
Published in Transactions on Machine Learning Research (11/2025)

Tree Structure for the Categorical Wasserstein Weisfeiler-
Lehman Graph Kernel

Keishi Sando sando.keishi.sp@alumni.tsukuba.ac.jp
Department of Statistical Science
The Graduate University for Advanced Studies

Tam Le tam@ism.ac.jp
The Institute of Statistical Mathematics

Hideitsu Hino hino@ism.ac.jp
The Institute of Statistical Mathematics / Waseda University

Reviewed on OpenReview: https: // openreview. net/ forum? id= VwoSsFK22P

Abstract

The Wasserstein Weisfeiler-Lehman (WWL) graph kernel is a popular and efficient approach,
utilized in various kernel-dependent machine learning frameworks for practical applications
with graph data. It incorporates optimal transport geometry into the Weisfeiler-Lehman
graph kernel, to mitigate the information loss inherent in aggregation strategies of graph
kernels. While the WWL graph kernel demonstrates superior performance in many appli-
cations, it suffers a drawback in its computational complexity, i.e., at least O(n1n2), where
n1, n2 denote the number of vertices in the input graphs. Consequently, it hinders the prac-
tical applicability of the WWL graph kernel, especially in large-scale settings. In this paper,
we propose the Tree Wasserstein Weisfeiler-Lehman (TWWL) algorithm, which leverages a
tree structure to scale up the exact computation of the WWL graph kernel for graph data
with categorical node labels. In particular, the computational complexity of the TWWL
algorithm is O(n1 + n2), which enables its application to large-scale graphs. Numerical ex-
periments demonstrate that the performance of the proposed algorithm compares favorably
with baseline kernels, while its computation is several orders of magnitude faster than the
classic WWL graph kernel. This paves the way for applications in large-scale datasets where
the WWL kernel is computationally prohibitive.

1 Introduction

Graph data are a popular structure and play a fundamental role in many applications (Barabási & Oltvai,
2004; Pržulj, 2007; Barabási & Pósfai, 2016; Petric Maretic et al., 2019; Xu et al., 2019; Nguyen et al., 2021;
Chen et al., 2022; Vincent-Cuaz et al., 2022; Le et al., 2022; Kong et al., 2023). To incorporate such structured
data into machine learning frameworks, several graph kernels (Vishwanathan et al., 2010; Borgwardt et al.,
2020; Kriege et al., 2020; Nikolentzos et al., 2021) have been proposed in the literature, which measure
similarity of input graphs by aggregating their local features, e.g., histogram kernels (Nikolentzos et al.,
2021) compare multisets counting on nodes or edges, path-based kernels (Borgwardt & Kriegel, 2005; Feragen
et al., 2013) accumulate similarities along shortest paths, and graphlet kernels (Pržulj, 2007; Shervashidze
et al., 2009) evaluate the frequency of small subgraph structures. Despite their effectiveness, these kernels
face certain significant challenges. A primary limitation is poor scalability with the number of nodes in
input graphs. For examples, the shortest path kernel relies on the pairwise shortest paths between all graph
nodes, which typically requires O(n3), where n is the number of nodes in a graph. The k-node graphlet
kernel requires about O(nk) induced subgraphs, forcing users either to perform an exhaustive count or to
approximate it by sampling; both approaches become prohibitive even for moderate k.

1

https://openreview.net/forum?id=VwoSsFK22P

Published in Transactions on Machine Learning Research (11/2025)

To overcome this challenge and to enhance the expressiveness of graph kernels, Shervashidze et al. (2011)
proposed the Weisfeiler-Lehman (WL) kernels. By coupling iterative neighborhood aggregation with rela-
beling, the WL kernel achieves neighborhood-aware representations while retaining computational efficiency.
Moreover, Togninalli et al. (2019) leveraged optimal transport (Villani, 2009) to enrich the representational
power of the WL kernel, and proposed the Wasserstein Weisfeiler-Lehman (WWL) kernel. Notice that several
traditional graph kernels, e.g., graphlet kernels, shortest-path kernels, and WL subtree kernel (Shervashidze
et al., 2011), typically enumerate substructures and then aggregate them by frequency counting or averag-
ing. Such a pooling approach collapses the empirical distribution of substructures to its first-order statistics,
eliminating information about how different patterns co-occur or how their attributes are distributed. The
WWL kernel overcomes this information loss by comparing the entire distributions of node embeddings via
the Wasserstein distance (Peyré & Cuturi, 2020), thus retaining intricate structural information.

Although the WWL graph kernel strengthens the ability to capture complex graph structures, the Wasser-
stein distance within its computation process raises concerns about its scalability (i.e., supercubic computa-
tional complexity). Since this challenge stems from the inherent difficulty in optimal transport theory, vari-
ous acceleration strategies have been explored in many domains. There are two main acceleration strategies
for the computation of the Wasserstein distance: (i) the sliced Wasserstein distance (SWD) (Bonneel et al.,
2015), which relies on one-dimensional projections of the supports of input measures, and exploits the closed-
form expression of univariate optimal transport; and (ii) an entropic regularization approach (Cuturi, 2013),
which can be solved efficiently by the celebrated Sinkhorn algorithm (Sinkhorn, 1964). Extensive research
has been conducted related to these approaches. Perez et al. (2024) proposed to utilize the SW approach
to approximate the WWL kernel, to scale up its computation, which is applicable to large-scale datasets
with continuous node attributes. In the Sinkhorn algorithm, various proposals have been introduced in the
literature to further reduce its computational cost, including a greedy strategy (Altschuler et al., 2017),
kernel matrix sparsification (Li et al., 2023), and low-rank factorization of the coupling (Scetbon et al.,
2021). Additionally, Tang et al. (2024) proposed to consider a Newton-type method with sparse Hessian
matrix to accelerate its convergence. In a complementary direction to SWD and Sinkhorn, a multiscale ap-
proach (Mérigot, 2011) solves the optimal transport problem on a coarse-to-fine hierarchy with warm starts,
which results in reduced runtimes. Another line of work develops a proximal point method for computing
the exact Wasserstein distance (Xie et al., 2019). Using a Bregman proximal point scheme with inexact
Sinkhorn projections, this algorithm still converges to the exact solution, alleviating entropic bias.

In contrast to the above strategies, by restricting the space to a tree structure, it has been shown that the
Wasserstein distance can be expressed in closed form (Indyk & Thaper, 2003; Le et al., 2019b). This variant
is commonly referred to as the Tree Wasserstein distance (TWD). The computational efficiency of the TWD
has been leveraged in various applications. Le et al. (2019b) considered the TWD as a generalization of the
univariate Wasserstein distance, and then proposed the tree-sliced Wasserstein distance as a variant of the
SWD. As the choice of a tree structure plays a crucial role in the TWD, Yamada et al. (2022) proposed an
algorithmic approach for estimating the edge weights to approximate the Wasserstein distance. Lin et al.
(2025) addressed the issue of how to construct a tree by embedding features into a multiscale hyperbolic
space via diffusion geometry, decoding the latent feature hierarchy into an explicit tree, and defining the
TWD on the learned tree. Acceleration algorithms leveraging the TWD have also been proposed for the
Wasserstein barycenter problem (Le et al., 2019a; Takezawa et al., 2022) and for metric learning using
Wasserstein singular vectors (Düsterwald et al., 2025).

Following the original formulation of the WWL kernel, subsequent work has advanced both its computational
efficiency and its performance. On the performance front, Titouan et al. (2019) proposed the Fused Gromov-
Wasserstein distance, which jointly aligns node attributes and graph structure information within a single
optimal transport objective. Chen et al. (2022) introduced the Wasserstein-Lehman distance, a polynomial-
time optimal transport metric between labeled Markov chains, that lifts WL iterations to a hierarchy of
probability measures. This yields stronger discriminative power than WWL and provides a practical WL
lower bound for tractability. Schulz et al. (2022) proposed a relaxed Weisfeiler-Lehman subtree kernel that
encodes WL labels as rooted trees and compares them via tree edit metric. This relaxes the hard 0/1 equality
into flexible similarity. Chuang & Jegelka (2022) construct, for each graph, the multiset of computation trees
rooted at every vertex and, by defining hierarchical optimal transport between trees, introduced an optimal

2

Published in Transactions on Machine Learning Research (11/2025)

transport distance between these multisets as a graph metric. With respect to computational scalability,
Perez et al. (2024) proposed an approximation method that accelerates the WWL kernel for graphs with
continuous node attributes, and generic accelerations for Wasserstein computation are likewise applicable.

