Trajectory Balance with Asynchrony:
Decoupling Exploration and Learning for
Fast, Scalable LLM Post-Training

Brian Bartoldson! Siddarth Venkatraman®?® James Diffenderfer! = Moksh Jain?3
Tal Ben-Nun! Seanie Lee! Minsu Kim?>* Johan Obando-Ceron?3
Yoshua Bengio®>®>® Bhavya Kailkhura'

Lawrence Livermore National Laboratory, 2Mila — Quebec Al Institute
3Université de Montréal *KAIST °CIFAR Fellow
{bartoldson,diffenderfer2,kailkhural}@llnl.gov
{siddarth.venkatraman,moksh.jain}@mila.quebec

Abstract

Reinforcement learning (RL) is a critical component of large language model
(LLM) post-training. However, on-policy algorithms used for post-training are
not naturally robust to a diversified content of experience replay buffers, which
asynchronous off-policy actors can efficiently populate in parallel to training. We
propose efficiently learning on such off-policy data via Trajectory Balance with
Asynchrony (TBA), an approach to asynchronous RL for LLMs that leverages the
principled off-policy TB objective. On math, preference-tuning, and automated
red-teaming tasks, we post-train models ranging from Pythia 410M to Qwen 2.5
7B, finding TBA offers speed and performance boosts over strong baselines like
Online DPO and Dr. GRPO. Beyond TBA'’s performance benefits (high accuracy
even as asynchrony grows) and speedups (4 x or more), we show its reward- and
recency-prioritizing sampling enable further gains as data generation is scaled. Our
code is available at https://github.com/bbartoldson/TBA.

_,55%] ‘A-'I—EA (Ours) 50x faster |

©) 5491 1 +1.2% |

a 0 | +2.0%

&L 53%71 | ____aOnline DPO VinePPO

i | 1.6x faster .

@ 52% Online DPO

v |

© 51%

= ® O Sync Methods

2 50% ® o

G] GRPO RLOO ® Async Methods
49% ®

128 256 512 1024 2048 4096
Compute Time (Minutes)

Figure 1: TBA excels on the GSM8K mathematical reasoning task. All plotted points use 4xA100
GPUs (or comparable L40S GPUs). DPO and RLOO baselines taken from Noukhovitch et al. [46],
PPO and VinePPO baselines taken from Kazemnejad et al. [29]. The baseline model is the SFTed
RhoMath-1B [35] model, which gets 40% accuracy after SFT and before RL. Appendix B has details.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/bbartoldson/TBA

1 Introduction

Post-training through reinforcement learning (RL) is critical for enhancing large language models
(LLMs), aligning them with human preferences and improving their reasoning abilities [8, 27]. How-
ever, widely used RL algorithms such as Proximal Policy Optimization (PPO) [57] and REINFORCE
Leave-One-Out (RLOO) [2] suffer from a fundamental limitation: they are on-policy, meaning that
data generation and policy updates occur sequentially. This dependence creates bottlenecks that
reduce resource utilization. Further, benefits of scaling on-policy data generation may be limited [22].

We introduce Trajectory Balance with Asynchrony (TBA), an asynchronous RL approach designed
to efficiently and scalably leverage compute for LLM post-training. TBA uses an off-policy training
objective based on Trajectory Balance (TB) [39], which we hypothesize can improve learning when
using async RL to decouple data generation from policy updates, mitigating key RL bottlenecks.

Across mathematical reasoning, preference-tuning, and automated red-teaming tasks, we find TBA
broadly offers three advantages over existing LLM post-training approaches: 1) Stable off-policy RL,
unlocking asynchrony for massive parallelization and reduced wall-clock times — see Figures 1 and 3.
2) Sampling from a diverse replay buffer, improving exploration and preventing mode collapse. 3)
Scalable search compatibility that aids sparse reward settings like automated red-teaming.

Our key contributions are summarized as follows:

* We introduce TBA, a distributed asynchronous RL framework for fast, scalable LLM post-training.

* We show that LLMs post-trained with TBA match or exceed performances from existing
methods, illustrating TB’s ability to use off-policy data in asynchronous RL.

* We demonstrate significant speedups (4x to 50x) for RL across mathematical reasoning,
preference-tuning, and automated red-teaming.

By enabling high-quality and fast off-policy post-training, TBA contributes to scalable and effective
LLM alignment, ensuring that large models can be refined more efficiently for real-world deployment.

2 Related Work

RL fine-tuning of language models Reinforcement learning (RL) has been an integral component
for training LLMs [14, 48]. In particular, RL has become the de facto approach for aligning language
models with human preferences [8, 82, 62, 49]. Much of this work relies on Proximal Policy
Optimization (PPO) [57], an on-policy RL algorithm that has become a default choice for fine-tuning
LLMs due to its strong performance across different setups. Aside from PPO, other on-policy
objectives such as REINFORCE [2] and variants like GRPO [59] and VinePPO [29] have also been
studied in the context of language models. An alternative to PPO-based fine-tuning is rejection
sampling fine-tuning, inspired by the best-of-n inference approach proposed by Nakano et al. [45].
Recent work by Dong et al. [10], Gulcehre et al. [15], and Wang et al. [72] extends this concept by
generating n candidate responses for each prompt, ranking them with a learned reward function, and
fine-tuning the model based on the highest-ranking responses. Separately, direct preference learning
approaches [53, 3, 64] skip reward modeling entirely and train language models to directly optimize
responses under a preference model. Hu et al. [23] introduced GFlowNet fine-tuning, leveraging
off-policy GFlowNet algorithms for fine-tuning language models, which we build upon here.

Asynchronous distributed RL Distributed RL spreads actors/searchers, learners, and environments
across a collection of computing resources. Asynchronous distributed RL does this such that searcher
and trainer processes do not necessarily share the same weights, which can significantly improve
training speed [44, 73] and facilitate RL in complex, high-dimensional domains [19, 24, 21].

A foundational method in this area is Asynchronous Advantage Actor-Critic (A3C) [42]. In A3C,
multiple parallel workers asynchronously interact with the environment and communicate gradients
to a central node. Our approach to async distributed RL more closely resembles the Importance-
Weighted Actor-Learner Architecture (IMPALA) method [11], which communicates experience
trajectories (state, action, and reward tuples) to the central node. As opposed to standard RL
environments, where value-based off-policy learning objectives enable principled async training,
language models present a distinct challenge since learning value functions is challenging [16].
Recent work has also leveraged these Async RL frameworks within the context of LLM post-training
for training on near on-policy data [46, 13]. In contrast to these recent works, our approach uses a
principled off-policy learning objective, allowing training on any off-policy trajectories.

Automated red-teaming Through adversarial interactions, LLM red-teaming clarifies the robust-
ness and risks of a target LLM. Automating the generation of these adversarial scenarios, automated
red-teaming frameworks can help uncover vulnerabilities, biases, and unintended behaviors in models
more quickly, enabling preemptive mitigation before deployment [74, 28].

Perez et al. [51] proposed training language models using RL to discover prompts that elicit harmful
responses from some target LLM. Standard RL approaches, however, are susceptible to mode collapse
and fail to achieve the attack diversity that is critical for successful red-teaming. Hong et al. [20]
introduced a curiosity bonus to encourage generation of diverse red-teaming prompts, whereas
Samvelyan et al. [56] proposed sampling an attack prompt from a pool and iteratively mutating the
prompt with auxiliary LLMs. Lee et al. [34] proposed using GFlowNet fine-tuning followed by MLE
smoothing to generate diverse, transferable, and effective prompts. Our red-teaming experiments
augment their TB objective optimization with our distributed asynchronous framework.

3 Preliminaries

3.1 KL regularized RL as probabilistic inference

We study the problem of fine-tuning a pretrained language model 7+ with a reward model 7. For
mathematical reasoning [9] our reward model simply computes a response’s correctness, while our
preference-tuning for alignment [82] and red teaming [51] experiments use reward models optimized
with human preference data. Notably, reward maximizing RL with learned reward functions is
susceptible to spurious modes of the reward [61, 50, 12], which can result in poor performance and
low diversity in responses. This is addressed by constraining the fine-tuned model to be close to the
initial model in terms of the KL divergence:

7 = argmax Exp[Ey wr(yjx) [T (y: x)] — BDxL(7(. |)[|mrer(- | x))]- (1)
Online RL algorithms such as PPO [57, 62] and REINFORCE [75, 31, 2] can be used to optimize the
model (which is the policy), whereas offline objectives such as DPO [53] can be used to train the
model directly on the preference data and achieve the same optimal policy asymptotically.

