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I. INTRODUCTION

Multi-Object Search (MOS) is a crucial task in
robotics [1]. Consider a scenario where in a workplace
setting, a robot may need to retrieve multiple objects to
complete a task, such as gathering necessary documents,
tools, or equipment for an assembly process. Similarly,
in household environments, a robot making a coffee or
preparing a hamburger must locate various ingredients and
kitchen tools before assembling the final products.

In object search problems, one significant challenge is
the uncertainty in observations [2].Error detection and re-
covery become especially crucial as perception reliability
decreases with environmental complexity. Consequently, in
MOS tasks—where multiple objects must be tracked, and
the environment explored in depth—it is vital that agents
continuously plan and reason about alternative actions to
gather additional viewpoints and compensate for any missed
detections.

Existing approaches to MOS can be broadly categorized
into probabilistic planning, Deep Reinforcement Learning
(DRL), and foundation model–based methods. Probabilis-
tic planning methods [3]–[5], often formulated as Partially
Observable Markov Decision Processes (POMDPs), manage
uncertainty in object locations and perception by maintaining
belief states and planning under partial observability. While
effective for tracking multiple objects and enabling thorough
exploration, these methods suffer from significant computa-
tional inefficiencies when scaling to large environments due
to the complexity of belief state updates over extended plan-
ning horizons. DRL-based approaches [6]–[9], in contrast,
train robots through repeated interactions with the environ-
ment to develop exploration strategies. Although capable of
learning effective search policies, they often struggle with
inefficient exploration and poor generalizability, particularly
in novel environments. More recently, foundation model–
based approaches, which encompass Large Language Models
(LLMs) [10]–[13] or Vision-Language models (VLMs) [14],
[15], have improved Single-Object Search (SOS) by lever-
aging object–scene and object–object relationships for more
efficient target localization. However, existing multi-object
search frameworks [16] incorporating foundation models
often fail to address the challenges of observation uncertainty
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and complex environments, limiting their ability to efficiently
navigate complex, partially observed spaces.

To address these limitations, we propose a novel frame-
work that integrates VLMs, frontier-based exploration, and
POMDP-based planning. Our approach utilizes VLMs to
construct a multi-layer value map for different target ob-
jects. Instead of treating this map as static, we introduce
a Bayesian-inspired decay mechanism, where the value of
regions decreases over time if the detector repeatedly fails
to locate objects. We then apply DBSCAN [17] cluster-
ing to transform the value map into belief representations
and candidate points for POMDP-based action selection,
effectively incorporating VLM-derived information into the
POMDP formulation. Finally, we incorporate reward design
for frontier-based exploration and solve the POMDP using
Partially Observable Upper Confidence Trees (POUCT) [18].

Our main contributions are as follows:
• A unified multi-object search framework: We pro-

pose an open-vocabulary multi-object search framework
that integrates VLMs, frontier-based exploration, and
POMDP-based planning to achieve efficient and robust
multi-object search.

• VLM-guided POMDP: We leverage VLMs to simplify
POMDP belief updates and action selection, enabling
effective uncertainty handling while mitigating the com-
putational challenges of solving large-scale POMDPs.

II. METHODOLOGY

A. Problem Formulation

The MOS problem requires a mobile robot to search for
a set of K static target objects in an unknown environment.
The robot’s state at time t is xr(t) = (x, y, ϕ) ∈ R3, where
(x, y) is its position and ϕ its orientation. The environment
contains L static objects Oenv = {os1, os2, . . . , osL}, among
which the target objects Otgt = {ot1, . . . , otK} ⊆ Oenv are
to be located at unknown positions xtj . The objective of
MOS is to locate all objects in Otgt while minimizing the
cumulative travel distance d =

∫ T

0
∥ẋr(t)∥dt, where T is

the total search time.

