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Abstract—We analyse the convergence of sampling algorithms
for functions in reproducing kernel Hilbert spaces (RKHS). To
this end, we discuss approximation properties of kernel regression
under minimalistic assumptions on both the kernel and the input
data. We first prove error estimates in the kernel’s RKHS norm.
This leads us to new results concerning uniform convergence of
kernel regression on compact domains. For Lipschitz continuous
and Hölder continuous kernels, we prove convergence rates.

I. INTRODUCTION

Learning theory [4], [5] requires the approximation of an
unknown function f : Ω −→ R from irregular samples of f on
a compact domain Ω ⊂ Rd, for d > 1. From the viewpoint of
statistical learning theory [13], the general purpose of learning
is referred to data regression (or data fitting), where the basic
task is to determine a regression function g : Ω −→ R from
samples fX = {f(x)}x∈X taken at sampling points X ⊂ Ω.

Reproducing kernels provide popular concepts for data
regression in machine learning [9], in particular for support
vector machines [11]. In this case, the target f is assumed to
lie in a Hilbert space HK,Ω of functions, being generated by
a (conditionally) positive definite kernel function K on Ω.

The theory on reproducing kernel Hilbert spaces (RKHS)
is dating back to the seminal work [2] of Aronszajn (in
1950). Contemporary questions on kernel-based learning are
concerning approximation properties of kernel regression [5],
[10], [15]. Quite recently, dimensionality reduction in kernel
regression has been investigated in [7] from the viewpoint of
statistics. Moreover, convergence rates and stability results for
a general high-dimensional kernel regression framework were
proven in [6], where rather specific assumptions on both the
kernel K and the sampling points X were essentially needed.

In this work, we analyse the convergence of kernel regres-
sion in RKHS under minimalistic assumptions on the kernel
K, and so on the RKHS HK,Ω, and on the sampling points X .

The outline of this paper is as follows. We first explain key
features on RKHS (in Section II) and on kernel regression
(in Section III). Then, we formulate minimalistic assumptions
for K and X (in Section IV), under which we can prove
convergence of kernel regression (in Section V) with respect
to the kernel’s RKHS norm and for uniform convergence.

II. THREE KEY FEATURES OF KERNEL REGRESSION

Starting point for our discussion on kernel regression are
positive definite functions (for details refer to [3], [8], [14]).

Definition 1. For Ω ⊂ Rd, a continuous and symmetric
function K : Ω × Ω −→ R is said to be a positive definite
kernel on Ω, K ∈ PD(Ω), if for any finite set of pairwise
distinct points X = {x1, . . . , xn} ⊂ Ω, n ∈ N, the matrix

AK,X = (K(xk, xj))1≤j,k≤n ∈ Rn×n

is symmetric and positive definite.

Positive definite kernels on Rd are often required to be
translation invariant, i.e., K is assumed to have the form

K(x, y) = Φ(x− y) for x, y ∈ Rd (1)

for an even function Φ : Rd −→ R. Popular examples for
translation invariant kernels K ∈ PD(Rd) include the Gaus-
sian K(x, y) = Φ(x− y) = exp(−∥x− y∥22), and the inverse
multiquadric K(x, y) = Φ(x − y) = (1 + ∥x − y∥22)−1/2,
where ∥ · ∥2 denotes as usual the Euclidean norm on Rd.

Next we explain the basic setup of kernel regression in
learning theory [15]. To this end, for fixed domain Ω ⊂ Rd, let
K : Ω×Ω −→ R be positive definite on Ω, i.e., K ∈ PD(Ω).
In the following discussion, it will be convenient to let the
function Kx : Ω −→ R, for x ∈ Ω, be defined as

Kx(y) := K(x, y) for x, y ∈ Ω.

Then, according to the seminal work of Aronszajn [2], the
reproducing kernel Hilbert space (RKHS) HK,Ω associated
with K ∈ PD(Ω) is the closure

HK,Ω := span {Kx :x ∈ Ω}

with respect to the inner product (·, ·)K ≡ (·, ·)HK,Ω
satisfying

(Kx,Ky)K = K(x, y) for all x, y ∈ Rd,

whereby we have∥∥∥∥∥∥
n∑

j=1

cjKxj

∥∥∥∥∥∥
2

K

:=

 n∑
j=1

cjKxj ,

n∑
k=1

ckKxk


K

=

n∑
j,k=1

cjK(xj , xk)ck = c⊤AK,Xc,

for all X = {x1, . . . , xn} ⊂ Ω and c = (c1, . . . , cn)
⊤ ∈ Rn.