A challenge in graph-based machine learning is the trade-off between the expressive power of graph com-
parison and their computational scalability. While advanced graph metrics can capture both global and
local structure, they often demand substantial computational costs. Therefore, developing approaches that
achieve an effective balance is essential for tackling the large-scale datasets in modern applications. In this
paper, we address the acceleration of the WWL graph kernel for datasets with categorical node labels by
utilizing the TWD. Specifically, we first show that the labels generated by the WL algorithm inherently ex-
hibit a tree structure, and that the resulting path metric on the tree exactly preserves the Hamming distance
between the labels. This results in a closed-form expression to calculate the WWL kernel for categorical
node labels. One notable advantage of our approach over the Sinkhorn approach is its predictable runtime.
Whereas the Sinkhorn solver requires a quadratic complexity over the number of iterations to converge, the
computational cost of our approach is fixed once the WL algorithm is completed.

Contribution. Our contribution is three-fold:

1. We present that the relationship among generated labels by the WL algorithm forms a tree structure.

2. We show that the proposed algorithm, Tree Wasserstein Weisfeiler-Lehman algorithm, is an exact
and accelerated method for computing the WWL graph kernel designed for graph datasets with
categorical node labels.

3. Numerical experiments demonstrate that the computational complexity of the proposed algorithm
outperforms the original WWL kernel algorithm without sacrificing its performances. Moreover, our
algorithm makes it feasible to apply the WWL kernel to large-scale categorical-label graph datasets
that are computationally prohibited for the original WWL graph kernel algorithm.

Organization. The paper is organized as follows: Section 2 is devoted to notations in this paper. In
Section 3, we review the related works that are necessary to construct our algorithm. Our algorithm and its
properties are described in Section 4. Section 5 presents the numerical experiments, and we conclude the
paper in Section 6.

2 Notations

In this section, we introduce the notations used in subsequent sections. Let G = (V, E) be an undirected
graph, where V and E denote the set of vertices and edges, respectively. We write the neighborhood of a
vertex v by Nv ⊂ V . We denote a set of initial categorical labels by Σ0, and say that a graph is labeled if
each of its vertices is assigned a label from Σ0.1 Let G := {G1 = (V1, E1), . . . ,GN = (VN , EN)} be a set of
graphs, N be the number of graphs, ni be the number of vertices in Gi, n :=

∑N
i=1 ni be the total number of

vertices in G, and n̄ := n
N be the average number of vertices per graph. Throughout this paper, we assume

that all graphs in G are labeled and share the same label set Σ0. Furthermore, we write V :=
⋃N

i=1 Vi. A
function l0 : V → Σ0 is used to denote the initial label of vertices.

A sequence of vertices (v1, . . . , vk) in a graph G is called a walk if an edge exists between every pair of
consecutive vertices. If all vertices in the walk are distinct, the walk is called a path. A sequence (v1, . . . , vk)
is called a cycle if its first and last vertices coincide, the vertices v1, . . . , vk−1 are distinct, and for every pair
of consecutive vertices there exists an edge between them. A graph is connected if, for every pair of vertices
there exists a path. We denote an edge weight function by w : E → R≥0.

A connected graph without cycles is called a tree. We denote a tree by T = (V (T), E(T)) rather than G.
The vertices and edge sets of T are denoted V (T) and E(T), respectively. Note that for any pair of vertices

1For graphs without node labels, We assign dummy labels to each vertex.

3

Published in Transactions on Machine Learning Research (11/2025)

in a tree, there exists a unique path connecting them. This is because the existence of two distinct paths
would necessarily imply the presence of a cycle, contradicting the definition of a tree.

We write P(u, v) as a set of edges that constitute the path between u, v ∈ V (T). Given a tree T with a
weight function w, the path metric between u, v ∈ V (T) is defined as d(T ,w)(u, v) :=

∑
e∈P(u,v) we, where

we := w(e). We denote a tree rooted at r ∈ V (T) by Tr, and a set of nodes in a subtree rooted at u ∈ V (Tr)
by Γu := {v ∈ V (Tr) | u ∈ P(v, r)}. For an edge e ∈ E(Tr), we write ue ∈ V (Tr) for the node closer to the
root and ve ∈ V (Tr) for the node farther away from the root node.

Figure 1 illustrates the notations of path metric, subtree, and edge endpoints introduced above. The path
metric between vertices y and z can be calculated as d(Tr,w)(y, z) = w1 + w2 + w3, the subtree rooted at y
is indicated by the region outlined in blue, and Γy denotes the set of vertices contained within the region.
For the edge e that joins vertices x and z, the endpoint closer to the root is ue = x, whereas the endpoint
farther from the root is ve = z.

3 Related work

Our algorithmic approach accelerates the categorical WWL graph kernel, which combines the WL algorithm
with the Wasserstein distance, by leveraging the tree structure over labels within the WL procedure. In this
section, we review the necessary background and related works that support our approach.

3.1 Wasserstein distance

The Wasserstein distance (Villani, 2009; Peyré & Cuturi, 2020) is a metric between probability measures
supported on a given metric space. Let (Ω, d) be a metric space and µ, ν be probability measures supported
on Ω. The Lp-Wasserstein distance for p ≥ 1 is defined as

W p(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
d(x, y)pπ(dx, dy)

)1/p

,

where π is a probability measure on Ω × Ω whose marginals are µ and ν, called a coupling, and Π(µ, ν) is
the set of all couplings of µ and ν. In this paper, we focus on the L1-Wasserstein distance, which we denote
by Wd, i.e., optimal transport with ground cost d.

3.2 Weisfeiler-Lehman algorithm

Shervashidze et al. (2011) proposed to incorporate the concept of the Weisfeiler-Lehman test (Weisfeiler &
Leman, 1968) into graph kernels. The WL test is a procedure for graph isomorphism problem that iteratively
refines vertex labels based on their neighborhood structure. This approach yields features that are both
highly expressive, by capturing latent graph structure, and computationally efficient, thereby addressing the
scalability issues that hindered various graph kernels.

The WL algorithm iteratively assigns a new label to each vertex, treating the resulting sequence of labels
as the feature of the vertex. Let H ∈ N denote the maximum number of iterations, Σh denote the set of all
labels generated at the h-th iteration, and Σ :=

⋃H
h=0 Σh denote the set of all labels. At the h-th iteration

in the WL algorithm, the new label for vertex v is generated as follows, based on its previous label and the
set of labels in its neighborhood:

lh(v) := hash (lh−1(v),Nv,h−1) , (1)

where we write Nv,h−1 := {lh−1(u) | u ∈ Nv} and handle Nv,h−1 in its sorted form. The hash function (Cor-
men et al., 2009) is defined as a function commonly used in computer science that returns the same output
for identical inputs and returns the distinct value for different inputs. A general description of hash functions
is provided in Appendix A. Lemma 1 immediately follows from the definition of the hash function.
Lemma 1. For every σ ∈ Σh, there exists a unique label sequence (σ0, . . . , σh−1), σi ∈ Σi that generates σ.

4

Published in Transactions on Machine Learning Research (11/2025)

rTr

x y Γy

w2 w3

z

w1

Figure 1: An example of tree no-
tations.

A v1

B v2

C v3

C v4
B v5

C v6

G1

h = 0

D

E

F

G
E

H

h = 1

K

L

M

N
O

P

h = 2

...

A w1

B w2

C w3

C w4
A w5

G2 I

E

F

G
J

Q

R

M

S
T

l0, Nv,0 l1
A, {B,B,C} D
B, {A,C} E
C, {B,C} F
C, {A,C} G
C, {B} H

A, {A,B,C} I
A, {A} J

l1, Nv,1 l2
D, {E,E,G} K
E, {D,F} L
F, {E,G} M
G, {D,F} N
E,{D,H} O
H, {E} P
I, {E,J} Q

E, {F,I} R
G, {F,I} S
J, {I} T

Figure 2: An example of the WL algorithm for given graphs with Σ0 =
{A, B, C}.

Figure 2 illustrates the iterative process of the WL algorithm on labeled graphs G = {G1,G2}. In this
figure, the new labels generated at each step are represented by Latin characters that are not used in the
previous steps, reflecting the injectivity of the hash function. Vertices v2 and v5 start with identical labels
and the same multiset of neighbor labels, meaning that they remain indistinguishable after the first iteration.
However, as structural information from farther neighborhoods is propagated, their local contexts diverge.
This divergence leads to them being assigned distinct labels at h = 2. This example demonstrates how the
WL algorithm effectively propagates structural information to eventually differentiate vertices that initially
appear identical from a local viewpoint.

