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Abstract

In real-world scenarios, subgraphs of a larger global graph may be distributed1

across multiple devices or institutions, and only locally accessible due to privacy re-2

strictions, although there may be links between them. Recently proposed subgraph3

Federated Learning (FL) methods deal with those missing links across private local4

subgraphs while distributively training Graph Neural Networks (GNNs) on them.5

However, they have overlooked the inevitable heterogeneity among subgraphs,6

caused by subgraphs comprising different parts of a global graph. For example,7

a subgraph may belong to one of the communities within the larger global graph.8

A naive subgraph FL in such a case will collapse incompatible knowledge from9

local GNN models trained on heterogeneous graph distributions. To overcome10

such a limitation, we introduce a new subgraph FL problem, personalized subgraph11

FL, which focuses on the joint improvement of the interrelated local GNN models12

rather than learning a single global GNN model, and propose a novel framework,13

FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. A crucial14

challenge in personalized subgraph FL is that the server does not know which15

subgraph each client has. FED-PUB thus utilizes functional embeddings of the16

local GNNs using random graphs as inputs to compute similarities between them,17

and use them to perform weighted averaging for server-side aggregation. Further,18

it learns a personalized sparse mask at each client to select and update only the19

subgraph-relevant subset of the aggregated parameters. We validate FED-PUB for20

its subgraph FL performance on six datasets, considering both non-overlapping21

and overlapping subgraphs, on which ours largely outperforms relevant baselines.22

1 Introduction23

A graph, which defines the relationships among instances, can model a wide range of structured data24

including social [7], co-purchasing [23], and collaboration networks [36]. Most of the previous works25

on graph representation learning focus on a single graph, whose nodes and edges collected from26

multiple sources are stored in a central server. For instance, in a social network platform, every user,27

with his/her social networks, contributes to creating a giant network consisting of all users and their28

connections. However, in some practical scenarios, each user/institution collects its own private graph,29

which is only locally accessible due to privacy restrictions. For instance, as described in Zhang et al.30

[45], each hospital may have its own patient interaction network to track their physical contacts or31

co-diagnosis of a disease, however, such a graph may not be shared with others. An obvious challenge32

for such a scenario is how to deal with potentially missing edges between subgraphs [42, 45] that are33

not captured by individual data owners, that may carry important information (See Figure 1 (A)).34

How can we then collaboratively train, without sharing actual data, a neural network with its subgraphs35

distributed across multiple participants (i.e., clients) over different devices or institutions? The most36

straightforward way is to perform Federated Learning (FL) with Graph Neural Networks (GNNs). In37

particular, in such an FL framework, each client will individually train a local GNN on the private38
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Figure 1: (A) An illustration of local subgraphs distributed across multiple participants with overlapping
nodes, missing edges and community structures between subgraphs. (B) Existing subgraph FL methods [42, 45]
expand the local subgraphs to tackle the missing edge problem, but collapse incompatible knowledge from
heterogeneous subgraphs. (C) Our personalized subgraph FL focuses on the joint improvement of local models
working on interrelated subgraphs, such as ones within the same community, by selectively sharing knowledge
across them. (Right:) Knowledge collapse results, where local models belonging to two small communities
(Comm 1 and 2) suffer from large performance degeneration by existing subgraph FL (e.g., FedGNN [42]
and FedSage+ [45]). A personalized FL method, FedPer [2] also underperforms ours since it only focuses on
individual model’s improvement without sharing local personalization layers between similar subgraphs.

local data, while a central server aggregates the locally updated GNN weights from multiple clients39

into one, and then transmits it back to the clients. Recent subgraph FL methods work in such a40

manner [42, 45] while additionally tackling the problem of missing edges between subgraphs. This is41

done as illustrated in Figure 1 (B), where the local subgraph is expanded either by exactly augmenting42

the relevant nodes from the other subgraphs at the other clients [42], or by estimating the nodes using43

the node information in the other subgraphs [45]. However, such sharing of node information may44

compromise data privacy and can incur high communication costs.45

Also, there exists a more important challenge that has been overlooked by the existing subgraph FL46

methods. We observe that they suffer from large performance degeneration (See Figure 1 right), due47

to a lack of consideration of the heterogeneity among the subgraphs, which is natural since subgraphs48

comprise different parts of a global graph. Notably, there could be multiple communities within49

a global graph, each of which is formed by a group of densely connected subgraphs with similar50

characteristics (Figure 1 (A)). For example, some of patient networks from hospitals can be grouped51

by their specialized sectors according to the disease categories, namely psychiatric or ophthalmology.52

Motivated by this challenge, we introduce a novel problem of personalized subgraph FL, whose goal53

is the joint improvement of interrelated local models trained on the interconnected local subgraphs,54

for instance, subgraphs belonging to the same community (See Figure 1 (C)), by sharing weights55

among them. However, tackling personalized subgraph FL is challenging, since we do not know56

which subgraph each client has, due to their local accessibility. To resolve this issue, we use functional57

embeddings of GNNs on random graphs to obtain similarity scores between two local GNNs, inspired58

by a work for neural network search that effectively represents entire neural networks in the vector59

space [17], and then use them to perform weighted averaging of the model weights at the server.60

However, the similarity scores only tell how relevant each local model from the other clients is, but61

not which of the parameters are relevant. Thus we further learn and apply personalized sparse masks62

on the local GNN at each client to obtain only the subnetwork, relevant for the local subgraph. We63

refer to this subgraph FL framework as FEDerated Personalized sUBgraph learning (FED-PUB).64