Now let us recall three key features of kernel regression.

Feature 1: The reproducing kernel property

f(x) = (Kx, f)K for all x ∈ Ω (2)



holds for all f ∈ HK,Ω. In particular, for any Kx ∈ HK,Ω,

Kx(y) = (Ky,Kx)K = K(x, y) for all x, y ∈ Ω, (3)

holds, whereby we have Kx(y) = Ky(x), for all x, y ∈ Ω.
The reproducing kernel properties (2) and (3) lead us to

|f(x)− f(y)|2 = |(Kx −Ky, f)K |2

≤ ∥Kx −Ky∥2K · ∥f∥2K
= (Kx(x)− 2Kx(y) +Ky(y)) · ∥f∥2K ,

which immediately implies the continuity of f ∈ HK,Ω, from
the continuity of K on Ω × Ω. Therefore, the reproducing
kernel Hilbert space HK,Ω of K is embedded in the continuous
functions on Ω, i.e., HK,Ω ⊂ C (Ω).

Feature 2: For X = {x1, . . . , xn} ⊂ Ω we let

SK,X := span {Kx :x ∈ X} ⊂ HK,Ω

denote the n-dimensional subspace of HK,Ω spanned by X .
Then, the orthogonal projection of f ∈ HK,Ω onto SK,X is the
unique interpolant sf,X ∈ SK,X to f on X . In other words, the
interpolant sf,X to f on X is the unique best approximation
to f with respect to the RKHS norm ∥ · ∥K = (·, ·)1/2K , i.e.,

∥sf,X − f∥K ≤ ∥s− f∥K for all s ∈ SK,X .

In conclusion, the interpolant sf,X is the best regression fit
to f ∈ HK,Ω from data fX = (f(x1), . . . , f(xn))

⊤ ∈ Rn.
Moreover, sf,X ∈ SK,X has the form

sf,X =

n∑
j=1

cjKxj

where the coefficient vector c = (c1, . . . , cn)
⊤ ∈ Rn is the

unique solution of the linear system AK,Xc = fX , due to the
interpolation conditions sf,X(xk) = f(xk), for all 1 ≤ k ≤ n.

Feature 3: The orthogonality sf,X − f ⊥ SK,X implies

∥sf,X∥K ≤ ∥f∥K and ∥sf,X − f∥K ≤ ∥f∥K , (4)

due to the Pythagoras theorem

∥f∥2K = ∥sf,X − f∥2K + ∥sf,X∥2K .

In other words, the kernel regression sf,X ∈ SK,X minimizes
the RKHS norm ∥ · ∥K among all interpolants to the samples
fX from HK,Ω. Therefore, kernel regression can be viewed
as a spline approximation method.

III. PROBLEM FORMULATION AND FURTHER NOTATIONS

Let X = (xk)k∈N be a sequence of pairwise distinct points
in Ω. We use the notation Xn = {x1, . . . , xn} ⊂ Ω for the
(ordered) point set containing the first n points in X .

Recall that each point set Xn ⊂ Ω spans a finite dimensional
regression space SK,Xn

. Moreover, recall that for any target
f ∈ HK,Ω there is one unique minimizer sf,Xn

∈ SK,Xn
of

the kernel regression error

ηn ≡ ηn(f,SK,Xn) := ∥sf,Xn − f∥K for n ∈ N. (5)

For notational brevity, we let sn := sf,Xn , for n ∈ N.

Problem Formulation: We analyze the convergence of
kernel regression under minimalistic assumptions. To be more
precise, we prove convergence results of the form

∥sn − f∥ −→ 0 for n → ∞ (6)

under mild as possible conditions on the kernel K ∈ PD(Ω),
the target f ∈ HK,Ω and the sample points X = (xk)k∈N.
Our convergence analysis is first done with respect to the
RKHS norm ∥·∥K , before we turn to uniform convergence. For
the case of uniform convergence, we prove convergence rates
under slightly more restrictive conditions on K ∈ PD(Ω).

