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ABSTRACT

Evaluating progress in large language models (LLMs) is often constrained by the
challenge of verifying responses, limiting assessments to tasks like mathematics,
programming, and short-form question-answering. However, many real-world
applications require evaluating LLMs in processing professional documents, syn-
thesizing information, and generating comprehensive reports in response to user
queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as
evaluated by human-experts with professional knowledge across Physics PhD,
Chemistry PhD, Finance MBA and Consulting MBA. We build robust and afford-
able LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement
bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it
fair and accessible to the broader community. Our findings reveal that ProfBench
poses significant challenges even for state-of-the-art LLMs, with top-performing
models like GPT-5-high achieving only 65.9% overall performance. Furthermore,
we identify notable performance disparities between proprietary and open-weight
models and provide insights into the role that extended thinking plays in addressing
complex, professional-domain tasks.

Table 1: Comparison of ProfBench with select rubric-based benchmarks. Rationales for the classifi-
cation into good (✓) and poor (✗) on all aspects are discussed in the Introduction.

Dataset Diverse Domains Professional Knowledge Human Written Rubrics Fair Grading
PaperBench (Starace et al., 2025) ✗ ✓ ✓ ✓
HealthBench (Arora et al., 2025) ✗ ✓ ✓ ✓
DeepResearch-Bench RACE (Du et al., 2025) ✓ ✗ ✗ ✗

ProfBench (Ours) ✓ ✓ ✓ ✓

1 INTRODUCTION

For many problems, verifying the correctness of a solution can be much simpler than coming up
with the solution. Take for instance, Sudoku - verifying a solution is trivial for anyone with a basic
understanding of the rules (no repeated number in a row, column or small square) but the hardest
initial positions can take experts a long time to solve. This insight inspired many to use Reinforcement
Learning with Verified Rewards (RLVR; Lambert et al. 2025; DeepSeek-AI et al. 2025) by verifying
LLM responses to tasks of such nature. However, there are only a limited set of tasks for which
verified rewards can be easily constructed. One common domain is competition math, which have
unique correct answers such as AIME 25 (White et al., 2025). Other common uses lay in competitive
programming problems where generated code has to pass existing unit tests such as LiveCodeBench
(Jain et al., 2024) or writing with precise instruction following (e.g., checking if a particular word
appears 5 times using a python script) in IFBench (Pyatkin et al., 2025). In other domains such as
scientific question answers, RLVR is restricted to settings with a unique correct answer (Multiple-
Choice Question or Short Answer Span), seen in popular evaluations like MMLU-Pro (Wang et al.,
2024), GPQA (Rein et al., 2023) and HLE (Phan et al., 2025).

The ease of verification should not limit the type of tasks we can train models to successfully
complete. While some of these tests might predict how well PhD candidates (or other early-stage
domain-experts) understand their field, people do not graduate from PhD programs (or become
true-experts) simply based on how well they can pass these ”exam-style” questions. Instead, they
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ProfBench Finance MBA Example

You are helping me assess the potential for a new business unit within a major investment bank. This unit is entirely dedicated to innovative finance for
healthcare, as well as social impact and environmental challenges at the global level. One example we are studying to assess this opportunity is how the
Global Alliance for Vaccination and Immunization (GAVI) has been able to raise money on capital markets through the International Finance Facility for
Immunization (IFFIm).
I would like you to help answer the following questions:
- How was IFFIm able to raise money on capital markets for vaccination and immunization campaigns?
- How did IFFIm apply securitization?
- What were the factors that made it possible for IFFIm to raise money on capital markets?
- What risks and challenges does IFFIm have to address and overcome?
- How would you assess whether IFFIm has been effective and successful at raising funding for GAVI, and overall, has it been a success for their operations
and health goals?
- Can IFFIm be viewed as a blueprint for investing in and funding other areas of global health, or other major social or environmental challenges? If yes,
identify a short pipeline of 3 to 5 organizations/topics that could take a similar approach and use innovative finance to raise funding to advance their goals.
Provide a robust context, starting with defining what Gavi and IFFIm are, how they work, and how they are both related. Discuss, in detail, the technical
aspects of how IFFIm works, and describe what makes it possible and effective. The technical discussion should describe how it works, and provide a
detailed overview of how it raised money until now (this should include a summary of past issuances, showing on what markets it raised and what investors
subscribed). Also, discuss what elements made IFFIm possible, as well as what risks and challenges IFFIm faces. This should help you form a robust and
documented view on what makes IFFIm a success (or not), and how it could act as a blueprint (or not) for other initiatives.
Regarding format, I am looking for the style of a detailed investment memo discussion. You can use tables and bullets, but the memo should be mostly text,
and you should walk me through your reasoning. I don’t want the output to be mostly tables and bullets.
Extraction Rubric Sample: States that a breach of IFFIm’s liquidity policy could negatively impact IFFIm’s rating profile.
Reasoning Rubric Sample: States that vaccines are one of the most successful and cost-effective health investments in the world.
Style Rubric Sample (another task): Present findings clearly to allow for effective use.

Deep Research-Bench Finance & Business Example
What are the investment philosophies of Duan Yongping, Warren Buffett, and Charlie Munger?

Figure 1: Example from ProfBench (Finance MBA) is substantially more challenging and detailed
compared with Deep Research-Bench Finance & Business (Du et al., 2025). More examples in §A.

do so based on the merits of their original contributions in ways that are valuable to others - for
instance, coming up with a technique to synthesize cancer treatment medication. To expand the set of
tasks which can be evaluated with RLVR, there is a pressing need to cover challenging tasks with
real-world value into a format can be verified. Grading problems using rubrics represent a promising
path forward (Gunjal et al., 2025), with the central idea being to decompose a complex problem into
several criteria that a good response needs to fulfill. A trivial example is that when asking an LLM
for food recommendation for a Tuesday dinner with a vegetarian friend in New York City, there can
be many good answers but they must all fulfill a. open on Tuesday night; b. have vegetarian options;
c. be located in New York City.

Recent works (Starace et al., 2025; Arora et al., 2025) show that humans are often tasked with coming
up with these criteria while LLM-judges are used to determine if a response fulfills the criteria
(given both cost and efficacy considerations). Specifically, Starace et al. (2025) demonstrate that
this can be done for specialized domains requiring professional knowledge - health in evaluating
patient-physician conversations while Arora et al. (2025) shows its usefulness for machine learning
in reproducing ICML papers. However, there currently is no robust publicly available benchmark
that makes use of rubric fulfillment across diverse professional domains beyond health and machine
learning. DeepResearch-Bench RACE (Du et al., 2025) claims to curate PhD-level tasks across
multiple domains, but many examples such as What are the investment philosophies of Duan Yongping,
Warren Buffett, and Charlie Munger? or How did Netflix manage to successfully adapt One Hundred
Years of Solitude, a notoriously difficult book to bring to the screen? can be answered by an educated
generalist (i.e., college graduate or equivalent experience) with a few straightforward internet searches.
It also falls short due to synthetically generated criteria that were not verified by expert humans—
meaning that it’s unclear if such criteria are robust anchors for scoring. For instance, there is a
pervasive bias towards Gemini-2.5-Pro since the criteria and the reference ‘high-quality’ answer
are both generated by this model. This results in Gemini-2.5-Pro being rated as by far the best
performing—reaching more than 48.5 out of a maximum of 50 on each of the 4 axes, meaning >97%.

To support the community with robust rubrics for real-world, professional-level tasks, we propose
ProfBench—a rubric-guided benchmark for professional-grade LLMs, curated by expert human pro-
fessionals. ProfBench covers tasks across four domains—Chemistry, Physics, Consulting, Finance—
annotated by human experts with either PhD degree (Chemistry and Physics), MBA (Consulting
and Finance) or equivalent experience and are incumbent professionals in their respective domains.
Below, we summarize our main contributions:
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Figure 2: Distribution of rubrics by category. Reasoning dominates (62.9%), with most on logical
validity and correctness. Extraction accounts for 34.1%, emphasizing accurate retrieval of information
(w/o meaningful subcategories). Style is minor (3.0%), with a focus on formatting and clarity.

1. We introduce ProfBench, the first benchmark with expert-created rubrics across multiple pro-
fessional domains including over 7000 response-criterion pairs involving Scientific Research and
Business tasks. This benchmark is challenging - requiring PhD/MBA-level knowledge - with the
strongest GPT-5-High model reaching only 65.9% performance.

2. We measure the performance of over 40 models in terms of their ability to generate high-quality
responses to these tasks as well as to evaluate whether such responses fulfill various rubrics that
experts determine a good response require as LLM-Judges. We analyze various trends across
open/closed-source models, reasoning/instruct models and model size.

3. We propose methods to reduce the bias of LLM-Judges in favoring responses from specific
providers as well as the cost of running the benchmark, in order to improve its accessibility. Our
benchmark can be run with no more than 1% bias across 3 models from different providers and $12
(using o3 model), which is 2-3 orders of magnitude cheaper than existing rubric-based evaluation.

2 PROFBENCH OVERVIEW

ProfBench contains 7,347 human-written response-criterion pairs across 80 distinct tasks equally
divided among 4 domains (Chemistry PhD, Physics PhD, Finance MBA and Consulting MBA).
This is comparable to the 8,316 response-criterion pairs used in PaperBench (Starace et al., 2025)
across 20 tasks as well as HealthBench (Arora et al., 2025) with 8,053 response-criterion pairs across
hundreds of tasks. DeepResearch-Bench (Du et al., 2025) has 100 tasks (each with one reference
response, and no human-written rubric) across 22 domains, equally split between Chinese and English,
meaning there is only an average of 2.3 English tasks per domain. Rubric-based evaluations requiring
annotation by human-experts tend to be small as each task is time-consuming and recruiting for such
professionals (e.g., Physics PhD holders with industry experience) is difficult. We show an example
in Fig. 1, a breakdown of rubrics by category in Fig. 2, and further descriptive statistics in §D.