We extensively validate our FED-PUB on six different datasets with varying numbers of clients,65

under both overlapping and disjoint subgraph FL scenarios. The experimental results show that ours66

significantly outperforms relevant baselines. Further analysis shows that our method can discover67

community structures among subgraphs, and the subgraph-specific masking localizes the knowledge68

with respect to subgraphs belonging to each community. Our main contributions are as follows:69

• We introduce a novel problem of personalized subgraph FL, which aims at collaborative improve-70

ments of the related local models (e.g. subgraphs belonging to the same community), which has71

been relatively overlooked by previous works on graph and subgraph FL.72

• We propose a novel framework for personalized subgraph FL, which performs weighted averaging73

of the local model parameters based on their functional similarities obtained without accessing the74

data, and learns sparse masks to select only the relevant subnetworks for the given subgraphs.75

• We validate our personalized subgraph FL framework on six real-world datasets under two different76

settings, demonstrating its effectiveness over existing subgraph FL baselines.77
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2 Related Work78

Graph Neural Networks Graph representation learning with Graph Neural Networks (GNNs) [10,79

48, 43, 18, 3], which aims to learn the representations of the nodes, the edges, and the entire graph, is80

an extensively studied topic. Most existing GNNs under the message passing scheme [8] iteratively81

represent a node by aggregating features from its neighboring nodes as well as itself. For exam-82

ple, Graph Convolutional Network (GCN) [22] approximates the spectral graph convolutions [12],83

yielding a mean aggregation over neighboring nodes. Similarly, for each node, GraphSAGE [11]84

aggregates the features from its neighbors to update the node representation. Such advances in GNNs85

have led to successes on node and link prediction tasks [22, 47]. However, they are not directly86

applicable to real-world systems with locally distributed graphs, where graphs from different sources87

are not shared across participants, which gives rise to federated learning approaches to train GNNs.88

Federated Learning Federated Learning (FL) [32, 41, 19, 24], aiming to learn a model by aggregat-89

ing model weights trained on local data, is an essential approach for our distributed subgraph learning90

problem. To mention a few, FedAvg [32] locally trains a model for each client and then transmits the91

trained model to a server, while the server aggregates the model weights from local clients and then92

sends the aggregated model back to them. However, since the locally collected data from different93

clients may largely vary, heterogeneity is a crucial issue. To tackle this, FedProx [25] proposes the94

regularization term that minimizes the weight differences between local and global models, which95

prevents the model from diverging by overfitting to the local training data. However, when the local96

data is extremely heterogeneous, it is more appropriate to collaboratively train a personalized model97

for each client rather than learning a single global model [2, 30, 26, 46, 6]. FedPer [2] is such a98

personalized FL method, which shares only the base layers while having local personalized layers99

for each client, to keep the local knowledge. Unlike the commonly studied image and text data,100

graph-structured data is defined by connections between instances, and consequently introduces101

additional challenges: missing edges and shared nodes between private subgraphs. Note that, re-102

garding architectures, there is literature [29, 27, 38, 49] that leverages outputs of neural networks for103

predicting/minimizing outputs across different client models; however, we use functional outputs of104

neural networks to identify interconnected subgraphs, thus ours differs from them methodologically.105

Graph Federated Learning Few recent studies propose to use the FL framework to collaboratively106

train GNNs without sharing graph data [13], which can be broadly classified into subgraph- and107

graph-level methods. Graph-level FL methods assume that different clients have completely disjoint108

graphs (e.g., molecular graphs), and recent works [44, 14] focus on the heterogeneity among non-IID109

graphs (i.e., difference in graph labels across various clients). In contrast to graph-level FL methods110

that have similar challenges to general FL scenarios, the subgraph-level FL problem we target has111

a unique graph-structural challenge, that there exist missing yet probable links between subgraphs,112

since a subgraph is a part of a larger global graph. To deal with such a missing link problem among113

subgraphs, existing methods [42, 45] augment the nodes by requesting the node information in the114

other subgraphs, and then connecting the existing nodes with the augmented ones. However, this115

scheme could compromise data privacy constraints, and also increases communication overhead116

across clients. Unlike existing subgraph FL that focuses on the problem of missing links, our subgraph117

FL method tackles the problem with a completely different perspective, focusing on discovering118

subgraph communities [35, 9, 34], which are groups of densely connected subgraphs.119

3 Personalized Subgraph Federated Learning120

We provide the general descriptions of Graph Neural Networks (GNNs) and Federated Learning (FL),121

and then define our novel problem of personalized subgraph FL lying at the intersection of them.122

Graph Neural Networks A graph G = (V, E) consists of a set of nodes V with n elements and a123

set of edges E with m elements along with its node feature matrix X ∈ Rn×d, where each column124

represents a d-dimensional feature for each node. Further, (u, v) ∈ E represents an edge from a node125

u to a node v. Then, given the graph, Graph Neural Networks (GNNs) [8, 10] generally represent126

each node based on features from its neighbors as well as itself, formally defined as follows:127

H(l+1)
v = UPDATE(l)

(
H(l)

v ,AGGREGATE(l)
({

H(l)
u : ∀u ∈ N (v)