In our analysis, the sequence (hn)n∈N of fill distances

hn ≡ h(Xn,Ω) := sup
y∈Ω

min
x∈Xn

∥y − x∥2 for n ∈ N (7)

of Xn in Ω will play an important role. Note that the (non-
negative) fill distances (hn)n∈N of the sequence X = (xk)k∈N
are monotonically decreasing. We remark already at this point
that we can only obtain convergence in (6), if (hn)n∈N is a
zero sequence, i.e., if hn ↘ 0 for n → ∞.

IV. MINIMALISTIC ASSUMPTIONS

A. Minimalistic Assumptions on the Kernel

We remark that the required continuity of K ∈ PD(Ω), as
stated at the outset of this work, is necessary for the well-
posedness of kernel regression on (truly multi-dimensional)
domains Ω. This is due to the classical theorem of Mairhuber-
Curtis from approximation theory, according to which there are
no non-trivial Haar systems on domains Ω ⊂ Rd, for d > 1,
containing bifurcations (cf. [8, Theorem 5.25]).

To prove convergence of kernel regression with respect to
∥ · ∥K , we won’t require any further (stricter) assumptions on
K ∈ PD(Ω) other than its continuity on Ω × Ω. Moreover,
we won’t require any conditions on Ω. To prove decay rates
for uniform convergence, we will merely require local Hölder
continuity for K ∈ PD(Ω), cf. Definition 3.

B. Minimalistic Assumptions on the Target Functions

We recall the inclusion HK,Ω ⊂ C (Ω) from our discussion
on Feature 1 in Section II. In other words, any (admissible)
target f ∈ HK,Ω must necessarily be a continuous function. To
prove convergence of kernel regression with respect to ∥ · ∥K ,
we won’t require any stricter assumptions on f ∈ HK,Ω.

Nevertheless, this gives rise to the question whether or not
there is a kernel K ∈ PD(Ω) satisfying f ∈ HK,Ω, on given
f ∈ C (Ω). The kernel K(x, y) := f(x) · f(y) is only one
(trivial) example to give a positive answer for this question.

Another relevant question is the inclusion C (Ω) ⊂ HK,Ω,
i.e., is there a kernel K ∈ PD(Ω), whose RKHS HK,Ω

contains all continuous functions on Ω? If so, this would yield
the equality C (Ω) = HK,Ω. Just very recently, Steinwart [12]
gave a negative answer on this important question.



C. Minimalistic Assumptions on the Sampling Points

We require that the monotonically decreasing sequence
(hn)n∈N of fill distances in (7) is a zero sequence, which is a
necessary condition for the convergence of kernel regression.

In fact, if (hn)n∈N is not a zero sequence, then there must be
one h0 > 0 satisfying hn ≥ h0 for all n ∈ N. But this implies
that there is one open ball B(y, h0) ⊂ Rd centered at y ∈ Ω
with radius h0 > 0 which does not contain any point from the
sequence X = (Xk)k∈N. Now let f ∈ HK,Ω be compactly
supported with supp(f) ⊂ B(y, h0) and f ̸≡ 0. In this case,
we have fXn = 0, which implies sn = sf,Xn ≡ 0, and so
∥sn − f∥K = ∥f∥K > 0, for all n ∈ N, i.e., the sequence of
kernel regressions (sn)n∈N cannot convergence to f .

V. CONVERGENCE OF KERNEL REGRESSION

Now let us analyze the asymptotic behaviour of the kernel
regression errors (ηn)n∈N in (5) for the RKHS norm ∥·∥K and
for the maximum norm ∥ · ∥∞, respectively. To this end, we
rely on our previous work [8, Section 8.4.2]. For more recent
results concerning the convergence of generalized kernel-based
interpolation schemes, we refer to [1].

A. Convergence with respect to the RKHS Norm

The following result (cf. [8, Theorem 8.37]) relies on
minimalistic assumptions on the sampling points (xn)n∈N and
on the kernel K ∈ PD(Ω), as they were stated in Section IV.

Theorem 2. Let X = (xn)n∈N be a sequence of pairwise
distinct points, whose associated fill distances (hn)n∈N in (7)
are a zero sequence. Then, for any f ∈ HK,Ω we have

ηK(f,SK,Xn) = ∥sn − f∥K −→ 0 for n → ∞.

Proof. Let y ∈ Ω. By our assumption on X , there is a
subsequence (xnk

)k∈N of sampling points xnk
∈ Ω satisfying

∥y − xnk
∥2 ≤ hnk

−→ 0 for k → ∞. This implies

η2K(Ky,SK,Xnk
) ≤ ∥Kxnk

−Ky∥2K
= K(xnk

, xnk
)− 2K(y, xnk

) +K(y, y)

−→ 0

for k → ∞, due to the continuity of K ∈ PD(Ω) on Ω× Ω.