3 DATA COLLECTION

Annotator Recruitment Annotators with PhD, MBA or equivalent work experience are recruited
and managed by our vendor. Prior to their inclusion into the project, we check that they pass a test
on their domain expertise and their understanding of the annotation task (e.g. performing under
ambiguity and attention to detail). Each annotator is expected to work through an entire task -
including Prompt Ideation, Rubric Creation and Response Annotation - as annotators are asked to
create tasks that capture their personal expertise. Annotators are supported by one or more reviewers
(with substantial task creation expertise in their domain) to review (several back-and-forth rounds
possible if needed) and approve at each stage, before moving to the next. Each annotator spends
around 10 to 20 hours on each task. To ensure diversity of prompts, each annotator is allowed to
contribute no more than 5 tasks. We disallow the use of LLMs at any stage of the annotation process.
Across the 80 tasks, 38 annotators from 8 countries were involved. 44.7 % of annotators hold a PhD,
18.4% hold MBA and others hold related degrees such as Bachelor of Science in Finance, Bachelor
of Commerce or Bachelor of Business Administration along with work experience. Annotators have
an average of 5.24 years of experience following graduation of their highest degree. Annotators are
paid well-above minimum-wage following local standards, with hourly pay often exceeding full-time
employment hourly pay in these professional fields to attract the most qualified annotators. Further
details on annotator recruitment in §C.

3
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Prompt Curation Our goal was to curate tasks that would be difficult even for the frontier LLMs
at time of our collection in July 2025 (e.g. OpenAI o3; xAI Grok4; DeepSeek R1-0528). More
specifically, we asked for tasks that annotators might ask their (junior) colleagues to help on, resulting
in a multi-page report. Therefore, these questions often contain multiple related sub-questions as seen
in the Finance MBA example in Fig 1. All prompts (and expected generations) must be written in
English and only involve the text modality. We allow the annotator to use Internet search to identify
documents that would support finding evidence for answers but disallow the use of proprietary
documents (i.e. not findable on public internet). To ensure that prompts are created purposefully, we
ask annotators to provide a brief rationale for how they come up with each prompt.

Rubric Creation For each task, we ask annotators to create around 15 to 60 criteria used to
score the response of models. Each criteria should be independently usable to grade responses and
collectively capture all aspects of the response quality. Each criterion contains a description of the
criterion as well as a justification of the criterion (to encourage thoughtful creation). In addition,
annotators are asked to assign an importance and one or more criteria types. The reviewer then
provides overall feedback on the set of criteria as well as recommendation to keep or improve each
criterion. Among annotator-written criteria, 41.4% are marked as needing improvement at various
stages, indicating the high quality standard that we set for when reviewing this data.

Response Annotation Our vendor generates responses with 3 models: OpenAI o3, Grok4 and
DeepSeek R1-0528. These models represent the models that we believe to perform best on the tasks
we collected at the start of annotations (July 2025), including both proprietary and open-weight
models. The annotator scores each of the three responses on each criteria with either Yes or No,
alongside a brief justification. Further details in §E.

4 BENCHMARKING MODELS AS LLM-JUDGES

Task Formulation For each criterion, we provide the LLM-Judge the response, the criterion and
ask whether it fulfills the criterion in a binary fashion. In this sense, the task is formulated similar
to a two-class Natural Language Inference/Recognizing Textual Entailment task (Bowman et al.,
2015) with two possible answers (Entailment or Contradiction). Following PaperBench (Starace et al.,
2025), we do not provide the original task prompt to the LLM-judge, as the criteria are designed to be
used independently of the prompt, and further providing the prompt might confuse the LLM-Judge.
Prompt templates are in §B.

4.1 EVALUATION

Agreement with Human Annotations To evaluate LLM-Judges, we use Macro-F1 based on the
ground-truth human-labeled criterion-fulfillment and the model-predicted criterion-fulfillment (both
binary) as used by HealthBench (Arora et al., 2025) and PaperBench (Starace et al., 2025).

Bias However, another important aspect to consider is fairness to various model responses since
LLMs are known to have self-enhancement bias (Zheng et al., 2023), meaning that they allocate
higher scores to their own responses or responses from the same model family. We formulate a bias-
index by first calculating the bias for each model using 1

N

∑N
i=1 c

model
i − chuman

i where N is total
number of criteria and ci is the criterion-fulfillment predicted by model or labeled by human. Then,
we calculate the min and max bias across three models (o3, Grok4 and R1-0528) before calculating
the bias-index by taking the difference between max-bias minus the min-bias. A low bias-index
means that an LLM-Judge does not overly-reward/penalize any model’s responses, relative to human
annotated ground-truths and other models. Overall performance is Macro-F1 minus Bias-Index.

Cost We calculate the upper-bound cost of running the full LLM-Judge evaluation, using the
number of input and output tokens multiplied by their public cost (OpenRouter, 2025), excluding
discounts due to caching and other methods. In practice, caching alone will reduce the cost to as low
as one-tenth as stated cost for judges whose costs are dominated by input tokens. Cost is useful when
comparing two judges with similar performance, as the cheaper judge can be accessible for more.
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Inference Setup Following HealthBench (Arora et al., 2025), we use GPT-4.1 as a judge of
response-criterion fulfillment in early experiments to identify an optimal prompt template used across
all models subsequently among possible templates (See §B). Our exploration supports generating only
1 completion token (Yes or No) for non-reasoning LLMs and up to 32,000 tokens for reasoning LLMs
(and expect the post-thinking-trace response to be either Yes or No). This formulation means that
non-reasoning LLMs will be substantially cheaper and faster than reasoning LLMs (approximately
two to three orders of magnitude in practice). Following best practices (Yang et al., 2025; DeepSeek-
AI et al., 2025), we set temperature to 0.6 / top-p 0.95 for reasoning LLMs (when it can be set)
and temperature 0 / top-p 0 (i.e. greedy decoding) for non-reasoning LLMs. Our experiments with
GPT-4.1 Judge also suggests that both Macro-F1 and Bias-Index are highly consistent, differing no
more than 0.2% across three independent runs - therefore we only run with each judge once to save
cost. Note that for judges, we do not require web search or file upload as human annotators were
explicitly asked to create criteria that can be independently used to grade responses. For experimental
purpose, we only use half of the dataset as we plan for this to be the public dataset, while we keep the
remaining half as the private dataset in order to mitigate test contamination (Han et al., 2025).

Human Validation We carry out a validation experiment on a portion of the dataset (1127 response-
criterion pairs). Specifically, we ask two other annotators with the same expertise (e.g. Chemistry
PhD) to re-annotate the response-criterion fulfillment. Based on such annotations, we find inter-
annotator agreement to be Fleiss’ κ = 0.912, suggesting excellent agreement among annotators.

4.2 RESULTS

Are Closed Source Models better than Open Weight ones? Across the board, the best LLM-
Judge models in Tab. 2 are proprietary models. GPT-4.1 is the best model that outputs only 1
token per task at 75.4%, while Gemini-2.5-Pro takes the crown for Reasoning LLM Judges at 78.2%
(with its Flash sibling only 0.1% behind). However, open-weights are often not far behind. In the
non-thinking category, Kimi-K2-0711 is only 0.2% behind while GPT-OSS-120B-low is 1.5% behind
within the reasoning category. Such a small gap is especially impressive given the cost difference.
Kimi-K2 costs a mere 7.16% of GPT-4.1 while GPT-OSS-120B-low is only 1.21% of Gemini-2.5-Pro
($0.50 vs $41.46). This means that using open-weight models can allow experiments with evaluating
model responses to be much cheaper and hence accessible to many more. Such accessibility allows
more researchers from a wider background to iterate with methods to train rubric-following behavior.

Does Model Size Matter? Within the same model family, larger models generally perform better
than smaller models - but the improvement plateaus after a certain size. For instance, the improvement
between GPT-4.1-nano and GPT-4.1-mini was large at +20.8% while the further improvement to
GPT-4.1 was much smaller at +0.5%. A similar trend can be observed with the Llama-3.1/3.2 series
going from 1B to 405B. However, the jump from llama-3.1-70B to 3.3-70B (+3.4%) was much
larger than the jump from llama-3.1-70B to llama-3.1-405B (+0.9%), indicating the importance
of improvements in post-training recipe beyond model size alone. This is also supported by the
minuscule 0.1% model performance gains between Gemini-2.5-Flash-Lite and Gemini-2.5-Flash
(non-thinking) as well as Gemini-2.5-Flash (thinking) and Gemini-2.5-Pro (thinking).

To Think or Not to Think? When comparing the same model (e.g. Gemini-2.5-Flash, Claude-
Sonnet-4, DeepSeek-V3.1) that can have thinking enabled or disabled, enabling thinking typically
leads to some improvements, although the magnitude of the gain varies: 0.7% for Claude-Sonnet-4 to
4.8% for Gemini-2.5-Flash. This is further supported by the OpenAI GPT-5 series, for which going
from minimal reasoning to low reasoning substantially increases performance by 4.4% to 18.6%,
with a larger gain for the smallest GPT-5-nano. In contrast, the gain between low, medium and
high reasoning effort is not consistent, with o4-mini, GPT-5-nano and gpt-oss-20b/120b showing the
best performance at low reasoning effort. A possible explanation is that increasing reasoning effort
generally increases alignment with human annotations but also increases bias to specific models -
as observed consistently across all models (except for o3). This could be a result of greater self-
enhancement bias with more thinking, as the bias towards OpenAI o3 responses generally increases.
Furthermore, thinking with greater effort seems to lead to largest improvement in Physics, Chemistry
and criteria related to Style (e.g. Rounds all stock prices and equity values to two decimal places).
These criteria could be harder to judge without extending thinking, since they often entail multi-step
reasoning to ensure that the response fulfills the criteria, instead of a simple answer-matching.
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Table 2: Evaluation of LLM-Judges. Higher is better for Macro-F1 and Overall while closer to 0 is
better for Bias Index.

