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Abstract

Label shift adaptation aims to recover target class priors when the labelled source
distribution P and the unlabelled target distribution Q share P (X | Y ) = Q(X |
Y ) but P (Y ) ̸= Q(Y ). Classical black-box shift estimators invert an empirical
confusion matrix of a frozen classifier, producing a brittle point estimate that ig-
nores sampling noise and similarity among classes. We present Graph-Smoothed
Bayesian BBSE (GS-B3SE), a fully probabilistic alternative that places Lapla-
cian–Gaussian priors on both target log-priors and confusion-matrix columns, tying
them together on a label-similarity graph. The resulting posterior is tractable with
HMC or a fast block Newton–CG scheme. We prove identifiability, N−1/2 con-
traction, variance bounds that shrink with the graph’s algebraic connectivity, and
robustness to Laplacian misspecification. We also reinterpret GS-B3SE through
information geometry, showing that it generalizes existing shift estimators.

1 Introduction

Modern machine–learning systems are rarely deployed in exactly the same environment in which they
were trained. When the distribution of class labels drifts but the class–conditional features remain
stable, a phenomenon known as label shift, even a high-capacity model can produce arbitrarily biased
predictions [54, 12, 41, 29, 44, 45, 51]. Practical examples include sudden changes in click–through
behaviour of online advertising, evolving pathogen prevalence in medical diagnostics, and seasonal
increments of certain object categories in autonomous driving. Because re-labelling target data is
often prohibitively expensive, methods that recover the new class priors from a small unlabelled
sample are indispensable precursors to reliable downstream decisions.

A popular remedy, the Black-Box Shift Estimator (BBSE) is to keep a single, frozen classifier
ĥ : X → Y trained on labelled source data and to link its predictions on the target domain to the
unknown target priors through the confusion matrix C [39, 7]. The resulting formulation converts
density shift into a linear system q̃ = Cq that can be solved in closed form, after plugging in (i) an
empirical estimate C̃ computed on a small labelled validation set and (ii) the empirical prediction
histogram q̃ measured on unlabelled target instances. The elegance of BBSE has made it the default
baseline for label–shift studies [45, 13, 38, 30, 42, 19].

Despite its popularity, the BBSE pipeline overlooks two sources of uncertainty that become debilitat-
ing in realistic, high-class-count regimes. (i) Finite–sample noise. Each column of C̃ is estimated
from at most a few hundred examples, so the matrix inversion layer can amplify small fluctuations
into large errors on q̂. Regularised variants such as RLLS [7] or MLLS [18] damp variance but
still return a point estimate whose uncertainty remains opaque to the user. (ii) Semantic structure.
Classes in vision and language problems live on rich ontologies [35]: car and bus are more alike than

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



car and daisy. Standard BBSE fits each class independently and cannot borrow statistical strength
across such related labels, leading to particularly fragile estimates for rare classes.

We introduce Graph-Smoothed Bayesian BBSE (GS-B3SE), a fully probabilistic alternative that
attacks both weaknesses in a single hierarchical model. The key idea is to couple both the target
log-prior vector and the columns of the confusion matrix through a Gaussian Markov random field
defined on a label-similarity graph. Graph edges are obtained once from off-the-shelf text or image
embeddings, and the resulting Laplacian precision shrinks parameters of semantically adjacent
classes towards each other. Sampling noise is handled naturally by Bayesian inference: we place
Gamma–Laplacian hyper-priors on the shrinkage strengths and sample the joint posterior with either
Hamiltonian Monte Carlo [8, 9, 16] or a fast block Newton–conjugate-gradient optimizer [23, 10].
Moreover, we provide interpretation of GS-B3SE through the lens of information geometry [5, 6].
The analysis of statistical procedures or algorithms in this framework is known to help us understand
them better [4, 1, 40, 28, 27, 25, 26, 2, 24].

Contributions. i) We formulate the joint Bayesian model that simultaneously regularizes the target
prior and the confusion matrix with graph-based smoothness, reducing variance without hand-tuned
penalties (in Section 4). ii) We provide theoretical guarantees: (a) posterior identifiability, (b) N−1/2

contraction, (c) class-wise variance bounds that tighten with the graph’s algebraic connectivity, and
(d) robustness to Laplacian misspecification (in Section 5). Moreover, we provide interpretation of
GS-B3SE through the lens of information geometry framework and it shows that our algorithm is a
natural generalization of existing methods. iii) An empirical study on several datasets demonstrates
that GS-B3SE produces sharper prior estimates and improves downstream accuracy after Saerens
correction compared to state-of-the-art baselines (in Section 7).

2 Related Literature

Classical estimators under label shift. Saerens et al. [47] proposed an EM algorithm that alternates
between estimating the target prior and re-weighting posterior probabilities calculated by a fixed
classifier. Lipton et al. [39] later formalised the Black-Box Shift Estimator (BBSE), showing that a
single inversion of the empirical confusion matrix suffices when P (X | Y ) is preserved. Subsequent
refinements introduced regularisation to cope with ill-conditioned inverses: RLLS adds an ℓ2 penalty
to the normal equations [7], while MLLS frames the problem as a constrained maximum-likelihood
optimisation [18]. All three methods remain point estimators and ignore uncertainty in C̃.

Bayesian and uncertainty-aware approaches. Caelen [11] derived posterior credible intervals for
precision and recall by coupling Beta priors with multinomial counts; Ye et al. [53] extended the
idea to label-shift estimation under class imbalance. Most of these models assume that classes are
a priori independent, so posterior variance remains high for rare labels. Our work instead imposes
structured Gaussian Markov random field (GMRF) priors that borrow strength across semantically
related classes.

Graph-based smoothing and Laplacian priors. In spatial statistics, Laplacian–Gaussian GMRFs
are a standard device for sharing information among neighbouring regions [49]. Recent machine
learning studies exploit the same idea for discrete label graphs: Alsmadi et al. [3] introduced a
graph-Dirichlet–multinomial model for text classification, and Ding et al. [15] used graph con-
volutions to smooth class logits. We follow this line but couple both the prior vector and every
confusion-matrix column to the same similarity graph, yielding a joint posterior amenable to HMC
and Newton–CG.

Domain-shift benchmarks and failure modes. Large-scale empirical studies such as WILDS [30]
and Mandoline [13] describe how brittle point estimators become under distribution drift and class
imbalance. Rabanser et al. [45] demonstrated that label-shift detectors without calibrated uncertainty
frequently produce over-confident but wrong alarms. By delivering credible intervals whose width
shrinks with the graph’s algebraic connectivity, our method directly tackles this shortcoming.

Positioning of this work. GS-B3SE unifies three strands of research: (i) black-box label-shift
estimation, (ii) Bayesian confusion-matrix modelling, and (iii) graph-structured smoothing. To justify
our proposed method, we show posterior identifiability and N−1/2 contraction, and derive variance
bounds that scale with λ2(L). Empirically, our method plugs seamlessly into existing shift-benchmark
pipelines, providing calibrated uncertainty absent from earlier regularised or EM-style alternatives.
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3 Preliminarily

Problem Setting Let X be an input space and Y = {1, . . . ,K} be a label set, where K ≥ 2 is the
number of classes. For source and target distributions P and Q, the label shift assumption states that
the class–conditional feature laws remain unchanged while the class priors may differ:

P (X | Y = i) = Q(X | Y = i), ∀i ∈ Y, and P (Y = i)︸ ︷︷ ︸
=:pi

̸= Q(Y = i)︸ ︷︷ ︸
=:qi

in general. (1)

Let p = (p1, . . . , pK)⊤ and q = (q1, . . . , qK)⊤, where
∑

i pi =
∑

i qi = 1.