Now, for a finite sequence Y = (y1, . . . , ym) ∈ Ωm of
pairwise distinct points in Ω, we regard the function

fc,Y :=

m∑
j=1

cjKyj ∈ SK,Y ⊂ HK,Ω

whose coefficient vector is c = (c1, . . . , cm)⊤ ∈ Rm.
For any yj , 1 ≤ j ≤ m, there is a subsequence (x

(j)
n )n∈N in

X satisfying ∥yj−x
(j)
n ∥2 ≤ hn. Then, the sequence (sc,n)n∈N

of kernel regressions

sc,n :=

m∑
j=1

cjKx
(j)
n

for n ∈ N

converges to fc,Y , i.e., sc,n −→ fc,Y , for n → ∞, by

∥sc,n − fc,Y ∥K =

∥∥∥∥∥∥
m∑
j=1

cj

(
K

x
(j)
n

−Kyj

)∥∥∥∥∥∥
K

≤
m∑
j=1

|cj | · ∥Kx
(j)
n

−Kyj∥K −→ 0.

Thereby, kernel regression converges on the dense subset

SK,Ω := {fc,Y ∈ SK,Y : |Y | < ∞} ⊂ HK,Ω,

and so, as stated, also on HK,Ω by continuous extension.

We remark that the convergence of Theorem 2 may be
arbitrarily slow. Indeed, for any monotonically decreasing zero
sequence (ηn)n∈N of non-negative numbers, i.e., ηn ↘ 0, there
is a point sequence X = (xk)k∈N in Ω satisfying hn ↘ 0,
and f ∈ HK,Ω satisfying ηK(f,SK,Xn

) ≥ ηn for large enough
n ∈ N. Since this is immaterial here, we omit further details.

B. Uniform Convergence

Now we analyze the convergence of kernel regression with
respect to the maximum norm ∥ · ∥∞. Recall the inclusion
HK,Ω ⊂ C (Ω), whereby ∥ · ∥∞ is well-defined on HK,Ω. We
further remark that ∥ · ∥∞ is weaker than the RKHS norm
∥ · ∥K , provided that K ∈ PD(Ω) is bounded on Ω×Ω. This
is due to the reproducing kernel property in (2), whereby

|(sn − f)(x)|2 = |(sn − f,Kx)K |2

≤ ∥sn − f∥2K · ∥Kx∥2K
= ∥sn − f∥2K ·K(x, x)

for all x ∈ Ω, which in turn implies

∥sn − f∥∞ ≤ ∥sn − f∥K · ∥
√
K∥∞ for all f ∈ HK,Ω.

To prove uniform convergence of kernel regression, we rely
on local α-Hölder continuity for K ∈ PD(Ω), where α > 0.

Definition 3. For Ω ⊂ Rd, let K ∈ PD(Ω). Then, K is said
to be locally α-Hölder continuous on Ω, for α > 0, if every
function Kx, for x ∈ Ω, is locally α-Hölder continuous on Ω,
i.e., for any x ∈ Ω we have

|Kx(y1)−Kx(y2)| ≤ C∥y1 − y2∥α2
for all y1, y2 ∈ Ω satisfying ∥y1−y2∥2 < r, for small enough
r > 0, and for some C > 0. For α = 1, we say that K is
locally Lipschitz continuous on Ω.

Before we continue our error analysis on kernel regression,
let us first remark two relevant properties of locally α-Hölder
continuous kernels K ∈ PD(Ω).

Remark 4. A translation invariant kernel K ∈ PD(Ω) of the
form (1), i.e., K(x, y) = Φ(x− y) for x, y ∈ Ω, is locally α-
Hölder continuous on Ω, iff the function Φ is locally α-Hölder
continuous by satisfying the growth condition

|Φ(z1)− Φ(z2)| ≤ C∥z1 − z2∥α2



for all z1, z2 ∈ Ω with ∥z1−z2∥2 < r, for small enough r > 0
and for some C > 0.

