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Abstract

Reinforcement learning utilizing kernel ridge regression to predict the expected
value function represents a powerful method with great representational capac-
ity. This setting is a highly versatile framework amenable to analytical results.
We consider kernel-based function approximation for RL in the infinite horizon
average reward setting, also referred to as the undiscounted setting. We propose
an optimistic algorithm, similar to acquisition function based algorithms in the
special case of bandits. We establish novel no-regret performance guarantees for
our algorithm, under kernel-based modelling assumptions. Additionally, we derive
a novel confidence interval for the kernel-based prediction of the expected value
function, applicable across various RL problems.

1 Introduction

Reinforcement learning (RL) has demonstrated substantial practical success across a variety of
application domains, including gaming (Silver et al., 2016; Lee et al., 2018; Vinyals et al., 2019),
autonomous driving (Kahn et al., 2017), microchip design (Mirhoseini et al., 2021), robot control
(Kalashnikov et al., 2018), and algorithmic search (Fawzi et al., 2022). This empirical success
has prompted deeper investigations into the analytical understanding of RL, especially in complex
environments. Over the past decade, significant advances have been made in establishing theoretically
grounded algorithms for various settings. In this work, we focus on the infinite horizon average
reward setting, also known as the undiscounted setting (Wei et al., 2020, 2021). This setting is
particularly well-suited for applications that involve continuing operations not divided into episodes
such as load balancing and stock market operations. In contrast to the episodic setting (Jin et al.,
2020) and the discounted setting (Zhou et al., 2021), theoretical understanding of RL algorithms is
relatively limited for the undiscounted setting. We develop a computationally efficient algorithm and
establish its theoretical performance guarantees in the undiscounted case.

There is a natural progression in the complexity of RL models corresponding to the structural
complexity of the Markov Decision Process (MDP). This progression ranges from tabular models to
linear, kernel-based, and deep learning-based models. The kernel-based structure is an extension of
linear structure to an infinite-dimensional linear model in the feature space of a positive definite kernel,
resulting in a highly versatile model with great representational capacity for nonlinear functions. In
addition, the closed-form expressions for the prediction and the uncertainty estimate in kernel-based
models allow the development of algorithms based on nonlinear function approximation that are
amenable to theoretical analysis. Kernel-based models also serve as an intermediate step towards
understanding the deep learning-based models (see, e.g., Yang et al., 2020) based on the Neural
Tangent (NT) kernel approach (Jacot et al., 2018).
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The infinite-horizon average-reward setting has been extensively explored under the tabular struc-
ture (Auer et al., 2008; Wei et al., 2020; Zhang and Xie, 2023). Under the performance measure of
regret, defined as the difference in the total reward achieved by a learning algorithm over T steps
and that of the optimal stationary policy, performance bounds of O(poly(|S|, |A|)

√
T ) have been

established (see, e.g., Zhang et al., 2020), where S and A represent the state and action spaces,
respectively, and the regret grows polynomial with their sizes. It is assumed for these results that
the MDP is weakly communicating, a condition necessary for achieving sublinear regret (Bartlett
and Tewari, 2009). Averaged over T steps, the regret diminishes as T increases, thereby offering
what is known as a no-regret performance guarantee. The applicability of the tabular setting is
limited, as many real-world problems feature very large or potentially infinite state-action spaces.
Consequently, recent literature has explored the use of function approximation in RL, particularly
through linear models (Abbasi-Yadkori et al., 2019a,b; Hao et al., 2021; Wei et al., 2021). This
approach represents the value function or the transition model via a linear transformation applied to a
predefined feature mapping. In the linear setting, regret bounds of O((dT )

3
4 ) have been established

(Wei et al., 2021), where d represents the ambient dimension of the linear feature map. Kernel-based
models can be considered as linear models in the feature space of the kernel. That, however, is
often infinite dimensional (d = ∞). As such, the results with linear models do not translate to the
kernel-based settings, necessitating novel analytical techniques. Also, for a discussion on further
limitations of the linear models, see Lee and Oh (2023).

In this work, we propose the first RL algorithm in the infinite horizon average reward setting with
non-linear function approximation using kernel-ridge regression. This is one of the most general
models that lends well to theoretical analysis. Our algorithm, referred to as Kernel-based Upper
Confidence Bound (KUCB-RL), utilizes kernel ridge regression to build predictor and uncertainty
estimates for the expected value function. Inspired by the principle of optimism in the face of
uncertainty and equipped with these statistics, KUCB-RL builds an upper confidence bound on the
state-action value function over a future window of w steps. This bound serves as a proxy qt, at
each step t, for the state-action value function over this future window. At each step t with the
current state st, the action is selected greedily with respect to this proxy: at = arg maxa∈A qt(st, a).
This approach resembles the acquisition function based algorithms such as GP-UCB and GP-TS,
using Upper Confidence Bound and Thompson sampling, respectively, in the context of kernel-based
bandits, also known as Bayesian optimization (Srinivas et al., 2010; Chowdhury and Gopalan, 2017).
Kernel-based bandit setting corresponds to the degenerate case of |S| = 1. In comparison, in the RL
setting, the action is selected based on the current state, and the reward depends on both the state
and the action. A kernel-based model is used to provide predictions for the expected value function,
which varies due to the Markovian nature of the temporal dynamics. This makes the RL problem
significantly more challenging than the bandit problem where the predictions are derived for a fixed
reward function. To address this latter challenge, we derive a novel kernel-based confidence interval
that is applicable across RL problems.

1.1 Contributions

To summarize, our contributions are as follows. We develop a kernel based optimistic al-
gorithm for the infinite horizon average reward setting, referred to as KUCB-RL. We estab-
lish no-regret guarantees for the proposed learning algorithm, which is the first for this set-
ting to the best of our knowledge. Specifically, in Theorem 3, we prove a regret bound of

O
(

T
w +

(
w + w√

ρ

√
γ(T ; ρ) + log(Tδ )

)√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
, at a 1 − δ con-

fidence level, where ρ is the parameter of kernel ridge regression and γ(T ; ρ) is the maximum
information gain, a kernel specific complexity term (see Section 2). This regret bound translates
to Õ

(
d

1
2T

3
4

)
in the special case of a linear model, recovering the best existing results (Wei et al.,

2021) in dependence on T , and improving by a factor of d
1
4 . When applied to very smooth kernels

with exponential eigendecay such as the Squared Exponential (SE) kernel, we obtain a regret of
Õ(T

3
4 ), with the notation Õ hiding logarithmic factors. For one of the most general cases, the

kernels with polynomial eigendecay with parameter p > 1 (See Definition 1), that includes, for
example, the Matérn family and NT kernels, we show that our regret bound translates to Õ(T

3p+5
4p+4 ),

which constitutes a no-regret guarantee. To highlight the significance of this result, we point out that
no-regret guarantees for GP-UCB in the degenerate case of bandits were established only recently
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in Whitehouse et al. (2024), while the initial studies of GP-UCB (as well as GP-TS) (Srinivas et al.,
2010; Chowdhury and Gopalan, 2017) did not provide no-regret guarantees for the case of polynomial
eigendecay. As part of our analysis, in Theorem 1, we develop a novel confidence interval applicable
across kernel-based RL problems that contributes to the eventual improved results.