}))
, (1)

where H
(l)
v is the feature matrix for node v at l-th layer, N (v) denotes a set of adjacent nodes of128

node v: N (v) = {u ∈ V | (u, v) ∈ E}, AGGREGATE aggregates the features of v’s neighbors, and129

UPDATE updates the node v’s representation given its previous representation and the aggregated130

representations from the neighbors. H(1) is initialized as input node features X .131
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Federated Learning The objective of Federated Learning (FL) is to collaboratively train a model132

with local private data. Let assume that we have K participants with locally collected data that is not133

accessible from others: Dk = {Xi,yi}Nk
i=1, where Xi is a data instance, yi is its corresponding class134

label, and Nk is the number of data instances at k-th client. Then, for decentralized training with135

local data, a popular FL algorithm, FedAvg [32], works as the following three steps:136

1. (Initialization) At the initial communication round r = 0, the central server first selects K clients137

that are available for training, and initializes their local model parameters as the global parameter138

θ̄, represented as follows: θ(0)
k ← θ̄

(0) ∀k, where θ
(0)
k is the parameters for k-th client.139

2. (Local Updates) Each active local model performs training on private local data Dk to minimize140

the task loss L(Dk;θ
(0)
k ), consequently updating the parameters θ(1)

k ← θ
(0)
k − η∇L.141

3. (Global Aggregation) After local training, the server aggregates the locally learned knowledge142

with respect to the number of training instances, i.e., θ̄(1) ← Nk

N

∑K
k=1 θ

(1)
k with N =

∑
k Nk,143

and distributes the updated global parameters θ̄(1) to the local clients selected at the next round.144

This FL algorithm iterates between Step 2 and 3 until reaching the final round R.145

Challenges in Subgraph FL While the above FL works well on image and text data, due to the146

unique structure of graphs, there exist nontrivial challenges for applying this FL scheme to graph-147

structured data. In particular, unlike with an image domain where each instance Xi is independent148

from the other images, each node v in a graph is always influenced by its relationships to adjacent149

nodes N (v). Moreover, a local graph Gi could be a subgraph of a larger global graph G: Gi ⊆ G. In150

such a case, there could be missing edges between local subgraphs in two different clients: (u, v)151

with u ∈ Vi and v ∈ Vj for clients i and j, respectively. To tackle this missing edge problem, few152

existing subgraph FL methods [42, 45] estimate the nodes from a local subgraph Gk based on the153

node information from the subgraphs at other clients Gi ∀i ̸= k, and then extend the existing nodes154

with the estimated ones. However, this augmentation scheme incurs high communication costs as it155

requires sharing node information across clients, which may also violate data privacy constraints [1].156

Yet, there exists another issue that makes subgraph FL even more challenging. Assume that we have157

a global graph consisting of all the subgraphs. Then, there exists communities of such subgraphs [35,158

9, 34], where subgraphs within the same community are more densely connected to each other159

than subgraphs outside the community. Formally, a global graph G can be decomposed into T160

different communities: Ci ⊆ G ∀i = 1, ..., T , where i-th community Ci = (Vi, Ei) consists of161

densely connected nodes. Then, in a subgraph FL problem, each client has a local subgraph Gj that162

belongs to at least a single community1: Ci =
⋃J

j=1 Gj . Note that, based on the theory of network163

homophily [33], such connected subgraphs within the same community have similar properties, while164

subgraphs in two opposite communities are not. Such distributional heterogeneity across communities165

may lead a naive FL algorithm to collapse incompatible knowledge across different communities.166

Personalized Subgraph FL To prevent the above knowledge collapse issue, we aim to personalize167

the subgraph FL algorithm by performing weighted averaging of the local model parameters at168

the server, rather than learning a single set of global parameters; thereby capturing the subgraph169

community structures among interrelated subgraphs. Formally, the objective of existing subgraph170

FL [42, 45, 28] is as follows: minθ
∑

Gi⊆G L(Gi;θ). However, a major drawback of such a scheme171

is that, since the subgraphs in two different communities with sparse connections are extremely172

heterogeneous due to network homophily [33], finding a universal set of parameters (i.e., θ) that work173

on all tasks will result in finding a suboptimal parameter set. To address such limitations of existing174

subgraph FL, we formulate a novel problem of personalized subgraph FL, formalized as follows:175

min(θi)

∑
Gi⊆G

L(Gi;θi), θi ←
∑K

j=1
αijθj with αik ≫ αil for Gk ⊆ C and Gl ⊈ C, (2)

where θi is the weight for subgraph Gi belonging to community C, and αij is the coefficient for176

weight aggregation which we will specify in Section 4.1. This formulation promotes the collaborative177

learning across multiple local models that work on the interrelated subgraphs that belong to the same178

community, by assigning larger weights on them.179

1For simplicity, we assume that a subgraph belongs to only a single community, however, the formulation
does not change even when a subgraph can belong to multiple communities.
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Figure 2: (A) Two communities, each of which consists of one/two subgraphs. (B) Client Similarity Matching:
we forward randomly generated graphs to models f(Ḡ;θ), and then obtain the functional embeddings of them
h̃, which are then used to estimate the similarities between subgraphs. The similarities are used in the weight
aggregation, resulting in the personalized model weights θ̄. (C) Weight Masking: the transmitted weights from
the server to clients θ̄ are masked and shifted by local masks for localization to the local subgraph distribution.