B. Mapping

1) Multi-Layer Value Map and Object Map: Following
previous works VLFM [15] and Finder [16], we employ a
pre-trained BLIP-2 [19] vision-language model to compute
cosine similarity scores between the robot’s current RGB
observation and text prompts corresponding to each target
object. At each time step, a cone-shaped confidence mask is



Fig. 1: Our framework consists of a mapping module, a planning module, and a navigation controller. The mapping module processes RGB-D inputs
and textual prompts to generate an object-value map, which integrates detected objects and estimated potential object locations. If a target object is found
in the object map, the robot navigates directly to it; otherwise, it relies on the value map to guide exploration. Additionally, the module constructs an
obstacle map for navigation constraints and a frontier map to identify unexplored areas. The planning module maintains a belief representation of object
locations and employs the POUCT algorithm to simulate and evaluate action sequences, selecting the one with the highest expected reward for execution.
The navigation controller receives a target location from the planning module and outputs discrete movement commands (move forward, turn left, turn
right) to guide the robot toward its destination.

generated to represent the camera’s field of view (FOV). The
confidence of each pixel is computed as:

c(i, j) = cos2
(

θ

θFOV/2
× π

2

)
(1)

where θ is the angle between the pixel and the optical
axis, and θFOV is the camera’s horizontal field of view.

To handle overlapping observations over time, we apply a
weighted averaging update for the value map:

vnew
i,j =

ccurr
i,j v

curr
i,j + cprev

i,j vprev
i,j

ccurr
i,j + cprev

i,j

(2)

where vi,j represents the value at pixel (i, j), and ci,j
denotes the confidence score. The confidence update is
computed as:

cnew
i,j =

(ccurr
i,j )

2 + (cprev
i,j )2

ccurr
i,j + cprev

i,j

(3)

which biases the update towards higher confidence values.
After obtaining the value maps for different target ob-

jects, we normalize and aggregate them to form a shared
value representation. This step follows a similar approach
to previous works [3]–[5] that assume independence across

objects, where the joint belief is computed as the product of
individual beliefs.

For object detection, we incorporate Grounding
DINO [20], YOLOv7 [21], and Segment Anything
Model (SAM) [22]. These models enable us to detect,
segment, and store all identified objects in an object map
throughout the search process.

2) Obstacle Map and Frontier Map: We utilize depth
and odometry data to construct a top-down 2D obstacle
map, representing regions that the robot has identified as
non-traversable. Based on this obstacle map, we determine
boundaries between explored and unexplored areas and ex-
tract midpoints along these boundaries as potential frontier
waypoints. These frontiers guide exploration in unknown
environments.

C. Planning

We model the planning process within an Object-Oriented
POMDP (OO-POMDP) framework [3]. In our formulation,
the state and observation spaces are decomposed with re-
spect to a single target object, and multi-object search is
achieved via our multi-layer value map using add and norm
operations. Our approach introduces two key modifications:
a novel action space formulation and an alternative belief



Algorithm 1 POUCT-based Planning (P, bt, d)→ a

Require: P = ⟨S,A,O, T,O,R, γ⟩
where
A = MoveTo

{
(xc

1, y
c
1), . . . , (x

c
n, y

c
n), (x

f , yf )
}

bt =
{
((xc

1, y
c
1) : p1), . . . ,

(
(xc

n, y
c
n) : pn

)}
Ensure: a: An action in the A of P

1: procedure PLAN(bt)
2: G ← GenerativeFunction(P)
3: Q(bt, a)← POUCT(G, ht)
4: return a
5: end procedure

update mechanism for real-world execution.
1) Update the Action Space and Belief with Candidate

Points and Selected Frontier: Let the raw value map be
denoted as v(x, y) over the spatial domain. First, the frontier
with the highest value is selected from v(x, y) as a repre-
sentative exploratory point (xf , yf ). Then, to refine the value
distribution for targeted search, we apply a decay function:

v′(x, y) =
1

1 + exp
(

u(x,y)−τ
κ

) , (4)

where u(x, y) is the update count at location (x, y), and τ
and κ are constants controlling the decay rate. After thresh-
olding v′(x, y) to extract high-value regions, we employ
DBSCAN [17] clustering to yield a set of candidate points
(xc

i , y
c
i ):

C = {(xc
i , y

c
i ) | i = 1, . . . , n}.