Eq. 1 can be interpreted from a probabilistic perspective as a Bayesian posterior inference prob-
lem [32]. The optimal policy for Eq. 1 is given as:

T (y | %) o< mer(y | %) exp(B7 17 (v x)). 2
Approaches such as Gibbs sampling can be used to produce samples from the optimal policy
without any fine-tuning [76]. These MCMC approaches can be very expensive at inference time and
intractable for long sequences. Within the probabilistic interpretation, on-policy RL to maximize
Eq. 1 is equivalent to amortized variational inference to minimize the reverse KL with respect to the
posterior density [32]. However, reverse KL optimization is susceptible to mode collapse and requires
on-policy samples. The reliance on on-policy samples can limit the scalability as we cannot use
replay buffers that can be populated in parallel at scale, since new updates of the policy invalidate the
on-policy nature of the older replay buffer examples. In practice, this means that the policy can get
stuck in suboptimal solutions and stop exploring, or may obtain high reward at the cost of diversity.
This motivates us to consider an alternative off-policy amortized variational inference to efficiently
leverage scalable computational resources for flexible exploration.

3.2 GFlowNets

Generative Flow Networks [GFlowNets; 4, 5] are a framework for off-policy training of hierarchical
generative models to sample proportionally to a given unnormalized density (reward) function.
GFlowNets frame probabilistic inference as a sequential decision-making problem, learning a policy
to construct the objects (e.g. sequences) by putting together building blocks (e.g. tokens) and
optimizing consistency-based objectives. GFlowNet objectives have been used for fine-tuning
autoregressive [23, 34] as well as discrete diffusion language models [68]. GFlowNets are MaxEnt
RL algorithms [81], and notably equivalent to path consistency learning [43] in sequence generation
problems [4].

To fine-tune a language model to sample from Eq. 2, we can set as a reward R(y;X) = ef(y |
x) exp(B8~ 74 (y; x)). Following Lee et al. [34], we use the trajectory balance objective [40] for
training the language model policy 7y, which is defined over a response y as

mwmwrmf 5

ETB (Y7 X3 9) = <10g R(y X)

Z(x) is a positive scalar function of the query x, and the response y is a sequence of tokens.
When Lrg is minimized, Z(x) is the partition function of the posterior (i.e. Z(x) = >__ R(y;x)).
Otherwise it serves as a control variate, reducing the variance of TB gradients. Instead of training a
value network for Z(x), we use the VarGrad variant of trajectory balance which replaces a learned
Z(x) with a K-sample batch estimate [55, 47, 78, 58, 68].

Given K responses {y ("))} for a query x(*), a batch estimate of Z(x")) can be computed

K
N . 1 iy . . . 1 - .
log 2(x) = 2 2 (10% mrer(y 7 | x) = log mo(y 7 | x@) 4 5T¢>(y(”);x(l)>)' “
j=1
The (detached) estimate Z can be plugged into Eq. 3 for a batch B = {(x(*, y(i’j))le}f;l to get
| i=Bi=K
B > (STOP—GRAD[log Z(xD)] + log me (y @9 | xD)
i=1,7=1 (5)

2
i\ i 1 . ,
—logmer(y ") | x")) — Bw(y(“); xw)) .

YO8, 9) =

An important property of the trajectory balance is that it is off-policy. During training, y can be
sampled from any distribution with full support [4]. This enables the use of various exploration
strategies [54, 30] as well as the use of replay buffers [60, 67]. In the context of fine-tuning language
models, this off-policy nature of the objective makes it a natural choice for asynchronous training.

3.3 Differences from other RL objectives

We compare the gradients of the VarGrad TB variant above and Proximal RLOO, an off-policy variant
of RLOO with off-policy robustness stemming from a (clipped) importance-sampling (IS) ratio [46].

With K samples, the gradient for Proximal RLOO for a sample y(7) is

mo(yV]x)

Vroolf) = TGS AW Vs logm (v), ©)

with advantage A(yY|x) = r(y¥),x) — 15 >z (¥, %), and IS clipping omitted for brevity.

The gradient for y) using the TB objective Jrg corresponding to the loss in Eq. 5 is, up to a
multiplicative constant, equal to the following (derivation given in Appendix A):

VI (0) = A(yP|x)Vieg me(y") | x), ©)

N . 7o (y@ |x i o (yV[x
where A(y7[x) = [r(y"),x) — Blog L] — L 37 [r(y), x) — Blog L), That

is, for on-policy data y, TBY¥Gd i equivalent to mean-baseline REINFORCE [75] and a KL-
divergence-regularized reward [82]. However, we use TB on off-policy data, i.e. not sampled from
Ty, where this equivalence does not hold.

In practice, we find that performance is sensitive to the coefficient 3, with larger values tending to
promote stability, and smaller values tending to promote accuracy improvements. We find it easier
to obtain both benefits via coefficient annealing schedules or resetting of the reference policy [36].
Notably, Kimi k1.5 was RL-tuned with an objective that nearly matches TB’s and reset the reference
policy [65]; Kimi k1.5 deviated from Eq. 7 by excluding the average log probability ratio from its
control variate. Brantley et al. [7] also use a related regression objective, learning offline a value
function that plays the role of the control variate. Future work may consider adding the (clipped) IS
ratio to Eq. 7 to obtain further robustness to off-policy data, or exploring IS clipping alternatives [80].

Policy Sampling [

Lahadod ol 1, e

Update searcher
Multiple off-policy searchers populate replay buffer weights with updated

policy information
3
Replay Buffer

Figure 2: Fast, scalable LLM post-training with TBA. Continuously (solid lines), multiple
SEARCHER nodes (left) collect trajectories, while a TRAINER node (right) samples from a re-
play buffer to train the policy off-policy. Periodically (dashed lines), updated policy weights are sent
to SEARCHER nodes, and new trajectories are added to the TRAINER node’s buffer. This avoids
bottlenecks at any given node, which can be 1 or more GPUs, keeping resource utilization high.

Continuously
=== Every k iterations

1
Policy Training

ample Scoring

Scoring of searcher
samples en route to buffer

Use samples from replay
buffer to update policy

4 TBA: Fast, Scalable LLM Post-Training

TBA integrates the TB gradient of Eq. 5 into an asynchronous distributed RL framework for post-
training language models. Asynchronous RL decouples data generation from model updates, enhanc-
ing resource utilization and reducing training duration. At the same time, the off-policy TB objective
promotes efficient learning from the off-policy training data induced by asynchrony.

We test two TBA variants. The first implements TBA from scratch by modifying an RLOO trainer
class (e.g. of the Hugging Face TRL library [70]) to use Eq. 5, adding a schedule for 3, integrating a
replay buffer and sampling approach, and parallelizing training and search to allow async RL — we
discuss the details of this variant below. The second variant TBA’ uses the asynchronous PRIME-RL
codebase [26], to which we simply add the update rule corresponding to Eq. 7 and reference-policy
resetting. TBA’ has fewer tunable knobs than TBA and supports multi-GPU training processes,
allowing us to test TB for async RL of LLMs in a simpler setting and with larger models/contexts.

While TBA' prioritizes ease of use and multi-GPU training, our from-scratch TBA implementation
prioritizes speed and search. For example, ensuring the data has a constant level of off-policyness
(as PRIME-RL does) can reintroduce the bottleneck that async RL aims to remove, so TBA runs the
training and searching processes continuously and independently, only syncing every k steps (the
“sync period”). Moreover, every completion, regardless of how stale it is, is accessible in TBA’s replay
buffer (e.g. via reward-based sampling). As discussed below, m is TBA’s probability of sampling the
data that is (relatively) the “most on-policy”; i.e., the data added at the most recent sync step.

Figure 2 visualizes our TBA implementation. It leverages overlapping training and search processes,
and a buffer to hold trajectories. In particular, TBA uses a single TRAINER node and one or more
SEARCHER nodes that collect off-policy data into a shared replay buffer Dyioha1. Here, a node is
a computational resource sufficient to perform all the operations needed for training or search — it
can be a collection of multiple GPUs or even a subset of 1 GPU. In our TBA experiments, a node is
always 1 GPU: e.g., given 16 GPUs, we use 15 SEARCHER nodes and 1 TRAINER node.