4 Federated Personalized Subgraph Learning (FED-PUB) Framework180

Our goal of personalized subgraph FL is to jointly improve the local models trained on the inter-181

connected local subgraphs forming the community structures. To this end, we propose to compute182

subgraph similarity scores for detecting communities, and to mask subgraph-irrelevant weights.183

4.1 Subgraph Similarity Estimation for Detecting Subgraph Community184

We aim to reflect the community structure consisting of a group of densely connected subgraphs, by185

sharing more weights among subgraphs in the same community, as formalized in equation 2. Due to186

network homophily where similar instances in the graph are more associated with each other [33], the187

subgraphs within the same community should have similar properties. Therefore, if one can measure188

the subgraph similarities, we can group the similar ones into the community. However, measuring the189

similarity between local subgraphs is challenging since we do not know which subgraph each client190

has due to local accessibility. How can we then compute subgraph similarities, without accessing191

them? To this end, we aim to approximate the subgraph similarity at local clients using auxiliary192

information obtained from the local GNN models that work on the subgraphs.193
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Subgraph Similarity Estimation with Model Parameters For194

measuring the similarity between subgraphs at each client, without195

accessing them, we may use the model parameters as proxies, as196

follows: S(i, j) = (θi · θj)/(∥θi∥∥θj∥), where θ is a flattened pa-197

rameter into the vector, and S is a similarity measure. This may198

sound reasonable since the GNN model trained on the subgraph will199

embed its knowledge into its parameters. However, this scheme has200

a notable drawback that similarity measured in the high-dimensional201

parameter space is not meaningful due to the curse of dimension-202

ality [4], and that the cost of calculating the similarity between203

parameters grows rapidly as the model size increases (See Figure 3).204

Subgraph Similarity Estimation with Functional Embedding To tackle the limitations of using205

parameter distance, we propose to measure the functional similarity of neural networks by feeding the206

same input to every local client and then calculating the similarities using their outputs, inspired by a207

work for neural network search [17]. The main intuition is that we can consider the transformation208

defined with a neural network as a function, and we measure the functional similarity of two networks209

by the distance of their outputs for the same input. However, unlike the previous work [17] that210

tackles image classification, which uses Gaussian noises as inputs, we use random graphs as inputs211

as we work with GNNs. Formally, let G̃ = (Ṽ, Ẽ) be a random community graph obtained from a212

stochastic block model [15], where subgraphs within the community have more edges between them213

than edges across the communities. Further, Ṽ is randomly initialized from the normal distribution.214

Then, the similarity between two functions defined by GNNs at clients i and j is defined as follows:215

S(i, j) =
h̃i · h̃j

∥h̃i∥∥h̃j∥
, h̃i = AVG(f(G̃;θi)) and h̃j = AVG(f(G̃;θj)), (3)

where h̃ is the averaged output of all node embeddings for input G̃ with AVG operation to reduce the216

dimensionality of the output from n× d to d, for n nodes with d-dimensional node features.217
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Personalized Weight Aggregation based on Subgraph Similarity With equation 3, the remaining218

step is then to share the model weights between models working on similar subgraphs belonging to219

the same community. However, entirely ignoring the model parameters from different communities220

may result in exploiting only the local objective while ignoring globally useful weights, which may221

result in performance degeneration. Therefore, we perform weighted averaging of all the local models222

from the other clients based on their functional (subgraph) similarities, as follows (Figure 2 (B)):223

θ̄i ←
∑

j
αij · θj , αij =

exp(τ · S(i, j))∑
k exp(τ · S(i, k))

, (4)

where αij is a normalized similarity between clients i and j, and τ is a hyperparameter for scaling224

the unnormalized similarity score. Note that increasing the value of τ (e.g., 10) will result in model225

averaging done almost exclusively among subgraphs detected as belonging to the same community.226

This personalized scheme handles two challenges in subgraph FL. First, in contrast to the global227

weight aggregation scheme which easily collapses the knowledge from heterogeneous communities228

into a single model, our subgraph FL allows the models belonging to different communities to obtain229

model weights that are beneficial for each community. Also, the missing edges between subgraphs230

that have been explicitly handled by previous works [42, 45] could be also implicitly considered by231

assigning larger weights to models within the same community (See Figure 10). This also enhances232

data privacy while minimizing the communication costs between probably linked subgraphs.233

4.2 Adaptive Weight Masking for Selecting Subgraph-Relevant Parameters234

With the previous similarity matching scheme, we can effectively group GNN models that belong to235

the same community, thus preventing the collapsing of irrelevant knowledge from other communities.236

However, the scalar weighting scheme only considers how much each local model from other clients237

is relevant for the subgraph task, but not which parameters are relevant. Thus we propose a scheme to238

select only the relevant parameters from the aggregated model weights transmitted from the server.239

Personalized Parameter Masking We perform selective training and updating of the aggregated240

parameters by modulating and shifting them, using sparse local masks. Formally, let µk be a local241

mask for a client k. Then, our local model weight is obtained by modulating the weights from the242

server, as follows: θk = θ̄k ⊙ µk, where ⊙ is an element-wise multiplication operation between243

the globally given weight θ̄k and the local mask µk. Note that the local mask is a free variable244

and is not shared across clients. Also, we initialize µk as ones, in order to start training with the245

globally initialized model parameters without modification. We then further promote sparsity on246

the mask, which brings two key advantages. First, we can transmit only the partial parameters, that247

have not been sparsified at the client to the server rather than sending all parameters, thus reducing248

the communication costs. Moreover, if local masks are sufficiently sparse, the local models can be249

trained faster, given that zero-skipping operations are supported (Figure 2 (C)). To take these benefits250

in sparsity, we use L1 regularizer on µk when performing local optimization, as shown in equation 5.251