1.2 Related Work

The vast RL literature can be categorized across various dimensions. In addition to the average
reward, episodic, and discounted settings, as well as tabular, linear, and kernel-based structures
mentioned above, other notable distinctions among settings include model-based versus model-free
approaches, and offline versus online versus settings where the existence of a generative model is
assumed (allowing the learning algorithm to sample the state-action of its choice at each step, rather
than following the Markovian trajectory). Covering the entire breadth of RL literature is challenging.
Here, we will focus on highlighting and providing comparisons with the most closely related works,
particularly in terms of their setting and structure.

The kernel-based MDP structure has been considered in several recent works under the episodic
setting (Yang et al., 2020; Vakili and Olkhovskaya, 2023; Chowdhury and Oliveira, 2023; Domingues
et al., 2021; Vakili, 2024). The regret bound proven in Yang et al. (2020) for the episodic setting
applies only to very smooth kernels such as SE kernel. Vakili and Olkhovskaya (2023) addressed this
limitation by extending the results to Matérn and NT families of the kernels, albeit with a sophisticated
algorithm that actively partitions the state-action domain into possibly many subdomains, using only
the observations within each subdomain to obtain kernel-based prediction and uncertainty estimates.
Their work is also based on a particular assumption that relates the kernel eigenvalues to the size
of the domain. The work of Chowdhury and Oliveira (2023) is most closely related to ours in
terms of kernel-related assumptions. Specifically, our Assumption 4 is identical to Assumption 1 of
Chowdhury and Oliveira (2023). They establish a regret bound of O(Hγ(N ; ρ)

√
N) for the episodic

MDP setting, where N is the number of episodes, γ(N ; ρ) is the maximum information gain, a
kernel-related complexity term, H is the episode length and the value of ρ is a fixed constant close
to 1. However, their regret bounds do not apply to general families of kernels, such as those with
polynomially decaying eigenvalues (see Section 2.2 for the definition) including Matérn and NT
kernels, as for this family of kernels γ(N ; ρ) possibly grows faster than

√
N . As a result, a no-regret

guarantee cannot be established in many cases of interest. In comparison, the infinite horizon setting
considered in this work is more challenging than the episodic setting as evident when comparing these
settings with linear modeling. For this more challenging setting, we establish no-regret guarantees.
A key element of our improved results is the novel confidence interval we utilize in our analysis
(Theorem 1). This result is general and can be used across RL problems, for example, improving the
results of Chowdhury and Oliveira (2023) as well.

In the tabular case, a lower bound of Ω(
√
D|S||A|T ) on regret was established in Auer et al. (2008)

in the infinite-horizon average-reward setting, where D is the diameter of the MDP. For ergodic
MDPs, Wei et al. (2020) shows a regret bound of Õ(

√
t3mix|S||A|T ), where tmix is the mixing time

of an ergodic MDP. Furthermore, under the broader assumption of weakly communicating MDPs,
which is necessary for low regret (Bartlett and Tewari, 2012), the best existing regret bound of
model-free algorithms is Õ(|S|5|A|2

√
T ), achieved by the recent work of Zhang and Xie (2023).

Several works have studied linear function approximation in the infinite horizon average reward
setting under strong assumptions of uniformly mixing and uniformly excited feature conditions
(Abbasi-Yadkori et al., 2019a,b; Hao et al., 2021). Notably, Hao et al. (2021) achieved a regret bound
of Õ

(
1
σ

√
t3mixT

)
under the linear bias function assumption, where σ is the smallest eigenvalue of

policy-weighted covariance matrix. Under the much less restrictive setting of Bellman optimality
equation assumption (Assumption 1) for linear MDP, Wei et al. (2021) provides an algorithm with
regret guarantee of Õ((dT )3/4). We also consider our kernel-based approach under this general
assumption on MDP. Furthermore, for examples of infeasible algorithms in the literature, see Wei
et al. (2021), Algorithm 1. There also exists a separate model-based approach to the problem where
the transition probability distribution (model) is learned and used for planning, usually requiring
high memory and computational complexity and utilizing substantially different techniques and
assumptions. While this approach is studied under tabular settings (Bartlett and Tewari, 2009; Auer
et al., 2008) and linear settings (Wu et al., 2022), it is not clear whether model-based approaches can

3



be feasibly constructed in the kernel-based setting, due to the space complexity of a kernel-based
model.

Our work is also related to the simpler problem of kernelized bandits (Srinivas et al., 2010; Chowdhury
and Gopalan, 2017; Vakili et al., 2021b; Li and Scarlett, 2022; Salgia et al., 2021). Our construction
of the confidence interval for the RL setting has been inspired by the previous work on bandits,
utilizing novel analysis introduced in Whitehouse et al. (2024). Bandit settings can be considered a
degenerate case of the RL framework with |S| = 1. In comparison, the temporal dependencies of
MDP introduce substantial challenges, and the confidence intervals used in the bandit setting cannot
be directly applied.

We summarize the most closely related work with a focus on model-free feasible algorithms in Table 1.
We present the existing regret bounds under various assumptions on MDP and its structure (tabular,
linear, kernel-based). The assumptions include weakly communicating MDP (See Puterman, 1990,
Section 8.3.1), Bellman optimality equation (our Assumption 1), and uniform mixing assumption (see
Wei et al., 2021, Assumption 3). For a formal definition of linear MDP, see Wei et al. (2021),
Assumption 2, and for the linear bias function case, see Wei et al. (2021), Assumption 4.

Table 1: Summary of the existing regret bounds in the infinite horizon average reward setting under
various cases with respect to MDP structure (tabular, linear, kernel based) and assumptions.

Algorithm Regret MDP Assumption Structure

UCB-AVG (Zhang and Xie, 2023) Õ(|S|5|A|2
√
T ) Weakly Communicating Tabular

OLSVI.FH (Wei et al., 2021) Õ((dT )3/4) Bellman Optimality Eq. Linear
MDP-Exp2 (Wei et al., 2021) Õ(

√
t3mix|S||A|T ) Uniform Mixing Linear Bias function

KUCB-RL (Algorithm 1) Õ
(
d

1
2T

3
4

)
Bellman Optimality Eq. Linear

KUCB-RL (Algorithm 1) Õ
(
T

3
4

)
Bellman Optimality Eq. Kernel-based (exponential)

KUCB-RL (Algorithm 1) Õ
(
T

3p+5
4p+4

)
Bellman Optimality Eq. Kernel-based (polynomial)

2 Problem Formulation

In this section, we overview the background on infinite horizon average reward (undiscounted) MDPs
and kernel based modelling.

