However, many feature-matching and MMD objectives pre-
dominantly constrain magnitudes of statistics and overlook phase information across channels and
time. Concurrently, our Neural Characteristic Function Matching (NCFM) reframes distribution
matching as a min–max game and matches both amplitude and phase through a neural characteristic
function, providing a principled alternative to MSE/MMD surrogates (Wang, 2025).

Spiking Neural Networks (SNNs) compute with discrete spikes and leverage temporal coding,
yielding energy and latency gains on neuromorphic hardware (Merolla et al., 2014). High accuracy
is achieved either by ANN→SNN conversion (Rueckauer et al., 2017b; Deng & Gu, 2021; Bu et al.,
2022), which calibrates activations and simulation length to cut conversion error and time steps, or
by direct training with surrogate gradients, where STBP (Wu et al., 2018) enables deep training
and later refinements tune surrogate shapes (Li et al., 2021; Wang et al., 2023), add time-aware
normalization (tdBN (Zheng et al., 2021)), and encourage few-step inference (TET (Deng et al.,
2022)). SNN inputs are either static frames unfolded over T steps or event streams binned into
temporal grids (Lichtsteiner et al., 2008; Amir et al., 2017); this unrolling makes training cost scale
with T under BPTT and surrogate gradients, motivating dataset distillation to reduce expensive
updates while preserving accuracy. Crucially, event data are sparse and polarity-asymmetric and use
integer or binary grids, and SNNs carry internal state (e.g., membrane potentials and thresholds),
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so RGB-oriented distillation objectives built around continuous intensities and CNN features may
transfer poorly. While dataset distillation is well studied on frame-based benchmarks, there is, to
our knowledge, no systematic study on event datasets for SNNs, which motivates our focus.

Motivation and Positioning of Our Work. Event streams encode information primarily in time,
yet most dataset distillation methods are image-centric and rely on dense tensors or coarse binning,
which mismatches sparse, polarity-signed, causal spikes and non-differentiable firing. This gap
inflates storage and compute, complicates optimization, and weakens transfer to SNNs. We advocate
an event-native, SNN-centric distillation paradigm that respects temporal structure with phase-aware
alignment while remaining compatible with standard event-frame pipelines, enabling rapid SNN
training under tight memory and latency budgets.

3 PRELIMINARY

Neuron model. We briefly review the widely-used neuron model, i.e., the Leaky Integrate-and-Fire
(LIF) (Gerstner et al., 2014). The membrane potential and spike firing of LIF model are given by:

H[t]=V [t−1]+τ(X[t]−(V [t− 1]−Vreset)) , S[t]=Θ (H[t]−Vth) , V [t]=H[t](1−S[t])+VresetS[t], (1)

where τ is the leaky factor (τ > 1), X[t] and V [t] denote the input and membrane potential remain-
ing at time step t. A binary spike S[t] is emitted when the membrane potential H[t] exceeds the
threshold Vth. This is determined by the Heaviside function Θ(v), which outputs 1 if v ≥ 0 and 0
otherwise. After firing, the potential resets to Vreset. Otherwise, it remains at H[t].

Event data. Event cameras (Dynamic Vision Sensors, DVS) offer microsecond-level temporal res-
olution, low latency, and a high dynamic range (>120 dB), making them highly compatible with
spiking neural networks (SNNs). Concretely, they asynchronously emit a positive or negative event
at a pixel whenever the brightness change exceeds a threshold, forming a sparse event stream. Each
event can be written as a 4-tuple

ei = (ti, xi, yi, pi), (2)
where ti is the timestamp, (xi, yi) are the spatial coordinates, and pi is the polarity (1/0 or 1/− 1);
i indexes the i-th event in the stream. Although recent works explore alternative event representa-
tions (Zhu et al., 2019; Lagorce et al., 2016; Sironi et al., 2018) to better exploit DVS characteristics,
the strongest-performing pipelines to date still aggregate events into frames over fixed time windows.

In our pipeline, we discretize time into T bins and pack the raw stream into an event tensor
E ∈ RT×C×H×W (with C ∈ {1, 2} depending on whether polarities are merged or separated).
With a finite bin width, this representation is inherently integer-driven (per-bin counts); only in the
theoretical asynchronous limit T→∞ (infinitesimal bins) does it converge to the native 0–1 event-
driven process. To probe purely event-driven behavior and the theoretical case of distilling directly
from streams, in our bin setting we disable within-bin accumulation and keep at most one spike per
pixel per bin (0/1 occupancy).