Separation of the SEARCHER and TRAINER is highly desirable even in a 2 node (e.g. 2 GPU) cluster
because LLM policy rollouts are costly sequential decoding procedures, and training requires only
parallel likelihood evaluation of an entire sequence through a single forward pass. Thus, given an
objective that can tolerate off-policy asynchronous online training, massive wall clock time speedups
can be realized by continuously running training on 1 node without pausing for rollout generation. In
the following subsections, we provide more details on our from-scratch TBA implementation.

4.1 Scaling data collection with SEARCHER nodes

TBA’s SEARCHER nodes each carry a local delayed copy 7gs of the TRAINER policy mg. To produce
policy rollouts, queries x are sampled from a dataset, and the local policy generates a batch of
K responses y ~ 7y (y|x) that are evaluated with the reward model 74(y; x). Like Noukhovitch

et al. [46], we use VLLM [33] for faster generation. The (x,y,r,(y;x)) tuples are stashed in the
SEARCHER’s local replay buffer Djoc;. We also add to the stored tuple the step of the trainer when
syncing last occurred, giving us a notion of how off-policy the generated data is — this can later be
used by the TRAINER to prioritize sampling from more recent generations.

Every k optimization steps, search and training pause to pull each SEARCHER node’s local replay
buffer Digcal into the global replay buffer Dgiobal, and to update the searcher’s local policy with the
trainer’s. The global buffer maintains a list of all generated responses and rewards for each query.

A key motivation for asynchrony is its compatibility with rollout scaling for enhanced exploration or
increased sequence lengths. For example, we generate S > K samples for a given query — even when
only updating the model using K samples per query — to mitigate the lack of diversity caused by the
fact that K independent model rollouts are not guaranteed to produce K unique sequences. Relatedly,
future work could apply simple off-policy inference techniques in the SEARCHER nodes such as
randomly sampling the softmax temperature, or using alternative decoding techniques like beam
search. We expect such approaches to particularly aid solution discovery in sparse reward settings.

4.2 Asynchronous updates with TRAINER

The TRAINER uses off-policy trajectory balance (Eq. 5) to train the policy on the global replay buffer
Degiobal- We sample a batch of B queries, each with K responses and corresponding rewards:

{x®, y D)y, (y9); x(i))}zzfj:f ~ Dalobal-
We then compute the loss in Eq. 5 and use it to update the policy. We sample with replacement if
fewer than K unique samples exist for a given query.

A critical design choice is the strategy for sampling from the replay buffer Dgjona1. The most naive
approach is uniform sampling over queries, then uniform sampling over samples associated with the
selected query, which may not be optimal if high-reward samples are sparse. Reward prioritization
can address this by tilting the sampling distribution toward high-reward sequences; however, focusing
solely on high-reward data can lead to mode collapse and reduce policy diversity.

To balance between these concerns, we alternate between two sampling strategies: one prioritizing
recency —i.e., whether the trajectory was added to the buffer in the most recent sync step — and another
prioritizing rewards. When prioritizing rewards, we consider both a softmax of the reward value (to
encourage sampling high reward responses) and a uniform distribution (to encourage sampling high
and low reward responses equally). We randomly switch between prioritizing rewards and recency
for each query in a batch, with the fraction of queries allocated to each strategy treated as a tunable
hyperparameter m, which we study in Section 5.4.

S Empirical Evaluation

We evaluate the effectiveness of TBA in three common LLM post-training RL pipelines. Post-
training RL for enhancing LLLM capabilities—particularly for agentic and reasoning tasks—is a
critical but nascent area where baseline approaches require many hours or days. These conventional
methods often rely on costly-to-generate on-policy data and thus inefficiently leverage available
computing resources. Notably, this inefficiency can become particularly harmful when scaling to
larger distributed systems, which may be a necessity for domains with sparse rewards that demand
increased sampling. Broadly, we find TBA is a highly-performant, fast, and scalable solution.

5.1 Tasks

* Mathematical reasoning (MR): We study the GSMS8K task which consists of grade-school level
math problems and a binary reward based on exact match for the correct final answer [9]. We adopt
the setup from Kazemnejad et al. [29], Noukhovitch et al. [46], using an SFTed RhoMath-1B [35]
model as a base for RL post-training.

* Preference fine-tuning (PFT): We consider the task of fine-tuning a language model with a reward
function learned from human preference data. Specifically, we study the TL;DR summarization
task where the goal is to write short summaries for reddit posts [62]. Following Noukhovitch et al.
[46], we consider Pythia [6] as the base model for the policy and the reward models, using the
SFTed versions used by Noukhovitch et al. [46].

0.9751 ® o 3.8x faster ®
£0.950
©
o 0.925 o® Parameters
'é ' 5.3x faster e 410M
T 0.9001 ® o 1B
8 @ 288
x 0.875 _
o ® Online DPO - Sync
F 0.850 . Online DPO - Async

0.825 5.1x faster ‘ ® TBA (Ours)

. 1 e
0 50 100 150 200 250 300

Compute Time (minutes)

Figure 3: TBA scales search and improves RL efficiency on the PFT summarization task. All
plotted points use 4xA100 GPUs, but TBA allocates 3 GPUs to search, and Online DPO allocates 1
GPU to search. TBA produces large-scale off-policy data that its trajectory balance objective can
leverage, creating massive efficiency benefits. Online DPO baselines taken from Noukhovitch et al.
[46]. Dashed and solid lines use 256 and 425 updates, respectively. Appendix B has details.

* Red-teaming (RT): We investigate automated red-teaming, another critical step for LLM post-
training. The goal is to discover prompts that elicit harmful responses from a target model, as
measured by a toxicity classifier. We follow the setup from Lee et al. [34], applying the same models:
our smaller-scale experiments use GPT-2 [52] as an attacker model, GPT-2 (instruction-tuned) as a
victim model, and a RoBERTa-based toxicity classifier [69]; our larger-scale experiments use Llama-
3.2-1B [41] as an attacker model, Llama-3.1-8B-Instruct as a victim model, and LlamaGuard-3-8B
[41] for measuring toxicity, averaging over multiple responses from the victim model.

For all tasks, we study solely the RL post-training components of baselines’ workflows. In particular,
we start with SFTed checkpoints, then perform RL. Notably, Lee et al. [34] also include a maximum
likelihood estimation training phase after RL that uses the buffer produced during RL, which boosts
performance but is not investigated here. Using these baselines’ codes, we follow their setup and
hyperparameters, with deviations noted in Appendix B. For MR and PFT, we implement TBA by
augmenting the RLOO trainer of Noukhovitch et al. [46] with our distributed asynchronous RL
framework and the TB objective (Equation 5). For RT, we implement TBA by augmenting the
trajectory balance trainer of Lee et al. [34] with our distributed asynchronous RL framework.

5.2 Metrics and baselines

MR metrics and baselines. We follow the evaluation setup of Noukhovitch et al. [46], computing
the pass@1 on the GSMS8K [9] test dataset with greedy decoding. Prior work [29, 46] applies RL
post-training with the GSM8K training set to the SFTed RhoMath-1B [35] model, which initially
obtains 40.3% accuracy on the test set. We compare TBA post-training to the methods used in
these prior works: VinePPO [29], Online-DPO [17], (Async) PPO [57], and (Proximal) RLOO [2].
Additionally, we implement a GRPO [59] baseline (see Appendix D.1 for details).

PFT metrics and baselines. We follow the evaluation setup of Noukhovitch et al. [46], using the
win-rate under a 6.7B “gold” reward model [25] as the primary metric. We additionally report
approximate KL distance—approximated by perplexity to match the evaluation of Noukhovitch et al.
[46]—between the learned policy and the reference policy. Following Noukhovitch et al. [46], we
compare TBA with: Online-DPO [17], (Async) PPO [57], and (Proximal) RLOO [2].

RT metrics and baselines. We follow Lee et al. [34], measuring the attack success rate on 1024
sampled prompts for a victim model. We also measure the diversity of these test-time generated
prompts by computing the average pairwise cosine distance. We compare against: SFT, PPO [57]
(with the novelty reward from Lee et al. [34]), REINFORCE [75, 63], RLOO [1], Online DPO [53],
GFlowNet (one-actor TB) [34].