Preventing Local Divergence with Proximal Term As masks are trained only with limited local252

data without parameter sharing, they may be easily overfitted to the training instances in each client.253

To alleviate this issue, we adopt the proximal term proposed in Li et al. [25] that regularizes the locally254

updated models θk to be closer to the globally given model θ̄k, therefore, preventing the model from255

extremely drifting to the local training distribution. To sum up, at k-th client, our objective function256

including sparsity and proximal terms with L1 and L2 losses is denoted as follows:257

min(θk,µk)
L(Dk;θk,µk) + λ1∥µk∥1 + λ2∥θk − θ̄k∥22, (5)

where L is the conventional cross-entropy loss function, and λ1 and λ2 are scaling hyper-parameters.258

5 Experiments259

We now experimentally validate our FED-PUB on six different datasets under both the overlapping260

and disjoint subgraph scenarios with varying client numbers, with node classification tasks.261

5.1 Experimental Setups262

Datasets Following the setup from Zhang et al. [45], we construct the distributed subgraphs from263

the benchmark dataset by dividing it into the number of participants, each of which has a subgraph264

that is a part of an original graph. Specifically, we use six datasets: Cora, CiteSeer, Pubmed and265
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Table 1: Results on the overlapping node scenario. The reported results are mean and standard deviation over
three different runs. Only the statistically significant performances (p > 0.05) are highlighted in bold.

Cora CiteSeer Pubmed -

Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients -

Local 73.98 ± 0.25 71.65 ± 0.12 76.63 ± 0.10 65.12 ± 0.08 64.54 ± 0.42 66.68 ± 0.44 82.32 ± 0.07 80.72 ± 0.16 80.54 ± 0.11 -

FedAvg 76.48 ± 0.36 53.99 ± 0.98 53.99 ± 4.53 69.48 ± 0.15 66.15 ± 0.64 66.51 ± 1.00 82.67 ± 0.11 82.05 ± 0.12 80.24 ± 0.35 -
FedProx 77.85 ± 0.50 51.38 ± 1.74 56.27 ± 9.04 69.39 ± 0.35 66.11 ± 0.75 66.53 ± 0.43 82.63 ± 0.17 82.13 ± 0.13 80.50 ± 0.46 -
FedPer 78.73 ± 0.31 74.18 ± 0.24 74.42 ± 0.37 69.81 ± 0.28 65.19 ± 0.81 67.64 ± 0.44 85.31 ± 0.06 84.35 ± 0.38 83.94 ± 0.10 -
GCFL 78.84 ± 0.26 73.41 ± 0.27 76.63 ± 0.16 69.48 ± 0.39 64.92 ± 0.18 65.98 ± 0.30 83.59 ± 0.25 80.77 ± 0.12 81.36 ± 0.11 -
FedGNN 70.63 ± 0.83 61.38 ± 2.33 56.91 ± 0.82 68.72 ± 0.39 59.98 ± 1.52 58.98 ± 0.98 84.25 ± 0.07 82.02 ± 0.22 81.85 ± 0.10 -
FedSage+ 77.52 ± 0.46 51.99 ± 0.42 55.48 ± 11.5 68.75 ± 0.48 65.97 ± 0.02 65.93 ± 0.30 82.77 ± 0.08 82.14 ± 0.11 80.31 ± 0.68 -

FED-PUB (Ours) 79.60 ± 0.12 75.40 ± 0.54 77.84 ± 0.23 70.58 ± 0.20 68.33 ± 0.45 69.21 ± 0.30 85.70 ± 0.08 85.16 ± 0.10 84.84 ± 0.12 -

Amazon-Computer Amazon-Photo ogbn-arxiv All
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients Avg.
Local 88.50 ± 0.20 86.66 ± 0.00 87.04 ± 0.02 92.17 ± 0.12 90.16 ± 0.12 90.42 ± 0.15 62.52 ± 0.07 61.32 ± 0.04 60.04 ± 0.04 76.72

FedAvg 88.99 ± 0.19 83.37 ± 0.47 76.34 ± 0.12 92.91 ± 0.07 89.30 ± 0.22 74.19 ± 0.57 63.56 ± 0.02 59.72 ± 0.06 60.94 ± 0.24 73.38
FedProx 88.84 ± 0.20 83.84 ± 0.89 76.60 ± 0.47 92.67 ± 0.19 89.17 ± 0.40 72.36 ± 2.06 63.52 ± 0.11 59.86 ± 0.16 61.12 ± 0.04 73.38
FedPer 89.30 ± 0.04 87.99 ± 0.23 88.22 ± 0.27 92.88 ± 0.24 91.23 ± 0.16 90.92 ± 0.38 63.97 ± 0.08 62.29 ± 0.04 61.24 ± 0.11 78.42
GCFL 89.01 ± 0.22 87.24 ± 0.09 87.02 ± 0.22 92.45 ± 0.10 90.58 ± 0.11 90.54 ± 0.08 63.24 ± 0.02 61.66 ± 0.10 60.32 ± 0.01 77.61
FedGNN 88.15 ± 0.09 87.00 ± 0.10 83.96 ± 0.88 91.47 ± 0.11 87.91 ± 1.34 78.90 ± 6.46 63.08 ± 0.19 60.09 ± 0.04 60.51 ± 0.11 73.66
FedSage+ 89.24 ± 0.15 81.33 ± 1.20 76.72 ± 0.39 92.76 ± 0.05 88.69 ± 0.99 72.41 ± 1.36 63.24 ± 0.02 59.90 ± 0.12 60.95 ± 0.09 73.12