3.3 Weisfeiler-Lehman subtree kernel

The WL subtree kernel, introduced by Shervashidze et al. (2011), is a member of a graph kernel family that
leverages the WL algorithm. Based on the label set Σ generated by the WL algorithm, let c(σ,G) denotes
the count of a label σ in G. Then, the WL subtree feature for G is defined as

ϕ(G) :=
(
c(σ1,G), . . . , c(σ|Σ|,G)

)
.

We use ⟨·, ·⟩ to denote an inner product, then the WL subtree kernel on two graphs G1,G2 is defined as

kWLsubtree(G1,G2) := ⟨ϕ(G1), ϕ(G2)⟩.

The WL subtree kernel is positive semidefinite and can be computed in O(Hm), where m is the total number
of edges in G1 and G2.

3.4 Wasserstein Weisfeiler-Lehman graph kernel

Most classical graph kernels aggregate substructures by a simple pooling approach, which reduces the empir-
ical distribution to first-order statistics and discards information about pattern co-occurrence and attribute
variation. To reflect this information in the comparison, Togninalli et al. (2019) proposed the WWL kernel.
The key idea is to treat the multiset of WL node labels as an empirical distribution over the label space
and to compare the similarity between two graphs via the Wasserstein distance on that space for the WWL
kernel.

For labeled graphs, the ground distance between each pair of vertices v ∈ Vi, w ∈ Vj is defined by the
Hamming distance between their WL label sequences:

dHam(v, w) :=
H∑

h=0
ρ (lh(v), lh(w)) , where ρ(a, b) =

{
1 a ̸= b,

0 otherwise.
(2)

In Togninalli et al. (2019), Equation 2 is normalized by H + 1. Since normalization by a constant does not
affect the results, we omit this factor to simplify the discussion.

Due to the uniqueness of the label sequence that generates a label σ ∈ ΣH and the definition of the hash
function, the Hamming distance dHam can be regarded as a metric on ΣH . Assigning a uniform probability

5

Published in Transactions on Machine Learning Research (11/2025)

measure to each vertex induces empirical measures on that label space. Let µ, ν be probability measures on
ΣH for G1 and G2, respectively. The Wasserstein distance W (G1,G2) is then computed by

W (G1,G2) := WdHam(µ, ν) = inf
π∈Π(µ,ν)

∫
dHam(x, y)π(dx, dy), (3)

and the corresponding kernel is defined by

kW (G1,G2) := e−λW (G1,G2), (4)

where λ is a positive hyperparameter. Togninalli et al. (2019) employed either the network simplex algo-
rithm (Orlin, 1997) to compute the Wasserstein distance or the Sinkhorn algorithm (Sinkhorn, 1964; Cuturi,
2013) to approximate it.

3.5 Tree Wasserstein distance

The Tree Wasserstein distance was initially introduced by Indyk & Thaper (2003), and implicitly utilized in
UniFrac (Lozupone & Knight, 2005), which quantifies the similarity between two microbial communities on
a reference phylogenetic tree, then was rigorously formalized by Evans & Matsen (2012). When the ground
space is a weighted tree, the 1-order Wasserstein distance admits a closed form that can be evaluated in
O(|E|). In this section, we define the Wasserstein distance on a tree and present prior work showing that it
admits a closed-form expression.

Given that dT is a path-length metric on T and µ, ν are probability measures on T , we refer to the L1-
Wasserstein distance on T as the Tree Wasserstein distance and define it below:

WdT (µ, ν) := inf
π∈Π(µ,ν)

∫
dT (x, y)π(dx, dy).

Prior work has established that the L1-Wasserstein distance on a tree admits the following closed-form
expression.
Theorem 1 ((Evans & Matsen, 2012; Le et al., 2019b)). The Tree Wasserstein distance can be written as
follows:

WdT (µ, ν) =
∑

e∈E(T)

we |µ(Γ(ve))− ν(Γ(ve))| .

Computing this expression requires only a single post-order traversal of the tree. When the tree degenerates
to a path, the formula reduces to the standard univariate Wasserstein distance, highlighting TWD as a
natural generalization. While not adopted in our setting, the closed-form representation in Theorem 1 can
be written in matrix notation. For further details, we refer the reader to Takezawa et al. (2021).

4 Main Algorithm

We propose the Tree Wasserstein Weisfeiler-Lehman (TWWL) algorithm that enables us to calculate the
Wasserstein distance based on the Hamming distance precisely and efficiently, without entropic regulariza-
tion. In our algorithm, we focus on the relationship between lh(v) and lh−1(v) in Equation 1.
Definition 1 (Parent-Child relationship among labels). For σ ∈ Σh and τ ∈ Σh+1, if there exists a label
set S ⊂ Σh such that τ = hash(σ, S), then σ is considered a parent label of τ , or equivalently, τ is a child
label of σ.

It is clear from the property of the hash function that the following holds.
Lemma 2. Let u, v be arbitrary vertices in V. If there exists h0 < H such that lh0(u) ̸= lh0(v), then
∀h ∈ {h0, . . . , H}, lh(u) ̸= lh(v) holds.

6

Published in Transactions on Machine Learning Research (11/2025)

root

A B C

D I J E F G H

K

v1

Q

w1

T

w5

L

v2

O

v5

R

w2

M

v3, w3

N

v4

S

w4

P

v6

Figure 3: An illustration of a label tree based on graphs in Figure 2.

The TWWL algorithm yields a tree structure for labels, called the Label Tree, and applies the Tree Wasser-
stein distance. The label tree consists of nodes corresponding to the labels produced by the WL algorithm
and preserves the relation in Definition 1. The steps for constructing a label tree are described in Algo-
rithm 1. The label tree is constructed to satisfy the following properties: (i) except for the root node, each
node is in one-to-one correspondence with a label in Σ; (ii) for every label in Σ0, there is an edge connecting
it to the root node; (iii) an edge exists between any two labels that satisfy the relation defined in Definition 1;
(iv) each edge is assigned a weight of 1/2.

Figure 3 illustrates the label tree constructed from the example in Figure 2. Nodes at depth d in the label
tree correspond to the labels generated at the (d−1)-th iteration of the WL algorithm. Taking the label tree
properties into consideration, one can intuitively verify that the Hamming distance between v1 and w1, as
defined in Equation 2 with H = 2, coincides with the length of the shortest path on the tree. The following
two lemmas provide a formal justification for these claims.
Lemma 3. A label tree obtained by Algorithm 1 is a tree.

Proof. We begin by proving the connectivity of the label tree, i.e., that there exists a walk between any σ, τ ∈
Σ. By Lemma 1 and the property (iii) of the label tree, there exist label sequences (σ0, . . . , σ), (τ0, . . . , τ)
that form a path in the label tree. The property (ii) implies that there exist edges connecting the root to σ0
and to τ0. Therefore, a walk exists between σ and τ .

Next, we show that the label tree contains no cycle. Suppose, for the sake of contradiction, that there exists
a cycle (σ, τ1, . . . , τk, σ) in the label tree for some label σ ∈ Σ. Without loss of generality, assume that σ is
the deepest vertex in the cycle. Then, both τ1 and τk must be parent nodes of σ. By a property of the hash
function, τ1 = τk holds. However, this equality contradicts the definition of a cycle, which requires that the
intermediate vertices are distinct. Therefore, no cycle exists in the label tree.

Lemma 4. The mapping ϕ : ΣH → T obtained by Algorithm 1 is distance-preserving.

Proof. We denote ϕ(σ) simply as σ. We show that for any σH , τH ∈ ΣH , dHam(σH , τH) = d(T ,1/2)(σH , τH)
holds. Lemma 1 implies that there exist label sequences (σ0, . . . , σH), (τ0, . . . , τH) that satisfy the parent-
child relationship. From Lemma 2, we consider the following three cases:

Case 1: ∀h ∈ {0, . . . , H} , σh = τh. Then, we have both dHam(σH , τH) and d(T ,1/2)(σH , τH) are 0.

Case 2: σ0 ̸= τ0. Then, it follows from Lemma 2 that dHam(σH , τH) = H + 1. Additionally, Lemma 3
implies that the sequence (σH , . . . , σ0, root, τ0, . . . , τH) is the unique path between σH and τH . Thus,
d(T ,1/2)(σH , τH) = H + 1.

Case 3: ∃h0 ∈ {1, . . . , H} , σh0−1 = τh0−1 and σh0 ̸= τh0 . Then, by Lemma 2, dHam(σH , τH) = H + 1− h0
is satisfied and the sequence (σH , . . . , σh0 , σh0−1 = τh0−1, τh0 , . . . , τH) is a unique path between σH and τH .
This implies d(T ,1/2)(σH , τH) = H + 1− h0.

Therefore, Lemma 4 holds for all cases.

