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Abstract

Whole-slide imaging has transformed histopathology into a data-intensive field, requiring
robust and generalisable computational tools. Foundation models offer a promising ap-
proach for a range of downstream tasks with minimal labelled data. While recent work
has shown their effectiveness for slide-level classification and retrieval, their potential for
dense prediction tasks such as image segmentation remains underexplored. In this study,
we present a comprehensive benchmark of 15 pathology-specific foundation models for
histopathological image segmentation, evaluated across two distinct modalities: H&E-
stained histology and Annexin A5-stained immunohistochemistry. To ensure a fair and
architecture-neutral comparison, we freeze each foundation models encoder and pair it
with a shared lightweight decoder, disentangling representation quality from model size.
Results show that foundation model encoders can sometimes lead to strong segmentation
performance without fine-tuning, but effectiveness varies significantly by model and modal-
ity. Our findings reveal that compact encoders can often outperform larger, more recent
models, underscoring that model size and classification accuracy are poor predictors of
segmentation capabilities.
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1 Introduction

The increased availability of high-throughput whole-slide imaging has transformed histopathol-
ogy into a data-intensive discipline. A single academic laboratory scanning surgical spec-
imens can now produce up to 1,500 whole-slide images (WSIs) and ∼1.6 TB of data per
day, rapidly out-scaling what pathologists can manually review or conventional pipelines
can process Kelleher et al. (2023). Convolutional Neural Networks (CNNs) trained from
scratch or fine-tuned on natural-image databases struggle to generalise across staining pro-
tocols or scanner vendors Tellez et al. (2019), and even across institutional biases Du et al.
(2025), often requiring retraining for every new endpoint Campanella et al. (2025).

Foundation models, large neural networks pretrained on vast WSIs via self-supervised
learning, address these limitations by learning domain- agnostic tissue representations adapt-
able to many downstream tasks with minimal labelled data Campanella et al. (2025). Re-
cent pathology-specific models such as UNI Chen et al. (2024) and Virchow Vorontsov et al.
(2024) achieved state-of-the-art accuracy on slide-level classification, retrieval and prog-
nostic benchmarks, outperforming task-specific networks while remaining robust to cross-
hospital domain shifts Xu et al. (2024). By decoupling feature learning from task-specific su-
pervision, these models enable scalable, easily deployable computational-pathology pipelines,
potentially accelerating biomarker discovery and clinical translation Wang et al. (2024).

Benchmarking efforts to date have mostly assessed foundation models on image recog-
nition tasks. Campanella et al. (2025) compiled 22 slide-level clinical diagnostic tasks and
found pathology foundation models uniformly surpassed ImageNet-trained networks on can-
cer detection and biomarker prediction. Breen et al. (2025) assessed 14 encoders for ovarian-
tumour subtyping, again finding almost every foundation model outperforming conventional
CNNs, while Lee et al. (2025) compared four domain-specific foundation models across 14
datasets under consistency and flexibility scenarios, finding that lightweight adapter tuning
was sufficient to adapt them to new classification tasks. With few exceptions like Kang et al.
(2023), most models treat WSIs as a set of individually annotated tiles, and evaluate global
predictions resulting from this “bag” of samples at a specimen level. However, the potential
of foundation model embeddings for dense prediction tasks like image segmentation remains
largely unexplored.

This work closes the gap by providing the first unified head-to-head comparison of a
wide array of recent pathology foundation models for segmentation. This is achieve by
freezing the parameters of each foundation model encoder and then pairing them with the
same lightweight decoder, which is learned from training data. In this way, representation
quality, and not backbone capacity, drives our assessment, as demonstrated in Fig. 1.
Comprehensive evaluation on a recently released public dataset and a proprietary database
eliminate test-set leakage and reveal which foundation model embeddings are indeed useful
for dense tissue delineation, providing guidance for future model selection and development.