Dataset distillation via distribution matching. Because gradient-matching DC is slow and
memory-hungry (and even more so for SNNs), we adopt distribution matching (DM) for efficiency.
A classical DM objective aligns feature distributions produced by a fixed (or EMA-snapshotted)
encoder f(·) under random augmentations a ∼ A:

LDM(X̃ ) = Ea∼A

∥∥∥∥ 1
|B|

∑
x∈B

φ
(
f(a(x))

)
︸ ︷︷ ︸

real features

− 1

|B̃|

∑
x̃∈B̃

φ
(
f(a(x̃))

)
︸ ︷︷ ︸

synthetic features

∥∥∥∥2

2

, (3)

where B and B̃ are real and synthetic minibatches and φ selects the feature type (intermediate
activations, logits, or BN statistics) (Zhao & Bilen, 2022). Yet magnitude-only statistics can miss
phase-sensitive structure. Neural Characteristic Function Matching (NCFM) (Wang et al., 2025)
matches the empirical characteristic functions (CFs) of features z = f(x) over a frequency set Ω:

ϕ̂z(ω) = 1
B

B∑
b=1

e iω>zb , LCF =
∑
ω∈Ω

‖ϕ̂z(syn)(ω)− ϕ̂z(real)(ω)‖2
2
, (4)

which constrains both magnitude and phase, capturing finer structure than magnitude-only matching.
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Figure 1: The framework of our PACE (Phase-Aligned Condensation for Events). Float synthetic
data is quantized into integer-driven events via our PEQ-N module. Then, both real and synthetic
event streams are fed into unified SNN teacher and student models. The core of our approach is the
Spatial-Temporal Densified Spike Matching module, which trains the synthetic data by forcing its
resulting spike patterns to closely mimic those generated by the real data across both space and time.

4 METHOD

We present PACE (Phase-Aligned Condensation for Events), a plug-and-play SNN dataset distilla-
tion framework that learns synthetic event data initialized from random noise. Sec. 4.1 introduces
ST-DSM, which densifies sparse spikes via residual-membrane-potential injection and aligns ampli-
tude/phase using the Characteristic Function (CF) in the spatial domain and the Fast Fourier Trans-
form (FFT) in the temporal domain. Sec. 4.2 presents PEQ-N, which outputs hard integer event
frames in the forward pass and employs a straight-through estimator for gradients, while remaining
compatible with standard event-frame pipelines. The overall framework of PACE is given in Fig. 1.

4.1 SPATIAL-TEMPORAL DENSIFIED SPIKE MATCHING (ST-DSM)
Spike features should be densified for phase-aware matching. In ANNs, intermediate features
are continuous (e.g., ReLU activations), so CF-based matching can directly compare amplitudes and
phases in feature space. In SNNs, however, layer-wise features are binarized spikes s(l)t ∈ {0, 1}D
and are extremely sparse in space and time, which makes frequency-domain phase estimation brittle.
To make this contrast explicit, let at∈RD denote a continuous ANN feature and st∈{0, 1}D a SNN
feature. Their (per-time) characteristic functions (CFs) under a random projection ω∼N (0, ID) are:

Φa(ω, t) = E
[
e iω>at

]
, Φs(ω, t) = E

[
e iω>st

]
. (5)

Then we approximate st by a Bernoulli vector with spike rate ρt aligned with the all-ones direction:

Φs(ω, t) ≈ (1− ρt) + ρte
iω>1 phase−−−→ arg Φs(ω, t) = arg

(
(1− ρt) + ρte

iθ
)
, where θ = ω>1. (6)

When ρt is small and spikes arrive irregularly, the phase arg Φs(ω, t) exhibits abrupt jumps tied
to rare spike events, offering poor temporal-phase observability. By contrast, for continuous at,
∇at

Φa(ω, t) = iωΦa(ω, t), so Φa(ω, t) varies smoothly with at. Consequently, small drifts in at
induce a smoothly varying phase, which is the behavior exploited by CF-based phase matching.