The edge weight 1/2 in property (iv) ensures that the path-length metric on the label tree coincides with
the Hamming distance on ΣH . Along the unique path between two labels σH , τH ∈ ΣH , each mismatch at a

7

Published in Transactions on Machine Learning Research (11/2025)

Algorithm 1: Tree Structure for TWWL
Input: G: a set of graphs with the initial labels l0; H: the maximum number of the WL iterations
Output: Label tree T rooted at root, and mapping ϕ : ΣH → V (T)
Struct node // Data Structure for Tree Node

depth: integer
Γ: vector of N doubles
children: hashmap<label,node>

end
Function GetOrCreateChild(node, label)

if has(node.children, label) then
return node.children[label]

end
child← node(depth=node.depth+1, label=label, Γ=0N , children=[])
insert(node.children, key=label, value=child)
return child

end
1 root← node(depth=-1, label="", Γ=0N , children=[])
2 que← empty FIFO Queue⟨node, graph id, vertex⟩

// process for h=0
3 for Gi in G do
4 for v in Vi do
5 child← GetOrCreateChild(root, l0(v))
6 enqueue(que, (child, i, v))
7 end
8 end

// process for h=1,...,H
9 while !isempty(que) do

10 (node, i, v) ← dequeue(que)
11 node.Γi ← node.Γi + 1/ni

12 if node.depth < H then
13 h← node.depth
14 child← GetOrCreateChild(node, lh+1(v))
15 enqueue(que, (child, i, v))
16 end
17 end
18 return root

level contributes two unit-length edges, so assigning length 1/2 to each edge yields a total path length equal
to the number of mismatched levels, i.e., dHam(σH , τH) = d(T ,1/2)(σH , τH). Accordingly, the factor 1/2 in
Equation 5 reflects this result.

In lines 9–17 of Algorithm 1, each dequeue operation can trigger at most one enqueue operation, during
which the depth is incremented by one. Hence, the total number of operations in this part is bounded by the
product of the initial queue size and the maximum depth H. Since the initial queue elements are inserted
one per iteration in lines 3–8, their number is

∑N
i=1 ni = n. Moreover, the time complexity of search and

insertion in a hash map is O(1) on average. Therefore, the overall time complexity of Algorithm 1 is O(Hn).

The above results imply that the Wasserstein distance for the categorical WWL graph kernel can be computed
efficiently as follows.

Proposition 1. Suppose that µ, ν are probability measures supported on ΣH . Let (T , dT , ϕ) denote a label
tree, path-length metric, and mapping from ΣH to T generated by Algorithm 1, respectively. Then, the

8

Published in Transactions on Machine Learning Research (11/2025)

Wasserstein distance in Equation 3 can be written as

WdHam(µ, ν) =
∑

e∈E(T)

1
2 |ϕ♯µ(Γ(ve))− ϕ♯ν(Γ(ve))| , (5)

where we let ϕ♯µ denote the push-forward measure of µ by ϕ.

Proof. Since WdT (ϕ♯µ, ϕ♯ν) =
∑

e∈E(T)
1
2 |ϕ♯µ(Γ(ve))− ϕ♯ν(Γ(ve))| holds by Theorem 1, we show that

WdHam(µ, ν) = WdT (ϕ♯µ, ϕ♯ν).

First, let π be a coupling of µ and ν. Note that ϕ is injective and measurable by Lemma 4, the mapping
ϕ×ϕ is a measurable from Σ2

H to T 2, and (ϕ×ϕ)♯π is a push-forward measure on T 2 that is also a coupling
of ϕ♯µ and ϕ♯ν. Since the mapping ϕ is distance-preserving, we have∫

Σ2
H

dHam(x, y)π(dx, dy) =
∫

T 2
dT (a, b)((ϕ× ϕ)♯π)(da),

⇒ inf
π∈Π(µ,ν)

∫
Σ2

H

dHam(x, y)π(dx, dy) ≥ inf
γ∈Π(ϕ♯µ,ϕ♯ν)

∫
T 2

dT (a, b)γ(da, db) = WdT (ϕ♯µ, ϕ♯ν).

Therefore, it follows that WdHam(µ, ν) ≥WdT (ϕ♯µ, ϕ♯ν).

Next, we show that WdHam(µ, ν) ≤WdT (ϕ♯µ, ϕ♯ν). Since the map ϕ restricted to its image ϕ(ΣH) is bijective,
its inverse map ϕ−1 : ϕ(ΣH)→ ΣH exists, and ϕ−1 is distance-preserving.

Let γ denotes a coupling of ϕ♯µ and ϕ♯ν, then∫
T 2

dT (a, b)γ(da, db) ≥
∫

ϕ(ΣH)2
dT (a, b)γ(da, db), since ϕ−1 is distance-preserving,

=
∫

Σ2
H

dHam(x, y)((ϕ−1 × ϕ−1)♯γ)(dx, dy).

((ϕ−1 × ϕ−1)♯γ) is a measure on Σ2
H , and is a coupling of µ and ν. Consequently, it leads to

inf
γ∈Π(ϕ♯µ,ϕ♯ν)

∫
T 2

dT (a, b)γ(da, db) ≥ inf
π∈Π(µ,ν)

∫
Σ2

H

dHam(x, y)π(dx, dy) = WdHam(µ, ν).

This means WdT (ϕ♯µ, ϕ♯ν) ≥WdHam(µ, ν) holds.

The positive definiteness proof of the categorical WWL kernel in the original WWL paper (Togninalli et al.,
2019) already hints at a hierarchical structure of the Wasserstein computation. The proof shows that, under
a Hamming ground cost, the Wasserstein distance between WL embeddings can decompose across the depth
of the WL iterations, and the optimal coupling at the final layer induces optimal couplings at earlier layers.
In this sense, a hierarchical structure is implicitly present. Proposition 1 makes this structure explicit by
identifying the label tree. By treating the WL embeddings as probability measures on the tree, we show
that applying Theorem 1 derives a closed-form expression for the Wasserstein distance.

This result shows that the TWWL algorithm exhibits lower time complexity than the approach described
in Togninalli et al. (2019). Given two labeled graphs G1 and G2 with n1 and n2 vertices, respectively, the
time complexity of the Sinkhorn algorithm for Equation 3 is O(n1n2). The time complexity of the TWWL
algorithm is determined by the number of edges in the label tree and the computation of Γ. The number
of edges is O(n1 + n2) even in the worst case, and Γ can be computed in O(n1 + n2) time beforehand.
Consequently, the overall time complexity of our algorithm is O(n1 + n2). As the number of vertices in the
given graphs increases, our algorithm becomes significantly faster than the existing approach.

Equation 4 has been shown to be positive definite for every λ > 0 by Togninalli et al. (2019). The alternative
expression based on the Tree Wasserstein distance offers an independent verification. From Proposition 2 in
Le et al. (2019b, Proposition 2), it follows that WdHam(µ, ν), expressed in Equation 5, is negative definite.
Furthermore, Theorem 2.2 in Berg et al. (1984) proves that the graph kernel given in Equation 4 is positive
definite.

9

Published in Transactions on Machine Learning Research (11/2025)

Table 1: Summary of datasets. We denote by N the number of graphs in the dataset, and by n̄ and avg{|Ei|}
the average number of vertices and edges per graph, respectively.

N n̄ avg{|Ei|} ♯graphs per class node labels
MUTAG 188 17.93 19.79 63/125 ✓
PTC-MR 344 14.29 14.69 192/152 ✓
ENZYMES 600 32.63 62.14 100/100/100/100/100/100 ✓
PROTEINS 1113 39.06 72.82 663/450 ✓
DD 1178 284.32 715.66 691/487 ✓
NCI1 4110 29.87 32.30 2053/2057 ✓
COLLAB 5000 74.49 2457.78 2600/775/1625 -
REDDIT-BINARY 2000 429.62 497.75 1000/1000 -
REDDIT-MULTI-5K 4999 508.51 594.87 1000/1000/1000/1000/999 -

REDDIT-MULTI-12K 11929 391.40 456.89 767/2592/1000/1094/902/1205
513/999/1243/1092/522 -

DBLP-v1 19456 10.48 19.65 9530/9926 ✓
github-stargazers 12725 113.79 234.64 5917/6808 -

5 Experiments

In this section, we conduct two numerical experiments to validate the scalability and performance of our
approach. The experimental code is publicly available at https://github.com/KeishiS/twwl.