2.1 Infinite Horizon Average Reward MDP

An undiscounted MDP is described by the tuple (S,A, r, P ) where S is a state space with a possibly
infinite number of elements, A is a finite action set, r : S ×A → [0, 1] is the reward function, and
P (·|s, a) is the unknown transition probability distribution over S of the next state when action a is
selected at state s. Throughout the paper we use the notation z = (s, a) for the state-action pairs, and
Z = S ×A.

The learner interacts with the MDP through T steps, starting from an arbitrary initial state s1 ∈ S.
At each step t, the learner observes state st and takes an action at resulting in a reward r(st, at).
The next state st+1 is revealed as a sample drawn from the transition probability distribution:
st+1 ∼ P (·|st, at).
The goal of the learner is to compete against any fixed stationary policy. A stationary policy
π : S → A is a possibly random mapping from the states to actions. The long-term average reward
of a stationary policy π, starting from state s ∈ S, is defined as:

Jπ(s) = lim inf
T→∞

1

T
E

[
T∑

t=1

r(st, at)

∣∣∣∣∣ s1 = s,∀t ≥ 1, at = π(st), st+1 ∼ P (·|st, at)

]
.

We assume that the MDP belongs to the broad class of MDPs where the following form of the
Bellman optimality equation holds:
Assumption 1 (Bellman optimality equation). There exists J⋆ ∈ R and bounded measurable
functions v⋆ : S → R and q⋆ : S × A → R such that the following conditions are satisfied for all
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states s ∈ S and actions a ∈ A :

J⋆ + q⋆(s, a) = r(x, a) + Es′∼P (·|s,a) [v
⋆(s′)] , v⋆(s) = max

a∈A
q⋆(s, a). (1)

This assumption was also used for the linear MDP case in Wei et al. (2021). By applying the
Bellman optimality equation, it can be shown that a policy π⋆(s) = arg maxa∈A q

⋆(s, a), which
deterministically selects actions that maximize q⋆ in the current state, is the optimal policy π⋆ =
arg maxπ J

π , with Jπ⋆

(s) = J⋆, for all s (Wei et al., 2021).

For the finite state setting, Assumption 1 follows from the weakly communicating MDP assump-
tion (see, e.g., Puterman, 1990, Chapter 9). Assumption 1 also holds under several other common
conditions (Hernández-Lerma (2012), Section 3.3).

The learner’s performance is measured by regret, which is defined as the difference in total reward
between the learner and the optimal stationary policy. Specifically,

R(T ) =

T∑
t=1

(J⋆ − r(st, at)). (2)

We emphasize that under Assumption 1, for any initial state s1 ∈ S, Jπ⋆

(s1) = J⋆, that is reflected
in our regret definition.

For any value function v : S → R, throughout the paper, we use the notation

[Pv](z) = Es′∼P (·|z)[v(s
′)]

for the expected value function of the next state.

2.2 Kernel-Based Models and the RKHS

Consider a positive definite kernel k : Z × Z → R. Let Hk be the reproducing kernel Hilbert
space (RKHS) induced by k, where Hk contains a family of functions defined on Z . Let ⟨·, ·⟩Hk

:
Hk ×Hk → R and ∥ · ∥Hk

: Hk → R denote the inner product and the norm of Hk, respectively.
The reproducing property implies that for all f ∈ Hk, and z ∈ Z , ⟨f, k(·, z)⟩Hk

= f(z). Mercer
theorem implies that k can be represented using a possibly infinite dimensional feature map:

k(z, z′) =

∞∑
m=1

λmφm(z)φm(z′), (3)

where λm > 0, and
√
λmφm ∈ Hk form an orthonormal basis of Hk. In particular, any f ∈ Hk can

be represented using this basis and weights wm ∈ R as

f =
∞∑

m=1

wm

√
λmφm,

where ∥f∥2Hk
=
∑∞

m=1 w
2
m. A formal statement and the details are provided in Appendix 8. We

refer to λm and φm as (Mercer) eigenvalues and eigenfunctions of kernel k, respectively.

2.3 Kernel-Based Prediction

Kernel-based models provide powerful predictors and uncertainty estimators which can be leveraged
to guide the RL algorithm. In particular, consider a fixed unknown function f ∈ Hk. Assume a t× 1
vector of noisy observations yt = [yi = f(zi) + εi]

t
i=1 at observation points {zi}ti=1 is provided,

where εi are independent zero mean noise terms. Kernel ridge regression provides the following
predictor and uncertainty estimate, respectively (see, e.g., Schölkopf et al., 2002),

f̂t(z) = k⊤t (z)(Kt + ρI)−1yt,

σ2
t (z) = k(z, z)− k⊤t (z)(Kt + ρI)−1kt(z), (4)

where kt(z) = [k(z, z1), . . . , k(z, zt)]
⊤ is a t× 1 vector of the kernel values between z and observa-

tions, Kt = [k(zi, zj)]
t
i,j=1 is the t× t kernel matrix, I is the identity matrix appropriately sized to

match Kt, and ρ > 0 is a free regularization parameter.
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Confidence bounds of the form |f(z)− f̂t(z)| ≤ β(δ)σt(z) are established, for a confidence interval
width multiplier β(δ) at a confidence level 1− δ, which depends on the assumptions on the setting
and the noise. We will establish a such confidence interval specific to the RL setting, in Theorem 1,
and utilize it in our regret analysis.

2.4 Kernel-Based Modelling in RL

In our RL setting, we use a kernel-based model to predict the expected value function. In particular,
for a given transition probability distribution P (s′|·, ·) and a value function v : S → R, we define
f = [Pv] and use past observations to form predictions and uncertainty estimates for f , as detailed
in the following section. The value functions vary due to the Markovian nature of the temporal
dynamics. To effectively use the confidence intervals established by the kernel-based models on f ,
we require the following assumption.

Assumption 2. We assume P (s′|·, ·) ∈ Hk, for some positive definite kernel k, and ∥P (s′|·, ·)∥Hk
≤

1 for all s′ ∈ S.