Densified spike representation (DSR) via residual membrane potential. To endow SNN features
with a smooth temporal carrier while retaining explicit spike decisions, we adopt the LIF notation in
Eq. 1: for layer l, the pre-reset membrane potential isH(l)[t], the spike is S(l)[t] = Θ

(
H(l)[t]−V (l)

th

)
,

and V (l)
th is the threshold. We inject the residual (subthreshold) membrane potential into the spike

stream to obtain a single, continuous, spatio-temporally densified feature per site:

S̃(l)[t] = S(l)[t] +
(
1− S(l)[t]

) H(l)[t]

V
(l)
th

∈ (−∞, 1]. (7)

By Eq. 1, when a spike occurs (S(l)[t] = 1), the potential resets. Otherwise (S(l)[t] = 0), it remains
H(l)[t]. Thus S̃(l)[t]=1 at spike times and equals the normalized subthreshold value between spikes.
Consequently, the CF of S̃[t] admits a non-trivial subthreshold gradient even when no spike is fired:

∇H[t] E
[
e iω>S̃[t]

]
=

i

Vth
E
[
e iω>S̃[t] ω �

(
1− S[t]

)]
. (8)

We omit the layer superscript (l). The mask (1−S[t]), from S[t] = Θ(H[t]−Vth) in Eq. 1, restores
phase sensitivity on subthreshold steps, which stabilizes temporal alignment for CF-based matching.
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CF in the spatial domain and FFT in the temporal domain for phase-aware matching. Event
streams exhibit rich temporal dynamics, so purely spatial matching is insufficient. Leveraging the
LIF dynamics in Eq. 1, we propose spatial-temporal densified spike matching (ST-DSM): com-
bine CF-based projections in feature space with a discrete FFT along time to capture and align
temporal phase. Formally, let X,Y ∈ RB×T×D be densified features (Eq. 7) from real and syn-
thetic batches at a chosen layer. We sample M random directions ωm ∼ N (0, ID) and compute
empirical CFs at each time step (t ∈ {0, 1, . . . , T − 1}, m ∈ {0, 1, . . . ,M − 1}):

Zr(m, t) =
1

B

B−1∑
b=0

exp
(
iω>mXb,t,:

)
, Zs(m, t) =

1

B

B−1∑
b=0

exp
(
iω>mYb,t,:

)
. (9)

We then apply a full discrete Fourier transform along time (normalized with forward) to expose
temporal phase:

Fr(m, ν) =
1

T

T−1∑
t=0

Zr(m, t) e
−i2πνt/T , Fs(m, ν) =

1

T

T−1∑
t=0

Zs(m, t) e
−i2πνt/T , (10)

where ν ∈ IT = {0, 1, . . . , T − 1} indexes temporal frequencies. Let Ar = |Fr|, As = |Fs|, and
∆Φ(m, ν) = argFr(m, ν)− argFs(m, ν). The ST-DSM loss at the chosen layer is

L(l)
ST−DSM =

1

TM

M−1∑
m=0

∑
ν∈IT

[
α
(
Ar(m, ν)−As(m, ν)

)2
+2βAr(m, ν)As(m, ν)

(
1−cos ∆Φ(m, ν)

)] 1
2

, (11)

where α, β∈ [0, 1] weight amplitude and phase terms. Because S̃t (Eq. 7) mixes explicit spikes with
a dense subthreshold trajectory, the temporal FFT (Eq. 10) becomes sensitive to phase shifts that
would be invisible on sparse {0, 1} spikes alone.

Overall condensation loss. We combine ST-DSM with a time-expanded cross-entropy loss LCE.
Let {zt∈RC}T−1t=0 be the logits over time for a synthetic sequence. The condensation objective is

Lcondense = λin L(l)
ST−DSM + λinterLCE(

1

T

T−1∑
t=0

zt, y), (12)

where l is set to be the last layer of feature extractor (before the linear layer). This objective is
minimized only w.r.t. the synthetic data, and the teacher remains frozen during distillation.

4.2 PEQ-N : PROBABILISTIC EVENT QUANTIZER

Why DVS dataset distillation needs an event quantizer? Event streams are commonly converted
into integer-valued event frames by temporally binning raw binary events within short windows.
This practice (i) aligns with standard training/evaluation pipelines and hardware interfaces that ex-
pect frame-like tensors; (ii) removes the arbitrary ordering of events inside a bin while preserving
per-pixel counts; (iii) yields a bounded, discrete support {0, . . . , N −1} that matches categorical
modeling and stabilizes optimization; and (iv) keeps compatibility with inference-time representa-
tions used by off-the-shelf SNN backbones. To faithfully mirror this evaluation protocol, we impose
the same integer constraint on our synthetic dataset.