Agreement with Human Annotations (Macro-F1) ↑ Bias Index ↓ Overall ↑ Tokens ↓
Model Phys Chem Fin Consult Extract Reason Style All o3 R1-05 Grok4 Max-Min MF1 - BI In Out $

Instruct LLM Judge w. 1 Output token per task
OpenAI/GPT-4.1 80.9 69.2 71.0 80.0 79.8 74.4 65.8 76.3 5.5 4.6 5.0 0.9 75.4 1619 1 11.31
OpenAI/GPT-4.1-mini 83.9 67.3 69.1 80.6 79.2 74.7 69.8 76.4 -0.2 1.2 -0.3 1.5 74.9 1619 1 2.26
OpenAI/GPT-4.1-nano 69.8 62.9 66.7 68.4 71.0 65.6 63.5 67.9 -14.5 -2.1 -0.7 13.8 54.1 1619 1 0.56
Google/Gemini-2.5-Flash 82.9 67.3 70.8 79.6 79.2 74.5 67.7 76.3 -4.2 -6.6 -7.1 2.9 73.4 1779 1 1.87
Google/Gemini-2.5-Flash-Lite 83.6 68.2 68.2 80.6 77.9 75.0 71.0 76.4 -1.1 2.0 0.6 3.1 73.3 1779 1 0.62
Anthropic/claude-sonnet-4 85.0 66.9 68.1 76.3 77.6 73.3 64.1 75.2 -6.5 -5.2 -10.2 5.0 70.2 1913 1 20.06
anthropic/claude-3.5-haiku 78.9 67.2 71.2 76.7 76.9 73.3 65.4 74.9 -1.7 0.7 -1.4 2.4 72.5 1913 1 5.35

Open-weight

Qwen/Qwen3-235B-A22B-Instruct-2507 86.5 69.3 69.3 79.6 79.2 76.0 64.6 77.3 3.8 2.2 1.6 2.2 75.1 1779 1 0.48
Qwen/Qwen3-30B-A3B-instruct-2507 82.0 68.3 67.3 79.7 76.5 74.5 64.7 75.5 4.7 7.1 5.3 2.4 73.1 1778 1 0.32
MoonshotAI/Kimi-K2-Instruct-0905 84.5 69.9 67.5 81.9 80.2 75.5 65.9 77.0 7.5 6.1 5.2 2.3 74.7 1623 1 0.81
MoonshotAI/Kimi-K2-Instruct-0711 85.3 69.5 68.3 82.3 80.3 76.1 66.4 77.6 7.1 6.1 4.7 2.4 75.2 1636 1 0.81
DeepSeek-AI/DeepSeek-V3.1 79.6 68.2 68.3 78.7 77.4 73.9 65.8 75.2 0.2 -1.5 -2.2 2.4 72.8 1586 1 1.11
DeepSeek-AI/DeepSeek-V3-0324 84.5 68.0 67.0 78.3 77.7 74.6 63.5 75.7 1.5 2.4 -0.7 3.1 72.6 1585 1 1.11
nvidia/llama-3.1-nemotron-nano-8b-v1 56.5 59.5 57.3 56.7 61.3 58.6 59.1 59.3 -28.5 -26.5 -30.0 3.5 55.8 1633 1 0.09
nvidia/llama-3.3-nemotron-super-49b-v1 77.2 65.1 70.2 72.1 74.1 70.7 64.1 72.3 -15.7 -12.2 -13.0 3.5 68.8 1637 1 0.74
nvidia/llama-3.1-nemotron-ultra-253b-v1 84.8 63.6 66.6 61.8 72.6 67.8 57.8 69.6 -10.0 -11.4 -9.2 2.2 67.4 1637 1 3.43
meta/llama-4-maverick-17b-128e-instruct 64.9 66.7 73.4 76.4 76.5 70.4 67.9 72.4 -14.3 -10.5 -9.8 4.5 67.9 1566 1 0.82
meta/llama-4-scout-17b-16e-instruct 60.4 69.4 71.3 75.6 76.2 69.9 62.0 71.8 -14.5 -10.2 -8.6 5.9 65.9 1565 1 0.44
meta/llama-3.1-405b-instruct 85.1 69.1 67.6 81.7 77.7 75.5 65.5 77.0 11.5 6.1 9.4 5.4 71.6 1628 1 4.54
meta/llama-3.3-70b-instruct 84.6 66.5 71.6 79.1 78.1 75.4 64.6 76.7 -3.1 -0.8 -3.4 2.6 74.1 1628 1 0.22
meta/llama-3.1-70b-instruct 82.1 66.7 72.6 76.0 77.5 73.9 64.7 75.4 -6.2 -1.5 -4.1 4.7 70.7 1628 1 0.22
meta/llama-3.1-8b-instruct 76.2 69.3 70.2 71.0 76.6 71.5 61.7 73.2 -4.0 6.1 -1.5 10.1 63.1 1628 1 0.09
meta/llama-3.2-3b-instruct 67.6 63.8 59.7 66.1 68.8 64.6 54.6 66.2 8.8 16.7 13.1 7.9 58.3 1628 1 0.02
meta/llama-3.1-1b-instruct 31.9 48.4 44.9 55.8 47.8 43.2 46.2 45.7 31.0 33.1 37.2 6.2 39.5 1628 1 0.02

Reasoning LLM Judge
OpenAI/GPT-5
- high 90.2 68.2 69.4 80.9 78.3 76.7 79.1 78.3 1.0 -0.8 -1.3 2.3 76.0 1618 668 30.34
- med 89.2 67.9 69.0 80.9 78.1 76.3 77.3 77.9 0.0 -0.9 -1.2 1.2 76.7 1619 287 17.06
- low 88.6 69.3 69.0 80.9 78.1 76.6 79.4 78.1 0.3 -1.5 -1.4 1.8 76.3 1618 130 11.58
- minimal 86.8 68.6 71.2 77.5 78.9 75.2 64.8 77.0 -0.5 -5.6 -5.0 5.1 71.9 1618 7 7.29
OpenAI/GPT-5-mini
- high 84.5 69.2 70.4 82.8 78.4 75.9 74.1 77.7 6.6 4.2 4.6 2.4 75.3 1619 497 4.88
- med 83.3 68.2 69.9 81.5 78.1 74.6 72.8 76.7 6.3 4.0 4.3 2.3 74.4 1618 228 3.00
- low 82.9 68.5 70.3 81.7 77.4 74.6 78.0 76.8 5.9 3.8 4.6 2.1 74.7 1618 92 2.05
- minimal 81.7 64.0 69.1 76.0 75.9 72.5 58.8 73.8 -4.0 -6.2 -11.1 7.1 66.7 1618 7 1.46
OpenAI/GPT-5-nano
- high 86.8 67.6 68.7 79.8 77.6 75.1 74.0 76.9 5.3 0.3 3.1 5.0 71.9 1618 1309 2.11
- med 85.6 67.0 68.7 79.7 77.1 74.3 78.3 76.4 3.4 -0.3 1.7 3.7 72.7 1618 479 0.95
- low 83.5 67.6 68.6 77.7 76.9 73.5 70.9 75.4 2.4 0.6 1.9 1.8 73.6 1619 141 0.48
- minimal 68.8 55.3 60.9 63.0 65.8 62.1 54.3 63.2 -18.7 -19.6 -26.9 8.2 55.0 1618 7 0.29
OpenAI/o3
- high 88.3 68.2 69.3 81.1 79.1 76.1 75.3 77.9 2.0 0.5 0.8 1.5 76.4 1618 350 21.04
- med 89.3 69.1 68.9 81.0 79.3 76.4 76.9 78.2 3.0 0.8 1.5 2.2 76.0 1618 207 17.05
- low 88.9 69.3 70.3 81.9 79.7 76.8 76.7 78.7 3.8 1.5 2.6 2.3 76.4 1618 98 14.01
OpenAI/o4-mini
- high 88.5 68.9 70.5 81.5 78.7 76.8 76.5 78.4 4.5 2.7 1.9 2.6 75.8 1618 308 10.93
- med 88.1 69.6 70.8 81.6 78.9 76.8 74.1 78.6 4.0 2.8 1.2 2.8 75.8 1618 228 9.70
- low 88.6 70.1 70.1 81.0 78.8 76.8 74.1 78.5 3.4 3.3 1.7 1.7 76.8 1618 104 7.80
xAI/grok-4 86.1 68.5 70.7 80.8 78.5 76.3 75.2 77.7 0.7 2.5 1.8 1.8 75.9 1549 812 58.7
xAI/grok-3-mini 85.8 66.9 69.4 82.0 78.1 75.3 75.2 77.2 4.5 2.4 2.9 2.1 75.1 1549 633 2.72
Anthropic/claude-sonnet-4-20250514 75.7 66.3 69.9 77.8 77.5 72.3 66.0 74.0 -11.2 -8.1 -10.7 3.1 70.9 1940 810 62.64
Google/Gemini-2.5-Pro 87.3 70.2 71.9 82.6 81.3 77.4 76.8 79.2 3.1 2.8 2.1 1.0 78.2 1779 967 41.46
Google/Gemini-2.5-Flash (Thinking) 87.0 68.7 71.6 81.2 80.1 76.7 74.6 78.4 2.3 2.5 2.2 0.3 78.1 1779 695 7.92
Google/Gemini-2.5-Flash-Lite (Thinking) 83.7 67.0 72.2 81.9 78.7 75.9 79.1 77.5 -1.1 0.2 -2.6 2.8 74.7 1779 1670 2.95