5.3 TBA redefines efficiency-performance Pareto frontiers

We hypothesize that, by mixing asynchronous RL with the trajectory balance objective for learning
from off-policy data, TBA can (a) reduce resource waste and training time and (b) improve perfor-

1.00 Pythia 410M 1.00 Pythia 1B 1.00 Pythia 2.8B S
~ ~ ~ «
« Better « « Ps (D)) .‘O. ®
< 5 < <
8 0.95{ Performance g 0.95 o o 7 0.95 »
& & o L
£0.90 090 ® ® < 0.90
=Y =Y et i =
o o b L b
o [e] o
©0.85 s e L ©0.85 0.8
[a) o o @® TBA (Ours)
=l ® =l =l Online DPO
0.801 @ e 0.80 0.80
1.12 1.14 1.09 1.10 1.11 110 112 1.14

Perplexity or Approximate KL ({) Perplexity or Approximate KL () Perplexity or Approximate KL ({

Figure 4: TBA defines a new KL vs. win-rate Pareto frontier on the PFT summarization task.
The baseline “Online DPO” frontier is created by increasing the degree of off-policyness, starting
from on-policy Online DPO, results from [46]. The TBA frontier is created by altering the training

steps, searcher count, and KL annealing schedule as described in Appendix B.

Table 1: TBA outperforms off-policy and on-policy baselines in the PFT task (Pythia 410M).
Baselines from Noukhovitch et al. [46]. The final block uses 16 steps off-policy for baselines, and a
sync period of 10 for TBA, which corresponds to use of data that is 15 steps off-policy on average.

Method
Steps/Sync Metric Online DPO (Async) PPO (Proximal) RLOO TBA
oty TPEL LB Lt -
26919 Wilkwer oss 084 0w
o BEEWKL L2 Lo o

mance via scaled generation and ingestion of diverse responses. To test this, we primarily consider
compute-matched settings where all methods have access to the same number of GPUs, though we
also evaluate TBA with resource scaling. Even in our compute-matched experiments, TBA generates
responses relatively rapidly by running asynchronous search on all but one of the available GPUs.
Training happens quickly with TBA because it isn’t bottlenecked by on-policy generation, and TBA’s
rapid response generation ensures training on diverse and previously unseen (though off-policy) data.

When tested on established RL problems, an alternative possibility is that TBA will underperform
due to its departures from conventional approaches: it is asynchronous, off-policy, reliant on the
less-common trajectory balance objective, and makes updates using many responses per query.'
Indeed, Noukhovitch et al. [46] contemporaneously suggests potential limitations to asynchronous,
off-policy RL for LLMs, finding that increasing off-policyness can harm performance metrics like
win-rate or exacerbate policy deviations from the reference model. Further, Hou et al. [22] found
limited benefits to scaling response generation from 4 to 8 (or 16) responses when using PPO.

We study this question by computing Pareto frontiers for MR (Figure 1), for PFT (Figures 3 and 4
and Table 1), and for RT (Figure 5 and Table 6). See Appendix B for experimental details. Notably,
TBA produces results on or beyond the Pareto frontiers of all three tasks at multiple model scales,
consistent with our hypothesis that TBA can efficiently train LLMs on off-policy data.

Speed is vastly improved with TBA training, which proceeds entirely asynchronously without training-
bound or generation-bound processes — the only non-training time occurs briefly every k steps. In the
compute-matched MR experiments (Figure 1), TBA speeds up the training of the only method with
comparable performance (VinePPO) by nearly 50 x, while improving accuracy by 1.8% and speed

"'We compute the TBA loss with more samples per query than analogous approaches like RLOO (e.g., 20
samples versus 4) to reduce the variance of the gradient of the TB objective estimate (Equation 5) that we
optimize. We use fewer queries per batch to keep the batch size small despite this response scaling.

F 98%

100% *) I / .
-]] < 97%] Cosine Distance o
Z 80% < /

2 @ . . 0.48
E | Training Approach g— 96% g
S 60%| ¢ icL g 0462
S < 959% . 3
) SFT o L 2
S 40%| m PPO + Novelty 3 oack 0449
s 4+ REINFORCE a 5 a
X 20%| @ GFlowNet v = 93% 0.420

TBA

o) L0.40
0%%00 02 04 06 08 10 92% 71 22 23 24 25 26
Cosine Distance (1) Number of Searchers

Figure 5: TBA reaches the RT diversity-toxicity Pareto frontier and improves as search is scaled.
(Left) On the GPT-2 automated red-teaming task of Lee et al. [34], TBA produces results on the
diversity vs. toxicity Pareto frontier in less training time. Baselines taken from Lee et al. [34]. (Right)
Each searcher uses one V100 GPU for generating attacks. We report means and standard errors from
multiple runs of the automated red-teaming task with GPT-2 at each searcher/GPU count.

by 1.5 relative to the speed-optimized asynchronous DPO baseline [46]. In the compute-matched
PFT experiments (Figure 3), TBA produces ~ 5x speedups over speed-optimized asynchronous
DPO baselines [46], and it even outperforms baselines that train with on-policy data (Table 1). In
the non-compute-matched automated red-teaming experiments (Table 6), TBA gives ~ 7x speedups
for GPT-2 and Llama 3.2 1B compared to the non-distributed, synchronous GFlowNet baseline [34].
These results suggest that TBA is an effective, parallel, and scalable search framework for distributed
learning, offering substantial speed-ups while remaining competitive with leading approaches.

5.4 Does off-policyness hurt performance?

The results in the prior section are perhaps surprising given evidence of off-policyness’s harmfulness
to RL post-training [46]. Thus, we investigate the effect of off-policyness with TBA by studying its
related hyperparameters, which we first review here. The fraction m controls how often sampling
attempts to approximate an “on-policy" distribution. When m = 1, training occurs exclusively with
samples added in the most recent sync step, while m = 0 corresponds to selecting data without
regard for how recently it was generated (e.g., using reward weighting). Additionally, recall that
parameters and buffer data are shared between searchers and trainers every k training steps: since
TBA runs exploration and training in parallel, TBA trains off-policy even when m = 1 and k = 1.
Specifically, with probability m, TBA selects a sample from the central replay buffer that is at most
2k — 1 updates off-policy. With probability 1 — m, TBA samples data produced by the model at any
point, which can be as off-policy as the number of training steps.

To understand the effect of increasing off-policyness on TBA, we test the effect of modifying m
for the MR (see Figure 7) and PFT tasks. For PFT, we train Pythia-410M on the TL;DR dataset
with three values of m (0.4, 0.5, 0.6) keeping all other parameters constant. We found that win rate
fluctuated, with m = 0.4 corresponding to the lowest win rate (0.67), and m = 0.5 and m = 0.6
attaining higher win rates of 0.82 and 0.8, respectively. These results show that higher values of m
generally lead to a higher win rate, reinforcing the idea that on-policy updates are in fact the most
effective. However, for reasonably high values of m, incorporating more off-policy data does not
significantly degrade performance and, in some cases, may even provides benefits. Regardless, our
findings for both MR and PFT further support the idea that we can perform massively distributed
training that works well with off-policy updates, as long as recent samples are thrown into the mix.

Importantly, the choice of reinforcement learning (RL) algorithm is crucial in determining how
effectively we can leverage off-policy updates. TBA is a fully off-policy compatible algorithm, and
as shown in Figure 4, it significantly outperforms asynchronous Online DPO, even in the latter’s most
on-policy setting. Noukhovitch et al. [46] identified Online DPO as the best-performing off-policy
algorithm in their experiments (see Table 1), making it notable that TBA improves upon this.

5.5 Discovery of high-reward samples via scaling search

Beyond improvements at a given level of compute, we also observe improvements when we scale the
amount of total compute, showing TBA’s promise for large-scale distributed RL. In our asynchronous
setup, we find that adding more searchers consistently improves the attack success rate and diversity
for RT (see Figure 5, right).

This improvement likely stems from having more searchers exploring different regions of the solution
space simultaneously, enabling more effective discovery of high-reward samples. Moreover, asyn-
chronous updates introduce opportunities for beneficial randomness, and thus potential expansion of
the search coverage in the combinatorial space of language. Interestingly, we also find some evidence
for scaling’s helpfulness in PFT (see Figure 9).

Relatedly, in Table 6, we show we can trade attack toxicity for greater attack diversity by scaling the
maximum buffer size to retain more off-policy data. This RT experiment uses Llama 3.2 1B models.

6 Scaling TBA for Larger Models

As described in Section 4, TBA' allows us to test a simplified version of TBA and to train with larger
models/contexts. Relative to TBA, TBA’ has fewer knobs to tune: it does not have a decay schedule
for 3, and PRIME-RL does not sample from a buffer, using a constant level of off-policyness instead.
A TBA' configuration entails a reference policy reset interval p, and a constant 3. We use p = 50,
B = 0.005. In Figure 6, we find further evidence that the TB objective can enhance async RL training
of LLMs, particularly when data is highly off-policy. See Table 4 for experimental hyperparameters.