Discrete events with gradients. To keep integer event frames for inference and retain gradients
during distillation, we employ a probabilistic event quantizer, PEQ-N . At each spatio-temporal
location r = (t, h, w, c), PEQ-N predicts an N -way categorical distribution (temperature τ >
0) whose forward pass produces hard integers, while a straight-through estimator (STE) carries
gradients so that the losses in Eq. 12 back-propagate to the data parameters.

Formulation. Let zr = (zr,0, . . . , zr,N−1) be logits for location r. We define

pr,n =
exp(zr,n/τ)∑N−1
j=0 exp(zr,j/τ)

, ysoft
r =

N−1∑
n=0

n pr,n, yhard
r = arg max

n
pr,n. (13)

We combine discrete forward and continuous backward via STE:

yr = yhard
r +

(
ysoft
r − stopgrad(ysoft

r )
)
. (14)
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The gradients would flow through ysoft. Using the softmax derivative, we have:

∂pr,n
∂zr,j

=
1

τ
pr,n
(
δnj − pr,j

)
, (15)

the analytic gradient of the soft expectation is given by:

∂ysoft
r

∂zr,j
=

N−1∑
n=0

n · ∂pr,n
∂zr,j

=
1

τ
pr,j

(
j −

N−1∑
n=0

n pr,n

)
=

1

τ
pr,j(j − Ep[n]) . (16)

Because |j − Ep[n]| ≤ N − 1 and 0 ≤ pr,j ≤ 1, the gradient is bounded:∣∣∣∣∂ysoft
r

∂zr,j

∣∣∣∣ ≤ N − 1

τ
. (17)

For the binary special case N = 2, ysoftr = pr,1 and ∂ysoftr /∂zr,1 = (1/τ) pr,1(1 − pr,1) with
maximum 1/(4τ). Compared with direct round or hard thresholding (almost everywhere zero
gradient and undefined at jumps), Eq. 16 and Eq. 17 provide a smooth, bounded gradient channel;
the temperature τ acts as an annealing knob for the smoothness-sharpness trade-off.

Placement and coupling. PEQ-N operates at the output of the synthetic data parameters:

Ŷ
PEQ−N−−−−−→ Ŷhard ∈ {0, . . . , N − 1}T×H×W×C . The hard integers feed the frozen teacher to

extract densified features S̃ (Eq. 7) for the inner ST-DSM objective (Eq. 11) and to produce time-
varying logits for the discriminative term in the condensation loss (Eq. 12). During backpropagation,
gradients propagate through ysoft (Eq. 14) into both the quantizer and the synthetic data parameters.

5 EXPERIMENTS

Implementation details. Experiments are conducted on NVIDIA A40 GPUs using the BrainCog
platform (Zeng et al., 2023). For a fair comparison, We adopt the VGGSNN (Deng et al., 2022)
backbone across all experiments. For evaluation, we replicate existing coreset selection methods
(Random, Herding(Welling, 2009), K-Center(Gonzalez, 1985)) and dataset distillation baselines
(DC (Zhao et al., 2021), DM (Zhao & Bilen, 2022), NCFM (Wang et al., 2025)) under spiking
settings, and validate our proposed method in the same framework. Our method is designed to be
plug-and-play and is integrated into the state-of-the-art NCFM pipeline. To improve efficiency, we
significantly reduce the number of distillation iterations: for NCFM, we use only 5,000 iterations
(1/4 of the original 20,000). All datasets are resized to an input resolution of 48×48. For CIFAR10-
DVS and N-MNIST, we distill synthetic datasets with Images-Per-Class (IPC) values of 1, 10, and
50. For the smaller DVS-Gesture dataset, we adopt IPC values of 1, 5, and 10. The ratio of synthetic
to full dataset size is reported in Table 1. For the M directions, we set it to 64 for all methods.

Distillation strategies for different data types. We apply two tailored distillation strategies based
on the input format: (1) Binary event data: When the raw data consists of binary spikes, we also
generate binary synthetic samples. We set the discretization parameterN to 2 and use a high learning
rate of 1.0 to encourage convergence to binary-like values (0 or 1). (2) Integer event data: When
the data contains integer spike counts, we setN to 8 to allow richer quantization. A smaller learning
rate (e.g., 10−2) is used to facilitate finer-grained optimization of discrete-valued outputs.