FED-PUB (Ours) 89.98 ± 0.08 89.15 ± 0.06 88.76 ± 0.14 93.22 ± 0.07 92.01 ± 0.07 91.71 ± 0.11 64.18 ± 0.04 63.34 ± 0.12 62.55 ± 0.12 79.53
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Figure 4: Convergence plots for the overlapping node scenario. We visualize the test accuracy curves for all
six datasets corresponding to Table 1, over 100 communication rounds with 10 clients.

ogbn-arxiv for citation graphs [39, 16]; Computer and Photo for product graphs [31, 40]. We then266

divide the original graph into multiple subgraphs using the METIS graph partitioning algorithm [20].267

Note that, unlike the Louvain algorithm [5] presented in Zhang et al. [45] that requires to further268

merge partitioned subgraphs into particular numbers of subgraphs since it cannot specify the number269

of subsets (i.e., clients for FL), the METIS algorithm can specify the number of subsets, thus making270

more reasonable experimental settings in subgraph FL (See Section C.2 of the supplementary file).271

For the non-overlapping scenario where there are no duplicate nodes between subgraphs, we use the272

output from the METIS as it provides the non-overlapping partitions. Meanwhile, for the overlapping273

scenario where nodes are duplicated among subgraphs, we randomly sample the subgraphs multiple274

times from the partitioned graph. For more details, please see Section B of the supplementary file.275

Baselines 1) FedAvg [32] and 2) FedProx [25]: The most popular FL baselines. 3) FedPer [2]: A276

personalized FL baseline without sharing personalized layers. 4) FedGNN [42] and 5) FedSage+ [45]:277

Subgraph FL baselines which we mainly target. 6) GCFL [44]: A graph FL baseline which learns278

completely disjoint graphs as in clustered FL [37], adopted for subgraph FL. 7) Local: A baseline279

without sharing weights with other clients. 8) FED-PUB: Our personalized subgraph FL including280

subgraph similarity matching and weight masking. See Section B of the supplementary file for details.281

Implementation Details We set the GCN [22] with two layers as the base GNN for all models.282

We perform federated learning over 100 communication rounds for Cora, CiteSeer and Pubmed283

datasets, while 200 rounds for Computer, Photo and arxiv datasets, considering the size of datasets.284

The local training epoch is selected in the range of {1, 2, 3} depending on the dataset size (e.g.,285

Computer is three while CiteSeer is one)2. We use the Adam optimizer [21] for model optimization.286

We then measure the node classification accuracy on subgraphs at the client-side, and then average287

the performance across clients. We provide further details in Section B of the supplementary file.288

5.2 Experimental Results289

Main Results Table 1 shows the node classification performance under the overlapping subgraph290

scenario, in which our FED-PUB statistically (p > 0.05) significantly outperforms all the baselines.291

In particular, while FedGNN and FedSage+ are two pioneer works for the subgraph FL problem,292

they significantly underperform personalized FL methods including ours, especially at the larger293

number of clients. This is even surprising as they share node information between clients for handling294

the missing edge problem, yet we suppose such inferior performance comes from naive averaging295

of local weights without consideration of community structures. While personalized FL baselines296

including FedPer and GCFL show decent performance by alleviating the knowledge collapse between297

subgraphs with local parameters or clustering, they still largely underperform ours as they are not298

concerned with the aggregation between similar subgraphs that form a community (i.e., GCFL uses a299

bi-partitioning scheme where it iteratively divides a group of subgraphs within the same community300

2We found communication rounds and local epochs are important factors to prevent overfitting of all models.
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Table 2: Results on the non-overlapping node scenario. The reported results are mean and standard deviation
over three different runs. Only the statistically significant performances (p > 0.05) are highlighted in bold.

Cora CiteSeer Pubmed -

Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients -

Local 81.30 ± 0.21 79.94 ± 0.24 80.30 ± 0.25 69.02 ± 0.05 67.82 ± 0.13 65.98 ± 0.17 84.04 ± 0.18 82.81 ± 0.39 82.65 ± 0.03 -