2 Methodology

2.1 Notation and Problem Statement

Image Tiles and Semantic Segmentation In computational histopathology image
processing tasks, whole-slide images (WSI) are typically too large to be processed end-to-
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Figure 1: Using two different datasets (PUMA- H&E and UPV-ANXA5-IHC), we eval-
uate performance (Dice Similarity Coefficient, higher is better) vs. size (nr. of
parameters, lower is better) of up to fifteen recent foundation model encoders,
when repurposed for Histopathology image segmentation. Marker size reflects
model capacity.

end, hence we often operate on fixed-size RGB tiles x ∈ RH×W×3. In semantic segmentation
problems, we assume a training set of N labeled tiles D = {(xi,yi)}Ni=1, where each dense
mask yi ∈ {0, . . . , C−1}H×W assigns one of C tissue classes to each pixel in a tile xi. From
this data, we can then learn an encoder–decoder segmentation network fθ,ω:

fθ,ω(xi) = ŷi = ψθ

(
ϕω(xi)

)
, xi∈RH×W×3 7−→ ŷi∈{0, . . . , C − 1}H×W , (1)

with learnable encoder parameters ω and decoder weights θ. At inference time, tile predic-
tions ŷi are stitched with a sliding-window strategy to recover a WSI-level mask.

Foundation Model Embeddings Recent work in digital pathology has produced an
array of open-source foundation models, large Vision Transformers (ViT), Dosovitskiy et al.
(2021), pretrained on tens of millions of histology tiles, which we will denote here as Φω⋆ .
These models are often employed as powerful, general-purpose feature extractors, with their
parameters ω⋆ fixed (“frozen”) or lightly fine-tuned.

Internally, a patch-embedding layer partitions input tiles into P × P patches (P = 14
or P = 16 in practice) and projects each patch onto a d-dimensional token. Each model
is provided with a fixed input resolution of 512 × 512 pixels. The patch size P is inferred
dynamically from the model’s architecture.

After adding positional encodings and passing through L transformer blocks, the encoder
outputs a sequence Z of T tokens with low spatial resolution:

Z = Φω⋆(x) ∈ RT×d, T = h× w ∈ N, h =
H

P
, w =

W

P
(2)

optionally preceded by a classification (CLS) token that we discard here. Note that the
embedding dimensionality d is architecture dependent (e.g. d=768 for ViT-B and d=1,536
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for ViT-L architectures), as is the patch size P . In standard multiple-instance learning
pipelines, this sequence Z is reduced via CLS/mean/attention pooling to a single embedding
z̄ ∈ Rd for slide-level tasks such as WSI classification, or unsupervised subject clustering.

From Tokens to Spatial Feature Maps Instead of pooling the sequence in eq. (2),
here we restore its two-dimensional structure by a reshape and channel permuting mapping:

F = reshape(Z) ∈ Rd×h×w, (3)

thereby obtaining a view of the data analogous to a low-resolution feature map that preserves
the spatial layout of the tile and is ready for decoder upsampling. In our benchmark
analysis, we keep the backbone frozen and we train only a lightweight convolution-style
decoder following F , allowing us to measure how much pixel-level information is already
encoded in the embeddings produced by different foundation models.

2.2 Foundation Model Encoders

Our benchmarking methodology is based on the comparative evaluation of various backbone
architectures in the domain of digital pathology. To ensure a robust and representative
analysis, we selected a diverse set of fifteen encoder models, listed below. Further details
on the architecture of the encoders can be found in the appendix A.

• UNI Chen et al. (2024) is a general-purpose self-supervised vision encoder pretrained
using DINOv2 on Mass-100K dataset, which contains more than 100M image tiles of
different resolutions, extracted from around 100,000 H&E-stained WSIs across 20 organ
tissue types. UNI2-h is pretrained on a larger scale, using 200M image tiles extracted
from more than 350,000 H&E and IHC WSIs collected from Mass General Brigham.