Black-Box Shift Estimator Train once, on source data, an arbitrary measurable classifier ĥ : X →
Y . Denote its confusion matrix under P by C ∈ (0, 1)K×K , where Cj,i = PrP

[
ĥ(X) = j | Y = i

]
and

∑
j Cj,i = 1. Notice that C depends only on the source distribution and can be estimated on

a held-out validation set with known labels. Write the empirical estimate as C̃. Let m labelled
source-validation points (xi, yi)

m
i=1 be used to form C̃. Apply the same fixed ĥ to unlabeled target

instances {x′
t}n

′

t=1 of size n′. Let q̃j = PrQ

[
ĥ(X) = j

]
, q̃ = (q̃1, . . . , q̃K)⊤. Because the

class-conditionals are shared, Bayes’ rule gives

Pr
Q

[
ĥ(X) = j

]
=

K∑
i=1

Pr
Q

[
ĥ(X) = j | Y = i

]
· qi =

K∑
i=1

Cj,iqi, (2)

and in vector form, it can be written as q̃ = Cq. Eq. 2 is the identifiability equation for label shift.

Assume C is invertible or full column rank. Then the population target prior is q = C−1q̃. Under
this observation, BBSE framework [39] converts black-box classifier predictions on unlabeled target
data into an estimate of the unknown target class prior by solving the linear system.

4 Methodology

The usual BBSE treats the confusion matrix C as fixed. In practice C is estimated from a finite
validation set and is itself ill-conditioned when some classes are rare. To address this problem, we
consider extending BBSE framework by the joint Bayesian model for both confusion matrix and
target priors with the graph coupling. Let nSi be a number of source examples with label i, and
nS

i = (nS1,i, . . . , n
S
K,i)

⊤ be the counts of ĥ(X) = j among those nSi . Also, let ñ = (ñ1, . . . , ñK)⊤

be the counts of ĥ(X) = j on unlabeled target data. For each true class i,

nS
i | C ∼ Multi

(
nSi , C:,i

)
,

where C:,i is the i-column of C and Multi(·, ·) is the multinomial distribution. Similarly,

ñ | C, q ∼ Multi (n′,Cq) .

The complete-data likelihood factorises

p (data | C, q) =

[
K∏
i=1

Multi
(
nS

i ;n
S
i , C:,i

)]
Multi (ñ;n′,Cq) .

We now consider to utilize similarity information between classes. Let G = (Y,E,W ) be a similarity
graph on labels with the weight matrix W , E is the edges and L is the graph Laplacian. In G, each
vertex corresponds to a class label; an edge (i, j) ∈ E indicates that labels i and j are semantically
or visually similar. Weights Wij ∈ [0, 1] quantify that similarity, with Wij = 0 when no edge is
present. In our methodology, we use the unnormalised Laplacian L = D−W whereDii =

∑
j Wij .

Because we enforce connectivity, L has exactly one zero eigenvalue, making λ2(L) (the algebraic
connectivity) strictly positive as required by our theory. Introduce log–odds vector

θi = log qi −
1

K

K∑
k=1

log qk, θ ∈ RK ,θ⊤1 = 0,
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and consider the following Gaussian Markov random field (GMRF) prior

p(θ | τq) ∝ exp
(
−τq

2
θ⊤Lθ

)
, τq ∼ Gamma(aq, bq), (3)

where aq, bq > 0 are hyper-parameters. A Laplacian-based precision shrinks log-odds differences
along graph edges, promoting smooth class priors across semantically similar labels [31], and recover
q = softmax(θ).

Treat each column C:,i as a latent simplex vector with Dirichlet–log-normal hierarchy:

i) Latent log-odds ϕi ∈ RK , ϕ⊤
i 1 = 0.

ii) Conditional prior p(ϕi | τC) ∝ exp
(
− τC

2 ϕ⊤
i Lϕi

)
. All ϕi share the same Laplacian

L over predicted labels so that columns corresponding to neighbouring predicted classes
exhibit similar shape.

iii) Transformation to the simplex Cj,i =
expϕj,i∑K

ℓ=1 expϕℓ,i
for i = 1, . . . ,K.

iv) Hyper-prior τC ∼ Gamma(aC , bC), with aC , bC > 0.

The resulting distribution on each C:,i is a logistic-Normal on the simplex and it reduces to an
ordinary Dirichlet when L = 0 but gains graph-coupled precision for L ̸= 0. The full hierarchical
model is as follows.

τq ∼ Gamma(aq, bq),

θ | τq ∼ N (0, (τqL)†), q = softmax(θ),
τC ∼ Gamma(aC , bC),

∀i : ϕi | τC ∼ N (0, (τCL)†), C:,i = softmax(ϕi),

∀i : nS
i | C ∼ Multi(nSi , C:,i),

ñ | C, q ∼ Multi(n′,Cq).

Here, the Moore–Penrose pseudoinverse L† appears because L is singular, and the constraint
θ⊤1 = 0 ensures uniqueness.

For the posterior inference, consider the following log-joint distribution.

log p(C, q, τC , τq | data) = log p(data | C, q) + log p(C | τC)

+ log p(τC) + log p(q | τq) + log p(τq). (4)

All terms are differentiable, enabling Hamiltonian Monte Carlo (HMC) in the unconstrained variables.
Because Eq. 4 is concave in each block after reparameterization, a block-Newton scheme alternates,
i) update {ϕi}Ki=1 by one Newton–CG step using sparse Laplacian Hessian, ii) update θ likewise,
iii) closed-form updates for τC , τq from Gamma posteriors. Convergence is super-linear due to
the strict convexity induced by the Laplacian energies. The posterior predictive distribution of the
confusion–weighted target counts is

ñ∗ | data =

∫
Multi(n′,Cq)p(C, q | data)dCdq. (5)

Credible intervals for each qi reflect both sampling noise and model-induced graph smoothing,
an advantage over plug-in BBSE. If no prior similarity information exists one may default to
Wij = 1{i = j}, in which case our model reduces to an independent logistic-Normal prior and all
theoretical guarantees still hold.

Relationship to Existing Work

• Replaces the point estimate of BBSE C−1q̃ with a full posterior, relating Bayesian confusion
matrix treatments [11].

• Laplacian GMRFs generalise classical Dirichlet priors by borrowing strength along graph
edges, extending recent graph-Dirichlet–multinomial models [31].