Open-weight

OpenAI/gpt-oss-20b
- high 89.3 68.7 68.5 80.7 77.8 76.5 77.7 77.9 3.3 -0.2 0.9 3.5 74.4 1679 465 0.46
- medium 87.7 68.3 69.7 80.9 78.5 76.3 76.2 77.8 3.6 1.1 0.6 3.0 74.8 1683 216 0.35
- low 85.4 69.3 70.8 79.2 77.6 76.3 71.1 77.5 0.4 -0.3 1.6 1.9 75.6 1677 85 0.28
OpenAI/gpt-oss-120b
- high 89.5 68.9 69.7 80.8 78.9 76.7 80.8 78.4 1.6 -1.4 0.3 3.0 75.4 1683 439 0.88
- med 88.1 67.4 70.5 79.9 79.6 76.0 75.3 77.7 0.6 -1.3 -0.9 1.9 75.8 1683 196 0.63
- low 86.0 67.2 72.1 79.0 79.2 75.7 72.4 77.3 -1.0 -1.6 -1.5 0.6 76.7 1683 84 0.50
- high for physics/chemistry/style + low for others 89.5 68.9 72.2 79.7 79.7 76.9 80.8 78.7 -0.5 -0.9 -1.0 0.5 78.2 1683 282 0.70
DeepSeek-AI/DeepSeek-V3.1 (Thinking) 84.3 69.3 70.8 80.3 78.9 75.6 72.0 77.3 3.2 3.3 2.6 0.7 76.6 1587 657 2.94
DeepSeek-AI/DeepSeek-R1-0528 79.6 65.1 68.5 71.6 74.7 70.9 64.1 72.2 -11.6 -9.3 -8.8 2.8 69.4 1601 693 3.05
Qwen/Qwen3-30B-A3B-Thinking-2507 46.7 35.9 45.4 35.8 42.1 41.2 35.3 41.5 -0.2 -1.3 0.4 1.7 39.8 1780 742 1.10
Qwen/Qwen3-235B-A22B-Thinking-2507 87.2 67.9 69.0 80.4 79.3 75.6 74.3 77.3 -1.0 -1.8 -1.5 0.8 76.5 1782 1245 1.84

Best Performing Judge Overall In selecting the optimal judge for evaluating report-generation
models, we consider both the overall score (which consider alignment with humans and freedom from
bias) and the cost of running the LLM Judge, which influences the accessibility of the benchmark.
Therefore, we decided to use GPT-OSS-120B as the judge since it does well on both. We also
noticed that the high reasoning effort version does better on Physics, Chemistry and Style-related
criteria, while the low reasoning effort version does better on others. Therefore, we decided to alter
the reasoning effort based on the domain/criterion type encountered, inspired by Jung et al. (2025)
to balance quality and cost. The resulting judge performs as well as the best proprietary model
(Gemini-2.5-Pro) at 78.2% Overall while costing only 1.68% of Gemini-2.5-Pro’s cost. This means
ProfBench-Judge only costs $0.70 vs. $1320 for PaperBench JudgeEval (Starace et al., 2025).

5 BENCHMARKING MODELS AS REPORT-GENERATORS

Task Formulation We formalize the task as given a prompt alongside grounding documents,
generate a response that addresses the task prompt. The use of grounding documents is inspired by
how human professionals commonly work when tackling real-world tasks, which is a formulation
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that has not been applied in popular benchmarks such as HLE, GPQA and MMLU-Pro. Based on
the generated report, we use the best-performing GPT-OSS-120B Judge (high reasoning effort for
Physics/Chemistry/Style-related criteria and low for all others) from §4.2 to grade the response on
each criterion. Inspired by HealthBench (Arora et al., 2025) and PaperBench (Starace et al., 2025),
we calculate the criteria-fulfillment rate of each response, weighted by their criterion importance
(1 for additional, 2 for minor, 3 for major and 4 for critical). To validate this scoring schema, we
calculate the predicted performance of the three models with human-annotated responses (o3, Grok4
and R1-0528). We find that this schema is capable of scoring each model with only a 0.7 to 1.3% gap
between judge-predicted and human-annotated performance across 3 models. Further details in §E.

Inference Setup Our inference setup largely follows that of §4.1. As we expect long generations,
we generate up to 32,000 tokens for non-reasoning LLMs (max possible sequence length for GPT-4.1)
and 64,000 for reasoning LLMs (max possible sequence length for Claude 4 Sonnet and Gemini 2.5
Pro). To estimate the performance variance, we repeat the generation 16 times and report the average
alongside the standard deviation, following Bercovich et al. (2025). Further details in §E.

5.1 RESULTS

Table 3: Evaluation of LLMs as report-generators. Higher is better for Score and Accuracy.
Score Accuracy by Criterion Type Length Tokens

Model Physics Chemistry Finance Consulting Overall Extract/Recall Reasoning Style Chars. In Out $

Reasoning LLM
Closed-Source Reasoning

OpenAI/GPT-5 (high) 49.3 (2.6) 70.6 (2.1) 63.7 (2.8) 80.0 (2.0) 65.9 (1.1) 64.4 (2.3) 66.2 (1.1) 65.3 (7.7) 5451 23758 14583 112.34
OpenAI/GPT-5-mini (high) 50.8 (2.8) 63.6 (3.5) 51.6 (2.8) 75.4 (3.1) 60.3 (1.2) 56.7 (1.6) 60.1 (1.0) 68.2 (6.3) 9018 26859 18038 27.39
OpenAI/GPT-5-nano (high) 42.2 (3.7) 44.6 (2.8) 44.6 (3.3) 69.0 (2.0) 50.1 (0.9) 46.6 (1.9) 48.3 (1.2) 58.9 (6.5) 9796 28549 25189 7.36
OpenAI/o3 46.1 (2.8) 61.8 (2.2) 60.9 (2.8) 76.8 (1.9) 61.4 (1.3) 60.4 (1.9) 61.8 (1.3) 63.0 (5.0) 4158 18445 4709 47.72
OpenAI/o4-mini 45.5 (1.9) 58.5 (2.2) 54.7 (2.5) 74.4 (2.7) 58.2 (1.0) 55.8 (1.7) 58.3 (1.8) 61.0 (5.6) 3886 31679 4763 35.71
Google/Gemini-2.5-Pro 46.8 (2.2) 66.3 (2.0) 54.0 (3.2) 74.2 (1.5) 60.3 (1.3) 61.4 (2.1) 59.3 (1.4) 66.8 (6.1) 7449 6086 7950 55.75
Google/Gemini-2.5-Flash (Thinking) 45.0 (2.9) 61.8 (3.5) 53.5 (3.0) 69.9 (2.3) 57.6 (1.5) 58.0 (2.8) 57.6 (2.0) 61.1 (6.8) 12047 6086 12030 20.42
Google/Gemini-2.5-Flash-Lite (Thinking) 31.7 (2.1) 53.1 (2.9) 44.6 (3.8) 68.0 (2.5) 49.4 (1.3) 48.3 (2.3) 48.8 (1.4) 54.0 (5.5) 10058 6086 18584 5.15
xAI/grok-4-0709 33.6 (2.4) 62.2 (3.6) 44.3 (3.1) 73.4 (2.5) 53.4 (1.5) 51.9 (3.2) 51.6 (1.7) 64.1 (7.7) 5380 13481 9885 122.78
Anthropic/claude-sonnet-4 (Thinking) 43.9 (2.3) 57.1 (2.3) 50.8 (2.6) 71.4 (2.4) 55.8 (0.9) 53.8 (1.9) 54.0 (1.3) 61.8 (4.8) 3866 51044 6916 164.39

Open-weight Reasoning

OpenAI/gpt-oss-120b 49.1 (2.4) 55.3 (3.4) 45.5 (1.7) 69.4 (2.5) 54.9 (1.4) 48.7 (2.5) 55.5 (1.4) 59.0 (5.6) 7442 11606 4572 1.35
OpenAI/gpt-oss-20b 41.4 (2.4) 46.5 (3.5) 39.8 (2.8) 66.0 (2.4) 48.4 (1.1) 40.9 (1.4) 48.2 (1.2) 56.2 (7.6) 5331 11600 4705 0.75
DeepSeek-AI/DeepSeek-V3.1 (Thinking) 44.8 (3.0) 59.8 (3.3) 43.3 (2.4) 67.4 (2.1) 53.8 (1.2) 51.1 (2.4) 53.0 (1.3) 60.5 (6.7) 5239 11258 7486 5.27
Qwen/Qwen3-235B-A22B-Thinking-2507 45.1 (2.1) 61.4 (2.6) 42.3 (2.5) 67.3 (2.4) 54.0 (1.1) 51.4 (1.9) 51.6 (1.7) 61.9 (6.6) 6046 12442 9256 2.47
Qwen/Qwen3-30B-A3B-Thinking-2507 34.4 (2.5) 45.4 (2.4) 36.8 (2.9) 61.8 (2.2) 44.6 (1.4) 40.4 (1.5) 42.3 (1.9) 63.9 (4.8) 4757 12339 9027 2.16