2 Steps Off-Policy 10 Steps Off-Policy
0.751
o
80701
3
o
£ 0.65
o
2
‘2 0.60 {
S
©
=
0.55 1 J
TBA TBA
Dr. GRPO Dr. GRPO
0.50 1 - ; ; ; ; e = 1 - . ; . ; e =
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Training Step Training Step

Figure 6: TBA’ vs. Dr. GRPO. When training Qwen 2.5 7B base [66] on the MATH dataset [18],
we find that TBA performs well relative to state-of-the-art methods, especially in highly off-policy
settings (right).

7 Discussion

In this work, we introduced TBA, a novel post-training method for large language models (LLMs)
that combined an off-policy reinforcement learning (RL) objective with distributed asynchronous
search. By decoupling searcher and trainer nodes, our approach enabled efficient distributed training
and avoided bottlenecks, leading to significant performance gains in post-training tasks such as
mathematical reasoning, automated red-teaming, and RLHF. We expect that our highly parallelizable
and performant framework for RL post-training can be extended to other valuable tasks, including
self-improvement training [77, 23, 15], search-based reasoning [71], as well as the emerging paradigm
of training LLMs to reason with RL [16].

Limitations The trajectory balance objective can suffer from high gradient variance as it operates
on the trajectory level. We addressed this by sampling more responses per query. Future work can
leverage learning partial energy functions [38, 79] to balance bias and variance during policy updates.

Broader Impact Improving RL training strategies for LLMs can enhance their usefulness across
domains but also carries risks associated with misuse, reward misspecification, and unintended
generalization. Careful evaluation and responsible deployment are essential as these methods scale.

10

Acknowledgments and Disclosure of Funding

We thank Michael Noukhovitch and Haizhong Zheng for helpful feedback.

The authors acknowledge funding from CIFAR, NSERC, IVADO, and Samsung. MJ is supported by
a FRQNT Doctoral Fellowship (https://doi.org/10.69777/366694).

Prepared by LLNL under Contract DE-AC52-07NA27344 and supported by the LLNL-LDRD
Program under Project No. 24-ERD-058 (LLNL-CONF-2003261). This manuscript has been
authored by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344
with the U.S. Department of Energy. The United States Government retains, and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.

This research used resources of the National Energy Research Scientific Computing Center (NERSC),
a Department of Energy Office of Science User Facility using NERSC awards ASCR-ERCAP0032802
and ASCR-ERCAP0032812.

References

[1] Sina Ahmadi and Aso Mahmudi. Revisiting and amending Central Kurdish data on UniMorph
4.0. In Proceedings of the 20th SIGMORPHON workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages 38—48, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.sigmorphon-1.5. URL https://
aclanthology.org/2023.sigmorphon-1.5.

[2] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier
Pietquin, Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization
for learning from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

[3] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
from human preferences. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2024.

[4] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio.
Flow network based generative models for non-iterative diverse candidate generation. Neural
Information Processing Systems (NeurlPS), 2021.

[5] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24(210):1-55, 2023.

[6] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning (ICML), 2023.

[7] Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D Lee, Wen Sun, Wenhao Zhan, and
Xuezhou Zhang. Accelerating 1l for llm reasoning with optimal advantage regression. arXiv
preprint arXiv:2505.20686, 2025.

[8] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
@articlechristiano2017deep, title=Deep reinforcement learning from human preferences, au-
thor=Christiano, Paul F and Leike, Jan and Brown, Tom and Martic, Miljan and Legg, Shane
and Amodei, Dario, journal=Advances in neural information processing systems, volume=30,
year=2017 . Advances in neural information processing systems, 30, 2017.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

11

https://doi.org/10.69777/366694
https://aclanthology.org/2023.sigmorphon-1.5
https://aclanthology.org/2023.sigmorphon-1.5

[10] Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

[11] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International Conference on Machine
Learning (ICML), 2018.

[12] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning (ICML), 2023.

[13] Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen,
and Gabriel Synnaeve. Rlef: Grounding code 1lms in execution feedback with reinforcement
learning. arXiv preprint arXiv:2410.02089, 2024.

[14] Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024. URL
https://arxiv.org/abs/2312.11805.

[15] Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts,
Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced
self-training (rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

[16] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[17] Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexan-
dre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online Al feedback. arXiv preprint arXiv:2402.04792, 2024.

[18] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurlPS, 2021.

[19] Matteo Hessel, Manuel Kroiss, Aidan Clark, Turii Kemaev, John Quan, Thomas Keck, Fabio
Viola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. arXiv
preprint arXiv:2104.06272, 2021.

[20] Zhang-Wei Hong, Idan Shenfeld, Tsun-Hsuan Wang, Yung-Sung Chuang, Aldo Pareja, James R.
Glass, Akash Srivastava, and Pulkit Agrawal. Curiosity-driven red-teaming for large language
models. In International Conference on Learning Representations (ICLR), 2024.

[21] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933, 2018.

[22] Zhenyu Hou, Pengfan Du, Yilin Niu, Zhengxiao Du, Aohan Zeng, Xiao Liu, Minlie Huang,
Hongning Wang, Jie Tang, and Yuxiao Dong. Does rlhf scale? exploring the impacts from data,
model, and method. arXiv preprint arXiv:2412.06000, 2024.

[23] Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua
Bengio, and Nikolay Malkin. Amortizing intractable inference in large language models. In
International Conference on Learning Representations (ICLR), 2024.

[24] Shengyi Huang, Jiayi Weng, Rujikorn Charakorn, Min Lin, Zhongwen Xu, and Santiago
Ontafién. Cleanba: A reproducible and efficient distributed reinforcement learning platform. In
International Conference on Learning Representations (ICLR), 2023.

[25] Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
arXiv preprint arXiv:2403.17031, 2024.

[26] Prime Intellect. Prime-rl, 2025. URL https://github.com/PrimeIntellect-ai/
prime-rl.

12

https://arxiv.org/abs/2312.11805
https://github.com/PrimeIntellect-ai/prime-rl
https://github.com/PrimeIntellect-ai/prime-rl

[27] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[28] Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang
Sun, Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm
via a human-preference dataset. Neural Information Processing Systems (NeurIPS), 2024.

[29] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning
through refined credit assignment, 2024. URL https://arxiv.org/abs/2410.01679.

[30] Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo
Ahn, and Jinkyoo Park. Local search GFlowNets. International Conference on Learning
Representations (ICLR), 2024.

[31] Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
for free!, 2019. URL https://openreview.net/forum?id=r11gTGL5DE.

[32] Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kI penalties is better viewed
as bayesian inference. arXiv preprint arXiv:2205.11275, 2022.

[33] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[34] Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji
Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, et al. Learning diverse attacks on
large language models for robust red-teaming and safety tuning. International Conference on
Learning Representations (ICLR), 2025.

[35] Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

[36] Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025.

[37] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

[38] Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain,
Andrei Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from partial
episodes for improved convergence and stability, 2023. URL https://arxiv.org/abs/
2209.12782.

[39] Dan Malkin, Tomasz Limisiewicz, and Gabriel Stanovsky. A balanced data approach for
evaluating cross-lingual transfer: Mapping the linguistic blood bank. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4903—4915, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.361. URL https://
aclanthology.org/2022.naacl-main.361.

[40] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in GFlowNets. Neural Information Processing Systems
(NeurlIPS), 2022.

[41] Meta Al Llama Team. The llama 3 herd of models. August 2024. URL https://arxiv.org/
abs/2407.21783.

[42] Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

13

https://arxiv.org/abs/2410.01679
https://openreview.net/forum?id=r1lgTGL5DE
https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/2209.12782
https://aclanthology.org/2022.naacl-main.361
https://aclanthology.org/2022.naacl-main.361
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing
systems, 30, 2017.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296,
2015.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback, 2021. URL https://arxiv. org/abs/2112.09332, 2021.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal,
and Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language
models. In The Thirteenth International Conference on Learning Representations, ICLR 2025.
OpenReview.net, 2025.

Nikolas Niisken and Lorenz Richter. Solving high-dimensional Hamilton—Jacobi—Bellman
PDEs using neural networks: perspectives from the theory of controlled diffusions and measures
on path space. Partial Differential Equations and Applications, 2(4):48, 2021.