We benchmark our algorithm against the Wasserstein Weisfeiler-Lehman kernel with the Sinkhorn algo-
rithm (Togninalli et al., 2019, WWL), the Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011, WL),
the Weisfeiler-Lehman Optimal Assignment kernel (Kriege et al., 2016, WL-OA), traditional kernels such
as the Shortest Path kernel (Borgwardt & Kriegel, 2005, SP), and Graphlet sampling kernel (Pržulj, 2007,
GL), and recent methods such as the Multiscale Laplacian graph kernel (Kondor & Pan, 2016, MLG), the
Weisfeiler-Lehman Lower Bound distance (Chen et al., 2022, WLLB)2, and the Relaxed Weisfeiler-Lehman
kernel (Schulz et al., 2022, R-WL)3. For WL, WL-OA, SP, GL and MLG, we utilize the graph kernel imple-
mentations provided by Siglidis et al. (2020). All experiments are conducted on an Ubuntu 22.04 machine
equipped with an Intel Xeon Gold 6354 CPU and 256GB of RAM. For runtime comparisons against WWL,
both our method and the WWL kernel are implemented entirely in Julia to ensure fairness.

We evaluate the proposed methods on graph classification task using real-world datasets summarized in
Table 1. For datasets without node labels, we assign degree-based dummy labels. Across baselines, node
labels are used as follows. WL, WL-OA and WWL use them as inputs to the WL algorithm. R-WL represents
WL labels as unfolding trees and assesses their similarity via a tree edit metric. SP incorporates them when
comparing two shortest paths by taking into account the agreement of node labels at the endpoints of
corresponding edges along the paths. In WLLB, node labels instantiate the ground label space from which
the hierarchy of probability measures is built. MLG uses node label agreement as the base kernel over vertex
features. GL ignores node labels and measures similarity via counts of graphlet patterns. All datasets are
downloaded from Morris et al. (2020). The details on experiments are described in Appendix B.

5.1 Runtime Comparison

In the first experiment, we benchmark the computation time required for calculating the pairwise Wasserstein
distances on real-world datasets. For each combination of datasets and methods, we conduct 10 independent
trials and report the average runtime (in seconds) and the corresponding standard deviation. We denote
linear programming solver by LP, implemented by Huangfu & Hall (2018), and note that our algorithm
provides the same calculated values with the solver. Furthermore, since the computation time of the Sinkhorn

2https://github.com/chens5/WL-distance
3https://github.com/mlai-bonn/GenWL

10

https://github.com/KeishiS/twwl
https://github.com/chens5/WL-distance
https://github.com/mlai-bonn/GenWL

Published in Transactions on Machine Learning Research (11/2025)

Table 2: Runtime performance (in seconds) of the Wasserstein distance computation fixed at H = 5.
“NA (not-available)” indicates timeout (over 24h).

METHOD MUTAG PTC-MR ENZYMES PROTEINS DD NCI1
LP 33.89± 1.68 85.98± 5.73 882.56± 69.52 4597.12± 157.77 NA 34 775.82± 337.00
WWL (0.01) 3.15± 0.04 4.54± 0.01 37.01± 0.02 147.26± 0.52 9390.61± 28.49 2116.45± 6.92
WWL (1.00) 0.27± 0.01 0.47± 0.00 5.33± 0.16 24.89± 0.23 1283.43± 9.48 229.97± 0.59
TWWL 0.03± 0.00 0.08± 0.00 0.67± 0.12 2.38± 0.19 26.93± 0.40 24.33± 0.56

COLLAB REDDIT-B REDDIT-M5 REDDIT-M12 DBLP-v1 github-stargazers
LP NA NA NA NA NA NA
WWL (0.01) 7721.67± 37.48 NA NA NA 1798.11± 5.92 NA
WWL (1.00) 1653.68± 27.69 8457.94± 469.58 NA NA 945.74± 8.84 25 820.89± 65.90
TWWL 44.18± 0.32 38.92± 0.32 333.53± 3.02 5535.76± 25.07 328.89± 0.56 952.02± 2.11

algorithm varies depending on the entropic regularization term γ, we assess the time for the Sinkhorn
algorithm with both 0.01 and 1.0. The parameter H for the WL algorithm is fixed at 5 for simplicity. For
further details, additional runtime results for the proposed method with varying values of H are placed in
Appendix B.3. We note that the runtime in Table 2 includes only the time taken to compute the pairwise
distance matrix, excluding the preprocessing time for LP, WWL, and TWWL. This is because Algorithm 1
used in TWWL as preprocessing is a slight modification of the WL algorithm used for preprocessing in LP
and WWL, and its running time is comparable to, or at most slightly slower than that of the WL algorithm.
Further runtime decomposition is described in Appendix B.4.

Table 2 shows that TWWL significantly reduces runtime compared to either the Sinkhorn algorithm or
linear programming solver. Notably, TWWL completes computations within practical time limits even in
challenging scenarios, such as a dataset with numerous graphs (e.g., DBLP-v1), a dataset with high average
vertex counts per graph (e.g., REDDIT-MULTI-5K), and a dataset with both features (e.g., REDDIT-
MULTI-12K). For some datasets, such as NCI1, DD, and larger datasets, it was frequently observed that
the Sinkhorn algorithm failed to converge within the maximum number of iterations for any value of γ. A
key advantage of our algorithmic approach is its reliability to produce stable solutions.

5.2 Performance Comparison

In this experiment, we evaluate the performance of TWWL on a graph classification task using 10-fold
cross-validation with a support vector machine classifier (Cortes & Vapnik, 1995). All hyperparameters
are selected via grid search on the training folds only: the SVM regularization parameter, the number of
WL iterations H, the kernel scale λ, and the Sinkhorn entropic regularization term in WWL. Additional
details on the hyperparameter settings are given in Appendix B.2. Since the TWWL algorithm is specifically
designed to accurately and efficiently compute the Wasserstein distance, it is expected that our algorithm
achieves comparable performance to the WWL kernel. Our aim is to verify that the precise Wasserstein
distance does not adversely affect performance when compared to the Sinkhorn algorithm.

Table 3 shows that our algorithm achieves classification accuracy competitive with the WWL kernel. Notably,
TWWL can scale to large datasets for which the Sinkhorn algorithm is computationally prohibited due to
the runtime and/or memory requirements. This result suggests that our proposed approach can serve as a
drop-in replacement for the Sinkhorn algorithm in the WWL kernel in the context of categorical node labels.

6 Conclusion

In this paper, we proposed an exact and efficient algorithm to compute the Wasserstein Weisfeiler-Lehman
graph kernel for datasets with categorical node labels, especially for large-scale application domains. We
revealed that labels generated by the Weisfeiler-Lehman algorithm inherently yield a tree structure, and
that the proposed algorithm provides the same result as the original WWL graph kernel. The computational
complexity of the proposed algorithm scales linearly with the number of vertices in a graph, which is consid-
erably more efficient than the quadratic computational cost required by the Sinkhorn algorithmic approach.
Numerical experiments demonstrate that our algorithm achieves performance comparable to the Sinkhorn

11

Published in Transactions on Machine Learning Research (11/2025)

Table 3: Classification accuracies on datasets. “NA” and “OOM” indicate timeout (over 24h) and out-of-
memory (over 256GB), respectively.

METHOD MUTAG PTC-MR ENZYMES PROTEINS DD NCI1
SP 81.84± 8.62 61.00± 6.75 40.67± 6.54 75.74 ± 2.75 79.80 ± 2.37 73.26± 1.95
GL 77.02± 9.70 55.82± 4.15 29.83± 5.24 68.92± 3.45 72.49± 4.52 59.61± 2.35
WL 85.00± 10.51 62.27± 11.90 54.33± 6.95 75.65± 2.86 79.20± 3.66 85.18± 1.51
WL-OA 85.56± 6.92 62.24± 5.88 60.67 ± 5.62 75.21± 2.58 79.46± 2.29 86.16± 1.35
WWL 87.72± 6.91 65.12± 7.27 60.00± 5.50 74.58± 2.54 NA 86.37± 1.40
MLG 88.30 ± 9.21 57.82± 7.55 60.17± 6.73 75.65± 2.55 NA 80.88± 2.42
R-WL 87.69± 8.07 54.38± 7.88 45.33± 5.65 74.67± 3.89 NA 78.73± 1.34
WLLB 88.27± 8.29 53.19± 8.82 37.83± 6.76 NA NA NA
TWWL 88.27 ± 6.16 66.00 ± 6.83 59.83± 4.74 74.94± 2.98 77.17± 3.51 86.57 ± 1.27

COLLAB REDDIT-B REDDIT-M5 REDDIT-M12 DBLP-v1 github-stargazers
SP 81.34 ± 2.47 88.70 ± 1.93 52.33± 2.62 44.10 ± 1.14 OOM 68.06 ± 1.17
GL NA NA NA NA NA NA
WL 78.74± 2.51 75.05± 2.07 50.79± 1.46 39.65± 1.33 92.97± 0.52 65.19± 1.03
WL-OA NA 88.60± 2.33 NA NA NA NA
WWL NA NA NA NA OOM NA
MLG NA NA NA OOM OOM NA
R-WL NA NA NA NA OOM NA
WLLB NA NA NA NA NA NA
TWWL 80.28± 1.67 85.75± 2.87 54.47 ± 2.48 42.90± 0.95 93.37 ± 0.47 65.55± 0.73

algorithm, and its efficient computation enables the WWL kernel to be applied to large-scale datasets that
were previously infeasible, thereby establishing it as an alternative for datasets with categorical node labels.