• CONCH Lu et al. (2024) is a vision-language model pretrained on 1.1M histopathology
image-caption pairs available in Pubmed Central Open Access. CONCHv1 5 is built
on a ViT-L architecture initialized from the UNI pretrained checkpoint, and fine-tuned
following a procedure similar to the original CONCH framework.

• Phikon Filiot et al. (2023) is an early ViT-B model pretrained with iBOT on over 40M
image tiles from 6,000 H&E-stained WSIs from The Cancer Genome Atlas (TGCA).
Phikon-v2 Filiot et al. (2024), is a ViT-L model pretrained with DINOv2 on PANCAN-
XL, an expanded dataset with 450M tiles from 55,000 H&E WSIs across 30 cancer types.

• Virchow Vorontsov et al. (2024) contains 632M trainable parameters and was pretrained
on a 1.5M H&E-stained WSIs dataset sourced from the Memorial Sloan Kettering Cancer
Center. Virchow2 Zimmermann et al. (2024) was trained on a larger dataset of 3.1M
WSIs, sampled at four different magnifications obtained from the same institution.

• Prov-Gigapath Xu et al. (2024) is a self-supervised model pretrained on the Prov-Path
dataset, which includes 1.38B image tiles from 171,189 H&E and IHC-stained WSIs. The
dataset includes 31 different tissue types, including both tumor and non-tumor tissues.

• H-Optimus-0 Saillard et al. (2024) is a 1.1B parameter ViT trained in a self-supervised
manner on >500,000 H&E-stained WSIs, including human tissues from multiple body
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regions, covering 31 healthy and tumoural tissue types. H-Optimus-1 Bioptimus (2025)
is a similar model, but trained on over 1M WSIs from more than 800,000 patients.

• Kaiko ai et al. (2024) is a series of histopathology foundation models trained on data from
the TCGA. The Kaiko family covers multiple ViT configurations, but here we analyse
only the largest one (ViT-L), which performed best in our experiments.

• Lunit, Kang et al. (2023), is a self-supervised ViT based image classification model
trained on 33M H&E-stained image tiles from multiple public datasets.

• Hibou, Nechaev et al. (2024), is a family of histopathology models. We consider Hibou-
b, a ViT-B trained on 512M tiles, and Hibou-L, a larger ViT-L trained on 1.2B tiles.
Both models are trained on a proprietary dataset including over 1M WSIs of H&E and
non-H&E-stained tissues from human and veterinary sources, as well as cytology slides.

2.3 Encoder–Agnostic Single–Scale Decoder Design

Once an input tile x passes through a foundation model encoder Φω⋆ , we obtain a token
grid F ∈ Rd×h×w whose spatial resolution (h,w) is a factor P coarser than the original
size (H,W ). To produce a per-pixel prediction ŷ ∈ {0, . . . , C − 1}H×W we need a decoder
mapping F back to the full resolution of x. A natural choice is a U-Net–style, Ronneberger
et al. (2015), symmetric upsampling, but this entangles decoder capacity with encoder
size. Larger ViT backbones (e.g. ViT-L/H) would yield proportionally larger decoders than
smaller variants (ViT-S/B), introducing a confounder. To isolate the intrinsic representa-
tional quality of encoders, we design a lightweight decoder with constant parameter count
across all backbones, regardless of encoder depth or embedding dimension d.

Let F ∈ Rd×h×w be the feature tensor produced by any encoder, where h = H
P and

w = W
P . The decoder ψθ is deliberately minimal and identical for all backbones:

1. Width projection: A 1×1 convolution projects the backbone–specific width d to a
fixed head dimension D, F0 = Conv1×1(F) ∈ RD×h×w. We set D = 256.

2. Progressive ×2 up-sampling Let s =
⌈
log2

(
H
h

)⌉
be the number of shape doublings

required to reach (or slightly exceed) the input size1. For k = 1, . . . , s we apply:

Fk = σ
(
Conv3×3

(
Up

(
Fk−1

)))
, (4)

where Up denotes ×2 bilinear interpolation and σ is a ReLU mapping. The channel
width stays constant at D, so the complete path (projection together with s upsampling
blocks) always contains ≈ 2.6 M parameters regardless of the encoder.