OpenAl. Gpt-4 technical report, 2023. URL https://openai.com/research/gpt-4.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022. URL https://arxiv.org/abs/2203.02155.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Map-
ping and mitigating misaligned models. International Conference on Learning Representations
(ICLR), 2022.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language
models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 3419-3448, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.225. URL https://
aclanthology.org/2022.emnlp-main.225.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Neural Information Processing Systems (NeurIPS), 2023.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration
in gflownets. arXiv preprint arXiv:2306.17693, 2023.

Lorenz Richter, Ayman Boustati, Nikolas Niisken, Francisco J. R. Ruiz, and Omer Deniz Aky-
ildiz. Vargrad: A low-variance gradient estimator for variational inference. Neural Information
Processing Systems (NerulPS), 2020.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H.
Markosyan, Manish Bhatt, Yuning Mao, Mingqi Jiang, Jack Parker-Holder, Jakob Foerster,
Tim Rocktaschel, and Roberta Raileanu. Rainbow teaming: Open-ended generation of diverse
adversarial prompts. arXiv preprint arXiv:2402.16822, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

14

https://openai.com/research/gpt-4
https://arxiv.org/abs/2203.02155
https://aclanthology.org/2022.emnlp-main.225
https://aclanthology.org/2022.emnlp-main.225

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. Neural Information Processing Systems (NeurlPS), 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving GFlowNet training. International
Conference on Machine Learning (ICML), 2023.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward gaming. Neural Information Processing Systems (NeurlPS), 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Neural Information Processing Systems (NeurIPS), 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark
Rowland, Pierre Harvey Richemond, Michal Valko, Bernardo Avila Pires, and Bilal Piot.

Generalized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://
qwenlm.github.io/blog/qwen2.5/.

Nikhil Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of using
a replay buffer on mode discovery in gflownets. arXiv preprint arXiv:2307.07674, 2023.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin
Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid
Rector-Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable
inference in diffusion models for vision, language, and control. Neural Information Processing
Systems (NeurlPS), 2024.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and Douwe Kiela. Learning from the worst:
Dynamically generated datasets to improve online hate detection. In ACL, 2021.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforce-
ment learning. https://github.com/huggingface/trl, 2020.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
In International Conference on Machine Learning (ICML), 2024.

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and
Tong Zhang. Arithmetic control of llms for diverse user preferences: Directional preference
alignment with multi-objective rewards. arXiv preprint arXiv:2402.18571, 2024.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An
asynchronous distributed reinforcement learning framework for on-device control agents. In
International Conference on Learning Representations (ICLR), 2025.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does LLM safety
training fail? Neural Information Processing Systems (NeurIPS), 2023.

15

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://github.com/huggingface/trl

[75] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229-256, 1992.

[76] Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong
Zhang. Iterative preference learning from human feedback: Bridging theory and practice for
rlhf under kl-constraint. In International Conference on Machine Learning (ICML), 2024.

[77] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Neural Information Processing Systems (NeurIPS), 2022.

[78] David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling
with GFlownets. International Conference on Learning Representations (ICLR), 2023.

[79] Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in
mathematical reasoning. arXiv preprint arXiv:2501.07301, 2025.

[80] Haizhong Zheng, Jiawei Zhao, and Bedi Chen. Prosperity before collapse: How far can
off-policy rl reach with stale data on llms? arXiv preprint arXiv:2510.01161, 2025.

[81] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[82] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

16

A TBA Gradient Analysis

Below, we reproduce for convenience the TBA loss £Y&6™d from Eq. 5, then provide the gradient of
the corresponding maximization objective Jrtg.

i=B,j=K
1 A) . .
LYuGrad(B: §) = BK E (STOP—GRAD[log Z(xD)] 4+ log ma(y) | x)
i=1,7=1 (8)

2
~log mar(y) [x) = Zro(y ™7 x@))) .

We first multiply everything inside the square operation of Eq. 5 by —1, which is equivalent to
multiplying the entire equation by 1 and gives

Ly§O(B;) = <log Trer(y 7 | (V) —log mo (y ") | x)+
e ©)

1 L A
Sro(ri5x0) ~log Zx))

The gradient with respect to 6 then becomes

i=B,j=K

VLETH(B0) = g D _2<1°g7fref(y(”) | x®) —logmo(y ") | x1)+
i=1,5=1 (10)
1

Sl :x19) — 1og Z(x >>)v10gm<) | <),

and we can turn this into a maximization problem instead of a minimization problem by multiplying
the right side by —1:

| =Bi=K

V Jpprand(B: §) = B Z <log Teet(y) | x0) — log g (y) | xD)

Y
B%(y(D x0) _ log Z(x(>))V10gﬂ9(y< D | x0),

We multiply the right hand side by 5, rescaling the gradient without changing the minimizer. Also, we
define KL = + ZJ K KL — + Zf Log me(y 89 |) — log mrer(y () | x(i)) and define

=1 Z]K:1 r() = L Z L 7o(y7); x) to rewrite Eq. 4 as log Z(x()) = 5 7@ — KLY
1 i=B,j=K
(4,9) (&3) | x(®
V(B0 = g 12; AV logmy(y () | x0), (12)

where A(47) = (r(id) — 7(9)) — ﬁ(KL(Z’J) — KL"). In sum, TBA appears to update model weights
using a REINFORCE algorithm with a mean-reward baseline [75] and a KL-divergence-regularized
reward [82]. However, note that KAL(M) is only an estimate of the KL divergence in the on-policy
case because off-policy data is not sampled from 7y by definition, causing loss of equivalence to
mean-baseline REINFORCE with a KL-regularized reward in the asynchronous settings that TBA
operates in. Deviating further, TBA may also reset the reference policy similar to Liu et al. [36].

17

B TBA Experiment Details

As discussed in Sections 4 and 5.4, TBA introduces new hyperparameters. Most notably, these include
(1) the sync period k, which is the number of training steps between two successive model-buffer
synchronizations; and (2) the most-on-policy probability m, which is the probability of sampling the
data that is most on-policy — i.e., the samples that were added to the buffer during the most recent
synchronization. When listing hyperparameter values, we clarify those that are specific to TBA and
include references to their discussion/visualization in the text.

For MR and PFT, we implement TBA by building on the RLOO trainer class of the Hugging Face
TRL library [70]. For MR and PFT, we make modifications to the baseline hyperparameters as shown
in Table 2 and Table 3, respectively.

Our RT implementation of TBA built on the TB trainer used in Lee et al. [34], and we largely utilize
their code’s default hyperparameters, with differences noted in Appendix B.3.

B.1 GSMS8K Mathematical Reasoning (MR)

All baselines and TBA results use the same starting point, a RhoMath-1B [35] model SFTed on
GSMSK training data by Kazemnejad et al. [29] — “realtreetune/rho-1b-sft-GSM8K” on Hugging
Face. The baseline model achieves 40.3% test accuracy. For the VinePPO baseline, training time is
estimated using their reported 380 seconds per training step and 650 steps for GSM8K training [29].
We implement the GRPO baseline using its Hugging Face TRL trainer, see Appendix D.1 for details.

Table 2: TBA Training Hyperparameters for the GSM8K MR task.

Hyperparameter Value Reference
Model Rho-1B SFT on GSM8K
Learning Rate 1x107°
Learning Rate Schedule Warmup Stable Decay
Learning Rate Warmup Steps 50
Learning Rate Stable Steps 450
Learning Rate Decay Steps 500
Generation Temperature 0.7
Max Prompt Token Length 512
Response Length 512
Number of Prompts per Batch 7
Number of Completions per Prompt 20 K in Section 4.1
Batch Size (effective) 140
Number of Training Steps 1000
Total Prompts Seen 7000
Total Episodes 140000
TBA-specific hyperparameters
Beta (KL coefficient) Initial Value 0.012 [in Equation 5
Beta Final Value 0.004 S in Equation 5
Beta Linear Decay Schedule End Step 500 B in Equation 5
Number of Samples per Prompt 24 S in Section 4.1
Most-On-Policy Sampling Probability 0.95 m in Section 5.4
Sync Period 2 k in Section 5.4, Figure 2
Number of Searchers 3 Searchers in Figure 2
Number of Trainers 1 Trainer in Figure 2
Reward-Based Sampling Prioritization =~ Uniform Section 4.2
Initial Completions in Buffer 500 Buffer at Step 0 in Figure 2

In Figure 1, TBA uses the settings in Table 2 with a few modifications to shorten training time by
an additional 30%, down to 82 minutes on 4xA100 GPUs. In particular, we observed in initial testing
(see Appendix D) that using the hyperparameters in Table 2 led to no improvement in performance
for the final 300 steps. Thus, we shrank the training duration from 1000 steps to 700 (98000 episodes
with batch size 140). Additionally, we made the following modifications to attempt to reduce the
variance of the shortened run: 350 stable learning rate steps (down from 450), 0.014 Beta Initial Value

18

Table 3: TBA Training Hyperparameters for the TL;DR PFT task. For the PFT task, we accelerate
the decay of Beta. In particular, the Beta Linear Decay Schedule End Step is set to be half the number
of training steps, but we abruptly end this decay and set Beta to its final value at one eighth the
number of training steps (e.g., step 32 for 256 steps). This has the effect of trading off KL/perplexity,
which we found to be relatively low with our TBA setup, for win rate.