Evaluation protocol. We follow a rigorous evaluation setup to ensure stability and reproducibility.
For each IPC setting, we run dataset distillation using 5 random seeds to produce 5 independent
synthetic datasets. Each synthetic set is then used to train and evaluate 10 independently initialized
models. We report the mean and standard deviation over the resulting 50 trials (5 × 10), covering
both training variance and synthetic data diversity.

5.1 MAIN RESULTS

ANN-based DD methods fail to transfer. As shown in Table 1, distillation methods originally
developed for RGB/frame-based ANNs, such as DC and the recent NCFM, do not maintain their
advantage when directly applied to event-based SNN-DVS settings. For instance, on DVS-Gesture
with int data at IPC=10, NCFM achieves only 56.1%, which is lower than all coreset methods,
including K-Center (61.2%), Herding (61.7%), and Random (62.1%). Similar trends hold across
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Table 1: Dataset distillation results (Top-1 accuracy, %). For all DD methods, synthetic sets are
initialized from random noise and optimized with a single VGGSNN backbone, which is also used
to train and evaluate on the distilled data. Coreset Selection baselines operate on real samples.
bin/int denote binary and integer event grids. IPC is images per class. Ratio is the fraction of
synthetic data relative to the full training set. “Full Dataset” trains the same VGGSNN on the entire
real set. Results are reported as mean ± std across runs.

Dataset Type IPC Ratio/% Coreset Selection Dataset Distillation (DD) Full Dataset
Random Herding K-Center DC DM NCFM NCFM+PACE

C
IF

A
R

10
-D

V
S

bin
1 0.1 16.2±0.2 18.9±0.3 10.3±0.3 19.9±0.6 15.0±0.9 23.1±0.1 27.3±1.2

53.4±0.510 1 23.8±0.1 24.2±0.5 19.2±0.5 21.2±1.3 20.0±0.8 22.3±0.7 31.3±1.4
50 5 34.7±0.4 32.0±0.3 30.1±0.3 19.8±1.6 20.6±1.0 24.6±0.6 41.9±0.5

int
1 0.1 15.4±0.1 18.3±0.1 9.9±0.3 24.6±0.9 16.3±0.8 27.4±1.0 34.1±2.4

62.9±0.210 1 24.1±0.2 25.4±0.3 19.9±0.5 32.2±1.3 25.0±0.9 28.9±3.1 41.3±1.9
50 5 36.8±0.4 34.8±0.7 34.5±0.2 31.1±1.5 22.8±0.9 34.0±0.5 49.7±1.2

N
-M

N
IS

T bin
1 0.017 43.4±1.4 48.4±1.7 18.9±0.7 59.1±4.0 37.3±3.4 67.1±4.0 84.4±1.6

99.0±0.110 0.17 84.7±0.2 79.8±0.6 82.6±1.0 62.4±15.2 46.5±5.0 87.2±4.0 91.8±0.8
50 0.83 92.9±0.1 90.1±0.6 90.9±0.4 47.6±14.3 54.7±8.2 92.4±0.0 94.1±0.1

int
1 0.017 58.4±0.6 63.6±0.2 18.7±0.4 63.1±5.5 47.8±6.4 71.8±2.1 84.7±0.5

99.3±0.010 0.17 85.8±0.4 80.3±0.4 85.5±0.5 85.4±0.5 44.0±3.5 86.6±1.0 90.0±1.2
50 0.83 93.9±0.1 89.8±0.3 91.3±0.2 91.1±1.7 46.5±7.5 89.8±0.6 94.8±0.1

D
V

S-
G

es
tu

re bin
1 0.93 28.0±1.9 40.0±0.6 14.1±1.1 40.4±4.9 21.8±2.3 33.6±1.3 50.7±2.1

75.5±0.85 4.64 53.9±1.2 57.3±0.6 49.2±0.5 35.6±4.9 48.1±3.0 40.7±2.0 61.0±1.0
10 9.29 58.8±1.6 58.8±1.5 60.4±1.1 35.9±5.7 48.3±3.3 48.7±2.9 68.7±1.7

int
1 0.93 39.3±1.1 47.8±0.5 11.4±1.6 44.7±1.5 26.5±2.3 46.7±1.9 63.3±1.9

85.7±0.55 4.64 52.8±0.8 56.2±1.3 51.2±0.5 53.7±1.7 26.6±2.4 48.0±2.1 70.3±2.5
10 9.29 62.1±2.2 61.7±1.3 61.2±2.4 61.1±3.0 44.1±3.3 56.1±2.0 76.5±1.9

other datasets and settings, showing that prior methods fail to model the spatio-temporal nature of
event data.