3. Class logits and resize A final 1×1 convolution yields class logits L ∈ RC×h′×w′
. If final

upsampling exceed the target size (h′, w′)̸=(H, W ), we perform a last transformation:

ŷ = P
(
L, (H, W )

)
, (5)

being P an up-scaling/down-scaling interpolation transform.

1. Because each decoder block doubles the spatial resolution, the natural unit for counting how many blocks
we need is “how many powers of two separate the encoder grid from the input resolution”.
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(a) PUMA dataset (b) UPV-ANXA5 dataset.

Figure 2: Image tiles with their tissue annotation masks. (a) H&E-stained tile from the
PUMA dataset; (b) Annexin A5-stained tile from the UPV-ANXA5 dataset.
Red: Tumour, Green: Stroma, Blue: Tumour-Infiltrating Lympho-
cytes, White: Other.

The encoder–decoder interface is reduced via a 1×1 projection to D = 256. Hence, all
encoders, from ViT-S (d = 384) to ViT-H (d > 1000), supply equal-dimensional features
to the upsampling head. The learnable part of the model stays fixed at just over 2.5M
parameters, so any performance difference can be attributed solely to the quality of the
foundation model encoder representations Φω⋆ .

2.4 Training Protocol

In order to enable fair comparisons, we define a common training process for all segmentation
networks in our benchmark. All models are trained for 50 epochs, monitoring performance
on a separate validation set each 10 epochs. Decoder weights optimize a standard linear
combination of Cross-Entropy and Dice losses, using a Nesterov-accelerated Adam algo-
rithm, with an initial learning rate set to l = 1e-4, cyclically annealed towards l = 0 each
10 epochs. We observed convergence on the training set in all our experiments.

Data is sampled in batches of 8 images and undergoes common augmentation trans-
formations, e.g. random affine deformations, brightness/color jittering. We carefully nor-
malized the intensities of input images so as to match the specifications of each foundation
model encoder. Finally, the metric for both early stopping and test set evaluation purposes
was the Dice Similarity Coefficient (DSC), which measures overlap between predictions and
annotations. DSC was computed separately for each category and then averaged. We train
each model using 10 random seeds and report average performance and standard deviations.

3 Experimental Analysis

3.1 Dataset Description

In this benchmark, two datasets from different modalities were used to evaluate the perfor-
mance of the encoder models. The first is the publicly available PUMA dataset, Schuiv-
eling et al. (2025), consisting of 155 primary and 155 metastatic melanoma histopathology
H&E-stained 1024 × 1024 image tiles, scanned at 40× magnification with a resolution of
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Table 1: Results on the PUMA dataset for the Tumor, Stroma and remaining categories.
Three best performances are boldfaced, best performance is also underlined.

DSC-Tumor DSC-Stroma DSC-Other Average DSC

Hibou-l 92.91 ± 0.28 86.50 ± 0.71 74.16 ± 3.64 84.53 ± 1.30
UNI 93.01 ± 0.63 87.88 ± 0.82 68.96 ± 3.07 83.28 ± 1.30
Kaiko 92.12 ± 0.63 86.23 ± 0.69 67.58 ± 4.54 81.98 ± 1.62
CONCH 1 92.77 ± 0.71 86.98 ± 1.46 61.02 ± 2.76 80.26 ± 1.14
ProvGigapath 91.80 ± 0.57 86.21 ± 1.17 62.43 ± 3.56 80.14 ± 1.35
Optimus-0 91.13 ± 1.21 85.41 ± 1.78 51.64 ± 4.65 76.06 ± 1.95
Virchow-1 90.94 ± 0.83 84.79 ± 1.24 52.05 ± 6.71 75.92 ± 2.46
Optimus-1 92.61 ± 0.37 87.64 ± 0.54 40.63 ± 3.31 73.63 ± 1.28
Phikon 90.44 ± 0.78 85.24 ± 0.99 43.79 ± 7.26 73.16 ± 2.53
Hibou-b 91.49 ± 0.41 86.60 ± 0.70 41.01 ± 3.98 73.03 ± 1.38
UNI2-h 91.99 ± 0.63 84.78 ± 1.24 48.34 ± 5.52 72.12 ± 2.01
Phikon-v2 86.81 ± 1.40 81.67 ± 1.42 43.67 ± 4.06 70.72 ± 2.02
Lunit 86.62 ± 1.18 79.87 ± 1.58 42.97 ± 4.32 69.82 ± 1.85
Virchow-2 86.80 ± 2.00 78.70 ± 2.49 27.54 ± 8.34 64.35 ± 3.46
CONCHv1 5 77.16 ± 0.03 0.00 ± 0.00 5.00 ± 2.52 27.39 ± 0.85