FedAvg 74.45 ± 5.64 69.19 ± 0.67 69.50 ± 3.58 71.06 ± 0.60 63.61 ± 3.59 64.68 ± 1.83 79.40 ± 0.11 82.71 ± 0.29 80.97 ± 0.26 -
FedProx 72.03 ± 4.56 60.18 ± 7.04 48.22 ± 6.81 71.73 ± 1.11 63.33 ± 3.25 64.85 ± 1.35 79.45 ± 0.25 82.55 ± 0.24 80.50 ± 0.25 -
FedPer 81.68 ± 0.40 79.35 ± 0.04 78.01 ± 0.32 70.41 ± 0.32 70.53 ± 0.28 66.64 ± 0.27 85.80 ± 0.21 84.20 ± 0.28 84.72 ± 0.31 -
GCFL 81.47 ± 0.65 78.66 ± 0.27 79.21 ± 0.70 70.34 ± 0.57 69.01 ± 0.12 66.33 ± 0.05 85.14 ± 0.33 84.18 ± 0.19 83.94 ± 0.36 -
FedGNN 81.51 ± 0.68 70.12 ± 0.99 70.10 ± 3.52 69.06 ± 0.92 55.52 ± 3.17 52.23 ± 6.00 79.52 ± 0.23 83.25 ± 0.45 81.61 ± 0.59 -
FedSage+ 72.97 ± 5.94 69.05 ± 1.59 57.97 ± 12.6 70.74 ± 0.69 65.63 ± 3.10 65.46 ± 0.74 79.57 ± 0.24 82.62 ± 0.31 80.82 ± 0.25 -

FED-PUB (Ours) 83.70 ± 0.19 81.54 ± 0.12 81.75 ± 0.56 72.68 ± 0.44 72.35 ± 0.53 67.62 ± 0.12 86.79 ± 0.09 86.28 ± 0.18 85.53 ± 0.30 -

Amazon-Computer Amazon-Photo ogbn-arxiv All
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients Avg.
Local 89.22 ± 0.13 88.91 ± 0.17 89.52 ± 0.20 91.67 ± 0.09 91.80 ± 0.02 90.47 ± 0.15 66.76 ± 0.07 64.92 ± 0.09 65.06 ± 0.05 79.57

FedAvg 84.88 ± 1.96 79.54 ± 0.23 74.79 ± 0.24 89.89 ± 0.83 83.15 ± 3.71 81.35 ± 1.04 65.54 ± 0.07 64.44 ± 0.10 63.24 ± 0.13 74.58
FedProx 85.25 ± 1.27 83.81 ± 1.09 73.05 ± 1.30 90.38 ± 0.48 80.92 ± 4.64 82.32 ± 0.29 65.21 ± 0.20 64.37 ± 0.18 63.03 ± 0.04 72.84
FedPer 89.67 ± 0.34 89.73 ± 0.04 87.86 ± 0.43 91.44 ± 0.37 91.76 ± 0.23 90.59 ± 0.06 66.87 ± 0.05 64.99 ± 0.18 64.66 ± 0.11 79.94
GCFL 89.07 ± 0.91 90.03 ± 0.16 89.08 ± 0.25 91.99 ± 0.29 92.06 ± 0.25 90.79 ± 0.17 66.80 ± 0.12 65.09 ± 0.08 65.08 ± 0.04 79.90
FedGNN 88.08 ± 0.15 88.18 ± 0.41 83.16 ± 0.13 90.25 ± 0.70 87.12 ± 2.01 81.00 ± 4.48 65.47 ± 0.22 64.21 ± 0.32 63.80 ± 0.05 75.23
FedSage+ 85.04 ± 0.61 80.50 ± 1.30 70.42 ± 0.85 90.77 ± 0.44 76.81 ± 8.24 80.58 ± 1.15 65.69 ± 0.09 64.52 ± 0.14 63.31 ± 0.20 73.47

FED-PUB (Ours) 90.74 ± 0.05 90.55 ± 0.13 90.12 ± 0.09 93.29 ± 0.19 92.73 ± 0.18 91.92 ± 0.12 67.77 ± 0.09 66.58 ± 0.08 66.64 ± 0.12 81.59
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Figure 5: Convergence plots for the non-overlapping node scenario. We visualize the test accuracy curves for
all six datasets corresponding to Table 2, over 100 communication rounds with 10 clients.

into two disjoint sets). We then further conduct the experiments on the disjoint subgraph scenarios301

(non-overlapping scenario), where nodes are not overlapped between subgraphs, which makes the302

subgraph FL problem more heterogeneous. As shown in Table 2, FED-PUB consistently outperforms303

all existing baselines in such a challenging scenario, demonstrating the efficacy of ours.304

Fast Local Convergence As shown in Figure 4 and 5, our FED-PUB converges rapidly, compared305

against baselines including personalized FL models. We conjecture that this is because, not only ours306

accurately identifies subgraphs forming the community and then shares weights largely across them307

for promoting the joint improvement of them, but also masking subgraph-irrelevant weights received308

from the server for localization to local subgraphs, demonstrated in the next two paragraphs.309

Accurate Community Detection We aim to show whether FED-PUB accurately groups subgraphs310

comprising a community during weight aggregation. If two different subgraphs have many missing311

edges or have similar label distributions, we usually regard those two as within the same commu-312

nity [35, 9, 34]. Thereby, as shown in Figure 6 (a) and (b), there are four different communities by the313

interval of five, and the last two communities further comprise a larger community. Then, as shown314

in Figure 6 (c) and (d), FED-PUB detects obvious four communities at the first few rounds, and then315

captures the larger yet somewhat less-obvious community consisting of two smaller communities.316

Ablation Study To analyze the contribution of each component, we conduct the ablation studies.317

As shown in Figure 7, we observe that each of our subgraph similarity matching and weight masking318

significantly improves the performances from the naive FedAvg, while the performance is much319

improved when using both together. However, the benefit from each component is different across320

overlapping and non-overlapping scenarios. In particular, in the former scenario where a group of321

highly overlapped subgraphs usually comprise a community, similarity matching for community322

detection is more beneficial since capturing the community would promote the joint improvement of323

subgraphs belonging to the same community. However, in the non-overlapping scenarios, subgraphs324

within the same community become lesser similar, thus selectively using the aggregated model325

weights from the server with personalized weight masks improves the performance a lot.326