Our PACE lifts every baseline. Equipping prior DD with our PACE (NCFM+PACE) restores
and amplifies their advantage across all 18/18 settings in Table 1. Gains are especially pronounced
on dynamic streams: on DVS-Gesture with int at IPC=10, NCFM climbs from 56.1% to 76.5%
(+20.4%); with bin at IPC=10, it rises from 48.7% to 68.7% (+20.0%). Similar improvements
appear on other datasets/budgets (e.g., CIFAR10-DVS int, IPC=50: 34.0%→ 49.7%, +15.7%;
N-MNIST bin, IPC=1: 67.1%→84.4%, +17.3%), confirming the effectiveness of our methods.

Coreset selection vs. NCFM+PACE. Across datasets and budgets, learning synthetic events out-
performs selecting real ones. On DVS-Gesture with integer grids at the same IPC, the best coreset
trails our distilled set by a large margin (e.g., at IPC=10, best coreset reaches only 61.2%, while ours
achieves 76.5%). The gap stems from a fundamental capability difference: coresets directly select
from the available real examples, while synthetic sets are learned to reconstruct class prototypes and
optimize for the downstream objective, which is crucial under tiny budgets.

Where the gains concentrate. Benefits are largest for (i) more dynamic datasets (DVS-Gesture�
CIFAR10-DVS & N-MNIST) and (ii) low-moderate budgets (IPC≤10). These regimes hinge on
temporal shape (onset/offset, rhythm, peak density). PACE densifies spikes via residual membrane
potential and aligns amplitude/phase statistics (CF-in-feature, FFT-in-time), recovering precisely
these shapes from very few sequences.

Closeness to full-data performance. With only IPC=10 on DVS-Gesture int (Ratio=9.29% of
the training set), the distilled set reaches 76.5%, about∼89% of the full-data upper bound (85.7%).
A similar proximity holds on N-MNIST int, IPC=10 (Ratio=0.17%): 90.0% vs. 99.3% (∼ 91%).
On CIFAR10-DVS int, IPC=50 (Ratio=5%), performance reaches 49.7% vs. 62.9% (∼79%).

Binary vs. integer event grids. At matched budgets, int tends to outperform bin, especially on
dynamic datasets (DVS-Gesture: IPC=1 63.3% vs. 50.7%, IPC=10 76.5% vs. 68.7%; CIFAR10-
DVS: IPC=10 41.3% vs. 31.3%). Integer multiplicity yields smoother pre-activation trajectories
and stabler normalization after temporal/spatial aggregation, which reduces gradient variance and
batch jitter during distillation/training. Binary grids are threshold-sensitive. Small misalignments
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get amplified by SNN nonlinearities. Our PACE partially mitigates this for bin by densifying spikes
with residual membrane potential, yet int remains intrinsically advantageous on highly dynamic
streams. A mild exception appears on N-MNIST at IPC=10, where bin slightly surpasses int
(91.8% vs. 90.0%), likely due to simpler temporal structure where multiplicity adds limited benefit.

5.2 HOW MANY TIME BINS ARE NEEDED?

Table 2: Ablation of the time steps T on DVS-Gesture
(Accuracy %). We choose T ∈ {2, 4, 6, 8, 10}. The “Full
dataset” row reports bin/int performance as bin/int.

Type T=2 T=4 T=6 T=8 T=10

Full dataset 65.1/80.7 75.5/85.7 79.5/86.6 80.3/87.1 81.4/87.1

bin 41.1±7.1 50.3±1.9 57.9±3.6 59.8±3.4 62.8±3.1

int 60.2±2.3 63.3±1.9 65.7±1.4 64.6±1.9 65.5±1.1

More T helps until saturation. On
DVS-Gesture (Table 2), bin improves
near-monotonically with T , from 41.1%
at T=2 to 62.8% at T=10 (+21.7 pts).
In contrast, int peaks at T=6 (65.7%)
and changes only marginally thereafter
(64.6% at T=8, 65.5% at T=10). The
full-data upper bound similarly saturates
around T≥8 for int (about 87%), indi-
cating diminishing returns once dominant temporal rhythms are captured.