Remark 5. A positive definite kernel K ∈ PD(Ω) on open
Ω ⊂ Rd can only be locally α-Hölder continuous for α ≤ 1.
Indeed, for α > 1, and for any (fixed) x ∈ Ω, the local estimate

|Kx(y1)−Kx(y2)|
∥y1 − y2∥2

≤ C∥y1 − y2∥α−1
2

holds for all y1, y2 ∈ Ω, y1 ̸= y2, with ∥y1 − y2∥2 < r for
small enough r > 0 and for some C > 0. But this means that
all directional derivatives of Kx must vanish at all points in Ω,
due to the mean value theorem. In this case, K is constant on
Ω×Ω, so that K cannot be positive definite, i.e., K ̸∈ PD(Ω).

From now on, we assume that K ∈ PD(Ω) is locally α-
Hölder continuous for α ∈ (0, 1]. Note that this condition on
K is slightly more restrictive than the minimalistic assumption
of continuity for K on Ω× Ω in Section IV-A.

Now we show that all functions in the RKHS HK,Ω are
locally α/2-Hölder continuous, if K ∈ PD(Ω) is locally α-
Hölder continuous on Ω.

Lemma 6. For Ω ⊂ Rd, let K ∈ PD(Ω) be locally α-Hölder
continuous on Ω, for some α ∈ (0, 1]. Then, all functions in
HK,Ω are locally α/2-Hölder continuous on Ω.

Proof. Let f ∈ HK,Ω and x ∈ Ω be fixed. Then, we have

|f(x)− f(y)|2 = |(Kx −Ky, f)K |2 ≤ ∥Kx −Ky∥2K ∥f∥2K
= (Kx(x)−Kx(y) +Ky(y)−Ky(x)) ∥f∥2K
≤ 2C∥x− y∥α2 ∥f∥2K

for some C > 0, and where y ∈ Ω, x ̸= y, is required to
satisfy ∥x− y∥2 < r, for r > 0 small enough.

From Lemma 6, we can directly conclude the following er-
ror estimate for kernel regression from finite sampling points.

Proposition 7. For α ∈ (0, 1], let K ∈ PD(Ω) be locally
α-Hölder continuous on Ω ⊂ Rd. Moreover, let X ⊂ Ω be a
finite subset of Ω. Then, we have for any f ∈ HK,Ω the error
estimate

∥sf,X − f∥∞ ≤
√
2Chα

X,Ω · ∥f∥K ,

where sf,X denotes the interpolant to f on X .

Proof. Suppose y ∈ Ω. Then, there is one x ∈ X satisfying
∥y−x∥2 ≤ hX,Ω. By using (sf,X−f)(x) = 0 we can conclude

|(sf,X − f)(y)|2 = |(sf,X − f)(y)− (sf,X − f)(x)|2

≤ 2Chα
X,Ω · ∥sf,X − f∥2K

≤ 2Chα
X,Ω · ∥f∥2K

from Lemma 6, where we further used

∥sf,X − f∥K ≤ ∥f∥K ,

from the stability estimates in (4).

Finally, our next result follows directly from Proposition 7.

Corollary 8. For α ∈ (0, 1], let K ∈ PD(Ω) be locally α-
Hölder continuous on Ω ⊂ Rd. Moreover, let X = (xk)k∈N
be a sequence of pairwise distinct points in Ω, whose corres-
ponding sequence (hn)n∈N of fill distances hn = h(Xn,Ω),
as in (7), is a zero sequence, i.e., hn ↘ 0, for n → ∞. Then,
the uniform convergence

∥sn − f∥∞ = O
(
hα/2
n

)
for n → ∞

holds for all f ∈ HK,Ω at convergence rate α/2.

VI. CONCLUSION AND FUTURE WORK

We have proven convergence of kernel regression from ir-
regular samples in reproducing kernel Hilbert spaces (RKHS),
under minimalistic assumptions (cf. Section IV) on the kernel
K, its RKHS HK,Ω, and the sampling points X ⊂ Ω.

Now it may be inspiring to work on even weaker conditions
for K and X , under which kernel regression is convergent.

Yet, it remains to analyse conditions for K ∈ PD(Ω),
under which given functions f ∈ C (Ω) lie in HK,Ω, so that
kernel regression converges to f (due to Theorem 2). And if
so, i.e., if f ∈ HK,Ω, can we then conclude properties of K
from properties of f? E.g. if f ∈ HK,Ω is (locally) α-Hölder
continuous, for α ∈ (0, 1], can we then conclude that K is also
(locally) α-Hölder continuous, so that f can be approximated
at convergence rate α/2 (due to Corollary 8)?
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