Instruct/Non-Reasoning LLM
Closed-Source Instruct

OpenAI/GPT-4.1 44.7 (2.5) 55.2 (2.8) 54.0 (2.4) 73.2 (2.2) 56.8 (1.0) 56.7 (1.5) 56.7 (1.7) 58.4 (8.8) 6451 18427 2152 34.60
OpenAI/GPT-4.1-mini 45.1 (3.0) 53.0 (3.0) 49.1 (3.4) 67.5 (2.4) 53.7 (1.2) 50.3 (1.8) 53.2 (1.4) 52.8 (7.2) 6921 29469 2218 9.82
OpenAI/GPT-4.1-nano 24.8 (2.1) 40.8 (3.3) 33.4 (2.9) 58.2 (3.0) 39.3 (1.0) 34.9 (2.0) 38.4 (1.1) 53.5 (5.9) 6359 35561 1966 2.78
Google/Gemini-2.5-Flash 44.6 (3.0) 59.4 (2.7) 54.3 (2.9) 68.8 (2.4) 56.8 (1.3) 57.1 (1.6) 56.1 (1.4) 53.2 (5.7) 21612 6086 5936 10.67
Google/Gemini-2.5-Flash-Lite 29.8 (3.0) 49.0 (2.3) 44.0 (2.4) 63.7 (2.3) 46.6 (1.2) 47.4 (2.3) 45.0 (1.3) 48.6 (6.7) 24167 6086 7787 2.33
Anthropic/claude-sonnet-4 40.7 (2.2) 54.2 (3.0) 49.5 (3.5) 69.6 (2.0) 53.5 (1.0) 55.3 (2.2) 51.1 (1.9) 54.2 (6.8) 4068 51016 1398 111.37
Anthropic/claude-3.5-haiku 12.0 (1.8) 24.7 (2.6) 27.7 (3.5) 46.3 (3.0) 27.6 (1.2) 31.2 (2.3) 24.7 (1.3) 49.4 (6.7) 1784 34475 576 19.13

Open-weight Instruct

Qwen/Qwen3-235B-A22B-Instruct-2507 45.6 (2.4) 55.8 (3.5) 45.7 (2.6) 69.6 (2.2) 54.2 (1.2) 51.0 (1.7) 52.9 (1.6) 66.2 (6.5) 11400 12450 4244 1.47
Qwen/Qwen3-30B-A3B-Instruct-2507 41.6 (1.8) 47.9 (3.1) 42.3 (2.5) 65.5 (2.7) 49.3 (0.7) 44.5 (1.6) 48.0 (1.3) 59.1 (5.2) 11167 12490 4021 0.95
MoonshotAI/Kimi-K2-Instruct-0905 40.4 (2.5) 50.2 (2.9) 48.8 (2.7) 65.9 (1.9) 51.3 (1.1) 51.2 (2.1) 50.0 (1.4) 63.4 (5.9) 4817 11462 1562 3.36
DeepSeek-AI/DeepSeek-V3.1 45.8 (2.0) 55.9 (2.9) 45.2 (3.0) 67.1 (2.4) 53.5 (1.4) 50.8 (2.1) 52.7 (1.8) 59.1 (4.8) 7792 11231 2407 2.67
Meta/llama-4-maverick 35.2 (2.1) 35.8 (3.5) 34.2 (2.5) 52.5 (2.6) 39.4 (1.4) 39.3 (2.7) 36.5 (1.5) 46.2 (5.9) 4223 14604 1191 1.86
meta/llama-4-scout 23.4 (1.8) 34.6 (2.6) 33.4 (1.7) 50.3 (2.4) 35.4 (1.2) 35.1 (1.7) 33.3 (1.4) 42.3 (7.3) 3612 16675 1039 1.05

Inference parameters
OpenAI/GPT-5
- high reasoning 49.3 (2.6) 70.6 (2.1) 63.7 (2.8) 80.0 (2.0) 65.9 (1.1) 64.4 (2.3) 66.2 (1.1) 65.3 (7.7) 5451 23758 14583 112.34
- medium reasoning (default) 49.9 (2.0) 69.0 (3.4) 63.8 (2.7) 78.0 (2.7) 65.2 (1.8) 63.7 (2.8) 65.6 (1.8) 62.3 (5.6) 5388 23773 9911 82.45
- low reasoning 47.4 (1.3) 65.9 (4.3) 60.4 (1.8) 77.7 (2.7) 62.9 (1.9) 60.9 (2.0) 63.0 (2.3) 59.4 (6.0) 5328 22994 4860 49.50
- minimal reasoning 51.6 (2.4) 56.8 (2.3) 61.1 (3.5) 75.0 (1.9) 61.1 (1.3) 59.8 (1.9) 61.3 (1.8) 55.2 (7.1) 7294 23596 2282 33.48
- high verbosity 49.8 (3.0) 71.1 (3.1) 65.6 (2.3) 78.7 (2.3) 66.3 (1.4) 66.0 (2.4) 66.7 (1.7) 62.1 (4.3) 7133 23652 10784 87.94
- medium verbosity (default) 49.9 (2.0) 69.0 (3.4) 63.8 (2.7) 78.0 (2.7) 65.2 (1.8) 63.7 (2.8) 65.6 (1.8) 62.3 (5.6) 5388 23773 9911 82.45
- low verbosity 42.9 (2.4) 66.4 (2.9) 60.7 (2.9) 78.7 (2.4) 62.2 (1.1) 60.9 (2.4) 62.4 (0.9) 60.4 (5.5) 3732 23613 8899 75.84

Overall Top-performing Model Overall, GPT-5 achieves the best performance in Tab. 3 at 65.9%,
confirming the benchmark’s challenging nature compared to popular benchmarks like AIME 25
(GPT-5 reaches 94.6%), GPQA-Diamond (GPT-5 reaches 87.0%) and SWEBench Verified (GPT-5
reaches 72.4%) (OpenAI, 2025). The result shows that ProfBench is approximately as challenging
as HealthBench, where GPT-5 reaches 67.2%, despite covering many diverse domains and cheaper
evaluation cost (e.g., one round of HealthBench evaluation takes up to $300 with o3 while the same
model on ProfBench only costs $48). Among the domains, Physics is most challenging (49.3%),
followed by Finance (63.8%), Chemistry (70.6%) and Consulting (80.0%). We further analyze the
best performing model at each price-point in §F.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Are Closed-source Models Better than Open-weight Models? In general, the top-performing
models tend to be proprietary models such as GPT-5 (65.9%), o3 (61.4%) and Gemini 2.5 Pro (60.3%).
The top open-weight models are GPT-OSS-120b performing at 54.9% and DeepSeek V3.1 (Thinking)
at 53.8%. The performance gap between closed-source and open-weight models is small for domains
like Physics (<1%), moderate for Chemistry and Consulting (9.2% and 9.6%) and particularly large
for Finance (15.0%). This might be a result of open-weight models having more in-domain training
data and potentially over-emphasizing benchmarks relating to Code (e.g. LiveCodeBench) and Math
(e.g. AIME 25) which are similar in problem-solving approach to Physics. On the other hand,
much less attention has been placed on measuring and improving model performance in Chemistry,
Consulting and Finance. We believe ProfBench can facilitate measurement and thereby catalyze
progress in model capabilities within these domains, especially among open-weight models.

Does Model Size Matter? Similar to LLM-Judge performance, larger models tend to perform
better within each model family. However, size alone exhibits diminishing return across the model
families—for instance, GPT-5-mini shows a 10.2% improvement over GPT-5-nano, but GPT-5 only
shows a 5.6% gain over GPT-5-mini. A similar trend is also observed with the Gemini-2.5 family
(Thinking), as well as open-weight model families such as Llama 4 and Qwen3-Instruct-2507. This
suggests that improvement in ProfBench necessitates not only model scaling, but possibly further
innovations in training techniques and data curation.

To Think or Not to Think? Using the same model for which thinking can be either enabled or
disabled, turning on the thinking feature slightly improves overall performance (between 0.3 to 2.3%)
as exemplified by Gemini-2.5-Flash (and its Lite sibling), Claude-Sonnet-4 and DeepSeek V3.1.
Similarly, increasing reasoning effort of GPT-5 from minimal to high gradually increases overall
performance by 4.8%. However, when inferring with separate models of identical size trained for
instruction following and thinking respectively, thinking does not necessarily confer an advantage.
For instance, Qwen3-30B-A3B-Thinking-2507 scores 44.6% while Qwen3-30B-A3B-Instruct-2507
records 49.3% in overall performance, as similar to their larger 235B cousins. This might be because
the instruct version generates much longer response (11167 characters on average) compared to the
thinking version (4757 characters on average), which we investigate below.

Is there any Advantage for Longer Response Lengths? Intuitively, longer responses tend to
cover more content and hence increase the chance of satisfying more criteria. This explains the reason
behind the poor performance of Claude-3.5-Haiku (27.6 %), which generates only 1784 characters on
average, less than half of the next most concise model. However, we also find that beyond a certain
threshold, longer responses do not warrant better performance. For instance, o3 scores 61.4% with
only an average of 4158 characters while GPT-5-nano scores 50.1% despite having more than twice
the average response length (9796 characters). To better understand the effects that response verbosity
plays in influencing ProfBench performance, we experiment with changing the verbosity flag on
GPT-5. With low verbosity setting, the overall score dropped by only 3.0% compared to medium
verbosity, even though the average response length dropped by 30.7%. Similarly, with high verbosity,
the score increases by 1.1% compared to medium verbosity even though the average response length
increased by 32.4%. This suggests that while response length does influence performance, its effect
is minimal - typically within the standard deviation of the two verbosity settings.

Can Inference Cost be Further Reduced without Affecting Robustness? With o3, running
ProfBench with 16 responses per task costs $48, which is substantially cheaper than HealthBench
or PaperBench at $300 and $8000 respectively. Here, we further explore if ProfBench can be even
more accessible by cutting down the cost, without compromising the robustness of the evaluation. To
address this, we first observe that the performance variance differs significantly across the 40 task
evaluated (Fig. 3)—for example, the score of Gemini-2.5-Flash on Task Chem-9 ranges from 11.2 to
63.8, whereas its score on Task Chem-4 remains stable, ranging from 82.0 to 96.1. This suggests
that allocating a fixed number of samples uniformly across all tasks may be suboptimal; instead,
the overall variance can be reduced without additional cost by generating more samples for high
variance tasks and fewer for low variance tasks. We formulate this as an optimal allocation problem
in integer programming, where a fixed budget (i.e., number of generations) is distributed across tasks
to minimize the variance of the overall performance. Given the small scale of the problem, we solve
it efficiently using dynamic programming. For formal description of the problem and comparison
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Optimal Samples for each Task ID

Score Distribution for each Task ID

Figure 3: Score Distribution and Optimal Samples for various tasks. Each blue box represents 25th,
50th and 75th percentile and whiskers represent the worst and best score out of 16 samples for a task
by Gemini-2.5-Flash (Thinking). Tasks with lower variance can be estimated with fewer samples
(shown as height of orange bar), reducing inference cost w/o sacrificing estimation robustness.

with baseline methods, see §G. This allows us to allocate an average of 4 responses per tasks (and cut
the inference cost to 25% of the original) without compromising robustness of our estimations.