• When L = 0 and Gamma hyper-priors degenerate to delta masses, our hierarchical model
reduces exactly to deterministic BBSE.
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5 Theory

This section provides the theoretical foundations of the proposed method. See Appendix A for the
detailed proofs. First, the following lemma on identifiability is introduced. Although an analo-
gous statement has been implicitly argued in the prior work [39], the full proof is included in the
Appendix A to make this study self-contained.
Lemma 1. Let C and C ′ be two column-stochastic matrices with strictly positive entries: Cj,i > 0,
C ′

j,i > 0,
∑K

j=1 Cj,i =
∑K

j=1 C
′
j,i = 1 for 1 ≤ i ≤ K. In addition, assume C and C ′ are invertible,

or equivalently, detC ̸= 0 and detC ′ ̸= 0. For any deterministic sample sizes nSi ∈ {1, 2, . . . } and
n′ ∈ {1, 2, . . . }, define the data-generating distributions

NS
i | C ∼ Multi(nSi , C:,i), NS

i | C ′ ∼ Multi(nSi , C
′
:,i),

Ñ | C, q ∼ Multi(n′,Cq), Ñ | C ′, q′ ∼ Multi(n′,C ′q′).

Suppose that, for every choice of the sample sizes {nSi=1}Ki=1 and n′,
(
{NS

i }Ki=1, Ñ
)

d
=(

{NS′

i }Ki=1, Ñ
′
)

, as random vectors in NK2+K , where the left-hand side is generated by (C, q)

and the right-hand side by (C ′, q′). Then, C = C ′ and q = q′.

Lemma 1 implies that the mapping (q,C) 7→ {{nS
i }, ñ} is injective up to measure-zero label

permutations when the graph is connected and all source classes appear.

Let ∆K−1 be the (K − 1)-dimensional probability simplex:

∆K−1 :=

{
q = (q1, . . . , qK) ∈ RK : qi ≥ 0 for every i,

K∑
i=1

qi = 1

}
.

The following lemma provides the support condition needed in statements described later.
Lemma 2. Let (q0,C0) be the true parameter pair, where q0 ∈ ∆K−1 and C0 ∈ (0, 1)K×K with
detC0 ̸= 0. Define the Euclidean small ball as

Bϵ(q0,C0) := {(q,C) : ∥q − q0∥2 < ϵ, ∥C −C0∥F < ϵ} ,
for some radius ϵ > 0 small enough that all vectors in the ball stay strictly inside the simplex.
Then, for every ϵ, the joint prior distribution Π on (q,C) assigns strictly positive mass to the ball:
Π(Bϵ(q0,C0)) > 0.

This lemma states that positivity of Gaussian density and the smooth bijection yield the positive
push-forward density, and it is the classical strategy used for logistic-Gaussian process priors in
density estimation [50].

Lemmas 1, 2 and the classical results from Ghosal et al. [20], Van der Vaart [52] gives the following
statement.
Proposition 1. Let K ≥ 2 be fixed and (q0,C0) be the true parameters pair with q0 ∈ ∆̊K−1 and
C0 ∈ (0, 1)K×K , where ∆̊K−1 is the interior of ∆K−1, and detC0 ̸= 0. Suppose that the data
consist of {NS

i }Ki=1 and Ñ where conditionally on (q0,C0),

NS
i ∼ Multi

(
nSi ,C0,i

)
, Ñ ∼ Multi (n′,C0q0) .

Also suppose that sample sizes diverge with the single index: N := n′ +
∑K

i=1 n
S
i →

∞, and mini n
S
i → ∞. Then, for every ϵ > 0, Π(Bc

ϵ | data)
P(q0,C0)−−−−−→
N→∞

0.

Under the same assumption in Proposition 1, the following statements about the posterior contraction
rate are obtained.
Theorem 1. Let the data-generating model, true parameter pair (q0,C0), and diverging sample sizes
N = n′ +

∑K
i=1 n

S
i → ∞ satisfy the setup spelled out before Proposition 1. Define the Euclidean

radius ϵN :=M/
√
N, M > 0 arbitrary but fixed. Let

Bc
N = {(q,C) : ∥q − q0∥2 + ∥C −C0∥F > ϵN} .
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Under Lemma 1 and 2, the joint posterior Π(· | data) for the Laplacian-Gaussian hierarchy satisfies

Π(Bc
N | data)

P(q0,C0)−−−−−→
N→∞

0.

That is, the posterior contracts around the truth at the parametric rate N−1/2.
Corollary 1. Retain the setting and notation of Theorem 1. For each class i, write

VarN (qi) := Var (qi | data of size N) ,

under the joint posterior Π(· | data). Let L be the connected-graph Laplacian used in the GMRF
prior and let λ2(L) := min {λ > 0 : λ is an eigenvalue of L} be its algebraic connectivity. Assume
the hyper-parameter τq is fixed, or sampled from a Gamma prior independent of N . Then, there
exists a constant C > 0, depending only on the true (q0,C0) and on K, such that for every sample
size N large enough,

VarN (qi) ≤
C

λ2(L)N
, ∀i ∈ {1, . . . ,K}.

Finally, we can show the following statement about the robustness to graph Laplacian misspecification.
Proposition 2. Let L0 be the true Laplacian, and F0 := diag(C0q0)− (C0q0)(C0q0)

⊤ ⪰ 0 be the
Fisher information of θ in the target multinomial likelihood. For L ̸= L0, let θ̄N := E[θ | data] be
the posterior mean of θ under the misspecified prior. Then, for all sample sizes N large enough,

∥θ̄N − θ0∥2 ≤
∥∥∥(NF0 + τqL)−1

∥∥∥
2︸ ︷︷ ︸

sampling + prior precision

τq

∥∥∥(L−L0)θ0

∥∥∥
2︸ ︷︷ ︸

graph-misspecification bias

+OP (N
−1). (6)

In particular,

∥θ̄N − θ0∥2 ≤ τq
Nλmin(F0) + τqλ2(L)

∥(L−L0)θ0∥2 +OP (N
−1), (7)

where λmin(F0) > 0 and λ2(L) > 0 are, respectively, the smallest eigenvalue of F0 and the
algebraic connectivity of L.

Thus, we can see that the bias decays as N−1 when L ̸= L0 and if the graphs coincide the
leading term vanishes and the posterior mean is unbiased up to the usual N−1/2 noise. Moreover,
Proposition 2 states that a larger algebraic connectivity λ2(L) reduces bias, emphasising the benefit
of rich similarity structures.

6 Interpretation via Information Geometry

The basic notations of information geometry used in this section are summarized in Appendix B. The
K − 1 simplex ∆K−1 := {q > 0 : 1⊤

Kq = 1} is a Riemannian manifold when equipped with the
Fisher–Rao metric gq(v,w) =

∑K
i=1

viwi

qi
, for v,w ∈ Tq∆

K−1, where Tq∆K−1 := {v : 1⊤v =

0} is the tangent space. The natural potential on this manifold is minus entropy ψ(q) =
∑

i qi log qi
whose Euclidean gradient is the centred log-odds vector θ used in the previous section. These
facts allow us to cast GS-B3SE as a Riemannian penalised likelihood. The dual affine coordinates
are m–coordinates qi (mixture parameters) and e–coordinates θi = log qi − 1

K

∑
j log qj (centred

log-odds). The convex potential ψ(q) =
∑K

i=1 qi log qi is minus Shannon entropy and satisfies
∇Euc
q ψ(q) = θ; together (ψ, θ) endow ∆K−1 with the classical dually–flat structure of information

geometry [5, 6]. See standard textbooks for detailed explanation of concepts in differential geometry
and Riemannian manifold [36, 37, 34, 17, 43, 21, 33].