The action space is then defined as:

A = Acand ∪ Afrontier,

with

Acand = {MoveTo((xc
i , y

c
i )) | i = 1, . . . , n},

Afrontier = {MoveTo((xf , yf ))}.

This formulation balances targeted search (via candidate
points) with exploratory actions (via the frontier).

The belief over the target object’s location is represented
as a discrete distribution over candidate points:

bt = { ((xc
i , y

c
i ) : pi) | i = 1, . . . , n },

where
pi =

v(xc
i , y

c
i )∑n

j=1 v
′(xc

j , y
c
j)
.

Here, pi denotes the probability associated with the candidate
point (xc

i , y
c
i ).

During the POMDP solution process (i.e., in the simu-
lation phase), we still update the belief using the standard
Bayesian rule:

bt+1(s
′) = η Pr(o | s′, a)

∑
s∈S

Pr(s′ | s, a) bt(s),

with normalization constant η. However, in real-world exe-

cution, after receiving an observation, we approximate the
belief update using a decayed value map. This approach
circumvents explicit reliance on the observation model while
retaining adaptability, and thereby offers a more efficient
method for adjusting the belief in practical settings.

The rationale for this approach is that the value map itself
already encodes a highly reliable representation of the proba-
bility that the object is located at each candidate point. After
incorporating detector information into the decayed value
map, there is no longer a need to perform extensive POMDP
simulations—where possible observations are hypothesized
and used in Bayesian updates—to adjust the belief after
receiving the real observation. Instead, the decayed value
map directly reflects the updated likelihood of the object’s
location in a simpler, yet still effective, manner.

2) POMDP Components: We model our planning prob-
lem as a POMDP defined by the tuple

⟨S,A,O, T,O,R, γ⟩.

The components are defined as follows:

• State Space (S): An environment state s is represented
as a combination of the robot’s state sr and the target
object’s state st:

s = {sr, st}.

The robot state is defined as sr = (xr, yr) with
(xr, yr) ∈ R2, representing its 2D position, while the
target object’s state is given by st = (xt, yt) with
(xt, yt) ∈ R2, indicating its position in the environment.

• Observation Space (O): The robot obtains an obser-
vation o from its RGB-D camera, modeled as a binary
indicator of whether detected or not:

o ∈ {0, 1}.

• Action Space (A): Actions are defined as movement
commands toward a goal location:

a = MoveTo(g)

where g is chosen from candidate points extracted from
the value map or the selected frontier.

• Transition Model (T (s, a, s′)): The target object is
static (i.e., s′t = st), and the robot state transitions
deterministically:

s′r = f(sr, a),

where f updates the robot’s 2D position based on the
selected action.

• Observation Function (O): The detection probability
is defined as:

Pr(o = 1 | s′, a) =


1, if d(s′r, st) ≤ δ,

exp
(
−β

(
d(s′r, st)− δ

))
,

if d(s′r, st) > δ.
(5)

where d(s′r, st) is the Euclidean distance between the



Methods SR↑ MSPL↑
Random Walk 0.0% 0.0
VLFM 12.5% 0.075
Finder 28.3% 0.198
Ours 55.0% 0.497

TABLE I: Overall performance comparison of Random Walk, VLFM [15],
Finder [16], and Our Method on MOS, including Success Rate (SR) and
Multi-Object Success weighted by normalized inverse Path Length (MSPL).

robot and the target, δ is the detection threshold, and
β > 0 controls the decay rate.