Hyperparameter Value Reference
Model Pythia SFTed on TL;DR
Learning Rate 3x 1076
Learning Rate Schedule Linear
Generation Temperature 0.7
Max Token Length 1024
Max Prompt Token Length 512
Response Length 128
Number of Prompts per Batch 8
Number of Completions per Prompt 20 K in Section 4.1
Batch Size (effective) 160
Number of Training Steps 256
Total Prompts Seen 2048
Total Episodes 40960
TBA-specific hyperparameters
Beta (KL coefficient) Initial Value 1 £ in Equation 5
Beta Final Value 0.05 £ in Equation 5
Beta Linear Decay Schedule End Step ~ See caption [in Equation 5
Number of Samples per Prompt 20 S in Section 4.1
Most-On-Policy Sampling Probability 0.5 m in Section 5.4
Sync Period 10 k in Section 5.4, Figure 2
Number of Searchers 3 Searchers in Figure 2
Number of Trainers 1 Trainer in Figure 2
Reward-Based Sampling Prioritization ~ Softmax of Score Section 4.2
Initial Completions in Buffer 10000 Buffer at Step 0 in Figure 2

(up from 0.012). We ran this experiment three times — obtaining performances of 55.8%, 53.9%, and
54.1% — and reported the mean accuracy 54.6% in Figure 1.

Limitations and future work The 700-step result we show in Figure 1 has standard error 0.6%,
which is a little more variance than what we observe in the original 1000 step setup (the blue line in
the bottom left plot of Figure 7 shows the mean and standard errors for the 1000 step runs). Future
work could further explore variance reduction approaches/hyperparameters for shorter runs (and for
TBA/RL more generally).

One way to deal with variance is to choose a checkpoint based on a held out validation set, a strategy
used to produce the VinePPO result [29]. We do not use this approach but note that our results would
likely benefit significantly (= 1%) from it. In particular, each of our runs tends to produce (at some
point during training) a higher performance than the performance at the final step — this is expected if
you consider that the model performance varies around the average value it converges to towards the
end of training (e.g., see again the blue line in the bottom left plot of Figure 7). Despite its being
lower than the maximum performance achieved at any point during training, we report this final step
performance, which is what a user of TBA could expect to obtain without applying techniques like
early-stopping.

B.2 TL;DR Preference Fine Tuning (PFT)

For PFT in Figure 3, we use the settings in Table 3 as well as a longer-duration run with 425 updates.

For PFT in Figure 4, we create the TBA frontier by modifying the training steps, searcher count, and
beta linear decay schedule shown in Table 3. We train for 256, 425, 625, 725, and 825 steps, and we
search with 2, 3, 4, and 7 searcher nodes. We did not notice a significant pattern in performance when
changing searcher count, but we found a tendency for higher KL/perplexity values and win-rates with

19

more training steps (an expected tradeoff from optimizing the policy further). We noticed that the
2.8B model did not create a wide range of KL/perplexity values with these initial runs, so we also
performed runs at that model size (with 825 steps, and with 2 and 4 searchers) using a less rapid beta
linear decay schedule (reaching the beta final value at step 140 instead of step 104). This schedule
change had the effect of reducing the KL/perplexity and win-rate (another expected tradeoff).

For PFT in Table 1, we use the settings in Table 3, except we train for 625 steps (100000 episodes)
because we found use of more steps tended to improve win rate without a significant increase in
perplexity (approximate KL). Additionally, we only use 2 searchers in this run. See Figure 9 for a
depiction of the effects of step count and searcher count.

Limitations and future work All of our PFT results were run in 32-bit precision and without
DeepSpeed, which was used by baselines we compared against [46]. Lower precision and such
training acceleration packages could further improve the speedups we show. Relatedly, for our
2.8B runs, we used gradient checkpointing to fit more examples into a micro batch, which led to
slowdowns at this scale (i.e., we only have a 3.8x speedup over the baseline in this setting). We leave
the optimization of our framework with appropriate packages to future work. Finally, we used a large
number (10000) of initial completions in the buffer, and future work should confirm that a smaller
number (e.g. 1000) works equally well — note that a small number worked well for GSM8K.

B.3 Automated Red Teaming (RT)

Unlike our MR and PFT implementations, our RT implementation uses the code of Lee et al. [34] as
a baseline and thus does not follow the Hugging Face TRL trainer style. We discuss hyperparameters
in the context of their trajectory balance trainer approach below. We adopt their code largely as it
is, with the exception that our TBA implementation uses larger replay buffers than Lee et al. [34] to
accommodate our scaled search for trajectories. Additionally, unlike Lee et al. [34], we remove the
oldest samples when the buffers fill up as opposed to the lowest reward samples.

For the Llama results in Table 6, our hyperparameter choices largely follow those of Lee et al. [34].
We train for 5000 steps with batch size 128. For temperature sampling, we use a low and high of 0.7
and 2.0, respectively. We use a reward schedule horizon of 1000. The language model schedule end
is 1.2, and its schedule’s horizon is 2000. We prioritize sampling based on reward. We use Beta 0.05.
We use sync period (k) 10. We use 6 searchers. We use most-on-policy probability (m) 0.5 and 0.6
in combination with maximum buffer sizes 150000 and 130000, respectively. By having a smaller
maximum buffer size and larger m, the latter setting is expected to focus on more recently generated
data and prioritize reward over diversity, which is what we observe in Table 6.

For the GPT2 results in Figure 5 and Table 6, our hyperparameter choices again largely follow
those of Lee et al. [34]. We train for 5000 steps with batch size 128. We use Beta 0.05. We use
sync period (k) 10. We use most-on-policy probability (1m) 0.5. We cap the maximum buffer size at
100000 in all experiments; we additionally prevent the buffer from growing past its size as of step
4000 to encourage focusing on more recent data (larger most on policy probabilities m may provide a
similar effect). We test searcher counts 2, 6, 14, 30, 62, and we use 3 runs per configuration for error
bars and averages.

Limitations and future work In Table 6, there is a slowdown as the number of searchers scales.
We believe this is largely addressed by a newer version of our code that uses more efficient buffer
communication, but we have not re-run these results yet to confirm this. In any case, developing
more efficient TBA implementations is an interesting direction for future work given TBA’s ability to
effectively leverage large-scale data generation.

C TBA’ Experiment Details

In Figure 6, we compare TBA' to the Dr. GRPO [37] implementation in PRIME-RL [26]. The
hyperparameters used are given in Table 4.

20

Table 4: TBA’ Training Hyperparameters for the MATH-500 MR task.

Hyperparameter Value Reference
Model Qwen 2.5 7B Base
Learning Rate 1x10°°
Generation Temperature 1.0
Max Prompt Sequence Length 1024
Max Model Length 3072
Number of Prompts per Batch 32
Number of Completions per Prompt 16 K in Section 4.1
Batch Size (effective) 512
Number of Training Steps 400
Total Prompts Seen 12800
Total Episodes 204800
TBA’-specific hyperparameters
Beta (KL coefficient) 0.005 £ in Equation 5
Reference policy reset period 50 p in Section 6

D GSMSK Ablation Studies

We adopted the hyperparameters for our GSMS8K result in Figure 1 based on a series of trial
experiments centered around the hyperparameters shown in Table 2. In Figure 7, we show the effects
of changing what we found to be key hyperparameters. We note the following observations about
TBA hyperparameter effects on GSM8K.

1. Unlike PFT, it was important for m to be somewhat large for the GSM8K MR task (Figure
7, top left). Similarly, syncing more frequently was beneficial (Figure 7, top right). Together,
these results suggest that GSM8K performance is more sensitive to off-policyness than
performance on other tasks (e.g., PFT).

2. We found that the WSD schedule could add stability (Figure 7, bottom right).

3. Using smaller Beta Final Values tended to improve performance (Figure 7, bottom left),
but training became unstable around 0.003. This suggests a tradeoff between stability and
accuracy for GSMS8K that is mediated by the KL coefficient 5.