Denote by r̂ = ñ/n′ and M =
{
Cq : q ∈ ∆K−1

}
the empirical prediction histogram and the

m–flat sub-manifold induced by the frozen classifier. The negative log–posterior derived in Section 4
can be written as

F (q) = n′DKL

[
r̂ ∥Cq

]
+
τq
2

(
θ⊤Lθ

)
+ const. (8)

Thus Eq. (8) is a sum of an m-convex and an e-convex potential, so it is geodesically convex under
the Fisher–Rao metric (see Table 1).

6



Table 1: Information geometric identification of GS-B3SE.

Term Geometric meaning

DKL[r̂∥Cq] Canonical divergence between r̂ and the m-flat model M.

τq
2 θ⊤Lθ

Quadratic form in e–coordinates ⇒ e-convex barrier that bends the manifold in
the directions encoded by the graph Laplacian L.

Theorem 2 (Geodesic convexity of F ). For every q ∈ ∆̊K−1 the Riemannian Hessian of F satisfies

HessFRq F ⪰
[
n′ λmin(F0) + τq λ2(L)

]
gq,

where F0 = diag(Cq)− (Cq)(Cq)⊤ is the Fisher information of the multinomial likelihood and
λ2(L) the algebraic connectivity of the label graph. Hence F is α-strongly geodesically convex with
α = n′λmin(F0) + τqλ2(L) > 0.

The proof in Appendix A explicitly decomposes any tangent direction into an m-straight and an
e-straight component and shows that the lower bound remains positive because both components
contribute additively.

6.1 Natural-Gradient Dynamics

The natural gradient of F is

gradFR F (q) = g−1
q ∇(m)F (q) = q ⊙

(
∇qF − (∇qF )

⊤q
)
,

where ⊙ is component–wise product. The associated flow q̇(t) = − gradFR F
(
q(t)

)
is the steep-

est–descent curve in the Fisher–Rao geometry.

Proposition 3 (Natural–gradient flow of the penalised objective). Under the Fisher–Rao metric
gq(v,w) =

∑K
i=1 viwi/qi the natural gradient gradFR F (q) of F is

gradFR F (q) = diag(q)
(
n′ C⊤(1− r̂

r(q)

)
+ τq Lθ

)
, (9)

where the division is element–wise. Consequently the un-constrained natural-gradient flow

q̇t = − gradFR F (qt) = − diag(qt)
(
n′ C⊤(1− r̂

r(qt)

)
+ τq Lθt

)
(10)

preserves the simplex and coincides with the replicator–Laplacian dynamical system: q̇t,j =
− qt,j

[
n′ [C⊤(1− r̂/r)] + τq[Lθt]

]
j
.

Remarks

i) Role of Laplacian When the Laplacian term is absent (τq = 0), the flow reduces to
the classical replicator equation that drives every class-probability qj proportionally to
the (signed) log–likelihood residual [C⊤(1 − r̂/r)]j . The graph-Laplacian contribution
−τqqj [Lθ]j plays the role of a mutation / diffusion force that mixes mass along edges of
the label graph and prevents degenerate solutions.

ii) Role of the algebraic connectivity. From Theorem 2 the strong-convexity modulus is
α = n′λmin(F0) + τqλ2(L). Along the flow we have d

dtF (qt) = −∥gradFRF (qt)∥2gqt ≤
−2α(F (qt)− F ∗), so F decays exponentially fast with rate proportional to the algebraic
connectivity λ2(L); a denser-connected label graph therefore accelerates convergence.

iii) Link to Saerens EM correction. If we freeze the confusion matrix and drop the Laplacian
term, the stationary condition C⊤(r̂/r) = 1 is exactly the fixed point solved (iteratively)
by the Saerens EM method [47].
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Table 2: Baseline methods and their key ideas.

Method Key idea

BBSE [39] Solve Ĉq̂ = ŷ with the empirical confusion matrix (no re-training).

EM [47] Expectation-Maximization that iteratively re-estimates priors and re-weights
posteriors.

RLLS [7] Adds an ℓ2 penalty to the BBSE normal equations to control variance for
small n′.

MLLS [18] Maximum-likelihood estimation of the label-ratio vector; unifies BBSE &
RLLS and optimizes q directly.

GS-B3SE (ours)
Joint Bayesian inference of both target priors q and confusion matrix C. The
hierarchical model couples classes along a label-similarity graph, shrinking
estimates in low-count regimes and yielding full posterior credible intervals.

6.2 Dual Projections and the Pythagorean Identity

Let Πm(r̂) be the m-projection of the data onto M and Πe(q0) the e-projection of the hyper-prior
center onto the same manifold. At the optimum q⋆ we have Πm(r̂) = Πe(q0) = Cq⋆, and the
generalized Pythagorean theorem [5] gives DKL

[
r̂ ∥ q0

]
= DKL

[
r̂ ∥Cq⋆

]
+DKL

[
Cq⋆ ∥ q0

]
, where

the second term equals the Laplacian regulariser τq
2n′ θ

⊤Lθ. Hence GS-B3SE can be summarized as
find the unique intersection of an m–geodesic (data fit) and an e–ellipsoid (graph prior).

7 Experiments

7.1 Experimental Protocol and Implementation

Datasets and synthetic label shifts. We evaluate on MNIST (K = 10) [14], CIFAR-10 (K = 10)
and CIFAR-100 (K = 100) datasets [32]. For each dataset we treat the official training split as the
source domain and the official test split as the pool from which an unlabelled target domain is drawn.
Source class–priors are kept uniform p = (1/K, . . . , 1/K). Target priors are deliberately perturbed:

q =

{
Dirichlet(α× uK) (MNIST),

i−b∑K
j=1 j−b , i = 1, . . . ,K (CIFAR-10 and CIFAR-100),

where uK = (1, . . . ,K)⊤. In our experiments, we set α = 0.05 and b = 1.1. The procedure is: i)
Source set: Sample 10, 000 instances from the training partition according to p and train a backbone
classifier (ResNet-18 [22, 48]) for 100 epochs with standard data-augmentation. ii) Validation
set: Hold out 5, 000 labelled source instances, stratified by p, to estimate the empirical confusion
matrix C̃. iii) Target set: Draw n′ = 10, 000 unlabelled instances from the test partition using
probabilities q. These labels are revealed only for evaluation.

Graph construction on labels. For every dataset we embed the class names with the frozen CLIP
ViT-B/32 text encoder [46], obtain {ei}Ki=1 ⊂ R512, |ei|2 = 1, and build a k-nearest-neighbour graph

E = {(i, j) | ej is among the k nearest neighbors of ei} , k =

{
4 (K = 10),

8 (K = 100).