Table 4: Ablation of LLM as report-generators. Higher is better for Score and Accuracy.
Score Accuracy by Criterion Type Length Tokens

Model Phys Chem Finance Consulting Overall Extract/Recall Reasoning Style Chars. In Out $

OpenAI/o3
+ LLM only 39.9 (1.9) 55.4 (3.5) 43.4 (2.3) 69.2 (2.8) 52.0 (1.5) 43.3 (1.8) 54.8 (1.8) 63.1 (6.6) 4084 467 5383 28.16
+ search capability 40.9 (2.6) 55.8 (3.6) 55.8 (3.9) 71.9 (1.7) 56.1 (1.2) 51.1 (1.9) 57.9 (1.6) 60.8 (5.4) 4438 242370 5946 340.68
+ grounding documents 46.1 (2.8) 61.8 (2.2) 60.9 (2.8) 76.8 (1.9) 61.4 (1.3) 60.4 (1.9) 61.8 (1.3) 63.0 (5.0) 4158 18445 4709 47.72

OpenAI/o4-mini
+ LLM only 36.8 (1.7) 49.4 (2.9) 33.7 (3.1) 65.3 (2.6) 46.3 (1.2) 37.1 (2.3) 49.4 (1.4) 63.4 (6.3) 3232 467 4293 12.42
+ search capability 39.1 (2.6) 54.7 (3.5) 50.0 (2.7) 69.2 (2.8) 53.3 (1.7) 48.4 (2.4) 54.0 (1.7) 60.4 (5.6) 4774 127403 6409 107.74
+ grounding documents 45.5 (1.9) 58.5 (2.2) 54.7 (2.5) 74.4 (2.7) 58.2 (1.0) 55.8 (1.7) 58.3 (1.8) 61.0 (5.6) 3886 31679 4763 35.71

6 ABLATION: HOW IMPORTANT ARE GROUNDING DOCUMENTS?

Task Formulation Recent benchmarks such as Humanity’s Last Exam report that model perfor-
mance can be significantly improved via web search (xAI, 2025; OpenAI, 2025). To understand
the effect of web search and the grounding documents in each task, we conduct two ablations—(1)
prompting without the documents, and (2) prompting without the documents but allowing the models
to retrieve relevant documents through web search (as all documents have publicly accessible urls).

Results With both o3 and o4-mini, removing grounding documents greatly reduces the performance
(9.4 to 11.9 %), suggesting that explicit reference to the documents is crucial for the generation
quality; the effect is particularly pronounced in information extraction / recall (17.1 to 18.7%). We
notice that without grounding prompts in such documents, models commonly respond with clarifying
requests/questions (e.g., Please supply the REIT’s Q1’25 NOI, total assets, total liabilities, shares
outstanding and 3-month ADV ...), especially for finance and consulting. Adding search capabilities
recovers some performance (4.1 to 7.0%), indicating that web search can identify some relevant
documents. However, the large amount of input tokens (0.12 to 0.24 million per task, or 4 to 12x as
much as the original grounding documents) suggests that a large quantity of document tokens might
be included in prompt context, highlighting retrieval precision as a potential area for improvement.

7 CONCLUSION

We present ProfBench, the first benchmark with expert-curated rubrics across diverse professional
domains including Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. ProfBench
addresses a core limitation of existing benchmarks by moving beyond exam-style tasks with short
answers, enabling systematic evaluation on open-ended problems with real-world value. ProfBench
is also fair and accessible with reduced LLM-Judge bias and substantially lowered evaluation costs.
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A EXAMPLES

ProfBench Chemistry PhD Example

Acid-base reactions in commercial applications such as electroplating often involve multiple
coupled equilibria that must be regulated in real time to maintain desired ratios of concen-
trations in a mixture. Help me with the following calculations for the titration of a 100 mL
mixture of acetic acid (0.5 M) and formic acid (0.1 M) with 0.5 M NaOH:
1) Calculate the volume of NaOH titrant required to reach the point where the two conjugate
bases have equal concentrations.
2) Calculate the concentrations of the acids and their conjugate bases at the point referenced
in part 1.
3) Calculate the concentration of hydronium ions and the pH of the analyte at the point
referenced in part 1.
4) Calculate the volume of NaOH titrant required to reach the point where the pH of the
analyte is 7.0.
5) Calculate the concentrations of the acids and their conjugate bases at the point referenced
in part 4.
6) Calculate the volume of NaOH titrant required to neutralize both acids.
7) Calculate the concentrations of the acids and their conjugate bases at the point referenced
in part 6.
8) Calculate the concentration of hydronium ion and the pH of the analyte at the point
referenced in part 6.
Example Extraction Rubric: Determines the volume of NaOH titrant required to reach the
point where the pH of the analyte is 7.0 as 0.11938 ± 0.001 L
Example Reasoning Rubric: Determines the pH of the analyte at the point at which both
acids are neutralized as 9.05±0.05.
Example Style Rubric (another task): The molecular weight is rounded to 1 decimal place.

ProfBench Physics PhD Example

In a variant of a KSVZ-style axion model, five heavy vector-like fermions are introduced,
each with different Peccei-Quinn charges for left- and right-handed components (XL, XR).
Their Standard Model gauge quantum numbers and PQ charges are:
1. Q1 : (3,2,+ 1

6 ), XL = +1, XR = 0

2. Q2 : (6,1,− 1
3 ), XL = + 1

2 , XR = − 1
2

3. Q3 : (3,3,+ 2
3 ), XL = +1, XR = +1

4. Q4 : (8,2,+ 1
2 ), XL = + 3

2 , XR = 0

5. Q5 : (10,1,−1), XL = +1, XR = + 1
2

Here Q is the electric charge Q = T3 + Y , where T3 is the third component of weak isospin
and Y is the hypercharge, and we work entirely in Standard Model hypercharge normalization.
T (r) denotes the SU(3) Dynkin index and d(r) the representation dimension. For the SU(3)
representation 10, take T (10) = 15

2 .
Using the chiral PQ charge difference (XL − XR) as the weight for each Weyl fermion,
compute the ratio E/N (electromagnetic to color anomaly coefficients) and give your answer
in lowest-term fractional form.
Example Reasoning Rubric: Sums the individual color anomaly contributions to obtain the
total color anomaly N = N1 +N2 +N3 +N4 +N5 = 65

4 .
Example Extraction Rubric: Calculates w5 = 1− 1

2 = 1
2 using XL,5 = 1 and XR,5 = 1

2 .
Example Style Rubric: Calculates the ratio E/N = ( 583 )/( 654 ) = 232

195 .
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ProfBench Consulting MBA Example

ABC Education (the “Client”) delivers premium after-school STEM in English for ages 6-11
and is evaluating a partner-led Hong Kong entry. The entry would involve its renting rooms
from international schools and using part-time Native English Teachers (NETs).
Formatting: (i) British English, (ii) No tables, (iii) Every HKD figure must be prefixed HK$,
(iv) Show intermediate steps when calculating quantitative answers rather than outputting
formulas, and (v) Round HKD only at the end of each sub-task (i.e., do not round figures for
intermediate calculations, unless explicitly stated).

Task 1: Competitor dynamics (100 words) ABC Education’s main competitors are (i) Big
Bang Academy, (ii) Blueinno, and (iii) ESF Glenealy School. For each competitor, state
the following: 1. Pricing: Output each competitor’s class length + class count + package
price in the following format: (e.g., ”4 classes - 60 min per class - HK$4,360”). Compute
HK$/h (round at the end). If length is missing, write ”Cannot compute (no per-hour figure)”.
2. Delivery: Pick one (i) On-Campus Partner (classes hosted at partner school premises), (ii)
Learning Center (dedicated provider-run teaching location), or (iii) Hybrid: Kit + Video (take-
home kit plus guided videos). 3. Pedagogy: Pick one (i) Teacher-Centered (teacher leads
instruction; students follow), (ii) Project-Based (students build projects to learn concepts), or
(iii) Inquiry-Based (students investigate questions; teacher facilitates).
Task 2: Hourly economics (160 words) The Client aims to run a series of courses. They wish
to understand the hourly economics of their prospective endeavor in Hong Kong. For the
next questions, assume the following about the Client’s program: - Tuition price per class
hour is HK$390; capacity 8 students per class. - As a first step, calculate paid seats assuming
they are equal to 85% of capacity; the remaining 15% will be free to offer scholarships and
incentives to drive demand. - Apply a 15% sibling discount to 25% of the paid seats. - Apply
a 2% leakage margin of safety to the post-discount tuition. This will result in Net Tuition. -
Venue rental fee: The Client has a global venue rental partner who is offering HK$500 per
class hour for venue rental, but the Client does not wish for the venue rental cost to be higher
than 22% of Net Tuition (which is standard for the countries in which the Client operates).
As such, choose the higher of HK$500 or 22% of Net Tuition for the venue rental cost. -
NET labor: Assume HK$480 per class hour teaching plus half an hour of prep at HK$240
per class hour. - Processing Fee: 5% of Net Tuition plus HK$5 multiplied by the paid seat
count. Now solve the following: 4. Compute Net Tuition, Direct costs (venue + NET labor +
processing), and contribution margin per class-hour. 5. State whether 22% of Net Tuition
exceeds HK$500. 6. Monthly profit: Determine the monthly profit if the Client ran two
classes per week across four weeks. 7. Identify whether ABC Education’s tuition fee is either
(i) higher than all competitors, (ii) in between competitors, or (iii) lower than all competitors.
Task 3: Venue rental fit (100 words) Harrow and DSC have approached the Client offering
venue rental services. The Client wishes to understand what they are offering and whether
they should partner with either school as opposed to their existing global venue rental partner.
8. Venue rental offers: Harrow is offering weekend windows at their standard base rental
rate for the first hour, then HK$150/h thereafter, +10% weekend surcharge. DSC is offering
weekday windows at their standard base rental rate for two hours, + HK$500 tech, + HK$200
cleaning per booking. Calculate the total venue rental cost per school, assuming the Client
is looking for two-hour windows. 9. Comparison vs. global venue rental partner: Compare
each school’s offered rate vs. the global venue rental partner’s rate. State which provider the
Client should partner with (i.e., Harrow, DSC, or the existing global venue rental partner).
Example Reasoning Rubric: Calculates the processing fee by multiplying net tuition by 5%
plus paid seats multiplied by HK$5.
Example Extraction Rubric: Classify ESF Glenealy pedagogy as Inquiry-Based
Example Style Rubric: Keep Task 3 within 100 words total.
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ProfBench Finance MBA Example