• Reward Function (R(s, a)): The reward function is
defined as:

R(s, a) = − λmove d(sr, s
′
r)

+ λfrontier I(a ∈ Afrontier)

+ λtarget I
(
d(s′r, st) ≤ δ

)
,

(6)

where d(sr, s′r) is the distance traveled by the robot, I(·)
is the indicator function, and λmove, λfrontier, λtarget ≥ 0
are weight parameters balancing movement cost, ex-
ploratory incentive, and target proximity reward.

• Discount Factor (γ): A constant γ ∈ (0, 1) is used to
balance immediate and future rewards.

To solve the formulated POMDP efficiently, we employ
the partially Observable Upper Confidence Trees (POUCT)
algorithm [18]—a Monte Carlo Tree Search-based method.
As illustrated in Algorithm 1, after the agent executes a step
in the real environment, it obtains an updated map from
which new candidate points and a frontier are extracted.
These are then used to update the action space A and the
belief bt.

Then, it is straightforward to define a generative function

G(s, a)→ (s′, o, r),

using its transition, observation, and reward functions. Lever-
aging this generative function, POUCT builds a search tree
to simulate transitions, observations, and rewards, thereby
planning and selecting the next optimal action.

III. EXPERIMENT

A. Setup

We conduct our simulation experiments using the HM3D
dataset’s validation split. We select five scenes and construct
a total of 120 episodes, all of which involve searching for
three objects. At the beginning of each episode, the robot is
initialized at a random location within the environment and
provided with a list of target objects. The episode progresses
as follows: each time the robot calls stop, it indicates that it
has found an object. If the distance between the robot and
the nearest target object is less than 1 m at this moment,
the object is considered successfully found. The robot then
proceeds to search for the remaining objects. The episode
terminates when either all target objects have been found or
the robot reaches the maximum step limit of 500.

B. Evaluation Metrics

To evaluate performance, we use three key metrics:
• Success Rate (SR): The percentage of episodes in

which the robot successfully finds all target objects.
• Multi-Object Success weighted by normalized in-

verse Path Length (MSPL): Based on the SPL metric,
MSPL is calculated as:

MSPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(7)

where N denotes the total number of episodes, Si is a
binary indicator of success for episode i, li represents
the optimal shortest path length from the start location
to all target objects, and pi denotes the actual path
length traversed by the robot.

C. Comparison Baselines

We compare our approach against the following baseline
methods:

• Random Walk (Lower Bound): A naive strategy where
the robot moves randomly in the environment.

• VLFM [15](SOTA for SOS): This method combines
a VLM-generated value map with frontier-based ex-
ploration, selecting the best frontier at each step. In
our experiments, the MOS task is decomposed into a
sequence of SOS tasks executed independently.

• Finder [16] (SOTA for MOS): Built upon VLFM, this
method utilizes value maps to compute the scene-to-
object score and incorporates an additional object-to-
object score to select the optimal frontier.

D. Results and Analysis

The experimental results are summarized in Table I.
VLFM achieves only a 12.5% success rate (SR) with an
MSPL of 0.075, which reflects its limitation of tracking only
one object at a time. Finder improves on this by employing
a multi-layer value map to simultaneously track multiple
objects, resulting in an enhanced SR of 28.3% and an MSPL
of 0.198. Our method further builds on Finder’s strengths by
integrating POMDP-based planning into the framework. This
additional planning mechanism enables adaptive exploration
and more informed decision-making, leading to a significant
performance boost with an SR of 55.0% and an MSPL of
0.497. Thus, our method nearly doubles the success rate
and more than doubles the MSPL compared to Finder,
demonstrating its superior accuracy and efficiency in multi-
object search tasks.

IV. CONCLUSION

In this work, we integrate VLMs, frontier-based explo-
ration, and POMDP to develop a robust and efficient multi-
object search framework. Our current approach is limited to
2D environments with a fixed camera viewpoint and simple
actions. Future work will extend to 3D spaces, introduce
complex actions like moving occlusions, and enable dynamic
camera adjustments for enhanced adaptability and effective-
ness.
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