Edge weights are Wij = exp
(
−∥ei − ej∥22/σ2

)
with σ set to the median pairwise distance inside

E. The resulting k-NN graph is connected, so its unnormalised Laplacian L = D −W satisfies
λ2(L) > 0. For MNIST, where class names are single digits, we instead construct E from 4-NN in
the Euclidean space of 128-d penultimate-layer features averaged over the training images.

Hyper-priors and inference. Gamma hyper-priors: aq = bq = aC = bC = 1, giving vague
Gamma(1, 1) on τq and τC . Four independent HMC chains, each with 500 warm-up (NUTS) and
1,000 posterior iterations; leap-frog step-size adaptively tuned. Block Newton–CG inner optimizer:

8



Table 3: Label shift estimation and downstream performance. Lower is better for ∥q̂ − q∥1; higher
is better for post–correction accuracy. Best results are bold. ± shows one bootstrap standard error.
(1 000 resamples).

MNIST (K=10) CIFAR-10 (K=10) CIFAR-100 (K=100)

Method ∥q̂ − q∥1 ↓ Acc ↑ ∥q̂ − q∥1 ↓ Acc ↑ ∥q̂ − q∥1 ↓ Acc ↑
BBSE 0.038± 0.007 0.942± 0.002 0.112± 0.015 0.781± 0.004 1.62± 0.05 0.690± 0.006
EM 0.052± 0.015 0.935± 0.008 0.194± 0.033 0.732± 0.012 2.10± 0.14 0.632± 0.026
RLLS 0.016± 0.004 0.959± 0.003 0.072± 0.010 0.803± 0.004 0.92± 0.03 0.712± 0.006
MLLS 0.010± 0.003 0.963± 0.002 0.052± 0.008 0.812± 0.004 0.71± 0.03 0.734± 0.006
GS-B3SE 0.002± 0.001 0.986± 0.002 0.025± 0.004 0.844± 0.003 0.22± 0.02 0.783± 0.005

tolerance 10−4, at most eight iterations per Newton step, stop when the relative change of the joint
log-density falls below 10−3. All routines implemented in PyMC and run on a single NVIDIA T4.

Baselines. We compare against a) plug-in BBSE [39], b) the EM-style Saerens re-weighting [47], c)
RLLS [7] with ℓ2-regularisation and d) MLLS [18] tuned on a held-out split. All baselines receive
the same C̃ and target predictions ĥ(x). Table 2 summarizes the baseline methods and their key
ideas, including our method.

Evaluation. We report prior-error |q̂ − q|1 and downstream accuracy after Saerens likelihood
correction using the estimated priors. Significance is assessed with 1,000 paired bootstrap resamples
of the target set.

7.2 Main Empirical Findings

Table 3 compares GS-B3SE with four widely–used point estimators on three datasets.

Sharper prior estimates. Across all datasets GS-B3SE reduces the ℓ1 error ∥q̂−q∥1 by large margins:
i) MNIST (K=10)—already a benign scenario— error falls from 0.010 (best baseline, MLLS) to
0.002 (×5 improvement), ii) CIFAR-10 (K=10)—richer images and heavier label skew— error
halves from 0.052 to 0.025, CIFAR-100 (K=100)—the high-class-count regime— graph smoothing
is essential: GS-B3SE reaches 0.22 versus 0.71. The advantage widens with K, confirming the
benefit of borrowing strength along the label graph when per-class counts are scarce.

Better downstream accuracy. Feeding the estimated priors into Saerens post-processing improves
final accuracy in proportion to the quality of the prior. GS-B3SE attains 0.986 on MNIST, 0.844
on CIFAR-10 and 0.783 on CIFAR-100—absolute gains of +2.3,pp, +3.2,pp and +4.9,pp over the
strongest non-Bayesian competitor (MLLS) on the respective datasets.

8 Conclusion

We presented GS-B3SE, a graph–smoothed Bayesian generalization of the classical black-box shift
estimator. By tying both the target prior q and every column of the confusion matrix C together
through a Laplacian–Gaussian hierarchy, the model simultaneously i) shares statistical strength across
semantically related classes, ii) quantifies all uncertainty arising from finite validation and target
samples, and admits scalable inference with either HMC or a Newton–CG variational surrogate. We
proved that the resulting posterior is identifiable, contracts at the optimal N−1/2 rate, and that its
class-wise variance decays inversely with the graph’s algebraic connectivity λ2(L). A robustness
bound further shows that even with a misspecified graph the bias vanishes as N−1. Because our
approach is a pure post-processing layer that needs only a frozen classifier, a tiny labelled validation
set, and a pre-computed label graph, it can be retro-fitted to virtually any deployed model.

Limitations and future work. i) Our current graph is built from CLIP or feature embeddings;
learning the graph jointly with the posterior could adapt it to the task. ii) Although inference is
already tractable, further speed-ups via structured variational approximations would make GS-B3SE
attractive for extreme-label settings. iii) As declared in Section 7.1, our experiments used a single
NVIDIA T4; scaling to larger datasets remains future work.
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A Proofs

Proof for Lemma 1. Fix an index i ∈ {1, . . . ,K} and an arbitrary source sample size nSi = n ≥ 1.
Denote NS

i = (NS
1,i, . . . , N

S
K,i)

⊤. Under parameter pair (C, q), we have

Pr
(
NS

i = k
)
=

n!

k1! · · · kK !

K∏
j=1

C
kj

j,i, k ∈ NK ,

K∑
j=1

kj = n.

Under (C ′, q′), the same vector has pmf

Pr
(
NS

i = k
)
=

n!

k1! · · · kK !

K∏
j=1

C
′kj

j,i .

By the assumption, these two pmfs coincide for every integer vector k with the given total n.
Canceling the multinomial coefficient yields

K∏
j=1

C
kj

j,i =

K∏
j=1

C
′kj

j,i , ∀k ∈ NK :
∑
j

kj = n. (11)

Pick the K specific count vectors

k(ℓ) = (0, . . . , 0︸ ︷︷ ︸
ℓ−1

, n, 0, . . . , 0)⊤, ℓ = 1, . . . ,K.

Plugging k(ℓ) into Eq. 11 gives

Cn
ℓ,i = C

′n
ℓ,i, 1 ≤ ℓ ≤ K.

Because n ≥ 1, taking the n-th root yields Cℓ,i = C ′
ℓ,i. Since i is arbitrary, Eq. 11 implies C = C ′.

Therefore, equality in distribution of the target count vector Ñ implies the underlying multinomial
parameter vectors must coincide: Cq = Cq′. Under the standing assumption that C is invertible, it
gives q = q′. Hence, the mapping

(q,C) 7→
{

Law of (NS
1 , . . . , N

S
K , Ñ)

}
is injective under the stated positivity and invertibility conditions.