You are helping me assess the potential for a new business unit within a major investment
bank. This unit is entirely dedicated to innovative finance for healthcare, as well as social
impact and environmental challenges at the global level. One example we are studying to
assess this opportunity is how the Global Alliance for Vaccination and Immunization (GAVI)
has been able to raise money on capital markets through the International Finance Facility for
Immunization (IFFIm).
I would like you to help answer the following questions:
- How was IFFIm able to raise money on capital markets for vaccination and immunization
campaigns?
- How did IFFIm apply securitization?
- What were the factors that made it possible for IFFIm to raise money on capital markets?
- What risks and challenges does IFFIm have to address and overcome?
- How would you assess whether IFFIm has been effective and successful at raising funding
for GAVI, and overall, has it been a success for their operations and health goals?
- Can IFFIm be viewed as a blueprint for investing in and funding other areas of global health,
or other major social or environmental challenges? If yes, identify a short pipeline of 3 to 5
organizations/topics that could take a similar approach and use innovative finance to raise
funding to advance their goals.
Provide a robust context, starting with defining what Gavi and IFFIm are, how they work, and
how they are both related. Discuss, in detail, the technical aspects of how IFFIm works, and
describe what makes it possible and effective. The technical discussion should describe how it
works, and provide a detailed overview of how it raised money until now (this should include a
summary of past issuances, showing on what markets it raised and what investors subscribed).
Also, discuss what elements made IFFIm possible, as well as what risks and challenges IFFIm
faces. This should help you form a robust and documented view on what makes IFFIm a
success (or not), and how it could act as a blueprint (or not) for other initiatives.
Regarding format, I am looking for the style of a detailed investment memo discussion. You
can use tables and bullets, but the memo should be mostly text, and you should walk me
through your reasoning. I don’t want the output to be mostly tables and bullets.
Extraction Rubric Sample: States that a breach of IFFIm’s liquidity policy could negatively
impact IFFIm’s rating profile.
Reasoning Rubric Sample: States that vaccines are one of the most successful and cost-
effective health investments in the world.
Style Rubric Sample (another task): Present findings clearly to allow for effective use.

B PROMPT TEMPLATES

Main prompt template Response: <response>
Evaluate whether the response above satisfies this criterion:
<criterion description>. Only answer Yes or No.

Alternative prompt template 1 Response: <response>
Evaluate whether the response above satisfies this criterion:
<criterion description>. Only answer True or False.

Alternative prompt template 2 Response: <response>
Evaluate whether the response above satisfies this criterion:
<criterion description>. Only answer 1 or 0.

Further Discussion on Prompt Templates We found the main prompt work substantially better
than the alternative 1 (by 2.2%) or alternative 2 (by 4.5%). We believe this is because Yes/No are
more commonly used in natural language compared to others. We also attempted more elaborate
prompt templates (e.g. informing the LLM that they are an expert in grading responses, giving
specific instructions to analyze the entire solution from every angle, providing reasoning process).
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However, we did not observe any gains and had substantially increased token expenses. Therefore,
we used our main prompt template, while noting that reasoning LLMs can still do reasoning within
their thinking traces without explicit prompting.

C ANNOTATOR RECRUITMENT

Annotator Countries

1. United States: 20
2. United Kingdom: 5
3. Canada: 4
4. India: 4
5. Australia: 2
6. Spain: 1
7. Greece: 1
8. France: 1

Consulting MBA: We generally require annotators to have had 2 years of work experience at
McKinsey, Boston Consulting Group, Bain & Company, Deloitte, PricewaterhouseCoopers, Ernst
Young or KPMG. Alternatively, they could have 4 years of experience at another consulting firm.
These work experience includes those prior to the completion of their highest degree (i.e. MBA).
Candidates are interviewed based on their past experience, their professional ability to reason from
first principles, communicate in a professional manner, break down projects into logical components,
and create well-supported recommendations among others.

Finance MBA: We generally require annotators to have 2 years of experience at a select bank
including JPMorgan, Bank of America, CitiGroup, Wells Fargo, Goldman Sachs, Morgan Stanley,
PNC, Truist, TD Bank and other banks with similar selectivity in regions outside of North America.
These work experience includes those prior to the completion of their highest degree (i.e. MBA).
Candidates are then interviewed on their previous experiences - projects, deals, investments, credits,
or portfolio decisions including their individual contributions, decisions made, and alternatives
considered while ensuring applicants discuss key risks, explain context, and suggest mitigations.

Chemistry and Physics PhD: We generally require annotators to have completed a PhD relating to
Physics or Chemistry at a Global Top 100 university while taking into account other factors such
as the program selectivity. Candidates are then evaluated based on interviews that test how deeply
they understand their field, their ability to synthesize new information related to their niche, and clear
communication of findings.

D FURTHER DESCRIPTIVE STATISTICS

Prompts ProfBench contains 80 unique prompts, with 20 from each domain. Prompts are generally
around 2 to 3 paragraphs long with an average of 2052.4 characters (std of 997.4, min of 696, max of
5339). As shown in the examples (see §A), prompts typically contain multiple related sub-questions,
making them substantially more specific to construct evaluation criteria for and therefore minimizing
the accidental penalization of responses that approach the task in alternative ways. Chemistry and
Physics PhD tasks tend to be shorter averaging 1617.4 (std of 925.6) and 1799.2 (std of 622.9)
characters respectively while Consulting and Finance MBA tasks tend to be longer at 2360.8 (std of
717.2) and 2432.2 (std of 1314.3) characters respectively.

Responses are generated with OpenAI o3, DeepSeek R1-0528 and Grok4 models. They are similar
in length, with o3 being the most terse at 4816.7 characters (std of 2590.5), followed by R1-0528 at
5187.7 (std of 2504.2) and Grok4 is most verbose at 5997.2 (std of 3789.3) characters. Across the
different models, responses to Physics PhD are generally most succinct at 3839.5 characters (std of
2319.0), followed by Finance MBA at 4924.8 characters (std of 3383.0), Chemistry PhD at 5609.3
characters (std of 2934.7) and finally Consulting MBA at 6961.8 characters (std of 2620.0).
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Table 5: Rubric taxonomy with sub-categories, and representative examples. Reasoning dominates
with the majority of checks on logical validity and causal correctness, while Extraction emphasizes
faithful and detailed retrieval, and Style focuses primarily on formatting and clarity.

Category Concise Description Representative Example

Extraction (Recall) Evaluates whether the model retrieves the
right information with correct coverage,
granularity, and faithfulness.

“Identifies RTX as one of the four companies with the largest
DoD obligations to the US government in 2022.”

Reasoning
Logical Validity Assesses whether reasoning steps are logi-

cally sound, consistent, and free of contra-
dictions.

“Reasons that Anduril could have higher gross margins due to
its business model because software has higher margins than
hardware at scale.”

Causal/Mathematical
Correctness

Applies correct formulas, computations,
and causal inferences.

“Calculates 2020–2024 defense spend CAGR by dividing 2024
spending by 2020 spending, raising to the power of 1/4, then
subtracting 1.”

Completeness of
Reasoning

Shows intermediate steps or justifications
rather than jumping to a conclusion.

“Shows steps for intermediate calculations when arriving at quan-
titative answers rather than quoting formulas.”

Generalization &
Abstraction

Combines information or draws higher-
level insights beyond literal recall.

“Notes that strong donor support, a robust risk framework, and
proven impact are necessary to replicate the IFFIm model.”

Style
Clarity & Readability Organizes response clearly and makes it

easy to follow.
“Displays answers and includes a concise summary tying together
key findings: price change, EPS impact, valuation change.”

Conciseness Avoids verbosity and keeps the response
tight and relevant.

“Keep Task 2 within 160 words total.”

Formatting Correctly follows requested structure, nota-
tion, and units, grammar and spelling.

“Quotes all percentages to one decimal place.”

Tone & Appropriateness Matches the expected tone (formal, neutral,
or explanatory).

“Presents analysis in structured consulting framework format.”