Why int saturates earlier. Integer encodes timing and intensity per bin, which smooths pre-
activations and stabilizes normalization under temporal and spatial aggregation. This lowers gradient
variance and batch jitter, so moderate T is sufficient. Binary grids lack amplitude cues and are
threshold-sensitive, thus they benefit more from higher temporal resolution. PACE densifies spikes
and partly compensates for bin, yet int remains intrinsically easier to optimize at moderate T .

5.3 ABLATION STUDY OF PEQ-Q AND ST-DSM IN OUR PACE

Table 3: Ablation of codebook size N in PEQ-N
on DVS-Gesture (Accuracy %).
Type N=2 N=4 N=8 N=16 N=32

bin 50.7±2.1 49.0±3.7 49.1±2.9 47.5±4.9 46.9±6.5

int 51.7±2.5 54.9±1.7 63.3±1.9 59.3±2.1 59.9±1.9

Effect of N in PEQ-N. We conduct ex-
periments on DVS-Gesture as shown in Ta-
ble 3. For int, accuracy improves from
51.7% (N=2) to 54.9% (N=4) and peaks at
63.3% with N=8, indicating that a moderate
codebook preserves multiplicity without over-
fragmenting counts. Larger N brings no fur-
ther gain and tends to create sparse bins that weaken gradients and stability. For bin, performance
declines as N grows (50.7→ 49.0→ 49.1→ 47.5→ 46.9), consistent with sharper quantization
boundaries interacting poorly with thresholded inputs and amplifying jitter. In practice, use N≈8
for int and keep N small (2) for bin.

Table 4: Ablation of ST-DSM on DVS-Gesture.

IPC integer grid binary grid
DSR ST-SM Acc DSR ST-SM Acc

1
7 7 46.7±1.9 7 7 40.8±5.1

3 7 56.5±2.7 3 7 47.6±7.0

7 3 46.9±7.4 7 3 47.7±5.0

3 3 63.3±1.9 3 3 50.3±2.1

5
7 7 48.0±2.1 7 7 48.1±2.1

3 7 60.3±3.1 3 7 55.1±2.9

7 3 50.8±2.3 7 3 52.1±2.0

3 3 70.3±2.5 3 3 61.0±1.0

10
7 7 52.7±1.7 7 7 54.7±1.7

3 7 63.7±1.1 3 7 55.1±2.9

7 3 55.3±2.8 7 3 54.6±4.4

3 3 76.5±1.9 3 3 68.7±1.0

Ablation of ST-DSM. We conduct ablation of
the ST-DSM’s components on DVS-Gesture as
shown in Table 4. DSR denotes the densified
spike representation in Eq. (9). Disabling ST-
SM removes the FFT alignment, i.e., Eq. (10)
→ Eq. (4). We can conclude: (i): DSR is the
primary driver and stabilizer: for int it lifts ac-
curacy from 46.7/48.0/52.7 to 56.5/60.3/63.7
(IPC 1/5/10), whereas (ii): ST-SM alone is
smaller or volatile (46.9/50.8/55.3). (iii):
Combining DSR+ST-SM (ST-DSM) is con-
sistently best, int: 63.3/70.3/76.5; bin:
50.3/61.0/68.7, and also reduces variance
(e.g., bin IPC= 1, std 2.1 vs 5∼7).

5.4 DISCUSSION

Visualization analysis. Fig. 2 compares real events (top) with distilled bin (middle) and int
(bottom) for (a) DVS-Gesture right hand wave, (b) N-MNIST 0, and (c) CIFAR10-DVS airplane.
Across all classes, the distilled int sequences show clearer contours and more coherent temporal
evolution than bin. For the hand wave, alternating ON and OFF bands track the oscillatory motion.
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Figure 2: Visualization of Original real data (top), distilled binary (middle) and integer (bottom)
event data for (a) DVS-Gesture “right hand wave”, (b) N-MNIST “0”, and (c) CIFAR10-DVS “air-
plane”. Each subfigure shows representative voxelized event maps; red denotes positive (ON) events,
blue denotes negative (OFF) events, and black marks pixels where both polarities occur within the
same spatiotemporal bin.