4. A batch size of 140 did not provide significantly better or worse results than larger batch
sizes in initial testing, but smaller batch sizes allow for faster training steps, motivating our
use of 140.

Subsequently, we considered increasing the number of completions per prompt K from 20 to 40. In
Table 5, we see that this reduces variance and improves performance. Critically, this result does not
require longer training times, as we simply reduce the number of unique prompts per batch to keep
the batch size constant.

Table 5: On GSMSK, doubling K improves TBA’s accuracy and variance.

K Test Accuracy Standard Deviation

20 54.61 0.85
40 54.89 0.49

D.1 GRPO Baseline Creation and Training Dynamics Comparison

We implement the GRPO baseline using Hugging Face TRL (version 0.17.0). Relative to the baseline
GRPOConfig hyperparameters, we only change the following: Num Train Epochs = 8, Gradient
Accumulation Steps = 5, and Per Device Train Batch Size = 32. For training speed acceleration, we
use DeepSpeed with ZeRO Stage = 2. We find these settings lead to good GPU memory usage and
utilization on the same 4xA100 (80 GB) node that we used for our TBA experiments. Moreover,
the batch size (640), total training epochs (8), and number of optimization steps (744) are based on

21

Effect of Most-On-Policy Probability Effect of Synchronization Period

0.55 -
0.50- | /\/\\/ /'\
0.45 - /

/ m / k
— 0.8 — 2

— 0.401 0.95 | 1 4

®

]

5 Effect of Beta Final Effect of WSD Schedule

% 0.55

K

h¥4

0]

=

& 0.501

'\\’/’\\/ /\
/
0.45 - |
Beta Final / WSD Schedule
— 0.004 —— False
0.40 0.005 | True
200 400 600 800 1000 200 400 600 800 1000

Training Step

Figure 7: GSMS8K ablation studies. All experiments begin with the base hyperparameters listed in
Table 2 and make the depicted modifications, except when studying the synchronization period £ in
the top right plot (where we use Beta Final Value 0.005 because 0.004 led to instability with & = 4).
We report the mean and standard error from 2 runs of each configuration.

settings chosen for RL with VinePPO [29] — the paper that created the SFT baseline that we apply
GRPO to in our GSM8K experiment (see Figure 1).

To arrive at the GRPO result in Figure 1, we explored several implementation variations of syn-
chronous GRPO. Interestingly, we also tried async GRPO by replacing the loss function used in
our async TBA code with GRPO’s. We tested several hyperparameter settings with async GRPO
inside TBA’s async setup — raising the KL coefficient, lowering the learning rate, and decreasing
off-policyness — but did not find a setting that provided stable learning.

The average training data score (GSMS8K correctness) by training step for our final (synchronous)
GRPO implementation and a random TBA replicate are shown in Figure 8. The final model from
this GRPO run is used to compute the test performance shown in Figure 1, 49.05%. This TBA run
achieves 54.51% test accuracy, a 5% improvement despite the similar training performance levels.

22

0.65
Method

GRPO
0.60 —— TBA

0.50

Mean GSMB8K Training Data Correctness

0 100 200 300 400 500 600 700
Training Step

Figure 8: Training dynamics of GRPO and TBA runs. The TBA performances are heavily
smoothed through an exponential moving average (without smoothing, the TBA curve oscillates such
that the trend is harder to see), whereas the GRPO performances are not smoothed.

Win Rate Perplexity or Approximate KL ({) 1150
° -0.88 °
R 2 1.145
[oe] «©
1.140
0.86
o S
n n
§Q §Q 1.135
n I
2 084 2 1.130
[= f=
'© K
a E = z 1.125
e g .
0.82
1.120
o o
ITe) ITe)
g g -1.115
0.80
2.0 4.0 2.0 4.0
Searcher Count Searcher Count

Figure 9: TL;DR ablation studies. All experiments begin with the base hyperparameters listed in
Table 3 then make the depicted modifications. More searcher nodes and more training steps tend to
improve win rate at the cost of higher perplexity.

E TL;DR Ablation Studies

With TBA, we take many more optimization steps per hour of training than competing methods
take. Accordingly, we sought to understand how taking more steps or using more searchers (to
reach compute-parity with competing methods) affects performance. As shown in Figure 9, win
rate tends to improve with increased compute through changes to these variables, though perplexity
suffers as expected when we over-optimize the policy (in the case of step scaling). It is not clear
why scaling the searcher count seems to have an effect similar to step scaling. However, there is a
notable mechanism through which searcher scaling could have an effect: using more searchers should
reduce the probability of selecting a training prompt that’s been seen before when sampling off-policy
(because scaling the searchers scales the number of unique prompts with completions added to the

23

buffer).” However, the effect size is small and inconsistent enough to suggest this searcher-scaling
trend (in the context of PFT) needs further investigation before it’s confirmed.

F Red-Teaming Additional Results

Table 6: TBA speeds up the wall-clock time required to reach the Pareto frontier for the red-
teaming task. The GFlowNet performances are taken from Lee et al. [34], while the training speeds
are computed by us with their code. With the GPT-2 models, TBA performance improves with
searcher count. With the Llama models, we trade attack toxicity for attack diversity by scaling
the TBA buffer’s maximum size from 130,000 (penultimate row) to 150,000 samples (final row),
retaining more off-policy data.

Attacker / Training Method Hardware Time (h) Speedup Cosine % Toxic
Victim Model Distance Prompts
GFlowNet - Sync 1xV100 119 1x 0.65 96.6
GPT-2/ TBA (Ours) 4xV100 1.7 7x 0.42 94.5
GPT-2 + SFT TBA (Ours) 16x V100 25 4.8x 0.45 96
TBA (Ours) 64x V100 29 4.1x 0.49 97.6
Llama 3.2 1B/ GFlowNet-Sync 1xA100 374 1Ix 0.32 100.0
Llama 3.1 TBA (Ours) 8xA100 5.7 6.6x 0.35 98.1
8B - Instruct TBA (Ours) 8xA100 57 6.6x 0.37 94.8

Notably, the effect of scaling search is different in the case of RT, where there is a single prompt and scaling
searchers makes it more likely that higher-reward samples are found and trained on. Here, with PFT, scaling
search means that more prompts per second have a set of completions generated for them, but any given prompt
is not expected to have higher-reward samples as a result of scaling the searcher count — this is an implementation
choice and could be changed to gain the effect that scaling searchers has with RT, however.

24

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We present empirical results which support the claims about the task perfor-
mance and computation speedups using our proposed framework in Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the method in Section 7 and the limitations of
each of the experiments in Appendix B.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

25

Justification: We do not propose any novel theoretical results in this paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information required to reproduce the results presented
in the paper in Section 5 and Appendix B. Additionally, we also include the code with the
submission to aid reproducibility.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code to reproduce the results in the paper and plan to open
source it. We use publicly available datasets and models in our experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss the experimental details for all the experiments, along with detailed
information about the hyperparameters in Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard error for results in many of the main results
presented in the paper (e.g. Figure 7, Figure 5). However, due to the extensive computational
requirements for fine-tuning language models, and the number of tasks considered, we do
not report multiple seeds for every result.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper clarifies the specific GPU type and quantity used in each experiment,
as well as the runtime durations.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impact of the work in Section 7.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

28

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We focus on the methodology and do not release any trained models or new
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The datasets and models are properly credited in Appendix B and Section 5.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

29

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for experiments in the paper is submitted with basic documentation
for reproduction and a valid license.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowd-sourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve a study with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Our paper presents a novel approach for improving the post-training of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	KL regularized RL as probabilistic inference
	GFlowNets
	Differences from other RL objectives

	TBA: Fast, Scalable LLM Post-Training
	Scaling data collection with Searcher nodes
	Asynchronous updates with Trainer

	Empirical Evaluation
	Tasks
	Metrics and baselines
	 TBA redefines efficiency-performance Pareto frontiers
	Does off-policyness hurt performance?
	Discovery of high-reward samples via scaling search

	Scaling TBA for Larger Models
	Discussion
	TBA Gradient Analysis
	TBA Experiment Details
	GSM8K Mathematical Reasoning (MR)
	TL;DR Preference Fine Tuning (PFT)
	Automated Red Teaming (RT)

	TBA' Experiment Details
	GSM8K Ablation Studies
	GRPO Baseline Creation and Training Dynamics Comparison

	TL;DR Ablation Studies
	Red-Teaming Additional Results