2.5 Eigendecay and Information Gain

Our regret bounds are presented in terms of maximum information gain which is a kernel-specific
complexity term. Specifically, for a kernel k and sets of observation points {zi}ti=1, we define the
maximum information gain γ(t; ρ) as follows

γ(t; ρ) = sup
{zi}t

i=1⊂Z

1

2
log det

(
I +

Kt

ρ

)
,

where ρ > 0, andKt is the kernel matrix defined in Section 2.3. Several works have established upper
bounds on γ(t; ρ). In the special case of a d-dimensional linear kernel, we have γ(t; ρ) = O(d log(t)).
For kernels with exponential eigendecay, including SE, γ(t; ρ) = O(polylog(t)) (Srinivas et al.,
2010; Vakili et al., 2021b). For kernels with polynomial eigendecay, which represent a crucial case
due to challenges in establishing no-regret guarantees in RL and bandits, and include kernels of
both practical and theoretical interest such as the Matérn family and NT kernels, we first provide the
definition below and then the bound on γ.

Definition 1. A kernel k is said to have a p-polynomial eigendecay if ∀m ≥ 1, λm ≤ Cm−p, for
some p > 1, C > 0 where λm are the Mercer eigenvalues of the kernel in decreasing order.

For kernels with p-polynomial eigendecay, we have (Vakili et al., 2021b, Corollary 1):

γ(t; ρ) = O

((
t

ρ

) 1
p
(
log

(
1 +

t

ρ

))1− 1
p

)
.

3 KUCB-RL Algorithm

In this section, we introduce our algorithm, Kernel-based Upper Confidence Bound for Reinforce-
ment Learning (KUCB-RL). The algorithm’s structure is similar to acquisition-based kernel bandit
algorithms such as GP-UCB (Srinivas et al., 2010), where each action is chosen as the maximizer of
an acquisition function. We construct an optimistic proxy qt for the state-action value function. At
each step t, given the current state st, the action at is selected as the maximizer of qt(st, a) over a.
This proxy qt is derived using past observations of transitions, employing kernel ridge regression to
provide a prediction and uncertainty estimate for the state-action value function over a future window
of size w ∈ N. The proxy is established as an upper confidence bound, following the principle of
optimism in the face of uncertainty. The value functions are computed in batches of w steps, and the
derived policies are unrolled over the subsequent w steps. The details are presented next.

We define a fixed window size, w ∈ N, which represents the future interval that the algorithm will
consider. For a given t0 where (t0 mod w) = 0, including t0 = 0, we initialize vt0+w+1(s) =
0,∀s ∈ S , reflecting the algorithm’s consideration of the reward within this future window of size w.
Subsequently, we recursively obtain proxies qt and vt for all steps t ∈ {t : t0 + 1 ≤ t ≤ t0 + w}.
Let ft denote [Pvt+1], f̂t represent the kernel ridge predictor of [Pvt+1], and σt be its uncertainty
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Algorithm 1 Kernel-based Upper Confidence Bound for Reinforcement Learning (KUCB-RL)
Require: Regularization parameter ρ, window size w, confidence interval width multiplier β, confi-

dence level 1− δ, S,A, r.
1: for t = 0, 1, 2, · · · do
2: if (t mod w) = 0 then
3: Let vt+w+1 = 0;
4: for h = 1, 2, · · · , w do
5: Compute qt+w+1−h and vt+w+1−h using equations (6) and (7).
6: end for
7: end if
8: Select at = arg maxa∈A qt(st, a); Observe st+1 ∼ P (·|st, at) and receive r(st, at).
9: end for

estimator. The predictor and the uncertainty estimator are derived using the data set Dt0 , which
contains observations of past transitions up to t0. We use the notation Dt = {(sj , aj , sj+1)}j≤t

for the past transitions, and also define vt+1,t0 = [vt+1(s2), vt+1(s3), · · · , vt+1(st0+1)]
⊤, for the

values of the proxy value function at the history of state observations. We then have

f̂t(z) = k⊤t0(z) (Kt0 + ρI)
−1

vt+1,t0 ,

σ2
t (z) = k(z, z)− k⊤t0(z) (Kt0 + ρI)

−1
kt0(z), (5)

where kt(z) = [k(z, z1), k(z, z2), · · · , k(z, zt))]⊤ denotes the vector of kernel values between z
and (zj = (sj , aj))j≤t in the history of observations, and Kt = [k(zi, zj)]

t
i,j=1 denotes the kernel

matrix.

Equipped with the kernel ridge predictor and uncertainty estimator, we define qt as an upper confi-
dence bound for ft, as follows:

qt(z) = Π[0,w]

(
r(z) + f̂t(z) + β(δ)σt(z)

)
, ∀z ∈ Z, (6)

where 1 − δ represents a confidence level, and β(δ) is a confidence interval width multiplier; the
specific value of which is given in Theorem 3. The notation Π[a,b](·) is used for projection on [a, b]
interval. This step is natural since with the assumption r : Z → [0, 1] the value over a window of
size w can not be more than w. We also define

vt(s) = max
a∈A

qt(s, a), ∀s ∈ S. (7)

By iteratively updating from t = t0 + w to t = t0 + 1, we compute the values of qt and vt for all t
from t0 + 1 to t0 + w. Then, we unroll the learned policy over the subsequent w steps, as the greedy
policy with respect to qt:

at = arg max
a∈A

qt(st, a). (8)

A pseudocode is provided in Algorithm 1.

Computational Complexity. KUCB-RL enjoys a polynomial computational complexity of O(T
4

w ),
where the bottleneck is the matrix inversion step in (5) in kernel ridge regression every w steps. This
is not unique to our work and is common across kernel-based supervised learning, bandit, and RL
literature. Luckily, sparse approximation methods such as Sparse Variational Gaussian Processes
(SVGP) or the Nyström method significantly reduce the computational complexity of matrix inversion
step (to as low as linear in some cases), while maintaining the kernel-based confidence intervals and,
consequently, the eventual rates (see, e.g., Vakili et al., 2022, and references therein). These results
are, however, generally applicable and not specific to our problem.