0.23µm per pixel (Fig. 2(a)). PUMA covers six tissue categories: tumour, stroma, epider-
mis, necrosis, blood vessel, and background. Since the first two classes represented more
than 90% of the annotations, the remaining classes were grouped to avoid class imbalance
issues impacting our analysis. The second is the UPV dataset, a private IHC dataset
stained with Annexin A5 (ANXA5), a marker that highlights cells undergoing apoptosis
by producing a brown staining signal. The intensity of this signal, along with tumour-
infiltrating lymphocyte (TIL) density and morphology, can be potential biomarkers for pre-
dicting tumour recurrence and treatment response. It comprises 158 WSIs, from which 2,000
manually annotated 512× 512 image tiles were extracted. Scanned at 40× (0.22µm/pixel),
the images were downsampled to 0.44µm/pixel to match cell size in the PUMA dataset. In
this case, annotations were made for Tumour, TILs and Other (Fig. 2(b)).

One of our goals is to study the generalization ability of foundation models. Therefore,
we deliberately use a small number of images per modality: 15 for training, 5 for validation
and 10 for test, ensuring well-balanced and representative annotation splits.

3.2 Quantitative Analysis

Table 1 reports Dice scores on the PUMA benchmark, averaged over three tissue cate-
gories, yielding that: (i) Feasibility. Even with strictly frozen encoders, learning only
≈ 2.6 M decoder parameters from a modest training set yields competitive segmentation
quality. (ii) Overall ranking. The best average DSC is obtained by Hibou-L (84.5%),
followed by UNI (83.3%) and Kaiko (82.0%). (iii) Class-wise trends. Hibou-L excels
on the challenging Other class, whereas UNI leads Dice for Tumour and Stroma, suggesting
complementary spatial cues from different pre-training objectives. (iv) Expanded train-
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Table 2: Results on the UPV-ANXA5 dataset for the Tumor, TIL and remaining cate-
gories. Three best performances are boldfaced, best performance is underlined.