Proof for Lemma 2. The prior on (q,C) is the push-forward measure of a product Gaussian:

(θ, ϕ1, . . . , ϕK) ∼ N
(
0, (τqL)†

)
⊗

K⊗
i=1

N
(
0, (τCL)†

)
, (12)

under the smooth, one-to-one map

T : (θ, ϕ1, . . . , ϕK) 7→ (q = ψ(θ), C:,1 = ψ(ϕ1), . . . , C:,K = ψ(ϕK)) ,

where ψ : RK → ∆K−1 is the softmax map. Here, injectivity holds because the log-odds repre-
sentation is unique once the sum-zero constraint is imposed. Because L† is positive definite on the
subspace

H :=
{
v ∈ RK : v⊤1K = 0

}
,

the Gaussian distributions in Eq. 12 have everywhere positive Lebesgue densities on that subspace.
Formally, for the target prior block

fq(θ) = (2π)
−(K−1)/2 (

det ⋆τ−1
q L†)−1/2

exp

{
−1

2
θ⊤τqLθ

}
,

where det ⋆ is the product of the positive eigenvalues. Since τqL is non-singular on H, fq(θ) > 0
for every θ ∈ H. Analogous positivity holds for each fC,i(ϕi).
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The softmax ψ is C∞ with non-zero Jacobian everywhere on H. Therefore, T is a C∞ diffeomor-
phism between

H× · · · × H︸ ︷︷ ︸
K + 1 copies

and its image S := ∆K−1 × (∆K−1)K ,

with the Jacobian determinant is
∏

i q
−1
i (1−

∑
i qi) = · · · and hence non-zero, preserving positivity.

Hence T preserves positivity of densities, the image measure Π on S posesses a density

π(q,C) = fq
(
ψ−1(q)

) K∏
i=1

fC,i

(
ψ−1(C:,i)

)
,

with respect to the product Lebesgue measure on simplices. Since each factor is positive everywhere,
π(q,C) > 0 for every (q,C) ∈ S. Because (q0,C0) lies in the interior of S and π is continuous
and strictly positive, there exists

m := min
(q,C)∈Bϵ(q0,C0)

π(q,C) > 0.

Note that the minimum exists by compactness of the closed ϵ-ball. Furthermore, the Euclidean
volume of the ball, under the ambient dimension dim∆K−1 = K − 1 for q and K(K − 1) for C, is
finite and strictly positive:

Vol (Bϵ(q0,C0)) = cK2−1ϵ
K2−1 > 0,

where cd is the volume if the unit ball in Rd. Hence,

Π(Bϵ(q0,C0)) =

∫
Bϵ(q0,C0)

π(q,C)d(q,C)

≥ mVol (Bϵ(q0,C0)) > 0.

This concludes the proof.

Proof for Proposition 1. For every η > 0,

Uη :=
{
(q,C) : DKL[P(q0,C0)∥P(q,C)] < η

}
,

where P(q,C) denotes the K(K +1)-dimensional multinomial law of the complete data. Because the
parameter space is finite-dimensional and smooth,

∥(q,C)− (q0,C0)∥ < δ(η) =⇒ DKL[P(q0,C0)∥P(q,C)] < η,

with a deterministic radius δ(η) → 0 as η ↓ 0. This follows from a second-order Taylor expansion of
the multinomial log-likelihood around the interior point. Lemma 2 says that the prior puts strictly
positive mass on every Euclidean ball and hence on Uη:

Π(Uη) > 0, ∀η > 0.

Let θ = (q,C) and θ0 = (q0,C0). For any fixed ϵ > 0, define the alternative set Bϵ above. Because
the model is an i.i.d. exponential family (multinomials) of finite dimension, Ghosal et al. [20] show
there exist tests φN : data → {0, 1} satisfying, for some constants c1, c2 > 0 independent of N ,{

(i) Pθ0
(φN = 1) ≤ e−c1N ,

(ii) supθ∈Bϵ
Pθ(φN = 0) ≤ e−c2N .

(13)

Write the complete log-likelihood ratio as

lN (θ) = log
dPθ

dPθ0

(data)

=

K∑
i=1

K∑
j=1

NS
j,i log

Cj,i

C0j,i
+

K∑
j=1

Ñj log
(Cq)j
(C0q0)j

.
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Let φN = 1
{
lN (θ0) < − 1

2cN
}

, where c ∈ (0, c∗) and c∗ is the minimized KL-divergence over Bϵ:

c∗ = inf
θ∈Bϵ

DKL [Pθ0
∥Pθ] > 0.

The above inequality is strict by Lemma 1. Chernoff bounds for sums of bounded log-likelihood ratios
gives (i) in Eq. 13. Under any θ ∈ Bϵ, the expected log-likelihood ratio equals −N ·DKL[Pθ0

∥Pθ] ≤
−c∗N . A one-sided Hoeffding inequality for sums of independent, bounded random variables then
yields (ii) in Eq. 13, with c2 = (c∗ − c)/2.

Therefore,

Π(Bϵ | data)
P(q0,C0)−−−−−→
N→∞

0, ∀ϵ > 0.

Because the metric ∥(q,C)− (q0,C0)∥ is continuous, this convergence in outer probability equals
convergence in probability, completing the proof.

Proof for Theorem 1. Put the log-odds vector for the target prior

θ = (θ1, . . . , θK)⊤, θi = log qi −
1

K

K∑
k=1

log qk,

and for the i-th column of the confusion matrix

ϕi = (ϕ1,i, . . . , ϕK,i)
⊤, ϕi,j = logCj,i −

1

K

K∑
k=1

logCk,i.

Each vector lives in the centered linear subspace H := {v ∈ RK : v⊤1K = 0} of dimension K − 1.
Define the global parameter

η = (θ⊤,ϕ⊤
1 , . . . ,ϕ

⊤
K)⊤ ∈ Rd, d = (K − 1) +K(K − 1) = K2 − 1.

The map Ψ : η 7→ (q,C) given by component-wise softmax is C∞ and has a Jacobian of full rank
everywhere on Rd. Hence, η 7→ (q,C) is a local diffeomorphism. We fix η0 corresponding to
(q0,C0). Let

ℓN (η) := log pη(data)

=

K∑
i=1

K∑
j=1

NS
j,i logCj,i +

K∑
j=1

Ñj log(Cq)j ,

where C and q in the right-hand side are the softmax images of η. Because each count is bounded by
N and the mapping Ψ is smooth, ℓN (η) is twice countinuously differentiable in a neighbourhood of
η0.

Compute the score vector and observed information:

ℓ̇N (η0) =

K∑
i=1

K∑
j=1

(
NS

j,i − nSi C0j,i

) ∂

∂η
logCj,i +

K∑
j=1

(
Ñj − n′(C0q0)j

) ∂

∂η
log(Cq)j

∣∣∣∣∣∣
η0

,

ℓ̈N (η0) = −NF (η0),

where F (η0) is the Fisher information matrix of dimension d × d. Here, F (η0) is positive defi-
nite because (q0,C0) is interior and C0 is invertible (ensures different parameters yield different
probability mass functions). The positive definiteness can be checked by observing that the Fisher
information of a finite multinomial family with parameters inside the simplex is positive definite and
the Jacobian of Ψ is full rank.

Set local parameter h =
√
N(η−η0). A second-order Taylor expansion yields the Local Asymptotic

Normality (LAN) representation

ℓN (η0 + h/
√
N)− ℓN (η0) = h⊤∆N − 1

2
h⊤F (η0)h+ rN (h),
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with

∆N =
1√
N
ℓ̇N (η0)⇝ N (0,F (η0)) , sup

∥h∥=O(1)

|rN (h)| P→ 0.