Communication Efficiency Another notable advantage of using the sparse masks is that we can327

reduce the communication costs at every FL round, as well as the model size for faster training, which328

we demonstrate in Table 8. In particular, Table 8 shows that existing subgraph FL methods require329

more than two times larger communications costs, measured by adding both the client-to-server and330

server-to-client costs, compared against the naive FedAvg, since they require to transfer additional331

node information between clients for estimating the probable nodes on the subgraphs. Contrarily, our332

FED-PUB has significantly lower communication costs and lower model sizes by using the sparse333

masks on the model weights: transmitting and training with only the partial parameters not sparsified334

at the client. Further, as shown in ours variants in Table 8, we can manage the trade-off between the335

model sparsity and the performance by controlling the hyperparameter for sparsity regularization, λ1.336
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Figure 6: The heatmaps of the community structure on the overlap-
ping node scenario with Cora (20 clients). Dark color indicates lots
of missing edges between subgraphs (a) or high similarities in labels
(b). (c) and (d) are functional similarities captured by our FED-PUB.
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(a) Overlapping
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(b) Non-overlapping

Figure 7: Ablation studies of our FED-
PUB on both the overlapping (a) and non-
overlapping (b) subgraph scenarios, on
the Cora dataset.

Model Acc. [%] Model Size [%] Cost [%]
FedAvg 76.48 ± 0.36 100.00 ± 0.00 100.00 ± 0.00

FedGNN 70.63 ± 0.83 100.00 ± 0.00 214.94 ± 0.00
FedSage+ 77.52 ± 0.46 100.00 ± 0.00 276.84 ± 0.00
GCFL 78.84 ± 0.26 100.00 ± 0.00 100.00 ± 0.00

Ours (λ1=9e-1) 77.36 ± 0.99 25.13 ± 0.34 37.70 ± 0.56
Ours (λ1=7e-1) 79.46 ± 0.41 42.59 ± 1.33 63.89 ± 1.99
Ours (λ1=5e-1) 79.89 ± 0.12 57.07 ± 0.52 85.61 ± 0.78

Figure 8: Analysis on efficiencies of communi-
cation costs and model sizes.
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Figure 9: Varying the local
epochs with accuracy curves.
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Figure 10: Performance on
neighboring subgraphs.

Varying Local Epochs As shown in Figure 9, when we increase the number of communication337

rounds and the local steps, the model diverges to the local subgraphs (i.e., overfitting), due to the338

small number of training instances and the direct connection between training and test nodes: struggle339

to generalize to the test instances. However, our model with the proximal term in equation 5 alleviates340

this issue, therefore, maintaining the highest local performance. Notably, the performance with five341

local epochs is inferior to the performance of one epoch, which indicates that increasing the local342

epochs does not always bring advantages and properly tuning them is important for subgraph FL.343

Handling Missing Edges To measure whether FED-PUB can handle the missing edge problem:344

information is not shared between two neighboring subgraphs due to the missing edges, we use345

the local model trained on the local subgraph for evaluating the performance on its neighboring346

subgraph, in which the local subgraph has the most missing edges to its neighboring subgraph.347

Specifically, in Figure 10, (Neighbor) denotes the subgraph performance evaluated by its neighbor348

model, while (Local) denotes the subgraph performance from its own local model. Then, the high349

performance on (Neighbor) measure means two associated subgraphs share meaningful knowledge350

without having explicit edges between them, thereby solving the missing edge problem. Note that,351

existing subgraph FL explicitly augments the nodes and edges for capturing the potential information352

flow over the missing edges between subgraphs, while ours implicitly shares weights a lot across353

similar subgraphs within the same community. Figure 10 shows that ours achieves the significantly354

superior performance on the neighboring subgraph problem against subgraph FL baselines, which355

confirms that ours has an advantage on the missing edge problem by meaningfully sharing knowledge356

between two subgraphs having potentially missing edges, without explicitly estimating them.357

6 Conclusion358

We introduced a novel problem of personalized subgraph FL, which focuses on the joint improvement359

of local GNNs working on interrelated subgraphs (e.g. subgraphs belonging to the same community),360

by selectively utilizing knowledge from other models. The proposed personalized subgraph FL is361

highly challenging due to 1) difficulty of computing similarities between local subgraphs that are362

only locally accessible, and 2) knowledge collapse among local models that work on heterogeneous363

subgraphs during weight aggregation. To this end, we proposed a novel personalized subgraph FL364

framework, referred to as FEDerated Personalized sUBgraph learning (FED-PUB), which computes365

the similarities across subgraphs using functional embeddings of their local GNNs on random graphs,366

and uses them to perform a weighted average of the local models for each client. Further, we mask out367

globally given weights to focus on only the relevant subnetwork for each client (or community). We368

extensively validated our framework on multiple benchmark datasets with both overlapping and non-369

overlapping subgraphs, on which our FED-PUB significantly outperforms relevant baselines. Further370

analyses show the effectiveness of the subgraph similarity matching for detecting the community371

structures, as well as the weight masking for tackling the subgraph heterogeneity. We provide the372

limitations and potential societal impacts of our work in Section D of the supplementary file.373
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