For the digit 0, a smooth annulus appears with balanced polarities along the stroke. For the airplane,
elongated motion edges emerge instead of salt and pepper noise. Mixed-polarity pixels (black)
cluster on true edges for int, indicating plausible ON/OFF co-occurrence, while bin is sparser and
more flicker-prone and often misses weak responses. Both distilled variants suppress background
clutter relative to real data, and int preserves fine structure more faithfully, which matches its
higher accuracy. Residual artifacts remain in the airplane case due to scene complexity, leaving
room for refinement at very fine temporal scales. Overall, PACE yields compact and class-consistent
spatiotemporal templates, with int providing stronger shape and rhythm fidelity than bin.

Table 5: Across-architecture generalization on DVS-
Gesture. Synthetic data are distilled with VGGSNN
and then used to train/evaluate other backbones.

Method Grid VGGSNN SNN-ConvNet SEW-ResNet

NCFM bin 33.6±2.1 46.8±3.6 12.4±2.3

int 46.7±1.9 54.8±2.7 30.5±1.9

NCFM+PACE bin 50.7±2.1 62.5±0.6 29.6±0.6

int 63.3±1.9 68.2±1.4 37.7±1.9

Transferability. We explore whether data
distilled on VGGSNN can transfer well
to distinct SNN backbones, as shown
in Table 5. Compared to NCFM, our
method improves SNN-ConvNet by +17.1
pts (bin: 62.5 vs. 46.8) and +13.4 pts
(int: 68.2 vs. 54.8); SEW-ResNet by
+17.2 pts (bin: 29.6 vs. 12.4) and +7.2
pts (int: 37.7 vs. 30.5); and the source
VGGSNN by +17.1 (bin) and +16.6
(int) points. The consistent gains across bin/int suggest PACE learns spatiotemporal statistics
not tied to a specific architecture. Accuracy on SEW-ResNet is lower, hinting at a larger inductive
gap for residual/gated dynamics. Extending transfer to residual families (including spiking ResNets)
with residual-aware alignment is promising future work.

6 CONCLUSION

In this paper, we introduced PACE, an event native dataset distillation framework for rapid SNN
training on event streams. To our knowledge, this is the first work that formulates and studies
dataset distillation for SNNs with event data. First, PACE combines ST-DSM, which densifies
spikes via residual membrane potential and aligns amplitude and phase with a characteristic function
in feature space and a Fourier transform in time, with PEQ-N, a straight through probabilistic integer
quantizer. Next, across DVS-Gesture, CIFAR10-DVS, and N-MNIST, PACE outperforms coreset
selection and prior distillation in all settings, with the largest gains on dynamic streams and at low
or moderate IPC. In particular, with IPC=10 on DVS-Gesture at a ratio of 9.29%, it reaches 76.5%,
which is about 89% of full data performance. Moreover, ablations show that DSR is the main driver
while ST-SM refines alignment, that integer grids usually beat binary grids, that a moderate PEQ-N
codebook is best, and that more time bins help binary while integer saturates near T=6. In addition,
distilled sets transfer to other SNN backbones, although residual families remain harder. Finally, this
event native distillation reduces storage and wall clock time, enables minutes to converge training on
neuromorphic streams, and provides a practical path to efficient edge deployment and reproducible
distilled benchmarks.
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A APPENDIX

USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) solely as a writing assistant for language editinggrammar
correction, wording/fluency polishing, and minor rephrasing for clarityand for retrieval and dis-
covery to surface potentially relevant related work and references. The LLM was not involved in
research ideation, problem formulation, methodology or experiment design, coding, data analy-
sis, result generation, or drawing conclusions. All candidate references returned by the LLM were
screened and selected by the authors; all technical content and conclusions were authored and ver-
ified by the human authors, who take full responsibility for the paper. The LLM is not eligible for
authorship. Further details of these uses are described in the paper.

ETHICS STATEMENT

Real-world significance. PACE enables low latency and low power learning on event cameras
by providing compact distilled datasets and minutes-to-converge training. This makes on-device
SNN adaptation feasible on resource-limited platforms such as drones, AR headsets, wearables,
and smart prosthetics. The approach can lower energy and cost during training and deployment,
support privacy by keeping adaptation at the edge, and broaden access to neuromorphic perception
in settings with tight memory and latency budgets.
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