4 Regret Bounds for KUCB-RL

In this section, we provide analytical results on the performance of KUCB-RL. We prove the first
sublinear regret bounds in undiscounted RL setting under general assumptions based on kernel-based
modelling. We first derive a novel confidence interval that is broadly applicable to the kernel-based
RL problems. We then utilize this result to establish bounds on the regret of KUCB-RL.
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4.1 Confidence Intervals for Kernel Based RL

The analysis of our algorithm utilizes confidence intervals of the form |ft(z)− f̂t(z)| ≤ β(δ)σt(z),
where ft = [Pvt] denotes the expected value of a value function vt, and f̂t and σt represent the
kernel ridge predictor and the uncertainty estimate of ft. Here, β(δ) represents the width multiplier
for the confidence interval at a 1− δ confidence level. Similar confidence intervals are established
in kernel ridge regression for a fixed function f in the RKHS of a specified kernel k (see, e.g.,
Abbasi-Yadkori, 2013; Srinivas et al., 2010; Chowdhury and Gopalan, 2017; Vakili et al., 2021a;
Whitehouse et al., 2024). In the RL context, specific considerations are required as both ft = [Pvt]
and the observation noise depend on the value function vt that varies due to the Markovian nature
of the temporal dynamics. We note that in this setting, for a given value function v : S → R, the
observation noise is captured by v(st+1) − [Pv](st, at). A possible approach involves deriving
confidence intervals that apply to a class V of value functions. Such results appear in some of the
existing work (Chowdhury and Oliveira, 2023; Vakili and Olkhovskaya, 2023). The result most
closely related to our is Chowdhury and Oliveira (2023), which derives its confidence interval under
the exact same kernel related assumptions as our work, but for the episodic MDP setting. With the
same assumptions, the confidence interval that we establish is different from the one in Chowdhury
and Oliveira (2023). In particular, their confidence interval is applicable to a specific value of kernel
ridge regression parameter ρ, constrained by their proof techniques. Inspired by Whitehouse et al.
(2024), which established a confidence interval for kernel ridge regression (not within the RL context)
but allowed for a judicious selection of ρ, we prove a new confidence interval suitable for the RL
setting that allows tuning parameter ρ. As a result, we obtain the first improved no-regret algorithms
in this setting.
Theorem 1 (Confidence Bound). Consider v : S → R, a conditional probability distribution P (s|z),
s ∈ S, z ∈ Z , and two positive definite kernels k : Z × Z → R and k′ : S × S → R, where
Z = S × A is compact subset of Rd. Let f = [Pv] and assume ∥v∥Hk′ ≤ Cv, v(s) ≤ w,∀s ∈ S,
and ∥f∥Hk

≤ Cf , for some Cv, w, Cf > 0. A dataset {(zi, s′i)}ni=1 ⊂ (Z × S)n is provided such
that s′i ∼ P (·|zi). Let λm, m = 1, 2, · · · denote the Mercer’s eigenvalues of k′ in a decreasing order
and ψm denote the corresponding eigenfunctions, with ψm ≤ ψmax for some ψmax > 0.

Let f̂n and σn be the kernel ridge predictor and the uncertainty estimate of f using the observations:

f̂n(z) = k⊤n (z)(ρI +Kn)
−1vn, σ2

n(z) = k(z, z)− k⊤n (z)(ρI +Kn)
−1kn(z),

where vn = [v(s′1), v(s
′
2), · · · , v(s′n))]⊤ is the vector of observations.

For all z ∈ Z and v : ∥v∥Hk′ ≤ Cv , the following holds, with probability at least 1− δ,

|f(z)− f̂n(z)| ≤ β(δ)σn(z),

with β(δ) =

Cf+
Cvψmax√

ρ

(
M∑

m=1

λm

) 1
2
(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

+
2Cvψmax√

ρ

(
n

∞∑
m=M+1

λm

) 1
2

.

We can simplify the presentation of β under the following assumption.

Assumption 3. For the kernel k′, we assume that for some C1, C2 and q > 0,
∑M

m=1 λm ≤ C1 and,∑∞
m=M+1 λm ≤ C2M

−q for any M ∈ N.

This is a mild assumption. For example, a p-polynomial eigendecay profile with p > 1, which applies
to a large class of common kernels including SE, Matérn and NT kernels, satisfies this assumption
with C1 = pC

p−1 , C2 = C
p−1 , and q = p− 1, where C is the constant specified in Definition 1.

Remark 2. Under Assumption 3, the expression of β in Theorem 3 can be simplified as

β(δ) = O
(
Cf +

Cv√
ρ

√
log(

n

δ
) + γ(ρ;n)

)
.

Remark 2 can be observed by selecting M = ⌈n
1
q ⌉ in the expression of β(δ), which provides a

straightforward presentation of the confidence interval width multiplier.
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The proof of Theorem 1 involves the Mercer representation of v in terms of ψm. The expression of
the prediction error |f(z)− f̂n(z)| is then decomposed into error terms corresponding to each ψm.
We then partition these terms into the first M elements corresponding to eigenfunctions with the
largest M eigenvalues and the rest. For each of the first M eigenfunctions, we obtain high probability
bounds using existing confidence intervals from Whitehouse et al. (2024). Summing up over m, and
using a bound based on uncertainty estimates, we achieve a high probability bound—corresponding
to the second term in the expression of β(δ). We then bound the remaining m > M elements based
on the decay of Mercer eigenvalues—corresponding to the third term in the expression of β(δ). A
detailed proof is provided in Appendix 6.

Theorem 1 is presented in a self-contained way, making it broadly applicable across various RL
settings. In the following section, we apply this theorem within the analysis of the infinite horizon
average reward setting to obtain a no-regret algorithm. This is the first no-regret algorithm within this
setting under general kernel-related assumptions.

4.2 Regret Analysis of KUCB-RL

The weakest assumption regarding value functions is realizability, which suggests that the optimal
value function v⋆ either belong to the an RKHS or are at least well-approximated by its elements.
In the degenerate case of bandits with |S| = 1, realizability alone is sufficient for provably efficient
algorithms (Srinivas et al., 2010; Chowdhury and Gopalan, 2017; Vakili et al., 2021a). However, for
general MDPs, realizability is inadequate, necessitating stronger assumptions (Jin et al., 2020; Wang
et al., 2019; Chowdhury and Oliveira, 2023). Building on these works, our main assumption involves
a closure property for all value functions within the following class:

V =

{
s→ min

{
w,max

a∈A

{
r(s, a) + ϕ⊤(s, a)θ + β

√
ϕ⊤(s, a)Σ−1ϕ(s, a)

}}}
, (9)

where β ∈ R and β > 0, ∥θ∥ <∞, and Σ is an ∞×∞ matrix operator such that Σ ⪰ ρI for some
ρ > 0, and ϕ = [ϕ1, ϕ2, · · · ], where ϕm =

√
λmφm, and λm and φm are the Mercer eigenvalues

and eigenfunctions corresponding to a kernel k defined on Z ×Z . We assume V is a subset of the
RKHS of a kernel k′ defined on S × S .

Assumption 4 (Optimistic Closure). For any v ∈ V , and for some positive constant Cv, we have
∥v∥k′ ≤ Cv . Additionally, for v : S → [0, w], we assume Cv = O(w).

This technical assumption is the same as Assumption 1 in Chowdhury and Oliveira (2023). The
optimistic closure assumption in the kernel-based setting is strictly weaker than the ones explored in
the context of generalized linear function approximation (Wang et al., 2020).