The convergence of ∆N uses the multivariate central limit theorem for sums of independent bounded
variables. Uniform control of rN follows from third derivative boundedness in a neighborhood of η0.

In η-coordinates, the Laplacian-Gaussian prior has a density

π(η) = exp

[
−1

2
τqθ

⊤Lθ − 1

2
τC

K∑
i=1

ϕ⊤
i Lϕi

]
φ(τq, τC),

where φ is strictly positive and smooth Gamma density. Because L is positive semi-definite on H, π
is continuous and strictly positive in a neighborhood of η0. Therefore, there exsit c0 > 0 and δ > 0
such that

π(η) ≥ c0, whenever ∥η − η0∥2 ≤ δ.

Consequently, under the true distribution

Π
(√

N(η − η0) ∈ · | data
)
⇝ N

(
F−1∆N ,F

−1
)

in P(q0,C0)-probability,

and for any M > 0,

Π
(∥∥∥√N(η − η0)

∥∥∥
2
> M | data

) P(q0,C0)→ 0.

Because Ψ is C1 with Jacobian DΨ(η0) of full rank, there exists a constant K0 > 0 such that, for all
η in a neighborhood of η0,

∥Ψ(η)−Ψ(η0)∥ ≥ K−1
0 ∥η − η0∥2.

Hence,

Π(Bc
N | data) ≤ Π

(
∥η − η0∥2 > M/(K0

√
N) | data

)
Pq0,C0→ 0.

Because M > 0 is arbitrary, this limit verifies the claim of the theorem.

Proof for Corollary 1. Consider the centred log-odds vector θ ∈ H for the target prior. Its conditional
posterior density is

p(θ | data) ∝ exp

{
ℓ
(q)
N (θ)− 1

2
τqθ

⊤Lθ

}
,

where

ℓ
(q)
N (θ) =

K∑
j=1

Ñj log [(C · softmax(θ))j ] .

Take any point θ∗ in a O(N−1/2)-ball around θ0. By Theorem 1 this contains essentially all posterior
mass. Inside that ball Taylor expansion gives

−
∂2ℓ

(q)
N

∂θ
(θ∗) = NF +O(N1/2),

with F the Fisher information matrix. Hence the negative Hessian of the log-posterior satisfies

JN :=
∂2

∂θ2

[
ℓ
(q)
N − 1

2
τqθ

⊤Lθ

]
(θ∗) ⪰ NF + τqL−O(N1/2)F .

For N beyond some N0, the error term is dominated by NF , so there exists c0 > 0 such that

JN ⪰ Nc0F + τqL.
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Thus,

CovN (θ) ⪯ [Nc0F + τqL]
−1
.

Because L has eigen-pair (0,1) and eigenvalues λk ≥ λ2(L) on H, the restricted inverse satisfies

[Nc0F + τqL]
−1 ⪯ 1

Nc0 + τqλ2(L)
F ⪯ 1

τqλ2(L)
F +

1

c0N
F . (14)

For N ≥ N0, the second term dominates 1/(τqλ2(L)), and hence

VarN (θℓ) ≤
2

c0N
, ℓ = 1, . . . ,K. (15)

The softmax map σ : θ 7→ q has derivative

Dσ(θ) = diag(q)− qq⊤.

Every entry of Dσ is bounded by 1/4 (attained at uniform prior), hence the operator norm obeys
∥Dσ∥ ≤ 1/2. For any random vector θ with covariance Σ,

Cov(σ(θ)) = DσΣDσ⊤ ⪯ ∥Dσ∥2Σ ⪯ 1

4
Σ.

Applying to the posterior distribution with bound 15 gives

Var(qi) ≤
1

4

K∑
ℓ=1

[Dσiℓ(θ
∗)]

2
VarN (θℓ) ≤

1

2c0N
. (16)

The constant c0 is λmin(F ) which is independent of the graph but positive. Tightening Eq. 14 using
the τqL, term, we keep only the τqλ2(L) contribution:

VarN (θℓ) ≤
1

τqλ2(L)
+

1

c0N
≤ C2

λ2(L)N
, C2 =

τq + c0
τqc0

.

Repeating the delta-method argument with this sharper bound scales Eq. 16 by the same 1/λ2(L).
Set C = K(τq + c0)/2τqc0. Then,

VarN (qi) ≤
C

λ2(L)N
, i = 1, . . . ,K,

which is precisely the claimed finite-sample variance control.

Proof for Proposition 2. Write the complete-data log-posterior (ignoring normalising constants)

LN (θ) = ℓ
(q)
N (θ)− 1

2
τqθ

⊤Lθ,

where

ℓ
(q)
N (θ) =

K∑
j=1

Ñj log [(C · σ(θ))j ] .

Let θ̂N be the MAP with respect to the misspecified prior, and it satisfies the score equation

∇ℓ(q)N (θ̂N )− τqLθ̂N = 0. (17)

Set the estimation error

∆N := θ̂N − θ0.

Taylor expansion of the gradient in Eq. 17 yields

∇ℓ(q)N (θ̂N ) = ∇ℓ(q)N (θ0) +∇2ℓ
(q)
N (θ0)∆N +RN ,[

−∇2ℓqN (θ0) + τqL
]
∆N = ∇ℓ(q)N (θ0)− τqLθ0 +RN ,

17



where RN = OP (∥∆N∥2) because the third derivative of ℓ(q)N is bounded on a neighbourhood of θ0.
Using E[Ñj ] = n′(C0q0)j and by the Markov inequality,

(NF0 + τqL)E [∆N | data] = −τq(L−L0)θ0 +OP (1).

For quadratic priors and log-concave likelihoods the posterior is asymptotically normal, so the
difference between posterior mean and MAP is O(N−1) [52]. Therefore

θ̄N − θ0 = E[∆N | data] +OP (N
−1)

= −(NF0 + τqL)−1(L−L0)θ0 +OP (N
−1),∥∥θ̄N − θ0

∥∥ ≤
∥∥(NF0 + τqL)−1

∥∥ τq ∥(L−L0)θ0∥+OP (N
−1).

This is the bound in Eq. 6 in the proposition.

The sub-space H = {v ∈ RK : v⊤1K = 0} is the (K − 1)-dimensional hyper-plane of vectors
whose components sum to zero. Its orthogonal projection operator is the K ×K symmetric matrix
PH = IK − 1

K1K1⊤
K , because for any v ∈ RK , PHv = v−

(
1
K1⊤

Kv
)
1K , and the subtracted term

is exactly the scalar mean of v replicated in every coordinate, making the result mean-zero. Because
F0 ⪰ 0 and L ⪰ λ2(L)PH, the smallest eigenvalue ofNF0+τqL is at leastNλmin(F0)+τqλ2(L).
Hence, ∥∥(NF + τqL)−1

∥∥ =
1

λmin(NF + τqL)
≤ 1

Nλmin(F ) + τqλ2(L)
.

Combine them to get inequality in Eq. 7, completing the proof.