DSC-Tumor DSC-TIL DSC-Other Average DSC

Phikon 78.06 ± 2.07 68.40 ± 1.67 84.58 ± 0.88 77.01 ± 0.82
Kaiko 72.68 ± 1.14 72.36 ± 1.13 83.30 ± 0.95 76.11 ± 0.69
Hibou-b 75.92 ± 1.84 69.14 ± 1.51 82.32 ± 1.0 75.79 ± 0.95
UNI 79.56 ± 2.05 64.48 ± 2.68 79.86 ± 1.94 74.63 ± 1.37
Optimus-0 77.90 ± 1.99 64.79 ± 1.13 81.13 ± 1.32 74.61 ± 1.31
Virchow-1 74.67 ± 1.49 66.02 ± 1.37 80.49 ± 1.25 73.73 ± 0.97
Hibou-l 71.99 ± 1.02 68.54 ± 1.26 79.87 ± 1.22 73.47 ± 0.86
CONCH 1 73.49 ± 1.75 66.66 ± 1.47 79.95 ± 2.11 73.37 ± 1.31
Optimus-1 82.48 ± 2.23 59.11 ± 2.19 77.24 ± 2.02 72.94 ± 1.27
Lunit 70.94 ± 1.10 66.64 ± 2.09 79.15 ± 1.93 72.24 ± 1.50
ProvGigapath 80.62 ± 2.56 58.77 ± 2.93 76.84 ± 1.36 72.08 ± 1.05
Phikon-v2 72.75 ± 0.83 62.49 ± 2.24 79.84 ± 0.73 71.70 ± 0.70
UNI2-h 82.22 ± 1.41 52.74 ± 0.96 70.23 ± 1.27 68.40 ± 0.94
Virchow-2 69.47 ± 4.30 56.63 ± 0.97 76.23 ± 1.62 67.44 ± 1.36
CONCHv1 5 57.69 ± 3.13 28.32 ± 15.78 75.74 ± 1.70 53.92 ± 6.43

ing does not imply performance gains. Second-generation checkpoints with larger
architectures or extended training datasets (e.g. UNI2-H vs. UNI, Virchow-2 vs. Virchow-1)
underperform their predecessors, possibly because extensive classification-oriented fine-tun-
ing weakens the positional correlations in embeddings, crucial for pixel-level tasks.

Numerical results on the UPV-ANXA5 benchmark are reported in Table 2. Unlike
PUMA, these IHC tiles differ from the H&E appearance most encoders were pretrained on.
The task is therefore a good cross-stain generalisation test. We observe: (i) Lower overall
performance. This dataset contains the challenging tumour-infiltrating lymphocyte (TIL)
class, whose ambiguous borders lower DSC scores. (ii) Phikon leads overall, with a
77.0% mean DSC, achieving state-of-the-art performance on the Other class (84.6%) and
competitive scores on other classes, suggesting strong generalisation. (iii) Class-specific
behaviour. Optimus-1 excels on Tumour -class (82.5%) but struggles on TILs, while Kaiko
attains the highest TIL Dice (72.4%). Per-class differences between these models and Phikon
are noticeable. (iv) Kaiko is again a strong performer, ranking second Dice, with no
class performance collapse. (v) Model scale is not a guarantee. Prov-GigaPath (>1B
parameters) achieves only 42.1% average Dice, suggesting that IHC training samples did
not include ANXA5-stained melanoma or that its contrastive pre-training transfers poorly
to dense prediction. (vi) Second-generation checkpoints still underperform. As in
PUMA, second-generation models (e.g. Phikon vs. v2), exhibit performance degradation.

4 Conclusions and Take-Home Message

In this study, we have presented a comprehensive benchmarking of fifteen foundation mod-
els for histopathological image segmentation, evaluating their performance across two dis-
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tinct imaging modalities: H&E-stained histopathology (PUMA dataset) and Annexin
A5-stained immunohistochemistry (UPV-ANXA5 dataset). Our findings demonstrate
that foundation models can help achieving strong histopathological image segmentation
performance by using their frozen encoders coupled with lightweight, trainable decoders.
This design allows us to isolate the intrinsic representational capacity of each foundation
model encoder and assess their ability to generalize across modalities and tasks. We ob-
served that performance varies significantly by model and modality, with pre-training data
and task playing a critical role. Compact, modality-aware encoders (e.g., Hibou-L, Phikon,
Kaiko) often outperform larger, more computationally expensive classification-focused foun-
dation models in dense prediction tasks (see Table 3). Furthermore, we found that second-
generation models often regressed performance in our segmentation datasets, suggesting
that prolonged class-level optimisation can erode the spatial correlations required for pixel-
wise prediction. In general, the performance of previously reported slide-level (classification)
foundation models cannot reflect their dense-prediction performance. In view of this, we
advise practitioners to carefully benchmark foundation model embeddings for each target
task, and not blindly follow a “bigger is better” model selection rule.
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