Theorem 3. Consider the undiscounted MDP setting described in Section 2. Run KUCB-RL given
in Algorithm 1 for T steps. Under Assumptions 1, 2, 3, and 4, the regret of KUCB-RL, defined in
Equation (2), satisfies, with probability at least 1− δ

R(T ) = O

(
T

w
+

(
w +

w
√
ρ

√
γ(T ; ρ) + log

(
T

δ

))√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
.

The proof of Theorem 3 utilizes standard methods from the analysis of optimistic algorithms in
RL and bandits, such as the elliptical potential lemma, leverages the confidence interval proven
in Theorem 1, and also incorporates novel techniques. Algorithm 1 updates the observation set
every w steps, requiring us to characterize and bound the effect of this delay in the proof. A
straightforward application of the elliptical potential lemma results in loose bounds that do not
guarantee no-regret. In Lemma 4, we establish a tight bound on the sum of standard deviations of a
sequence of points with delayed updates of the observation sets, contributing to the improved regret
bounds. This is independently a useful result in other settings with delayed updates, such as delayed
feedback settings (Vakili et al., 2023a; Kuang et al., 2023) or when observations are provided in a
batch (Chowdhury and Gopalan, 2019). The details are provided in Appendix 7.

There is an apparent trade-off in choosing the window size. Intuitively, this trade-off balances the
strength of the value function against the strength of the noise. A larger w is preferred to capture the
long-term performance of the policy, but a larger w also increases the observation noise affecting

9



the prediction error in kernel ridge regression. The optimal window size results from an interplay
between these two factors, which is reflected in the regret bound.

We next instantiate our regret bounds for some special cases. In the linear case, with a choice
of w = T

1
4 d

−1
4 and replacing the bound on γ(T ; ρ), we obtain R(T ) = Õ(d

1
2T

3
4 ), recovering

the existing results in their dependence on T and improving by a factor of d
1
4 . For kernels with

exponential eigendecay, with a choice of w = T
1
4 and replacing the bound on γ(T ; ρ), we obtain

R(T ) = Õ(T
3
4 ). We formalize the result with p-polynomial kernels in the following remark as it

may be of broader interest.
Remark 4. Under the setting of Theorem 3, with a p-polynomial kernel, with the choice of parameters,
w = T

p−1
4p+4 and ρ = T

1
p+1 , we obtain the following no-regret guarantee R(T ) = Õ(T

3p+5
4p+4 ).

In the case of a Matérn kernel with smoothness parameter ν, where p = 1 + 2ν
d , the regret bound

translates to R(T ) = O
(
T

3ν+4d
4ν+4d

)
. This also directly extends to NT kernels using the equivalence

between the RKHS of Matérn kernels and NT kernels with the appropriate smoothness (Vakili et al.,
2023b).

5 Discussion and Limitations

We proposed KUCB-RL in the infinite horizon average reward setting and proved no-regret guarantees
with general kernels, including those with polynomial eigendecay such as Matérn and NT kernels.
To highlight the significance of our results, we note that in the case of episodic MDPs, the existing
work of (Yang et al., 2020; Chowdhury and Oliveira, 2023) do not provide no-regret guarantees
with general kernels. The work of Vakili and Olkhovskaya (2023) utilizes sophisticated domain
partitioning techniques and relies on a specific assumption about the scaling of kernel eigenvalues
with the size of the domain. We achieve improved rates on regret leveraging a confidence interval
proven in Theorem 1, which is applicable across various RL problems. We next point out two main
limitations of our work.

Regarding optimality, we can juxtapose our results with the Ω(T
ν+d
2ν+d ) lower bounds proven in (Scar-

lett et al., 2017), for the degenerate case of bandits with Matérn kernel. Sophisticated algorithms, such
as the sup variation of optimistic algorithms and those based on sample or domain partitioning (Valko
et al., 2013; Salgia et al., 2021; Li and Scarlett, 2022), achieve this lower bound up to logarithmic
factors in the case of bandits. However, a no-regret Õ(T

ν+2d
2ν+2d ) guarantee, though suboptimal, for

standard acquisition-based algorithms like GP-UCB has been provided only recently (Whitehouse
et al., 2024). While we offer the first no-regret Õ(T

3ν+4d
4ν+4d ) guarantee in the much more complex

setting of RL, we cannot determine whether our results are improvable. This remains an area for
future investigation.

Although RKHS elements of common kernels can approximate almost all continuous functions on
compact subsets of Rd (Srinivas et al., 2010), the optimistic closure assumption is somewhat limiting.
A rigorous approach involves relaxing this assumption and finding an RKHS element that serves as
an upper confidence bound on a function of interest f within the same RKHS. While this method
appears to reasonably address the assumption, it is a technically involved problem that invites further
contributions from researchers in the field.
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6 Proof of Theorem 1

In this section, we provide a detailed proof the confidence bound given in Theorem 1.

Let us use the notation

αn(z) = k⊤n (z)(ρI +Kn)
−1, (10)

and εi = v(s′i)− f(zi), εn = [ε1, ε2, · · · , εn]⊤, fn = [f(z1), f(z2), · · · , f(zn)]⊤.

This allows us to rewrite the prediction error as

f(z)− f̂n(z) = f(z)− α⊤
n (z)vn

= f(z)− α⊤
n (z)(fn + εn)

=
(
f(z)− α⊤

n (z)fn

)
− α⊤

n (z)εn. (11)

The first term on the right-hand side represents the prediction error from noise-free observations, and
the second term is the prediction error due to noise. The first term is deterministic (not random) and
can be bounded following the standard approaches in kernel-based models, for example using the
following result from Vakili et al. (2021a):

Lemma 1 (Proposition 1 in Vakili et al. (2021a)). We have

σ2
n(z) = sup

f :∥f∥H≤1

(f(z)− α⊤
n (z)fn)

2 + ρ ∥αn(z)∥2ℓ2 .

Based on this lemma, the first term on the right hand side of (11) can be deterministically bounded by
Cfσn(z) :

|f(z)− α⊤
n (z)fn| ≤ Cfσn(z).

The challenging part in Equation (11) is the second term, which is the noise-dependent term α⊤
n (z)εn.

Next, we provide a high probability bound on this term.

We leverage the Mercer representation of v and write:

v(s) =

∞∑
m=1

wmλ
1
2
mψm(s).