As our goal was a faithful and scalable realization of WWL with the Hamming ground cost, we fixed all
edge lengths in the label tree to 1/2. This choice uniquely preserves exact equivalence between the tree
path metric and the Hamming metric over WL label sequences. Allowing heterogeneous per-edge weights
would define a different ground metric over label sequences and thus a different kernel family. Exploring
data-dependent tree metrics is orthogonal to our focus here and constitutes promising future work.

Another promising direction for future work is to extend the proposed approach to datasets with continuous
node attributes, e.g., using a clustering approach, as in the bag-of-visual-words approach in computer vision.
Our method is based on the property that the space formed by the label set and the Hamming distance can
be represented as a tree structure while preserving its topological properties. However, this property does not
generally hold for continuous data, necessitating approximations. One possible approach is to develop a graph
kernel based on the tree-sliced Wasserstein distance (Le et al., 2019b). While existing work (Perez et al.,
2024) accelerates the WWL kernel by leveraging the sliced Wasserstein distance, a systematic comparison of
these strategies, focusing on both computational efficiency and performance, would be valuable. In addition,
there have been numerous studies on approximating Euclidean structures with trees, an investigation into
optimal tree construction strategies may yield informative insights and enhance the effectiveness of our
approach for continuous data.

Acknowledgements

We thank anonymous reviewers for insightful comments and suggestions. Part of this work is supported by
JSPS KAKENHI 23K24909 and 25H01494. TL gratefully acknowledges the support of JSPS KAKENHI
Grant number 23K11243, and Mitsui Knowledge Industry Co., Ltd. grant.

References
Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation algorithms

for optimal transport via sinkhorn iteration. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 1961–1971, December 2017.

Albert-László Barabási and Zoltán N. Oltvai. Network biology: understanding the cell’s functional organi-
zation. Nature Reviews Genetics, 5(2):101–113, February 2004. doi: 10.1038/nrg1272.

12

Published in Transactions on Machine Learning Research (11/2025)

Albert-László Barabási and Márton Pósfai. Network Science. Cambridge University Press, 2016.

Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on semigroups: Theory
of positive definite and related functions. Springer, June 1984. doi: 10.1007/978-1-4612-1128-0.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
barycenters of measures. Journal of mathematical imaging and vision, 51(1):22–45, January 2015. doi:
10.1007/s10851-014-0506-3.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian Rieck. Graph
kernels: State-of-the-art and future challenges. Foundations and Trends® in Machine Learning, 13(5-6):
531–712, December 2020. doi: 10.1561/2200000076.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings of the 5th
IEEE International Conference on Data Mining, pp. 74–81, 2005. doi: 10.1109/ICDM.2005.132.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56,
June 2005. doi: 10.1093/bioinformatics/bti1007.

Samantha Chen, Sunhyuk Lim, Facundo Memoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-lehman meets
gromov-wasserstein. In Proceedings of the 39th International Conference on Machine Learning, volume
162, pp. 3371–3416, July 2022.

Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and stability of graph
neural networks. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, December 2022.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press, 3 edition, July 2009.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, September
1995. doi: 10.1007/bf00994018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Proceedings of the 27th
International Conference on Neural Information Processing Systems, volume 2, pp. 2292–2300, December
2013.

Asim Kumar Debnath, Ross L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Corwin Han-
sch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correla-
tion with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786–797,
February 1991. doi: 10.1021/jm00106a046.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without align-
ments. Journal of Molecular Biology, 330(4):771–783, July 2003. doi: 10.1016/S0022-2836(03)00628-4.

Kira Michaela Düsterwald, Samo Hromadka, and Makoto Yamada. Fast unsupervised ground metric learning
with tree-wasserstein distance. In Proceedings of the 13th International Conference on Learning Repre-
sentations, 2025.

Steven N. Evans and Frederick A. Matsen. The phylogenetic Kantorovich–Rubinstein metric for environ-
mental sequence samples. Journal of the Royal Statistical Society. Series B, Statistical methodology, 74
(3):569–592, June 2012. doi: 10.1111/j.1467-9868.2011.01018.x.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scalable
kernels for graphs with continuous attributes. In Proceedings of the 27th International Conference on
Neural Information Processing Systems, pp. 216–224, December 2013.

13

Published in Transactions on Machine Learning Research (11/2025)

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T. H.
Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien
Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. POT: Python
optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

Tony Hansen and Donald E. Eastlake 3rd. US secure hash algorithms (SHA and SHA-based HMAC and
HKDF). RFC 6234, May 2011.

Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive toxicology challenge
2000–2001. Bioinformatics, 17(1):107–108, January 2001. doi: 10.1093/bioinformatics/17.1.107.

Qi Huangfu and Julian Hall. Parallelizing the dual revised simplex method. Mathematical programming
computation, 10(1):119–142, March 2018. doi: 10.1007/s12532-017-0130-5.

Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In International workshop on statistical
and computational theories of vision, 2003.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. volume 29, December 2016.

Lemin Kong, Jiajin Li, Jianheng Tang, and Anthony Man-Cho So. Outlier-robust gromov-wasserstein for
graph data. In Proceedings of the 37th International Conference on Neural Information Processing Systems,
pp. 24781–24803, December 2023.

Nils M. Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and appli-
cations to graph classification. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 1623–1631, December 2016.

Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Applied network
science, 5(1):1–42, December 2020. doi: 10.1007/s41109-019-0195-3.

Tam Le, Viet Huynh, Nhat Ho, Dinh Phung, and Makoto Yamada. Tree-wasserstein barycenter for large-scale
multilevel clustering and scalable bayes, October 2019a.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of wasserstein distances.
In Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 12304–
12315, December 2019b.

Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric for
probability measures with graph metrics. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, volume 151, pp. 9844–9868, March 2022.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking diam-
eters. ACM transactions on knowledge discovery from data, 1(1):2, March 2007. doi: 10.1145/1217299.
1217301.

Mengyu Li, Jun Yu, Tao Li, and Cheng Meng. Importance sparsification for sinkhorn algorithm. Journal of
Machine Learning Research, 24(247):1–44, 2023.

Ya-Wei Eileen Lin, Ronald R. Coifman, Gal Mishne, and Ronen Talmon. Tree-wasserstein distance for high
dimensional data with a latent feature hierarchy. In Proceedings of the 13th International Conference on
Learning Representations, 2025.

Catherine Lozupone and Rob Knight. UniFrac: a new phylogenetic method for comparing micro-
bial communities. Applied and Environmental Microbiology, 71(12):8228–8235, December 2005. doi:
10.1128/AEM.71.12.8228-8235.2005.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
TUDataset: A collection of benchmark datasets for learning with graphs. In ICML Workshop on Graph
Representation Learning and Beyond, July 2020.

14

Published in Transactions on Machine Learning Research (11/2025)

Quentin Mérigot. A multiscale approach to optimal transport. Computer graphics forum: journal of the
European Association for Computer Graphics, 30(5):1583–1592, August 2011. doi: 10.1111/j.1467-8659.
2011.02032.x.

Vu Nguyen, Tam Le, Makoto Yamada, and Michael A. Osborne. Optimal transport kernels for sequential
and parallel neural architecture search. In Proceedings of the 38th International Conference on Machine
Learning, volume 139, pp. 8084–8095, July 2021.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. The journal of
artificial intelligence research, 72:943–1027, November 2021. doi: 10.1613/jair.1.13225.

James B. Orlin. A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical
programming, 78(2):109–129, August 1997. doi: 10.1007/bf02614365.

Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu. Graph stream classification using labeled and
unlabeled graphs. In Proceedings of the 29th IEEE International Conference on Data Engineering, pp.
398–409, April 2013. doi: 10.1109/icde.2013.6544842.