Rubrics Each task comes with 15 to 59 individually-gradable criteria, with a mean of 30.6 and std of
9.9. Chemistry has the fewest criteria at average of 26.0 followed by Consulting (30.5), Finance (32.9)
and Physics (33.0). In terms of rubric weight, around half (49.8%) fall under Major, with roughly a
quarter in Critical (23.4%) and Minor (23.9%) and a tiny fraction in Additional (2.9%). Our analysis
shows that in terms of criterion types, Reasoning dominates, covering 62.9 % of all items. This
category primarily assesses whether the model’s reasoning process is sound, complete, and coherent.
Extraction (Recall) accounts for 34.1% of items, focusing on whether the model retrieves the correct
information with sufficient coverage and granularity. Style makes up the remaining 3.0%, evaluating
how well responses are communicated in terms of clarity, structure, formatting, and tone. This
suggests that ProfBench emphasizes on extracting and reasoning with professional knowledge, and
less so on the stylistic presentation of the response. To provide further insight, we divide Reasoning
and Style into sub-categories by collaborating interactively with Qwen3-235B-A22B-Instruct-2507.
Specifically, we prompted the model to come up with initial sub-category candidates based on a set
of randomly selected criteria within the Reasoning and Style categories. Then, the research team
vetted the proposed candidates to make sure that the sub-categories are non-overlapping and at a
suitable granularity. Once the research team is confident about the subcategories, we prompt the
model to individually classify each criterion based on the concise definitions in Tab. 5. Our results
are in Fig. 2, with a representative sample for each sub-category in Tab. 5 . Extraction (Recall) is
kept as a single category since its core criterion is straightforward. Within Reasoning, most checks
target logical validity (over 70%), with a smaller but notable portion addressing mathematical or
causal correctness (about 24%). Within Style, the majority of items focus on formatting (over 70%),
followed by clarity and readability (about 19%).

Response Annotation Overall, o3 fulfills 51.6% of criteria as annotated by humans, while Grok4
fulfills 47.4% and R1-0528 fulfills 45.2%, indicating a relatively small gap between SOTA closed-
source and open-source LLMs. Analyzing across domains, the three model responses on average
fulfills only 39.1% of criteria in Finance and 40.3% in Physics, suggesting that they are harder
domains for SOTA LLMs. Conversely, Consulting criteria are fulfilled 56.5% and Chemistry criteria
are fulfilled 59.4% of times, suggesting that they contain relatively easier tasks for SOTA LLMs.

Grounding Documents During our initial collection, annotators are requested to identify CSV
or PDF documents from the public internet, which can support answering the task. However, this
resulted in some documents being as long as 838 pages, with 200-400 page documents being relatively
common. Each file has an average of 42.3 pages (std of 86.5), with the sum of files across each task
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reaching 141.7 pages (std of 193.5). After running some initial experiments, we found that such
documents often cannot fit into the limited context windows of popular LLMs. For instance, OpenAI
o3/o4-mini and Anthropic Claude-Sonnet 4 only supported up to 200k context tokens while many
open-weights models (e.g. GPT-oss-120B or DeepSeek V3.1) only support 128K context tokens. To
ensure that ProfBench is compatible with these LLMs, we ask annotators to perform an additional
step to truncate these documents by identify the most relevant information: Each pdf file is no longer
than 20 pages and each csv file has less than 100 rows and 10 columns. Post-truncation, this was
reduced to 7.37 pages per file (std of 3.10, max of 15) and 24.69 pages per task (std of 19.28, max
of 85, min of 3). This truncation step will make tasks substantially easier but we believe this is a
necessary step in order to make benchmarking many current models feasible. As the average context
length increase in the future, we can use the original documents directly, which will serve as a better,
realistic use of long context evaluation in the future.

In addition, some LLM providers such as OpenAI restrict the max size of each file to 10 MB, with
a total of no more than 32MB across all files for a request. Therefore, we implement additional
requirements for annotators to restrict each file to 10 MB, up to 10 files per task and 30MB across
all files for a task. We also noticed that many popular providers’ API (e.g. OpenAI and Google)
can natively process PDF documents but not CSV documents, therefore requiring them to be passed
as either plain text or processed through a code interpreter. Given that there were only 4 CSV files
in total across ProfBench, we decided that the best workaround was to convert CSV documents
into PDFs showing the same data, using pandas and pdfkit (JazzCore, 2025). These resulting PDFs
contain table headers on every page, allowing rapid identification of relevant information. Each task
contains an average of 3.35 files (std of 2.71, max of 10, min of 1). The size of each file is 0.813 MB
(std of 1.196, max of 9.165, min of 0.017). The average size of all files in each task is 2.723 MB (std
of 2.92, max of 12.555, min of 0.085).

E INFERENCE SETUP

Response Annotation during Data Collection Temperature were set at 0.2 (except o3, which
doesn’t allow setting temperature and uses medium effort), with access to a web search tool. o3 and
Grok use a native search tool while DeepSeek model uses SearXNG (2025) and document upload
support (pdf documents were uploaded natively while csv files were uploaded as plain text). Note
that responses were generated with the un-truncated documents at this stage.

Report Generation Google models use default temperature of 1 as we observe that temperature 0
induces highly repetitive generations and Kimi-K2-0911 uses the recommended inference temperature
of 0.6, similar to reasoning models. Note that these are slightly different from Response Annotation
during Data Collection inference setup, since those were run by our vendor. Despite the relative
affordability of the judge, we incur approximately $3.50 for judging criterion-fulfillment alone
(outside of response generation). We use the native PDF documents processing capabilities for
OpenAI and Google models, and use OpenRouter’s default document processing for other models.
For models using OpenRouter document processing, cost does not include approximately $1 charged
by OpenRouter for PDF processing (when using file annotations to ‘cache’ file processing).

Difference between LLM-Judge performance and Human Grading Performing of three models
R1-0528 - pred 46.8 vs human 46.1; Grok4 - pred 50.5 vs human 51.8; o3 - pred 53.5 vs human 52.7.
Note these score are not comparable to those in §5 as they were generated by our vendor as discussed
above.

Ablation Cost excludes search query costs, which is is estimated to be around $6.40.
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F OPTIMAL PERFORMANCE ON PROFBENCH AT EACH PRICE-POINT
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Figure 4: Optimal ProfBench performance at each price-point. OpenAI models are on the Pareto
Frontier at each price-point, likely because of first-mover advantages in rubric-style data such as
HealthBench (Arora et al., 2025) and PaperBench (Starace et al., 2025). Gemini-2.5 and Qwen3-
Instruct-2507 models are close to the Pareto Frontier.

G FORMULATING OPTIMAL ALLOCATION PROBLEM

As exemplified in Fig. 3, we observe that the variance of model performance differs significantly by
task. Motivated by this finding, we propose to reduce the variance of the estimated model performance
by dynamically allocating different number of responses to each task —- ideally allocating more for
tasks with high variance, and less for tasks with low variance.

More formally, let ni denote the number of generations allocated for task i. Our goal is to minimize
the variance of the overall performance S across N tasks, while satisfying the total number of
generations

∑
i ni to match a fixed budget B. First, the overall performance S is defined as:

S =
1

N

N∑
i=1

si

where si is the mean score over the ni responses we generate for task i. Assuming i.i.d. sampling of
the responses and the independence between N tasks, we compute the variance of S as:

σ2(S) =
1

N2

N∑
i=1

vi
ni

where vi is the variance associated with task i, which we estimate by generating 16 rollouts per
prompt across 4 representative models and aggregating their variance. Now, minimizing the variance
σ2(S) is equivalent to minimizing

∑
i
vi
ni

, subject to:

N∑
i

ni = B, ni ∈ Z+, ni ≥ 1 for ∀i

Given the small size of the budget and number of tasks, we directly solve the objective via dynamic
programming. The results of this allocation are shown in Fig. 5. We follow the allocation scheme to
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sample responses from 4 representative models—Gemini-2.5-Pro , Gemini-2.5-Flash (Thinking), o3,
and o4-mini—and report their average standard deviation of overall performance.

Table 1-2

Budget Uniform allocation (mean) Uniform allocation (median) Min / Max exclusion Optimal allocation Uniform allocation (mean) Uniform allocation (median) Min / Max exclusion Optimal allocation

1 1.284 1.284 1.284 1.284 0.249980205267769 0.249980205267769 0.249980205267769 0.249980205267769

2 0.966 0.982 0.997 0.959 -0.0345914447696191 -0.0181639706276712 -0.00300450902029872 -0.0418642040986989

3 0.800 0.824 0.815 0.781 -0.223 -0.193584749072665 -0.204567165741274 -0.247180129142451

4 0.701 0.725 0.705 0.669 -0.355247391947547 -0.321583624127462 -0.349557476169868 -0.401971218853909

5 0.623 0.645 0.626 0.599 -0.473208760194684 -0.438504962186365 -0.468404907882039 -0.512493680866688

6 0.583 0.598 0.575 0.552 -0.539568092631645 -0.514164525031505 -0.553385238184787 -0.594207232705042

7 0.533 0.555 0.530 0.499 -0.629233854816292 -0.588787165235702 -0.635 -0.695149183230618

8 0.496 0.516 0.491 0.451 -0.70117935225721 -0.661648513500574 -0.711311151187616 -0.796287939479459

9 0.467 0.489 0.459 0.419 -0.76142602131324 -0.715392789507265 -0.778705068921592 -0.869884359059999
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Figure 5: Standard deviation of overall perfor-
mance using multiple samples per task. Optimal
allocation of samples consistently reduce the vari-
ance across all budget levels.

As expected, the optimal allocation consistently
achieves smaller variance compared to heuristic
baselines, and we set B to be 160 (i.e. average
ni = 4) with N = 40, reducing down the stan-
dard deviation to only 50% of the naive point
estimate.

Our results, illustrated in Fig. 5, compare 4 ap-
proaches: uniform allocation (generating a fixed
number of responses per task) with mean and
median-based aggregation of the scores, and op-
timal allocation, as well as a heuristic baseline:
min / max exclusion (uniform allocation followed
by exclusion of min / max score responses from
each task during aggregation). Overall, we find
that generating multiple response per task can ef-
fectively reduce standard deviation, substantially
below the level of naive point estimate (budget =
1). Furthermore, optimal allocation consistently
reduce the performance variance compared to the alternative methods, consistently across all budget
scales.
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