We rewrite the observation vector vn as the sum of a noise term and the noise-free part f :

v(s′i) = (v(s′i)− f(zi))︸ ︷︷ ︸
Observation noise

+ f(zi)︸ ︷︷ ︸
Noise-free observation

Using the notation ψm(z) = Es′∼P (·|z)ψ(s
′), we can rewrite f(zi) as follows:

f(zi) = Es∼P (·|z′
i)
[v(s)]

= Es∼P (·|zi)

[ ∞∑
m=1

wmλ
1
2
mψm(s)

]

=

∞∑
m=1

wmλ
1
2
mEs′∼P (·|zi)[ψm(s′)]

=

∞∑
m=1

wmλ
1
2
mψm(zi). (12)
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Using this representation, we can rewrite the second term of (11) as follows
n∑

i=1

αi(z)εi =

n∑
i=1

αi(z)

( ∞∑
m=1

wmλ
1
2
mψm(s′i)−

∞∑
m=1

wmλ
1
2
mψm(zi)

)

=

∞∑
m=1

wmλ
1
2
m

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
=

M∑
m=1

wmλ
1
2
m

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
+

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
.

We decomposed the noise-related error term into an infinite series corresponding to each eigenfunction
ψm, m = 1, 2, · · · , and partitioned that into the first M elements and the rest. For each of the first M
elements, we can apply the standard confidence intervals for kernel ridge regression. Specifically,
Corollary 1 in Whitehouse et al. (2024) implies that, with probability at least 1− δ/M , we have

n∑
i=1

αi(z)(ψm(s′i)− ψm(zi)) ≤
ψmaxσn(z)√

ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

.

Summing up over the first M elements, and using a probability union bound, with probability at least
1− δ, we have

M∑
m=1

wmλ
1
2
m

n∑
i=1

αi(z)(ψm(s′i)− ψm(zi))

≤
M∑

m=1

wmλ
1
2
m
ψmaxσn(z)√

ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

≤ ψmaxσn(z)√
ρ

(
M∑

m=1

w2
m

) 1
2
(

M∑
m=1

λm

) 1
2
(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

≤ Cvψmaxσn(z)√
ρ

(
M∑

m=1

λm

) 1
2
(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

,

where the second inequality follows from the Cauchy-Schwarz inequality, and the third inequality
follows from the bound ∥v∥Hk

≤ Cv .

For the rest of the elements m > M , we have

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
≤ 2ψmax

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)

≤ 2ψmax

∞∑
m=M+1

wmλ
1
2
m

(
n

n∑
i=1

α2
i (z)

) 1
2

≤ 2ψmaxσn(z)
√
n

√
ρ

∞∑
m=M+1

wmλ
1
2
m

≤ 2ψmaxσn(z)
√
n

√
ρ

( ∞∑
m=M+1

w2
m

) 1
2
( ∞∑

m=M+1

λm

) 1
2

≤ 2Cvψmaxσn(z)√
ρ

(
n

∞∑
m=M+1

λm

) 1
2

.
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The first inequality holds by the definition of ψmax. The second inequality follows from the Cauchy-
Schwarz inequality. The third inequality is derived using Lemma 1. The fourth inequality again
applies the Cauchy-Schwarz inequality, and the final inequality results from the upper bound on the
RKHS norm of v.

Putting all the terms together, with probability 1− δ,

|f(z)− f̂n(z)| ≤ β(δ)σn(z),

where β(δ) =

Cf+
Cvψmax√

ρ

(
M∑

m=1

λm

) 1
2
(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

+
2Cvψmax√

ρ

(
n

∞∑
m=M+1

λm

) 1
2

,

that completes the proof.

7 Proof of Theorem 3

To analyze the performance of KUCB-RL, we first define an event E that all the confidence intervals
used in the algorithm hold true.

E =
{
|ft(z)− f̂t(z)| ≤ β(δ)σt(z), ∀t ∈ [T ]

}
, (13)

where

β(δ) = O

(
w +

w
√
ρ

√
log

(
T

δ

)
+ γ(T, ρ)

)
.

By Theorem 1, we have Pr[E ] ≥ 1− δ/2. We note the under Assumption 4, ∥v∥Hk′ ≤ Cv = O(w).
Also, for v : S → [0, w], we have ∥Pv∥Hk

= O(w). See Yeh et al. (2023), Lemma 3, for a proof.
Since vt is upper bounded by w by construction, we have ∥Pvt∥ = O(w) that replaces Cf in the
expression of β in Theorem 1.

We condition the rest of the proof on event E .

Consider t0 such that (t0 mod w) = 0 we bound the regret over window t ∈ [t0 + 1, t0 + w],
denoted by Rt0(w). In addition let V ⋆

w(s) denote the optimum achievable total reward over a window
of size w starting with initial state s, and V π

w (s) denote the total reward over a window of size w
achieved by KUCB-RL starting with initial state s.

Rt0(w) = wJ⋆ −
t0+w∑

t=t0+1

r(st, at) = wJ⋆ − V ⋆
w(st0+1) + V ⋆

w(st0+1)−
t0+w∑

t=t0+1

r(st, at).

For a bounded function v : S → R, we define its span as span(v) = sups,s′∈S |v(s)− v(s′)|.
The first term is bounded by the span of v∗.

Lemma 2. For any s, |wJ⋆ − V ⋆
w(s)| ≤ span(v∗).

Proof follows the exact same lines as in the proof of Lemma 13 in Wei et al. (2021).

We next bound the second term in Rt0(w). We first prove that V ⋆
w(s) ≤ vt0(s).

Lemma 3. Under event E , we have V ⋆
w(s) ≤ vt0(s), ∀s ∈ S.
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Proof. We can prove this by induction. Note that V ⋆
0 (s) = vt0+w+1(s) = 0. For any j ∈ [w], we

have

V ⋆
j (s)− vt0+w+1−j = max

a∈A
Q⋆

j (s, a)−max
a′∈A

qt0+w+1−j(s, a
′)

≤ max
a∈A

{Q⋆
j (s, a)− qt0+w+1−j(s, a)}

= max
a∈A

{[PV ⋆
j+1](s, a)− [Pvt0+w−j ](s, a)}

= max
a∈A

{Es′∼P (·|s,a)[V
⋆
j+1(s

′)− vt0+w−j(s
′)]}

≤ 0.

The first inequality is due to rearrangement of max, and the second inequality is by the induction
assumption. We thus have V ⋆

w(s) ≤ vt0(s).

We now bound the difference between vt0(st0+1) and sum of the reward over the window starting at
step t0 + 1: vt0+1(st0+1)− V π

w (st0+1). We note that vt0+w(st0+w) = V π
0 (st0+w) = 0 and

vt0+j(st0+j)− V π
w−j(st0+j) = qt0+j(st0+j , at0+j)−Qπ

w−j(st0+j , at0+j)

≤ [Pvt0+j+1](st0+j , at0+j)− [PV π
w−j ](st0+j , at0+j) + 2β(δ)σt0(st0+j , at0+j)

= vt0+j+1(st0+j+1)− V π
w−j−1(st0+j+1) + 2β(δ)σt0(st0+j , at0+j)

+ ([Pvt0+j+1](st0+j , at0+j)− vt0+j+1(st0+j+1))

+
(
V π
w−j−1(st0+j+1)− [PV π

w−j ](st0+j , at0+j)
)
.