Raphaël Carpintero Perez, Sébastien Da Veiga, Josselin Garnier, and Brian Staber. Gaussian process re-
gression with sliced wasserstein weisfeiler-lehman graph kernels. In Proceedings of the 27th International
Conference on Artificial Intelligence and Statistics, pp. 1297–1305, May 2024.

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. GOT: An optimal
transport framework for graph comparison. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 13899–13910, December 2019.

Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020.

Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23(2):
e177–e183, January 2007. doi: 10.1093/bioinformatics/btl301.

Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate club: An API oriented open-source python
framework for unsupervised learning on graphs. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management, pp. 3125–3132, October 2020.

Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In Proceedings of the
38th International Conference on Machine Learning, volume 139, pp. 9344–9354, July 2021.

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel. A generalized weisfeiler-lehman
graph kernel. Machine learning, 111(7):2601–2629, July 2022. doi: 10.1007/s10994-022-06131-w.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient
graphlet kernels for large graph comparison. In Proceedings of the 12th International Conference on
Artificial Intelligence and Statistics, volume 5, pp. 488–495, April 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):2539–2561, 2011. doi:
10.5555/1953048.2078187.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and Michalis
Vazirgiannis. GraKeL: A graph kernel library in python. Journal of Machine Learning Research, 21(54):
1–5, 2020.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. The
Annals of Mathematical Statistics, 35(2):876–879, June 1964.

Yuki Takezawa, Ryoma Sato, and Makoto Yamada. Supervised tree-wasserstein distance. In Proceedings of
the 38th International Conference on Machine Learning, pp. 10086–10095. PMLR, July 2021.

15

Published in Transactions on Machine Learning Research (11/2025)

Yuki Takezawa, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, and Makoto Yamada. Fixed support tree-sliced
wasserstein barycenter. In Proceedings of the 25th International Conference on Artificial Intelligence and
Statistics, pp. 1120–1137, March 2022.

Xun Tang, Michael Shavlovsky, Holakou Rahmanian, Elisa Tardini, Kiran Koshy Thekumparampil, Tesi
Xiao, and Lexing Ying. Accelerating sinkhorn algorithm with sparse newton iterations. In Proceedings of
the 12th International Conference on Learning Representations, 2024.

Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, and Rémi Flamary. Optimal transport
for structured data with application on graphs. In Proceedings of the 36th International Conference on
Machine Learning, pp. 6275–6284. PMLR, May 2019.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt. Wasser-
stein weisfeiler-lehman graph kernels. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 6439–6449, December 2019.

Cedric Villani. Optimal Transport: Old and New. Springer, December 2009. doi: 10.1007/978-3-540-71050-9.

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Semi-relaxed
gromov-wasserstein divergence and applications on graphs. In Proceedings of the 10th International Con-
ference on Learning Representations, 2022.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. Graph kernels.
Journal of Machine Learning Research, 11(40):1201–1242, 2010.

Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and information systems, 14(3):347–375, March 2008. doi: 10.
1007/s10115-007-0103-5.

Boris Weisfeiler and Andrei Leman. A reduction of a graph to a canonical form and an algebra arising during
this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan Zha. A fast proximal point method for computing
exact wasserstein distance. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence,
pp. 433–453. PMLR, July 2019.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph partitioning
and matching. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, pp. 3052–3062, December 2019.

Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, and Sujith Ravi. Approximating
1-wasserstein distance with trees. Transactions on Machine Learning Research, September 2022.

Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374. Association for Com-
puting Machinery, 2015. doi: 10.1145/2783258.2783417.

16

Published in Transactions on Machine Learning Research (11/2025)

A Hash Functions

In many areas of computer science, a hash function is used to map arbitrary length data (e.g., text data,
image, or binary data) to a fixed length. This output, commonly called a hash value, serves as a compact
representation of the original data. In general, hash functions are used for two main purposes. One is for
data uniqueness verification and tamper detection in cryptographic security, and the other is as table keys for
processing large volumes of data or for detecting differences between two data in non-cryptographic domains.
SHA-2 (Hansen & 3rd, 2011) is one of the well-known standards designed by the National Security Agency
and standardized by the National Institute of Standards and Technology as a hash function for cryptographic
security.

The properties required of a hash function depend on its intended application, but to be considered a good
hash function, it must satisfy at least the following two properties:

• Deterministic: for the same input, the hash function always produces the same hash value.

• Collision resistance: it should be computationally infeasible to find two different inputs that yield
the same hash value.

The hash function in Equation 1 is assumed to satisfy these two properties. A well-known SHA-256 imple-
mentation can be used to compute Equation 1. Alternatively, Julia’s built-in Base.hash function is used in
our implementation.

B Details on Experiments

B.1 Dataset Descriptions

Every graph dataset contains the adjacency information and a graph-level label. Some datasets additionally
provide optional information such as node labels/attributes or edge labels/attributes. In our experiments, we
exploited only the node-label information when it was available. For datasets without node labels (COLLAB,
REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-MULTI-12K, github-stargazers), we assigned pseudo
node labels based on its degree.

Datasets used in our experiments can be categorized into two types: chemoinformatics and bioinformatics
datasets, and social network datasets. The main characteristics of each dataset are summarized as follows.

MUTAG: This is a chemoinformatics dataset consisting of 188 aromatic and heteroaromatic compounds (Deb-
nath et al., 1991). Each graph models a compound, with nodes corresponding to atoms and edges to the
chemical bonds between them. The task is to predict the mutagenic effect of the compound, categorized into
two classes.

PTC-MR: This dataset originates from the Predictive Toxicology Challenge (Helma et al., 2001, PTC), a
competition to promote the development of machine learning models for predicting chemical toxicity. The
PTC-MR dataset contains chemical compounds tested for carcinogenicity in male rats (MR). Each compound
is modeled as a graph, where nodes denote atoms and edges denote the chemical bonds connecting them.
The task is to predict compound carcinogenicity, which is a binary classification problem.

ENZYMES : This is a bioinformatics dataset constructed from the BRENDA (Braunschweig Enzymes
Database), comprehensive enzymes and metabolic information repository (Borgwardt et al., 2005). Each
graph represents an enzyme, where nodes are its secondary structure elements (SSEs), and edges are created
between nodes if they are neighbors along the amino acid sequence or are spatially close. The task is to
classify enzymes into six classes based on their catalytic activity.

PROTEINS : This dataset is used as a benchmark for graph classification task of predicting whether a protein
is an enzyme or not (Borgwardt et al., 2005). A protein is represented by a graph as follows. Nodes in the
graph correspond to SSEs, and they are connected by an edge if they are neighbors along the amino acid
sequence or are spatially close.

17

Published in Transactions on Machine Learning Research (11/2025)

DD: This dataset consists of 1178 protein structures where the task is to classify them into enzymes and
non-enzymes (Dobson & Doig, 2003). Each graph represents a protein, in which the nodes are amino acids
and two nodes are connected by an edge if they are less than 6 Angstroms apart.

NCI1 : This dataset consists of chemical compounds screened for their effectiveness against non-small cell
lung cancer, with the task being to classify each compound as active or not (Wale et al., 2008). Nodes in
each graph represent atoms, and edges represent chemical bonds between them.

COLLAB: This is a scientific collaboration dataset of researchers (Leskovec et al., 2007). Each graph
represents an ego-network of a researcher. In the graph, nodes represent researchers and edges indicate
co-authorship. This dataset is widely used as a benchmark for graph classification tasks of predicting the
researcher’s academic field among three classes: High Energy Physics, Condensed Matter Physics, and Astro
Physics.

REDDIT-BINARY/MULTI-5K/MULTI-12K : These are social network dataset created from Reddit, an
online discussion platform where users participate in discussions within topic-specific threads called subred-
dits (Yanardag & Vishwanathan, 2015). Each graph represents the user interaction structure of a single
discussion thread. In each graph, nodes represent users, and an edge connects two nodes if one user replied
to another’s comment. The collection includes three variants with different classification challenges:

• REDDIT-BINARY is a binary classification task to distinguish threads from QA-style subreddits
versus discussion-style subreddits.

• REDDIT-MULTI-5K is a 5-class classification task among five subreddits: worldnews, videos, Ad-
viceAnimals, aww and mildlyinteresting.

• REDDIT-MULTI-12K expands the task to a larger set of subreddits: AskReddit, AdviceAnimals,
atheism, aww, IAmA, mildlyinteresting, Showerthoughts, videos, todayilearned, worldnews, and
TrollXChromosomes.