Proof of Theorem 2. Throughout the proof we fix an arbitrary interior point q ∈ ∆̊K−1 and an
arbitrary tangent direction v ∈ Tq∆

K−1 = {v ∈ RK | 1⊤v = 0}. To establish geodesic convexity
it suffices to show

v⊤ HessFRq F v ≥
[
n′λmin(F0) + τqλ2(L)

]
v⊤gq v, (18)

because the latter is the Rayleigh quotient form of the desired positive–definite bound. Recall the
form of the negative log–posterior (constant terms omitted):

F (q) = n′DKL

[
r̂ ∥Cq

]︸ ︷︷ ︸
Flik(q)

+
τq
2

θ⊤Lθ︸ ︷︷ ︸
Freg(q)

.

Accordingly

HessFRq F = n′ HessFRq Flik + τq HessFRq Freg. (19)

Write r(q) := Cq, ri(q) =
∑

j Cijqj . For the multinomial log–likelihood term we have the usual
identity

HessFRq Flik = F0 = diag
(
r(q)

)
− r(q)r(q)⊤. (20)

Indeed, start with Flik(q) =
∑

i r̂i log
r̂i

ri(q)
and differentiate twice with respect to qj while keeping

the tangent constraint 1⊤v = 0, and we have Eq. (20). Now evaluate the quadratic form:

v⊤ HessFRq Flikv = v⊤F0v

≥ λmin(F0) ∥v∥22
(
Rayleigh bound

)
= λmin(F0)v

⊤Iv. (21)

To relate the Euclidean norm ∥ · ∥2 with the Fisher metric gq notice that

gq(v,v) =

K∑
i=1

v2i
qi

= v⊤diag(q)−1v, diag(q)−1 ≻ 0. (22)

Hence for every v,

∥v∥22 = v⊤diag(q) diag(q)−1v ≤
(
max

i
qi
)
gq(v,v) ≤ gq(v,v),

18



because qi < 1 inside the simplex. Thus, we have

n′ v⊤ HessFRq Flikv ≥ n′λmin(F0) gq(v,v). (23)

Recall θ =
(
θi
)K
i=1

with θi = log qi − 1
K

∑
j log qj . Differentiating twice gives

HessFRq Freg = J(q)⊤LJ(q), (24)

where J(q) ∈ RK×(K−1) is the Jacobian ∂θ/∂q restricted to the tangent space. Concretely

J(q) =
[
diag(q)−1 − 1

K11⊤diag(q)−1
]
PT ,

with PT = I − 1
K11⊤ the projection onto Tq∆K−1.

Applying Eq. (24) we expand the quadratic form:

v⊤ HessFRq Fregv = (Jv)⊤L (Jv)

≥ λ2(L) ∥Jv∥22
(
Rayleigh bound on L

)
= λ2(L)v⊤J⊤J v. (25)

Because J(q)⊤J(q) = diag(q)−1PT one checks

v⊤J⊤J v = v⊤diag(q)−1v = gq(v,v).

Thus,
τq v

⊤ HessFRq Fregv ≥ τqλ2(L) gq(v,v), (26)
and

v⊤ HessFRq Fv ≥
[
n′λmin(F0) + τqλ2(L)

]
gq(v,v).

Since the inequality holds for every v ∈ Tq∆
K−1, the matrix inequality announced in the theorem

follows, and the strong-convexity constant is
α = n′λmin(F0) + τqλ2(L) > 0.

Proof for Proposition 3. Write Flik(q) = n′
∑K

i=1 r̂i log
r̂i

ri(q)
with ri(q) =

∑
j Cijqj . For j ∈

{1, . . . ,K} we differentiate:

∂qjFlik = −n′
K∑
i=1

r̂i
1

ri(q)
∂qjri(q)

= −n′
K∑
i=1

r̂i
1

ri(q)
Cij

= −n′ [C⊤ r̂
r(q) ]j ,

(
r̂

r
element–wise

)
(27)

so that in vector form

∇qFlik = −n′ C⊤
(

r̂

r(q)

)
. (28)

Recall θ =
(
θi
)

with θi = log qi − 1
K

∑K
k=1 log qk. Let s(q) = 1

K

∑
k log qk. For j:

∂qjθi =
δij
qi

− 1

K

1

qj
, ∂qjθ = diag(ej/q)− 1

K1(ej/q)
⊤, (29)

where (ej)k = δkj and q = (q1, . . . , qK)⊤. Using the chain rule,

∂qjFreg =
τq
2
∂qj

(
θ⊤Lθ

)
= τq (∂qjθ)

⊤Lθ

= τq

[
diag(ej/q)− 1

K1(ej/q)
⊤
]⊤

Lθ

= τq
vj
qj
, where v =

[
I − 1

K11⊤
]
Lθ = PTLθ. (30)
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In vector notation
∇qFreg = τq diag(q)

−1 PT Lθ, (31)
and because PT annihilates the 1-component we may drop it inside the tangent space: PTL = L
since 1 is the null-eigenvector of L. On the simplex g−1

q acts as left–multiplication by diag(q)

(followed by projection onto Tq∆K−1, automatic here because every gradient we computed is
already centered). Hence

gradFR F (q) = diag(q)∇qF

= diag(q)

(
−n′ C⊤ r̂

r(q)
+ τq diag(q)

−1Lθ

)
= diag(q)

(
n′ C⊤

(
1− r̂

r(q)

)
+ τq Lθ

)
, (32)

which is exactly (9). The rightmost expression is automatically orthogonal to 1 because each
bracketed term sums to 0; therefore the evolution does not leave the simplex:

d

dt

(
1⊤qt

)
= 1⊤q̇t = −1⊤ gradFR F (qt) = 0.

Finally, inserting (9) in the natural gradient flow yields the replicator part q̇t,j = − qt,j
[
n′ [C⊤(1−

r̂/r)] + τq[Lθt]
]
j
, confirming the announced replicator–Laplacian dynamics.
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B Background on Information Geometry

Table 4 summarizes the basic notations of information geometry required in our study, to make the
manuscript self-contained. See textbooks in information geometry for more details [5, 6].

Table 4: Basic notations of information geometry.

Concept Definition

Fisher–Rao metric gq(v,w) =
∑

i
viwi

qi
on the open simplex.

e-coordinates
θi = log qi − 1

K

∑
j log qj (exponential-family / natural

parameters constrained to Tq∆K−1).

m-coordinates The usual probabilities qi (mixture parameters).

e- / m-flat sub-manifold
A subset whose image is affine in the corresponding coordi-
nates; e.g. M = Cq is m-flat because r = Cq is linear in
q.

Dual flatness, potentials State ψ(q) =
∑

i qi log qi and φ(θ) = log
(∑

i e
θi
)

satisfy-
ing q = ∇θφ and θ = ∇qψ.

e- / m-projection For a point p and sub-manifold S, the minimizer of
DKL(p|s) (m-projection) or DKL(s|p) (e-projection).

e- / m-convex function A function whose restriction to every e-(resp. m-) geodesic
is convex in the ordinary sense.

Generalized Pythagorean theorem For p, q, r where q is the m-projection of p onto S and
r ∈ S, DKL[p|r] = DKL[p|q] +DKL[q|r].

Natural gradient gradFR F = g−1
q ∇!qF .
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