The inequality holds under event E . We obtained a recursive relationship for vt0+j(st0+j) −
V π
w−j(st0+j). Iterating over j = w to j = 1, we get

vt0+1(st0+1)− V π
w (st0+1) ≤

t0+w∑
t=t0+1

2β(δ)σt0(st, at) +

t0+w∑
t=t0+1

([Pvt+1](st, at)− vt+1(st+1))

+

t0+w∑
t=t0+1

(
V π
w+t0−t−1(st+1)− [PV π

w+t0−t](st, at)
)
.

The second and third terms are zero mean martingales with a span of 2w, which are sub-Gaussian
random variables with parameter w. Therefore, by Azuma-Hoeffding inequality (Lalley, 2013), with
probability at least 1− δ/2,

T∑
t=1

([Pvt+1](st, at)− vt+1(st+1)) +

T∑
t=1

(
V π
w+w⌊(t−1)/w⌋−t−1(st+1)− [PV π

w+w⌊(t−1)/w⌋−t](st, at)
)

≤ w

√
2T log

(
2

δ

)
.

We note that for each t ∈ [T ], we can present the corresponding t0 with t0 = w⌊(t−1)/w⌋. Summing
up the regret over all windows of size w up to time t, we have, with probability 1− δ,

R(T ) ≤ T span(v∗)
w

+ w

√
2T log

(
2

δ

)
+ 2β(δ)

T∑
t=1

σw⌊(t−1)/w⌋(zt). (14)

It thus remains to bound
∑T

t=1 σw⌊(t−1)/w⌋(zt).

The sum of sequential standard deviations of a kernel based model is often bounded using the
following result from Srinivas et al. (2010) that is similar to the elliptical potential lemma in linear
bandits (see, Abbasi-Yadkori et al., 2011).
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T∑
t=1

σ2
t−1(zt) ≤

2γ(T ; ρ)

log(1 + 1/ρ)
. (15)

This result however is not directly applicable here due to the w⌊(t− 1)/w⌋ subscript in σw⌊(t−1)/w⌋
rather σt−1. A loose approach would be to partition the sequence into w sequences, each for one
j ∈ [w] of the form σw(i−1)+j , i = 1, 2, · · ·T/w. For each of those sequences, (15) is applicable and
we get

T/w∑
i=1

σ2
w(i−1)+j(zwi+j) ≤

2γ(T/w; ρ)

log(1 + 1/ρ)
. (16)

Using this bound we have

T∑
t=1

σ2
w⌊(t−1)/w⌋(zt) =

w∑
j=1

T/w∑
i=1

σ2
w(i−1)+j(zwi+j)

≤ 2wγ(T/w; ρ)

log(1 + 1/ρ)
. (17)

Next, we prove a stronger bound on
∑T

t=1 σw⌊(t−1)/w⌋(zt) that contributes to the sublinear regret
bounds in this paper.

Lemma 4. For a sequence of observation points {zt}Tt=1 and any w ∈ N, we have

T∑
t=1

σw⌊(t−1)/w⌋(st, at) ≤

√
2γ(T ; ρ)

log(1 + 1/ρ)

(
T +

2w2γ(T/w; ρ)

log(1 + 1/ρ)

)
. (18)

Proof of Lemma 4. We use the following lemma on the ratio of variances conditioned on two sets of
observations.

Lemma 5 (Proposition A.1 in Calandriello et al. (2022)). For any sequence of points {zj}Tj=1, for
any z and t′ < t

1 ≤ σ2
t′(z)

σ2
t (z)

≤ 1 +

t∑
j=t′+1

σ2
t′(zj).

We thus can write

T∑
t=1

σw⌊(t−1)/w⌋(st, at) ≤
T∑

t=1

σt(st, at)

√√√√1 +

t∑
j=w⌊(t−1)/w⌋+1

σ2
w⌊(t−1)/w⌋(sj , aj)

≤

√√√√ T∑
t=1

σ2
t (st, at)

√√√√T + w

T∑
t=1

σ2
w⌊(t−1)/w⌋(st, at)

≤

√
2γ(T ; ρ)

log(1 + 1/ρ)

(
T +

2w2γ(T/w; ρ)

log(1 + 1/ρ)

)
. (19)

The first inequality is by Lemma 5, the second inequality follows from Cauchy-Schwarz inequality,
and the last inequality is the bound established in Equation (17). This completes the proof of
Lemma 4.
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Using Lemma 4, and substituting the value of β(δ) into (14), we obtain

R(T ) = O

(
T

w
+

(
w +

w
√
ρ

√
γ(T ; ρ) + log

(
T

δ

))√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
.

(20)

The proof of the regret bound is complete.

8 Mercer Theorem and the RKHSs

Mercer theorem (Mercer, 1909) provides a representation of the kernel in terms of an infinite
dimensional feature map (e.g., see, Christmann and Steinwart, 2008, Theorem 4.49). Let Z be a
compact metric space and µ be a finite Borel measure on Z (we consider Lebesgue measure in a
Euclidean space). Let L2

µ(Z) be the set of square-integrable functions on Z with respect to µ. We
further say a kernel is square-integrable if∫

Z

∫
Z
k2(z, z′) dµ(z)dµ(z′) <∞.

Theorem 5 (Mercer Theorem). Let Z be a compact metric space and µ be a finite Borel measure
on Z . Let k be a continuous and square-integrable kernel, inducing an integral operator Tk :
L2
µ(Z) → L2

µ(Z) defined by

(Tkf) (·) =
∫
Z
k(·, z′)f(z′) dµ(z′) ,

where f ∈ L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(λm, φm)}∞m=1

such that λm > 0, and Tkφm = λmφm, form ≥ 1. Moreover, the kernel function can be represented
as

k (z, z′) =

∞∑
m=1

λmφm(z)φm (z′) ,

where the convergence of the series holds uniformly on Z × Z .

According to the Mercer representation theorem (e.g., see, Christmann and Steinwart, 2008, Theorem
4.51), the RKHS induced by k can consequently be represented in terms of {(λm, φm)}∞m=1.
Theorem 6 (Mercer Representation Theorem). Let {(λm, φm)}∞i=1 be the Mercer eigenvalue eigen-
feature pairs. Then, the RKHS of k is given by

Hk =

{
f(·) =

∞∑
m=1

wmλ
1
2
mφm(·) : wm ∈ R, ∥f∥2Hk

:=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {
√
λmφm}∞m=1 form an

orthonormal basis for Hk.
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create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA] .
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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