DBLP-v1 : This is a scientific collaboration dataset derived from DBLP, a comprehensive bibliography
database of computer science publications (Pan et al., 2013). Each graph represents a paper in DBLP, where
nodes denote either a paper or a keyword, and edges represent one of three types of relationships: a citation
relationship between two papers, a link between a paper and its corresponding keyword, or a link between
keywords from the same paper. The task is to classify each paper into one of two classes: database and data
mining field or computer vision and pattern recognition field.

github-stargazers: This is a social network dataset derived from GitHub, the software development plat-
form (Rozemberczki et al., 2020). It consists of social networks of developers who starred popular machine
learning and web development repositories. Each graph represents the community of developers who starred
a repository, where nodes represent users, and edges denote follower relationships. The goal is to predict
whether a social network belongs to a machine learning or web development repository.

B.2 Hyperparameter Settings

The following hyperparameter settings were used in the experiments of Section 5. For a regularization
parameter C in the support vector classifier, we search over the range {10−3, 10−2, . . . , 103}. The number
of iterations H for the WL algorithm is chosen from {1, . . . , 7}. The parameter λ of the WWL and TWWL
is selected from {10−4, 10−3, . . . , 101}. For the Sinkhorn algorithm, we select the entropic regularization
parameter from {0.01, 0.05, 0.1, 0.2, 0.5, 1, 10} and fix the maximum number of iterations to 1000, which is
the default setting in the commonly used implementation (Flamary et al., 2021). In the second experiment,
hyperparameter optimization is performed on the training data via grid search over the predetermined range
of values.

18

Published in Transactions on Machine Learning Research (11/2025)

Table 4: TWWL runtime performance of the Wasserstein distance computation as the parameter H is
increased.

DATASET H = 1 H = 2 H = 3 H = 4 H = 5 H = 6 H = 7
MUTAG 0.007± 0.004 0.010± 0.001 0.015± 0.001 0.022± 0.001 0.032± 0.001 0.042± 0.001 0.052± 0.001
PTC-MR 0.036± 0.066 0.040± 0.057 0.038± 0.001 0.056± 0.001 0.076± 0.001 0.096± 0.001 0.181± 0.213
ENZYMES 0.08 ± 0.07 0.20 ± 0.06 0.36 ± 0.09 0.51 ± 0.09 0.70 ± 0.16 0.84 ± 0.11 1.04 ± 0.15
PROTEINS 0.24 ± 0.09 0.64 ± 0.10 1.19 ± 0.16 1.83 ± 0.14 2.37 ± 0.16 2.98 ± 0.23 3.47 ± 0.18
DD 6.20 ± 0.31 11.61 ± 0.47 16.67 ± 0.43 21.74 ± 0.17 26.72 ± 0.18 31.83 ± 0.28 36.96 ± 0.36
NCI1 5.47 ± 0.45 10.19 ± 0.53 15.56 ± 0.54 20.70 ± 0.38 25.22 ± 0.49 30.20 ± 0.30 34.81 ± 0.31
COLLAB 18.08 ± 0.53 25.97 ± 0.85 34.77 ± 0.63 43.69 ± 0.56 52.24 ± 0.66 60.90 ± 0.71 69.66 ± 0.58
REDDIT-B 5.50 ± 0.14 13.55 ± 0.14 22.36 ± 0.32 30.62 ± 0.57 38.74 ± 0.45 47.08 ± 0.54 55.27 ± 0.49
REDDIT-M5 66.58 ± 1.29 138.67 ± 3.30 207.05 ± 2.08 388.21 ± 53.25 554.52 ± 2.83 686.86 ± 2.78 817.82 ± 1.12
REDDIT-M12 326.64 ± 1.28 835.47 ± 1.66 1476.17 ± 3.76 2155.87 ± 6.07 5631.26 ± 16.50 7246.46 ± 32.74 8688.33 ± 30.20
DBLP-v1 139.52 ± 0.85 187.52 ± 0.69 236.03 ± 0.93 285.69 ± 1.27 333.33 ± 0.75 382.69 ± 1.34 431.27 ± 0.85
github-stargazers 208.34 ± 0.19 398.80 ± 0.54 598.15 ± 0.52 794.32 ± 1.12 987.71 ± 1.21 1184.01 ± 1.37 1377.23 ± 3.00

B.3 Further results on runtime comparison

To evaluate how the computational cost of our algorithm scales with the parameter H, we supplement the
runtime study in Section 5.1 with additional experiments. Whereas the experiment in Section 5.1 fixed
H = 5, Table 4 reports the runtime results of the TWWL algorithm for a range of H values. In the TWWL
algorithm, the extra cost caused by increasing H is proportional to the number of newly generated labels,
whose maximum is bounded by the total number of vertices n in a dataset. Consequently, the overall
complexity grows approximately linearly in H, a trend clearly confirmed by Table 4.

B.4 Additional results on Runtime comparison

This appendix augments the runtime comparison in Section 5.1 by reporting not only preprocessing for
WWL and TWWL but also, for reference, the end-to-end runtimes of existing methods. For categorical
node labels, WWL uses the WL algorithm for preprocessing and then computes the Wasserstein distance
in Equation 3. In contrast, the TWWL algorithm first constructs a label tree according to Algorithm 1 as
preprocessing, and subsequently evaluates the Tree Wasserstein distance in Equation 5 based on that tree.
Table 2 compares the running times of Equation 3 for WWL and Equation 5 for TWWL, and does not
include preprocessing times. In this appendix, we summarize the end-to-end runtimes for computing the
Wasserstein distance for WWL and TWWL, and we also report, for reference, the time required to construct
the Gram matrix for existing methods. We note that WWL and TWWL are implemented in Julia. For
the other methods, we use the authors’ publicly available Python implementations on GitHub, so absolute
runtimes are not strictly comparable and should be interpreted only as indicative.

In Table 5, we report the end-to-end time required to construct the Gram matrix. Algorithm 1 makes only
minor modifications to the WL algorithm and adds the steps required to construct the tree structure. As
shown in Table 5, the preprocessing time of TWWL is at most twice that of WWL across datasets.

We note that the entropic regularization parameter in WWL does not affect WL preprocessing, and the
preprocessing required for the linear programming approach is identical to that of WWL. We therefore
omitted these cases from Table 5.

19

Published in Transactions on Machine Learning Research (11/2025)

Table 5: Runtime decomposition of the WWL and TWWL algorithms fixed at H = 5, and end-to-end
runtimes of comparison methods in seconds. “NA” and “OOM” indicate timeout (over 24h) and out-of-
memory (over 256GB), respectively. Entries for WWL and TWWL are reported as a pair: the mean
preprocessing time (left) and the mean main computation (right).

METHOD MUTAG PTC-MR ENZYMES PROTEINS DD NCI1
WWL (1.00) 0.10 / 0.27 0.02 / 0.47 0.12 / 5.33 0.24 / 24.89 2.46 / 1283.43 0.75 / 229.97
TWWL 0.02 / 0.03 0.03 / 0.08 0.16 / 0.67 0.40 / 2.38 4.42 / 26.93 1.15 / 24.33
SP 0.15 0.24 1.69 8.32 715.17 11.71
WL 0.08 0.11 0.52 0.93 7.23 3.37
WL-OA 0.04 0.06 0.34 0.73 10.61 4.20
GL 0.34 0.45 7.35 12.76 236.91 12.39
MLG 28.64 45.73 197.99 758.41 NA 1486.69
R-WL 6.69 14.59 893.46 3062.59 NA 161.08
WLLB 867.23 1599.38 19169.05 NA NA NA

COLLAB REDDIT-B REDDIT-M5 REDDIT-M12 DBLP-v1 github-stargazers
WWL (1.00) 7.38 / 1653.68 6.30 / 8457.94 20.55 / NA 45.90 / NA 1.44 / 945.74 12.11 / 25 820.90
TWWL 12.32 / 44.18 10.21 / 38.92 32.57 / 333.53 70.64 / 5535.76 2.71 / 328.89 20.59 / 952.02
SP 1019.29 4175.16 8598.40 14997.43 OOM 2464.72
WL 54.00 12.89 38.06 88.17 18.89 42.66
WL-OA NA 11.83 NA NA NA NA
GL NA NA NA NA NA NA
MLG NA NA NA NA NA NA
R-WL NA NA NA NA NA NA
WLLB NA NA NA NA NA NA

20

	Introduction
	Notations
	Related work
	Wasserstein distance
	Weisfeiler-Lehman algorithm
	Weisfeiler-Lehman subtree kernel
	Wasserstein Weisfeiler-Lehman graph kernel
	Tree Wasserstein distance

	Main Algorithm
	Experiments
	Runtime Comparison
	Performance Comparison

	Conclusion
	Hash Functions
	Details on Experiments
	Dataset Descriptions
	Hyperparameter Settings
	Further results on runtime comparison
	Additional results on Runtime comparison

